

Mononuclear 1,3-Dideazaadenine–Ag(I)–

Thyminate Base Pairs

Stefanie Litau and Jens Müller

Westfälische Wilhelms-Universität Münster
Institut für Anorganische und Analytische Chemie
Corrensstraße 28/30
48149 Münster
Germany

Fax: 49 251 8336007
Tel: 49 251 8336006
E-mail: mueller.j@uni-muenster.de

Supporting Information

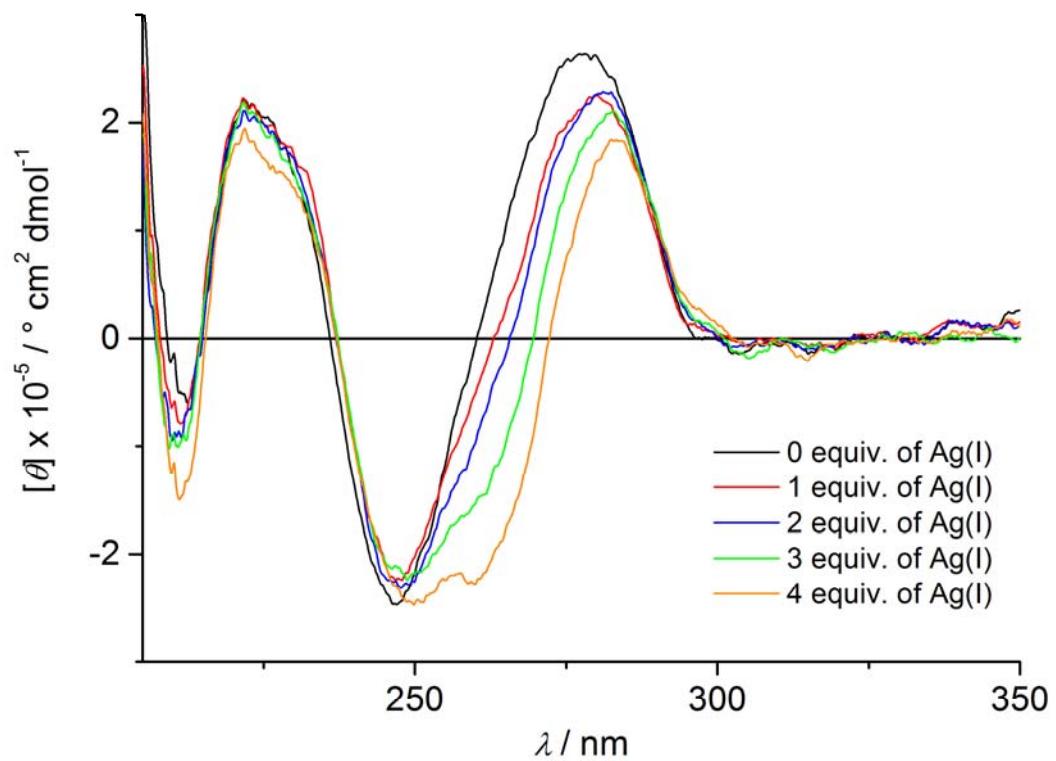


Figure S1. CD spectra of the oligonucleotide duplex comprising one central D:T mispair at pH 6.8 in the presence of various amounts of AgNO_3 (1 μM duplex, 150 mM NaClO_4 , 5 mM MOPS pH 6.8).

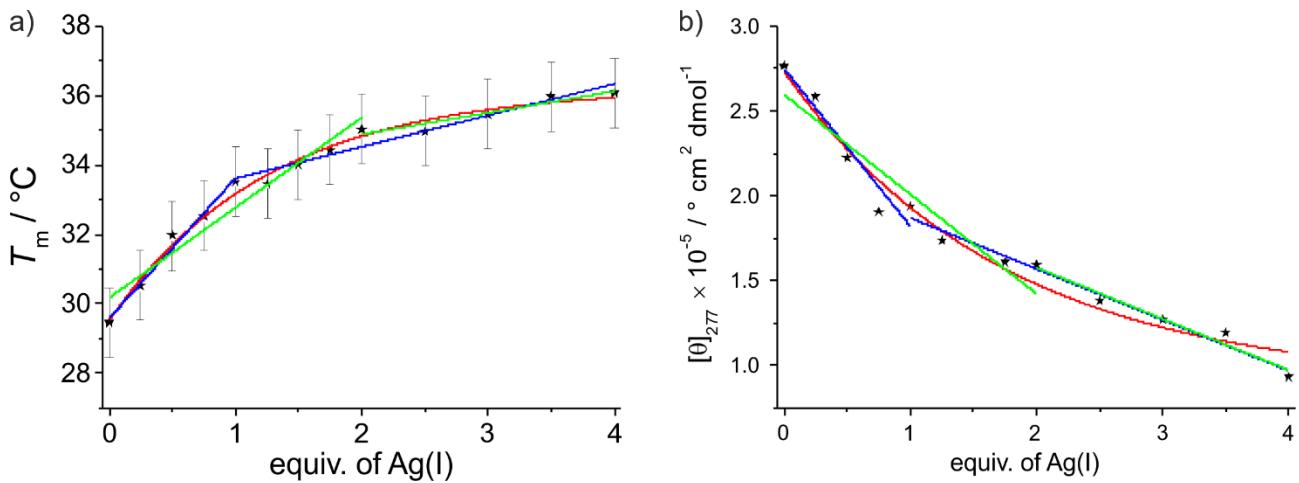


Figure S2. Experimental data a) from the inset of Figure 1 and b) from Figure 3b, including an asymptotic curve fit ($y = a - b c^x$, red) and two combinations of two linear fits ($y = a + b x$, blue for 1:1 stoichiometry, green for 2:1 stoichiometry).

a) asymptotic curve fit: $a = 36.2(2)$, $b = 6.7(2)$, $c = 0.46(3)$, $R^2 = 0.987$

two linear fits: $x = 0 \rightarrow 1$, $a = 29.6(2)$, $b = 4.0(3)$, $R^2 = 0.978$

$x = 1 \rightarrow 4$, $a = 32.7(2)$, $b = 0.91(9)$, $R^2 = 0.926$

The lines intersect at $x = 1.0(3)$, confirming an assumed 1:1 stoichiometry.

two linear fits: $x = 0 \rightarrow 2$, $a = 30.2(3)$, $b = 2.6(3)$, $R^2 = 0.925$

$x = 2 \rightarrow 4$, $a = 33.6(4)$, $b = 0.6(1)$, $R^2 = 0.878$

The lines intersect at $x = 1.7(5)$, being ambiguous regarding an assumed 2:1 stoichiometry.

For these experimental data, the linear fits assuming a 1:1 stoichiometry are significantly better than those for a 2:1 stoichiometry. Nonetheless, the asymptotic fit is better than any of the two linear fits, in particular with respect to the data points at $x > 1$. Hence, the stoichiometry between metal-mediated base pair and included metal ions cannot be deduced unambiguously.

b) asymptotic curve fit: $a = 0.9(2)$, $b = -1.8(1)$, $c = 0.56(7)$, $R^2 = 0.966$

two linear fits: $x = 0 \rightarrow 1$, $a = 2.75(9)$, $b = -0.9(2)$, $R^2 = 0.900$

$x = 1 \rightarrow 4$, $a = 2.17(5)$, $b = -0.30(2)$, $R^2 = 0.970$

Both lines intersect at $x = 1.0(3)$, confirming an assumed 1:1 stoichiometry.

two linear fits: $x = 0 \rightarrow 2$, $a = 2.6(1)$, $b = -0.59(9)$, $R^2 = 0.857$

$x = 2 \rightarrow 4$, $a = 2.2(1)$, $b = -0.30(3)$, $R^2 = 0.952$

Both lines intersect at $x = 1.4(1)$, contradicting an assumed 2:1 stoichiometry.

For these experimental data, the linear fits assuming a 1:1 stoichiometry are significantly better than those for a 2:1 stoichiometry. The asymptotic fit is of similar quality as the 1:1 linear fit, but the latter is better for data points at $x > 1$. Hence, these data tend to point towards a 1:1 stoichiometry.