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1 Introduction

The study of the existence of geodesics, which are shortest paths between two points, is of fun-
damental importance in various areas of mathematics and applied sciences. Geodesics possess
intrinsic properties that make them optimal in terms of distance, energy, or other geometric mea-
sures. Moreover, they play a crucial role in path planning algorithms [28], computer animation
[10], and image segmentation [7].

In this thesis we focus on geodesics in the space of closed regular and parameterized Sobolev
immersions of order n, denoted by Immn(S 1,Rd), as well as geodesics in the orbit space under
the action of the reparameterization group, denoted by Immn(S 1,Rd)/Diffn(S 1). The latter space
holds greater significance as it involves unparameterized curves which eliminate the dependence
on specific parameterizations, and facilitate meaningful comparisons and analyses based solely
on shape information [26]. To draw conclusions about the quotient space we first need to study
the space of immersions itself.

In order to measure the distance between two shapes we equip the above spaces with a Sobolev
metric Gc of order two or higher. This kind of metric takes into account not only the first
derivative but also higher-order derivatives, resulting in a more comprehensive and informa-
tive measure of shape variability as shown in [21]. Thus, higher derivatives provide a powerful
framework for analyzing and quantifying shape variations in geometric objects like curves.

A horizontal geodesic is a geodesic, whose derivative lies in the horizontal space, a subspace of
the tangent space. Compared to geodesics in the full ambient space, horizontal geodesics are
easier to compute as they have reduced dimensionality. This simplification enables the use of
more efficient numerical methods and algorithms tailored to the specific plane, leading to faster
computations and enhanced numerical stability [13].

In order to prove horizontality of geodesics the shape space has to be a manifold. The manifold
structure implies the existence of a principal connenction with parallel transport, which enables
a horizontal lift from the quotient space to the original manifold. Unfortunately, the shape space
of unparameterized curves is not a manifold, as described in [22]. Hence, we restrict to the dense
open subset Imm f (S 1,Rd) of curves upon which the group of diffeomorphisms acts freely and
we prove the manifold structure for this space instead.

The primary objectives of this thesis are to investigate the existence of geodesics in the shape
space of unparameterized Sobolev immersions of order n and to show that geodesics in
Immn

f (S
1,Rd)/Diffn(S 1) are horizontal. By understanding the properties and existence of these

geodesics, we aim to deepen our comprehension of shape spaces and contribute to the fields of
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CHAPTER 1. INTRODUCTION Inga Giersch

shape analysis and optimization.

This paper is organized as follows. After recalling the notions of metric space and some basic
concepts in differantial geometry, we introduce in Section 3 the concept of the winding number
and present the proof of the Whitney-Graustein Theorem which was originally done in [27]. The
theorem states that two curves in the plane are regularly homotopic if and only if they have the
same winding number. In the context of the existence of geodesics we obtain a positive result
for two curves in the same connected component. The theorem can then be used to characterize
the connected completeness of R2.

Afterwards, we prove metric completeness of the space
(
Immn(S 1,Rd), distG

)
in Section 4.

To accomplish this, we use the fact that the space (Hn(S 1,Rd), || · ||Hn(dθ)) is metrically com-
plete. While it is straightforward to demonstrate the equivalence between the Hn(ds)-norm
and the distance function induced by a Sobolev metric, proving the equivalence of the Hn(dθ)-
and Hn(ds)-norm presents a more intricate challenge, forming the primary focus of this sec-
tion. The metric completeness of the original space is required to show that the quotient space
(Immn(S 1,Rd)/Diffn(S 1), distI/D) is a complete metric space as well, which is a key step towards
establishing the existence of geodesics in the latter space.

In Section 5 we prove that any two curves in Immn(S 1,Rd) lying in the same connected com-
ponent can be joined by a minimizing geodesic. The proof employs the direct method of the
Calculus of Variation to find a minimizer. Then, we transfer the existence result from the space
of parameterized curves to the space of geometric curves. Moreover, we show in the last subsec-
tion with a simple argument that the existence result also holds in the space of free (geometric)
curves.

Subsequently, in Section 6 we show that Imm f (S 1,Rd)/Diff admits a manifold structure. By
studying the behavior of freely immersed curves and their local neighborhoods, we introduce
the notion of tubular neighborhoods. We show that the tubular neighborhood of an immersed
curve exclusively contains immersed curves. Similarly, within a tubular neighborhood of a freely
immersed curve, all curves also remain freely immersed. Furthermore, we discuss the equiva-
lence with the neighborhoods induced by the Banach topology.

In the final section we present the proof that geodesics in the space Imm f (S 1,Rd)/Diff can be
lifted horizontally to the space Imm f (S 1,Rd). This proof relies on a crucial element, namely
the manifold structure of the space. We introduce the concept of fiber bundles and transfer
the manifold result into the framework of principal fiber bundles. Moreover, we present the
definition of horizontal and vertical subspaces of the tangent space and a principal connection.
The latter one is needed to define parallel transport, which is a mathematical concept that allows
for the transport of vectors or tensors along curves while preserving their properties.
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2 Preliminaries

In this section we lay down the necessary preliminaries of differential geometry which are re-
quired to understand the content of this thesis. We introduce some basic definitions and concepts
from differential geometry, especially the theory of immersed curves and their properties. Un-
less otherwise indicated , the definitions are derived from [3, Sec. 2] and [19, Sec. 2]. We begin
with the notion of smooth parameterized curves and subsequently delve into the exploration of
geometric curves.

2.1 The Space of Curves and the Tangent Space

Definition 2.1 (Space of Curves). We call

Imm(S 1,Rd) := {c ∈ C∞(S 1,Rd) : c′(θ) , 0}

the space of parameterized regular immersions. The space of Sobolev immersions of order n is
denoted by

Immn(S 1,Rd) := {c ∈ Hn(S 1,Rd) : c′(θ) , 0}.

Since S 1 can be viewed as R/(2π), we note that curves from S 1 → Rd can be considered as
curves from R→ Rd which are 2π-periodic. In the following we assume a curve c to be closed,
i.e. c(0) = c(2π) and c′(0) = c′(2π). To shorten notation, we write Imm for Imm(S 1,Rd) and
Immn for Immn(S 1,Rd).

Definition 2.2 (Tangent Space). Let f be a function between two finite dimensional manifolds
M and N and let π : T N → N be the tangent bundle map. Then the tangent space T f C(M,N)
contains every

f̃ : M → T N,

such that f̃ is smooth and π ◦ f̃ = f .

For the above defined spaces the tangent spaces can simply be identified as follows

TcImm(S 1,Rd) � C∞(S 1,Rd),

TcImmn(S 1,Rd) � Hn(S 1,Rd).

For a curve c ∈ Immn we encounter two different kinds of derivatives. On the one hand, we
have ∂θc with θ ∈ S 1, which we will denote by c′. On the other hand, we have the derivative
with respect to arc length, which we will denote by Dsc = ∂θc/|c′|. We define integration with
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CHAPTER 2. PRELIMINARIES Inga Giersch

respect to arc length by ds = |c′|dθ. Moreover, we have the unit length vector V = c′/|c′| which
is well-defined since c is a C1-immersion.

Definition 2.3 (Mean Curvature). If c is C2-regular, we define the mean curvature H of c as

H :=
∂

∂s
∂

∂s
c =

∂

∂s
V.

Definition 2.4 (Normal Vector). For a planar curve c we establish the normal vector N to the
curve c by imposing the conditions that |N | = 1, N is orthogonal to V and N is rotated 2/π
degree counter clockwise with respect to V .

Definition 2.5 (Scalar Curvature). If c is planar and C2, then we define the signed scalar cur-
vature κ = ⟨H,N⟩, so that

∂

∂s
V = κN = H,

∂

∂s
N = −κV.

To compute the scalar curvature κ we make use of the angle function ϕ : R → R (see Def. 3.1)
which is defined such that

V(s) = (cos(ϕ(s)), sin(ϕ(s))).

Since N ⊥ V , we conclude
N(s) = (− sin(ϕ(s)), cos(ϕ(s))).

Observe that
∂

∂s
V(s) =

1
|c′|

ϕ′(s)(− sin(ϕ(s)), cos(ϕ(s))) =
ϕ′

|c′|
N.

As ∂
∂s V = κN, we obtain

κ =
ϕ′

|c′|
=

∂

∂s
ϕ.

Definition 2.6. Consider the curve c : S 1 → R2 with scalar curvature κ. We define the constants

δc :=
π

(3 max|κ|)

τc :=
1

(2 max|κ|)
.

Note that since we are considering closed curves, the scalar curvature is not zero.
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2.2 Length of Curves

Definition 2.7 (Length). Let c0, c1 be two curves in Immn and let c(t) be a path connecting c0
and c1, i.e c(0) = c0 and c(1) = c1. We define the length of a path by

lenG(c) :=
∫ 1

0
|ċ(t)|c(t)dt.

Here ċ(t) denotes the derivative with respect to time and the induced norm is given by |ċ(t)|c(t) =√
Gc(t)

(
ċ(t), ċ(t)

)
, where G denotes a Riemannian metric. Then, the induced geodesic distance is

defined as

distG(c0, c1) := inf {lenG(c) : c(0) = c0, c(1) = c1, c piecewise smooth},

and the open metric ball is given by

B(c0, r) = {c1 : distG(c0, c1) < r}.

Moreover, we define the path energy as

E(c) :=
∫ 1

0
Gc(t)

(
ċ(t), ċ(t)

)
dt.

We have L(c) ≤
√

E(c), since

L(c) =
∫ 1

0
1 ∗

√
Gc(t)

(
ċ(t), ċ(t)

)
dt ≤

√∫ 1

0
12 dt

√∫ 1

0

√
Gc(t)

(
ċ(t), ċ(t)

)2 dt =
√

E(c),

where the inequality comes from the Cauchy-Schwarz inequality. For the case that c has constant
speed, the Cauchy-Schwarz inequality yields equality, leading to L(c) =

√
E(c). Thus, in order

to identify the minimizers of the path length, we can look for minimizers of the energy functional
and the minimizers will have constant speed. We call such local minimizers geodesics.

Note that we distinguish between the length of a curve and the length of a path that connects
two curves. When computing the length of a curve which is defined over the interval [0, 2π], we
integrate from 0 to 2π. However, when measuring the length of a path c : [0, 1] → Immn, we
integrate from 0 to 1.

Lemma 2.8. (Constant Speed Reparameterization, taken from [24, Thm. 2.1]). For every curve
c ∈ Immn there exists a reparameterization c̃ = c ◦ ϕ with ϕ ∈ Diff(S 1) such that c̃ has constant
speed, i.e. |c̃′| ≡ l with l = len(c)/2π.

Proof: Consider the function s : [0, 2π]→ [0, 2π] defined as

s(t) :=
2π
L

∫ t

0
|c′| dθ,
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with L = len(c). Then we get

s′(t) =
2π
L
|c′|.

Since c is an immersion, we obtain

ds
dt
=

2π
L
|c′| > 0.

Hence the function s is strictly increasing with positive derivative. Then by the inverse function
Theorem there exists an inverse function t(s), so that

dt
ds
=

1
ds
dt

=
L
2π

1
|c′|

.

Since s is a diffeomorphism, c̃(s) := c ◦ t(s) is a reparameterization of c. It follows that

|c̃′(s)| = |c′(t(s))
dt
ds
| = |c′(t(s))|

L
2π

1
|c′(t(s))|

=
L
2π
. □

We say that a curve c is parameterized by arc parameter, if |c′| = 1. Clearly, a curve can be
reparameterized to arc parameter if and only if len(c)= 2π. Note that any curve can be rescaled
in order to have a length of 2π.

Definition 2.9 (Length of Curve Arcs). Let c ∈ Immn and σ, σ̃ ∈ S 1. If σ , σ̃, then there are
two arcs in S 1 connecting σ and σ̃. By

len c| [σ,σ̃],

we will mean the minimum of the lengths of c when restricted to one of the two arcs connecting
σ and σ̃.

For the periodical extension c : R→ Rd and σ, σ̃ ∈ R there exists an unique k ∈ Z such that

σ ≤ σ̃ + 2πk < σ + 2π.

Now, the minimum length of c restricted to one of the two arcs connecting σ and σ̃ is given by

len c| [σ,σ̃] = min{l1, l2},

where

l1 =
∫ σ̃+2πk

σ
|c′(θ)|dθ,

l2 =
∫ σ+2πk

σ̃+2πk
|c′(θ)|dθ.

Note, that if c is parameterized at constant speed, i.e. |c′| = l = len(c)
2π , then we will assume that σ
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and σ̃ are chosen (up to adding a constant 2πk) such that |σ − σ̃| = dS 1(σ, σ̃) ≤ π. Then we get

len c| [σ,σ̃] = l |σ − σ̃|.

Lemma 2.10. Consider a curve c ∈ Immn. Let

M = max|c′|,

m = min|c′|.

Then
m dS 1(σ, σ̃) ≤ len c|[σ,σ̃] ≤ M dS 1(σ, σ̃) ∀σ, σ̃ ∈ S 1,

where dS 1(σ, σ̃) denotes the length of the shortest arc in S 1 connecting σ and σ̃.

Proof: Let γ and γ be the two arcs in S 1 that connect σ and σ̃. Then

len c| [σ,σ̃] = min
{∫ σ̃

σ
|c′(t)| dt,

∫ σ

σ̃
|c′(t)| dt

}
≤ M min

{∫ σ̃

σ
1 dt,

∫ σ

σ̃
1 dt

}
= M min{γ, γ̃} = M dS 1(σ, σ̃).

We have used the fact that for small distances and lengths the arc where len c| [σ,σ̃] is computed, is
also the shortest arc connecting σ and σ̃. The proof for the first inequality works analogously.□

2.3 Metric Contributions

Previously, we have determined the space of curves for which we are going to prove metric
completeness and the existence of geodesics. It remains to identify the metric which we equip
the space with and which we use when talking about the length of a curve.

Definition 2.11 (Sobolev Metric). Let h1, h2 ∈ TcImmn and a j ≥ 0 for all j ≤ n. A Sobolev
metric of order m is then given by

Gc(h1, h2) =
∫

S 1
a0 < h1, h2 > +a1 < Dsh1,Dsh2 > +... + an < Dm

s h1,Dm
s h2 > ds.

In order to establish metric completeness of the space
(
Immn(S 1,Rd), distG

)
we introduce the

following Sobolev norms on Hn(S 1,R) for n ≤ 2

||h||2Hn(dθ) =

∫
S 1
|h(θ)|2 + |∂n

θh(θ)|2dθ,

||h||2Hn(ds) =

∫
S 1
|h(s)|2 + |Dn

sh(s)|2ds.

In Lemma 4.5 we will see that these two norms are equivalent on metric balls.

Lemma 2.12. (Taken from [4, Lemma 2.13]). Let c ∈ Imm2(S 1,Rd) and h : S 1 → Rd be

9
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absolutely continuous and closed. Then

sup
θ∈S 1

∣∣∣∣h(θ) −
1

len(c)

∫
S 1

h ds
∣∣∣∣ ≤ 1

2

∫
S 1
|Dsh| ds.

Proof: We have

h(θ) − h(0) =
1
2

(∫ θ

0
h′(σ) dσ −

∫ 2π

θ
h′(σ) dσ

)
,

where we used the fact that h is closed and hence h(0) = h(2π). Now, integration on both sides
by arc parameter and multiplying by 1/len (c) yields

1
len (c)

∫
S 1

h(θ) − h(0) ds =
1

2 len (c)

∫
S 1

(∫ θ

0
h′(σ) dσ −

∫ 2π

θ
h′(σ) dσ

)
ds.

Since h(0) is a constant and
∫

S 1 1 ds = len(c), we get for the left-hand side

1
len c

∫
S 1

h(θ) − h(0) ds =
1

len c

∫
S 1

h ds − h(0).

By taking the absolute values on both sides and putting them into the integral on the right-hand
side we get ∣∣∣∣ 1

len c

∫
S 1

h ds − h(0)
∣∣∣∣ ≤ 1

2 len c

∫
S 1

(∫ θ

0
|h′(σ)| dσ +

∫ 2π

θ
|h′(σ)| dσ

)
ds

≤
1

2 len c

∫ 2π

0
|h′(σ)| dσ

∫
S 1

1ds ≤
1
2

∫
S 1
|Dsh|ds.

The proof for any arbitrary point θ ∈ S 1, instead of 0, can be done similarly, leading to the
same result. Thus, we can take the supremum over θ ∈ S 1, which completes the proof of the
lemma. □

Lemma 2.13. (Poincare Inequalities, taken from [4, Lemma 2.14, 2.15]). Let c ∈ Immn, h ∈
Hn and k ≤ n. Then the following estimates hold

i) ||Dsh||2L∞ ≤
len(c)

4 ||D
2
sh||2

L2(ds)

ii) ||Dsh||2L2(ds) ≤
len(c)2

4 ||D2
sh||2

L2(ds)

iii) ||Dk
sh||

2
L2(ds) ≤ ||h||

2
L2(ds) + ||D

n
sh||2

L2(ds).

Proof: i) Replacing h in Lemma 2.12 by Dsh and noting that
∫

S 1 Dsh ds =
∫

S 1 h′ dθ = 0, we
obtain

sup
θ∈S 1
|Dsh(θ)| ≤

1
2

∫
S 1
|D2

sh| ds.

10
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Taking squares this equation and using the fact that(∫
S 1
|D2

sh| · 1ds
)2 C.S
≤

∫
S 1
|D2

sh|2 ds ·
∫

S 1
12 ds,

we get

||Dsh||2L∞ ≤
(1
2

∫
S 1
|D2

sh| ds
)2
≤

len(c)
4
||D2

sh||2L2(ds).

ii) The second statement can be easily shown by using the first one

||Dsh||2L2(ds) ≤ ||Dsh||2L∞ ·
∫

S 1
1 ds

i)
≤

len(c)2

4
||D2

sh||2L2(ds).

iii) By Lemma 2.8 we can reparameterize c such that |c′| = len(c)/2π. Then we have

Dk
sh =

(
1
|c′|

)k

∂k
θh =

(
2π

len(c)

)k

∂k
θh.

In order to prove iii) we need to show∫ 2π

0

(
2π

len(c)

)2k−1

|h(k)(θ)|2 dθ ≤
∫ 2π

0

len(c)
2π
|h(θ)|2 +

(
2π

len(c)

)2n−1

|h(n)(θ)|2 dθ.

Note that we switched from ds to |c′| dθ and therefore we have 1
|c′ | once less. Let φ(x) = 2π

len(c) x.
By a change of variables in the previous one we get∫ len(c)

0
|(h ◦ φ)(k)(x)|2dx

!
≤

∫ len(c)

0
|h ◦ φ(x)|2 + |(h ◦ φ)(n)(x)|2 dx.

Define f := h ◦ φ ∈ L2([0, len(c)],R) and fk(x) := len(c)−1/2 exp(i 2πk
len(c) x). Due to Fourier analy-

sis, we can conclude that the set of functions { fk(x)}k∈Z is an orthonormal basis of L2([0, len(c)],R).
Hence we can write f as

f (x) =
∑
k∈Z

f̂ (k) fk(x).

Plugging this into the previous one and recalling that exp(i 2πk) = 1, we get∑
k∈Z

( 2πk
len(c)

)2k
| f̂ (k)|2

!
≤

∑
k∈Z

(
1 +

( 2πk
len(c)

)2n
)
| f̂ (k)|2.

Observe that ak ≤ 1 + an for a ≥ 0 and k ≤ n. Setting a =
( 2πk

len(c)
)2
≥ 0, proves the above inequa-

lity. □

The following content will be important in Section 5 for the existence of geodesics. In partic-
ular, Proposition 2.16 plays a crucial role since it gives a criterion that provides the existence of
geodesics in a complete metric space.

11
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Lemma 2.14. (Taken from [6, Prop. 1.5.9]). Suppose X is a metric space and X′ a dense subset
of X. Let Y be a complete space and f : X′ → Y a Lipschitz map. Then there exists a unique
continuous map f̃ : X → Y such that f̃ |X′ = f .

Proof: For every x ∈ X we define f̃ as follows: Since X′ is dense in X, we can always find
sequence {xn}n∈N in X′ such that xn → x for n→ ∞. The Lipschitz continuity of f implies that

| f (xi) − f (x j)| ≤ C|xi − x j| for i, j ∈ N.

Then { f (xn)}n∈N is a Cauchy sequence, since {xn}n∈N converges. As Y is a complete space,
{ f (xn)}n∈N converges. Then, define f̃ (x) = limn→∞ f (xn). □

Definition 2.15 (Intrinsic Metric). A metric is said to be intrinsic if it coincides with the induced
intrinsic metric which we denoted by the distance function in Definition 2.7. We call a metric
strictly intrinsic if for every two points x,y there exists an admissible path joining them, whose
length is equal to the distance function. So there exists a geodesic between any two points.

Proposition 2.16. (Taken from [6, Prop. 2.4.16]). Let (X, d) be a complete metric space. If for
every x, y ∈ X there exists a midpoint, that is a point D such that

d(x,D) = d(D, y) = 1
2 d(x, y),

then d is strictly intrinsic.

Proof: To construct a path γ : [0, 1] → X that connects x, y, i.e. γ(0) = x and γ(1) = y with
len(γ) = d(x, y), we assign values of γ for all dyadic rationals (these are rational numbers of the
form k/2m for k,m ∈ N). Since by assumption midpoints exist between any elements in X we
can choose a midpoint of x and y and assign it to be the image of γ( 1

2 ). Then we assign γ( 1
4 ) to

be the midpoint of γ(0) and γ( 1
2 ) and γ( 3

4 ) to be the midpoint between γ( 1
2 ) and γ(1). Following

this procedure, we define γ for all dyadic rationals between 0 and 1. We then have

1
2 d(x, y) = d

(
γ(0), γ( 1

2 )
)
= d

(
γ(0), γ( 1

4 )
)
+ d

(
γ( 1

4 ), γ( 1
2 )

)
.

Since d(γ(0), γ( 1
4 )) = d(γ( 1

4 ), γ( 1
2 )), we conclude

1
4 d(x, y) = d(γ(0), γ( 1

4 )) = d(γ( 1
4 ), γ( 1

2 )).

In general, we have for every two dyadic rationals ti, t j

d(γ(ti), γ(t j)) = |ti − t j| · d(x, y).

With this equality we see that the map γ is Lipschitz on the set of dyadic rationals. Since this
set is dense in [0, 1] and X is complete by assumption, we can use Lemma 2.14 and extend
the map to the entire interval [0,1]. Now, γ satisfies all the assumptions which we stated in the
beginning. □

12
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2.4 Geometric Curves

Definition 2.17 (Diffeomorphism). The set of all diffeomorphisms of S1 is given by

Diff(S 1) := {ϕ : S 1 → S 1 : ϕ, ϕ−1 ∈ C∞(S 1)}.

Similarly, the set of all diffeomorphisms of order n is given by

Diffn(S 1) := {ϕ : S 1 → S 1 : ϕ, ϕ−1 ∈ Cn(S 1)}.

The group has two connected components

Diff(S 1) = Diff+(S 1) ∪ Diff−(S 1),

where Diff+(S 1) denotes the set of orientation-preserving diffeomorphisms which respect the
winding number of a curve and Diff−(S 1) is the set of orientation-reversing diffeomorphisms,
that map curves of winding number p to curves of winding number −p (see Def. 3.2 for the defi-
nition of the winding number). If ϕ ∈ Diff+(S 1), then ϕ′ > 0 and if ϕ ∈ Diff−(S 1), then ϕ′ < 0.
To shorten notation, we simply write Diff = Diff(S 1), since we always consider diffeomorphisms
on S 1.

So far we focused on parametric curves. These are maps c : S 1 → Rd such that we can identify
each point on the curve with a point on S 1. However, when discussing geometric curves, we are
not concerned with this one-to-one correspondence, but rather with the image of the map. Thus,
we consider two curves to be equal if they only differ in their parameterization. This leads to the
use of equivalence classes, where the quotient space is given by

Imm(S 1,Rd)/Diff(S 1).

Reparameterization acts on the curves by composition from the right. In other words, two para-
metric curves c1 and c2 are the same geometric curve within Imm(S 1,Rd)/Diff(S 1) if there exists
ϕ ∈ Diff(S 1) such that c1 = c2 ◦ ϕ.

Unfortunately, this space is not a manifold, it is an orbifold and has singularities at any curve
that has a non trivial isotropy group (see [22, Sec. 2.5]). In order to obtain a manifold structure
on the quotient space, we take a look at the space of freely immersed curves.

2.5 Free Immersions

Definition 2.18 (Isotropy Group). Consider the action above of diffeomorphisms on S 1 acting
on Imm. The isotropy group Gc of a curve c ∈ Imm is given by the subgroup that leaves c
invariant, i.e,

Gc = {ϕ ∈ Diff(S 1) : c ◦ ϕ = c}.

Definition 2.19 (Free Immersions). An immersion c is called free, if its isotropy group only

13
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contains the identity. We denote the space of free immersions by

Imm f (S 1,Rd) = {c ∈ Imm(S 1,Rd) : c = c ◦ ϕ⇒ ϕ = IdS 1 , for ϕ ∈ Diff(S 1)}.

In Section 6 we will give a detailed proof that the quotient space

Imm f (S 1,Rd)/Diff(S 1)

is indeed a manifold.

In order to get a better understanding of free immersions, we provide an example of a non-free
immersion:

Example 2.20 (The doubly traversed circle in R2). Since we can identify S 1 = R/(2π), we can
define the doubly traversed circle as follows:

c(θ) = (cos(2θ), sin(2θ)) for θ ∈ R/2π.

Then, setting ϕ(t) = t+π, we get c◦ϕ(t) = (cos(2(t+π)), sin(2(t+π))) = (cos(2t), sin(2t)) = c(t).
Hence c is not freely immersed.

14



3 The Whitney-Graustein Theorem

In this section we will prove the Whitney-Graustein Theorem which states that two curves in the
plane have the same winding number if and only if they are regularly homotopic. We will use
this theorem to characterize the connected components of R2, in particular when discussing the
existence of geodesics in Section 5.

Definition und Lemma 3.1 (Angle Function, taken from [11]). Let c ∈ Immn(S 1,R2). Set
V = c′/|c′|, which is a smooth parameterized curve in the plane with values in the unit circle.
We can write V as V(t) = (a(t), b(t)), where a(t) and b(t) depend on c. Then there exists a
smooth function ϕ : [0, 2π) → R such that a(t) = cos ϕ(t) and b(t) = sin ϕ(t). We call ϕ(t) the
angle function for the curve c. It is unique up to adding the constant 2πk.

Proof : Let ϕ0 ∈ [0, 2π) be such that a(0) = cos ϕ0 = and b(0) = sin ϕ0. Define ϕ : [0, 2π) → R
as follows:

ϕ(t) = ϕ0 +

∫ t

0
(ab′ − ba′)dτ.

Now, let F(t) = (a(t) − cos ϕ(t))2 + (b(t) − sin ϕ(t))2. Then one can show by differentiation that
F′(t) = 0. This implies that F(t) is a constant function and since F(0) = 0 we have F(t) = 0.
Hence we can write V(t) = (cos ϕ(t), sin ϕ(t)). □

Definition 3.2 (Winding Number, taken from [11]). The winding number of a closed parameter-
ized curve c : [0, 2π]→ S 1 is defined as

γ(c) :=
1

2π
(ϕ(2π) − ϕ(0)),

where ϕ is the angle function from above. For an arbitrary curve c(t) = (a(t), b(t)) which takes
values in R2 \ {0}, we write c(t) = r(t)φ(t) with r =

√
a2 + b2 > 0 and φ(t) taking values in the

unit circle and then set γ(c) = γ(φ). Note that for closed curves the winding number is always
an integer.
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Figure 3.1: Examples of different winding numbers.
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In general, the concept of winding numbers can be extended to higher dimensions, as explained
in [18]. However, for our specific purpose, it is sufficient to focus solely on the case d = 2, since
the Whitney-Graustein Theorem is only valid for curves in the plane.

Definition 3.3 (Regular Homotopy). Let X,Y be topological spaces and f , g : X → Y continuous
maps. A regular homotopy from f to g is a continuous function F : X × [0, 1] → Y with
continuous derivative such that

i) F(x, 0) = f (x) and F(x, 1) = g(x), for all x ∈ X.

ii) If we set fu(x) = F(x, u), then fu is a regular immersion for each u ∈ [0, 1].

If such a homotopy exists, we say that f is homotopic to g.

Theorem 3.4. (Whitney-Graustein Theorem, taken from [27, Thm. 1]). Two immersions in the
plane have the same winding number if and only if they are regularly homotopic.

Proof: First, let fu be a regular homotopy between c1, c2 ∈ Imm(S 1,R2). Then f ′u is continuous
in u. Since the winding number is an integer, the number of times f ′u wraps around S 1 is constant
for all u. Hence γ(c1) = γ(c2).

Conversely, assume that c̃0 and c1 have the same winding number γ̂. By Lemma 2.8 we can
reparameterize c̃0 and c1 such that∣∣∣c̃′0∣∣∣ = len(c̃0)

2π
=: l0 and

∣∣∣c′1∣∣∣ = len(c1)
2π

=: l1.

Now, define the following homotopy

c̃u(t) := c̃0(0) +
(
u

l1
l0
+ (1 − u)

)(
c̃0(t) − c̃0(0)

)
,

which connects c̃0(t) and c̃1(t) = c̃0(0) + l1
l0

(
c̃0(t) − c̃0(0)

)
. Set c0 = c̃1. Now, we need to prove

that c0 and c1 are homotopic. The fact that they both have constant speed l1 simplifies the proof.
Let K be the circle of radius l1. Define the vector function

V(t) := (l1 cos(t), l1 sin(t)),

which gives an angular coordinate t in K. Without loss of generality we may alter c0 and c1 such
that c′0(0) = c′1(0) = V(0) = (l1, 0). Since c′i(t) lies on K, we get by Lemma 3.1 the existence of
functions ϕi such that

c′i(t) = V(ϕi(t)) =
(
l1 cos ϕi(t), l1 sin ϕi(t)

)
with ϕi(0) = 0 for i = 0, 1.

By the definition of the winding number we can conclude that ϕi(2π) = 2πγ̂ for i = 0, 1. Now,
define

ϕu(t) := u ϕ1(t) + (1 − u) ϕ0(t) and hu(t) := V(ϕu(t)).

16
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Then hu is a homotopy connecting c′0 and c′1, since hi(t) = V(ϕi(t)) = c′i(t) for i = 0, 1.
Now, we alter each hu by translation to obtain the maps

ψu(t) := hu(t) −
1

2π

∫ 2π

0
hu(s)ds.

The average of these maps lies at zero, which can be seen as follows:∫ 2π

0
ψu(s) ds =

∫ 2π

0

(
hu(s) −

1
2π

∫ 2π

0
hu(s) ds

)
ds =

∫ 2π

0
hu(s) ds − 2π ·

1
2π

∫ 2π

0
hu(s) ds = 0.

Define

cu(t) := c0(0) + u
(
c1(0) − c0(0)

)
+

∫ t

0
ψu(s) ds,

then cu(t) connects c0(t) and c1(t). It remains to show the second condition of Definition 3.3
which states that each cu has to be a regular (closed) immersion. Therefore, we need to check
the following property: cu(0) = cu(2π) is trivial, since ψu(t) has zero average. Moreover, we
have to verify whether c′u(2π) = c′u(0) is true. Observe that c′u(t) = ψu(t) and hence

c′u(2π) − c′u(0) = hu(2π) −
1

2π

∫ 2π

0
hu(s)ds − hu(0) +

1
2π

∫ 2π

0
hu(s)ds

= V(ϕu(2π)) − V(ϕu(0)) = V(2πγ̂) − V(0) = (l1, 0) − (l1, 0) = 0,

where we have used that ϕu(0) = 0 for all u ∈ [0, 1] since ϕi(0) = 0 for i = 0, 1 by definition.
Also we applied the fact that cos(2πγ̂) = 1 and sin(2πγ̂) = 0. Hence we have c′u(2π) = c′u(0).
Next, we prove that c′u(t) , 0 for u ∈ [0, 1]: By the Schwarz inequality we have∣∣∣∣∣∫ 2π

0
hu(s) ds

∣∣∣∣∣2 ≤ ∫ 2π

0
|hu(s)|2ds.

If γ̂ , 0, then hu(t) passes over all of K and thus hu(t) cannot be constant. If γ̂ = 0, ϕu(t) could
be constant just as well as hu(t). In order to avoid this case we alter ϕu(t). Therefore, choose t0
such that ϕ1(t0) , 0. Then deform ϕ0(t) to ϕ1(t) in a sufficiently small neighborhood of t0. Now,
define ϕu(t) as above but with the deformed ϕ0(t). Then we get

ϕu(t0) = u ϕ1(t0) + (1 − u) ϕ0(t0) = ϕ1(t0) , 0,

ϕu(0) = 0.

Thus, hu(t) is not constant for any u ∈ [0, 1]. For this reason the above Schwarz inequality
becomes a strict inequality.
Furthermore, since

|hu(s)|2 = |V(ϕu(t))|2 = |
(
L1 cos ϕu(t), L1 sin ϕu(t)

)
|2 = l1,

17
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we get
1

2π

∣∣∣∣∣∫ 2π

0
hu(s)ds

∣∣∣∣∣2 < l1.

Thus, we observe that the average of hu(t) lies in the interior of K. Hence, there exists no t such
that

hu(t) =
1

2π

∫ 2π

0
hu(s)ds.

By the definition of ψu(t), this implies c′u(t) = ψu(t) , 0 ∀t, which proves the last condition of
cu(t) being a regular curve for each u ∈ [0, 1]. By the continuity of cu(t) in u it follows that cu(t) is
a valid deformation of c0 into c1, which ends the proof. □
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4 Metric Completeness

In this section our objective is to establish metric completeness of the space
(
Immn, distG

)
, which

will subsequently allow us to deduce the metric completeness of
(
Immn/Diffn, distI/D

)
. The

metric completeness of the latter space is needed to apply Lemma 2.16 for proving the existence
of geodesics in the quotient space.

4.1 Metric Completeness of the Space
(
Immn(S1,Rd),distG

)
To show metric completeness of

(
Immn, distG

)
, we present some estimates relating to the in-

duced geodesic distance of Riemannian metrics. Specifically, we will show that the functions
√

len(c),
√

len(c)−1, |c′| and |c′|−1 are bounded on metric balls. This helps us to prove our main
estimate for Sobolev metrics which states that the Hn(dθ)- and Hn(ds)-norms are equivalent.
Moreover, we will show that the Hn(dθ)-norm and the distance function induced by a Sobolev
metric are equivalent. Then we make use of the fact that the space (Hn(S 1,Rd), || · ||Hn(dθ)) is
metrically complete to show that

(
Immn, distG

)
is complete as well. Proposition 4.2, 4.3, 4.4 and

4.5 are oriented to [4, Sec. 4] and Proposition 4.6 and 4.7 are taken from [3, Sec. 4].

In the following we assume that Gc is a Sobolev metric of order n ≥ 2 with constant coef-
ficients a j and that the order of the regularity of the Sobolev curve c is n as well. Moreover,
we remark that the constants C may change during the computations, but we still denote all
constants by C, as their exact values are not a matter of interest in this context.

Lemma 4.1. There exists a constant C > 0 such that

C−1||h||Hn(ds) ≤
√

Gc(h, h) ≤ C||h||Hn(ds)

is satisfied for all c ∈ Imm and all h ∈ Hn.

Proof: Let h ∈ Hn. Then

||h||2Hn(ds) =

∫
S 1
|h|2 + |Dn

sh|2ds ≤
∫

S 1
|h|2 + |Dsh|2 + ... + |Dn

sh|2ds ≤ C Gc(h, h),

where the last inequality is trivial, if ai ≥ 1 for all i ≤ n. Otherwise, choose C = 1
min(a0,...,an) .

This proves the first inequality of the lemma. For the second one, consider

Gc(h, h) = a0||h||2L2(ds) +

n∑
i=1

ai||Di
sh||

2
L2(ds)

2.13 iii)
≤ a0||h||2L2(ds) +

n∑
i=1

ai
(
||h||2L2(ds) + ||D

n
sh||2L2(ds)

)
≤ C ||h||2Hn(ds),
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with C = max(a0, . . . , an). □

Proposition 4.2. The function√
len(c) : (Imm(S 1,Rd, distG))→ R>0,

is Lipschitz continuous. Moreover, the function len(c) is bounded.

Proof: For proving Lipschitz continuity of
√

len(c), we first have to show Lipschitz continuity
of
√
|c′|. For this let c1, c2 be two curves in Immn and let c(t, θ) be a smooth path connecting

them, i.e., c(0, θ) = c1(θ) and c(1, θ) = c2(θ). Then we have√
|c′2|(θ) −

√
|c′1|(θ) =

∫ 1

0
∂t

( √
|c′|

)
(t, θ) dt pointwise ∀θ ∈ S 1.

For computing the derivative of
√
|c′|, we apply two times the chainrule and use the fact that

Dsct = ∂tc′/|c′|. This yields

∂t
√
|c′| =

1
2

1
√
|c′|
·

c′

|c′|
· ∂tc′ =

1
2
· V · Dsct ·

√
|c′| =

1
2
⟨Dsct,V⟩

√
|c′|.

If we plug this into the previous equation, we get∣∣∣∣∣∣
∣∣∣∣∣∣ √|c′2| − √

|c′1|

∣∣∣∣∣∣
∣∣∣∣∣∣
L2(dθ)

≤
1
2

∫ 1

0

∣∣∣∣∣∣∣∣⟨Dsct,V⟩
√
|c′|

∣∣∣∣∣∣∣∣
L2(dθ)

dt ≤
1
2

∫ 1

0

∣∣∣∣∣∣∣∣⟨Dsct,V⟩
∣∣∣∣∣∣∣∣

L2(ds)
dt,

where we used Jensen’s inequality in the first estimate. Observe that∣∣∣∣∣∣⟨Dsct,V⟩
∣∣∣∣∣∣

L2(ds) ≤
∣∣∣∣∣∣Dsct

∣∣∣∣∣∣
L2(ds) ≤

∣∣∣∣∣∣ct
∣∣∣∣∣∣

Hn(ds)

4.1
≤ C

√
Gc(ct, ct).

Moreover, we then have∣∣∣∣∣∣
∣∣∣∣∣∣ √|c′2| − √

|c′1|

∣∣∣∣∣∣
∣∣∣∣∣∣
L2(dθ)

≤
C
2

∫ 1

0

√
Gc(ct, ct) dt ≤

C
2

len(c).

Now, take the infimum over all paths c that connect c1 and c2, then we obtain∣∣∣∣∣∣
∣∣∣∣∣∣ √|c′2| − √

|c′1|

∣∣∣∣∣∣
∣∣∣∣∣∣
L2(dθ)

≤
C
2

inf
c

len(c) =
C
2

distG (c1, c2).

This proves Lipschitz continuity of
√
|c′|. The Lipschitz continuity of

√
len(c) follows immedi-

ately by using

len(c) =
∫

S 1
|c′(θ)| dθ =

∣∣∣∣∣∣ √|c′|∣∣∣∣∣∣2L2(dθ).
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We obtain, ∣∣∣∣ √len(c1) −
√

len(c2)
∣∣∣∣ = ∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣ √|c′1|∣∣∣∣∣∣∣∣∣∣
L2(dθ)

−

∣∣∣∣∣∣∣∣∣∣ √|c′2|∣∣∣∣∣∣∣∣∣∣
L2(dθ)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣∣ √|c′1| − √
|c′2|

∣∣∣∣∣∣∣∣∣∣
L2(dθ)

≤
C
2

distG (c1, c2). □

Proposition 4.3. Given c0 ∈ Imm and N > 0, there exists a constant C = C(c0,N) such that for
all c1, c2 ∈ Imm with distG(c0, ci) < N we have∣∣∣len(c1)−1/2 − len(c2)−1/2

∣∣∣ ≤ C distG(c1, c2).

In particular, the function

1
√

len(c)
: (Imm(S 1,Rd, distG))→ R>0,

is Lipschitz continuous and bounded on metric balls.

Proof: Fix c0 ∈ Imm and let c1, c2 ∈ BN(c0) and c(t, θ) be a path connecting c1 and c2 such that
distG(c0, c(t)) < 2N. In order to calculate the derivative of len(c)−1/2, we first have to examine
the derivative of len(c):

∂tlen(c) =
∫

S 1
∂t|c′(t, θ)| dθ =

∫
S 1

c′(t, θ) · ∂tc′(t, θ)
|c′(t, θ)|

dθ =
∫

S 1
⟨Dsct,V⟩ · |c′| dθ.

Using this for the derivative of len(c)−1/2, we get

∂t
(
len(c)−1/2) = −1

2
len(c)−3/2

∫
S 1
⟨Dsct,V⟩ · |c′| dθ.

Now, by taking the absolute values and removing the minus by a plus, we get∣∣∣∣∂t(len(c)−1/2)
∣∣∣∣ ≤ 1

2
len(c)−3/2

∫
S 1
|⟨Dsct,V⟩| · |c′| dθ

C.S .
≤

1
2

len(c)−3/2

√∫
S 1
|c′| dθ

√∫
S 1
|⟨Dsct,V⟩2| · |c′| dθ.

Taking into account that √∫
S 1
|c′| dθ =

√
len(c),

and since V2 = 1 and ds = |c′| dθ implies√∫
S 1
|⟨Dsct,V⟩2| · |c′| dθ = ||Dsct||L2(ds),
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we get ∣∣∣∣∂t(len(c)−1/2)
∣∣∣∣ ≤ 1

2
len(c)−1||Dsct||L2(ds)

2.13 ii)
≤

1
2

len(c)−1 len(c)
2
||D2

sct||L2(ds)

2.13 ii)
≤ ...

2.13 ii)
≤

1
2

len(c)−1
( len(c)

2

)n−1
||Dn

sct||L2(ds)
4.1
≤ 2−nlen(c)n−2 C

√
Gc(ct, ct).

We have n ≥ 2, so by the previous Lemma len(c)n−2 is bounded on B2N(c0). Then

∣∣∣len(c1)−1/2 − len(c2)−1/2
∣∣∣ ≤ ∫ 1

0

∣∣∣∣∂t(len(c)−1/2)
∣∣∣∣ dt ≤ C

∫ 1

0

√
Gc(ct, ct).

Now, take the infimum over all paths c that connect c1 and c2, then we obtain∣∣∣len(c1)−1/2 − len(c2)−1/2
∣∣∣ ≤ C distG(c1, c2).

This proves Lipschitz continuity on metric balls. For the boundedness we have

len(c)−1/2 ≤ len(c0)−1/2 + |len(c)−1/2 − len(c0)−1/2| ≤ len(c0) +C distG(c0, c) ≤ C · 2N,

which shows that len(c)−1/2 is bounded on metric balls and so is len(c)−1. □

The following proposition provides an upper and lower bound on |c′|. The lower bound en-
sures that the geodesic c stays in the space of immersions, since the derivative will not equal
zero.

Proposition 4.4. Given c0 ∈ Imm and N > 0, there exists a constant C = C(c0,N) such that for
all c1, c2 ∈ Imm with distG(c0, ci) < N we have∣∣∣∣∣∣log|c′2| − log|c′1|

∣∣∣∣∣∣
L∞ ≤ distG(c1, c2).

In particular, the function

log|c′| : (Imm(S 1,Rd, distG))→ L∞(S 1,R)

is Lipschitz continuous on every metric ball. Moreover, there exists another constant Cc0 > 0
such that

||c′||L∞ ≤ C and

∣∣∣∣∣∣
∣∣∣∣∣∣ 1
|c′|

∣∣∣∣∣∣
∣∣∣∣∣∣
L∞
≤ C

is satisfied for all c ∈ Imm with distG(c0, c(t)) < 2N.

Proof: Let θ ∈ S 1 be fixed. Suppose that c0 ∈ Imm and c1, c2 ∈ BN(c0). Let c(t, θ) be a path
connecting c1 and c2 such that distG(c0, c(t)) < 2N. We compute the derivative of log|c′|:

∂t(log|c′(t, θ)|) =
1

|c′(t, θ)|
· ∂tc′(t, θ) ·

c′(t, θ)
|c′(t, θ)|

= ⟨Dsct(θ),V(θ)⟩.
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Since |V | = 1, we get

∣∣∣log|c′2(θ)| − log|c′1(θ)|
∣∣∣ ≤ ∫ 1

0
|∂t(log|c′(t, θ)|)| dt =

∫ 1

0
|Dsct(t, θ)| dt.

Consider,

||Dsct||L∞
2.13 i)
≤

√
len(c)
2
||D2

sct||L2(ds)
2.13 iii)
≤

√
len(c)
2

√
||ct||

2
L2(ds)

+ ||Dn
sct||

2
L2(ds)

=

√
len(c)
2
||ct||Hn(ds)

4.1
≤ C

√
Gc(ct, ct).

Again, we have used the fact that c ∈ B2N(c0), so len(c) is bounded. Then, taking the L∞-norm
and the infimum over all paths c between c1 and c2, we get

∣∣∣∣∣∣log|c′2| − log|c′1|
∣∣∣∣∣∣

L∞ ≤ C inf
c

∫ 1

0

√
Gc(ct, ct) dt = C inf

c
len(c) = C distG(c1, c2).

This shows Lipschitz continuity. For the boundedness consider

log|c′(θ)| ≤ log|c′0(θ)| +
∣∣∣∣∣∣log|c′| − log|c′0|

∣∣∣∣∣∣
L∞ ≤ C · 2N.

Furthermore, apply the exponential function and take the L∞-norm. Then ||c′||L∞ ≤ C. Similarly,
to establish

∣∣∣∣∣∣∣∣|c′|−1
∣∣∣∣∣∣∣∣

L∞
≤ C, consider

−log|c′(θ)| ≤ −log|c′0(θ)| +
∣∣∣∣∣∣log|c′0| − log|c′|

∣∣∣∣∣∣
L∞ ≤ C · 2N

and observe that exp(−log|c′|) = |c′|−1. □

The next proposition would be trivial, if we knew that the constant C of the previous proposi-
tion depends on the curve c. So the key aspect of this proposition pertains to the uniformity of
the constant. Hence, if c remains in a metric ball than we can choose C independently of c.

Proposition 4.5. For a given metric ball Br(c0) in Imm there exists a constant C such that

C−1||h||Hn(dθ) ≤ ||h||Hn(ds) ≤ C||h||Hn(dθ)

holds for all c ∈ Br(c0) and h ∈ Hn.

Proof: Observe, that for k ≤ n, we have

||h||2Hk(dθ) = ||h||
2
L2(dθ) + ||∂

k
θh||

2
L2(dθ),

||h||2Hk(ds) = ||h||
2
L2(ds) + ||D

k
sh||

2
L2(ds).
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For the L2(dθ)- and L2(ds)-norm we have the following estimates on bounded metric balls:

||h||L2(ds) =

∫
S 1
|h|2 ds =

∫
S 1
|h|2 |c′| dθ ≤ ||c′||L∞

∫
S 1
/h/2 dθ = ||c′||L∞ ||h||2L2(dθ) ≤ C ||h||2L2(dθ),

||h||L2(ds) =

∫
S 1
|h|2 ds =

∫
S 1
|h|2 |c′| dθ ≥ min

θ∈S 1
|c′| ||h||2L2(dθ) ≥ C ||h||2L2(dθ).

In the last inequalities we used that |c′| is bounded from above and bounded away from 0 on
metric balls by Proposition 4.4. This proves the equivalence of the L2(dθ)- and L2(ds)-norm. It
remains to show that there exists a C > 0 such that

C−1||∂k
θh||

2
L2(dθ) ≤ ||D

k
sh||

2
L2(ds) ≤ C ||∂k

θh||
2
L2(dθ).

To this end, we need a computation of ∂k
θh with k ≤ n. For k = 2 we have

D2
sh = Ds

( 1
|c′|
· ∂θh

)
=

1
|c′|

∂θ

( 1
|c′|

∂θh
)
=

1
|c′|
·

1
|c′|

∂2
θh +

1
|c′|
· ∂θ

( 1
|c′|

)
· ∂θh

By multiplying both sides with |c′|2 we get

|c′|2D2
sh = ∂2

θh + |c
′|2∂θ

( 1
|c′|

)
Dsh,

which is equivalent to
∂2
θh = |c

′|2D2
sh + ∂θ

(
|c′|

)
Dsh.

Inductively, we get

∂θh = |c′|Dsh

∂2
θh = |c

′|2D2
sh + ∂θ

(
|c′|

)
Dsh

∂3
θh = |c

′|3D3
sh + 3|c′| ∂θ

(
|c′|

)
D2

sh + ∂2
θ

(
|c′|

)
Dsh

∂4
θh = |c

′|4D4
sh + 6|c′|2 ∂θ

(
|c′|

)
D3

sh +
(
3∂θ

(
|c′|

)2
+ 4|c′|∂2

θ

(
|c′|

))
D2

sh + ∂3
θ

(
|c′|

)
Dsh

.

.

.

∂k
θh =

k∑
j=1

∑
α∈A j

c j,α

k−1∏
i=0

(
∂i
θ|c
′|

)αi

D j
sh,

where c j,α are constants and α = (α0, ..., αk−1) are multi-indices that are given by

A j :=
{
α :

k−1∑
i=0

iαi = k − j,
k−1∑
i=0

αi = j
}
.
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It is shown in [3, Sec. 3] that

||∂k
θ |c
′| ||L∞ for 0 ≤ k ≤ n − 2 and

||∂n−1
θ |c

′| ||L2(dθ)

are bounded on metric balls. Since the boundedness only holds for k ≤ n − 2 and k = n − 1, we
treat the cases where k ≤ n − 1 and k = n, separately. For the case k ≤ n − 1 we use induction.
Let k = 0, then we have no derivative. This equivalence has been shown in the beginning. Now,
assume that the equivalence has been shown for k − 1, i.e.,

C−1||∂
j
θh||L2(dθ) ≤ ||D

j
sh||L2(ds) ≤ C||∂ j

θh||L2(dθ) for j ≤ k − 1.

Moreover, we have

||∂k
θh||

2
L2(dθ) ≤

k∑
j=1

∑
α∈A j

c j,α

∣∣∣∣∣∣∣∣∣∣k−1∏
i=0

(
∂i
θ|c
′|

)αi

D j
sh

∣∣∣∣∣∣∣∣∣∣2
L2(dθ)

≤

k∑
j=1

∑
α∈A j

c j,α

∣∣∣∣∣∣∣∣∣∣k−1∏
i=0

(
∂i
θ|c
′|

)αi
∣∣∣∣∣∣∣∣∣∣2

L∞
||D j

sh||
2
L2(dθ).

Since k is maximal n − 1, the highest derivative of |c′| is ∂n−2
θ |c

′| which is bounded in L∞. Using
the equivalence of the L2(dθ)- and L2(ds)-norm we get

||∂k
θh||

2
L2(dθ) ≤ C

k∑
j=1

∑
α∈A j

c j,α||D
j
sh||

2
L2(ds)

2.13 ii)
≤ C||Dk

sh||
2
L2(ds).

In the last inequality we used the second Poincare inequality multiple times and the fact that
len(c) is bounded. This proves one part of the equivalence. For the other part we observe that in
the formula for ∂k

θh the last term, where j = k, is always given by |c′|kDk
sh. Thus, we can write

Dk
sh = |c

′|−k∂k
θh − |c

′|−k
k−1∑
j=1

∑
α∈A j

c j,α

k−1∏
i=0

(
∂i
θ|c
′|

)αi

D j
sh.

Since the sum only goes up to k − 1, we can use the induction assumption

||Dk
sh||L2(ds) ≤ || |c

′|−k||L∞ ||∂
k
θh||L2(dθ) + || |c

′|−k||L∞

k−1∑
j=1

∑
α∈A j

c j,α

∣∣∣∣∣∣∣∣∣∣k−1∏
i=0

(
∂i
θ|c
′|

)αi
∣∣∣∣∣∣∣∣∣∣

L∞
||∂

j
θh||L2(dθ).

Now, use the the boundedness of |c′|−k, the boundedness of ||∂k
θ |c
′| ||L∞ for k ≤ n − 2 and the

second Poincare inequality multiple times for ||∂ j
θh||L2(dθ) to get

||Dk
sh||L2(ds) ≤ C ||∂k

θh||L2(dθ).

This proves the equivalence of the two norms for k ≤ n − 1. Now, consider the case, k = n. The
problem is that we have no bound on ∂n−1

θ |c
′| in the L∞−norm. However, we see that if αn−1 , 0,

then αn−1 = 1 and αi = 0 for i , n − 1 and if j ≥ 2, then αn−1 = 0. Thus, the only term where
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∂n−1
θ

(
|c′|

)
appears, is just given by ∂n−1

θ

(
|c′|

)
Dsh. This term can be estimated in the L2(dθ)-norm

as follows:
||∂n−1

θ

(
|c′|

)
Dsh||2L2(dθ) ≤ ||∂

n−1
θ

(
|c′|

)
||2L2(dθ)||Dsh||2L∞ .

In the beginning we mentioned that we can bound ||∂n−1
θ |c

′| ||2
L2(dθ) and for ||Dsh||2L∞ we can use

the first Poincare inequality and then the second one to get

||∂n−1
θ

(
|c′|

)
Dsh||2L2(dθ) ≤ C ||Dn

sh||2L2(ds).

Furthermore, we have

||∂n−1
θ

(
|c′|

)
Dsh||2L2(dθ) ≤ ||∂

n−1
θ

(
|c′|

)
||2L2(dθ)||Dsh||2L∞ ≤ C || |c′|−1||2L∞ ||∂θh||

2
L∞ .

Again, using the Poincare inequalities we get

||∂n−1
θ

(
|c′|

)
Dsh||2L2(dθ) ≤ C ||∂n

θh||L2(dθ).

By proceeding as in the case for k ≤ n−1 and plugging these two estimates in the formula for ∂k
θh

or Dk
sh, we get the equivalence of ||∂n

θh||
2
L2(dθ) and ||Dn

sh||2
L2(ds). Together with the equivalence of

the L2(dθ)- and L2(ds)-norm we can conclude that the Hk(dθ)- and Hk(ds)-norm are equivalent
as well. □

So far we considered C∞-immersions, but unfortunately we cannot prove metric completeness
for this space. It is shown in [3, Prop. A.2] that the geodesic distance on the space of Sobolev
immersions Immn restricted to Imm coincides with the geodesic distance on Imm. Hence, we
can extend the previous results from Imm to Immn and continue with showing the metric com-
pleteness for Immn.

Lemma 4.6. 1) Given a metric ball Br(c0) in Immn there exists a constant C > 0 such that

||c1 − c2||Hn(dθ) ≤ CdistG(c1, c2),

holds for all c1, c2 ∈ Br(c0).
2) Given c0 ∈ Immn, there exists r > 0 and a constant C > 0 such that

distG(c1, c2) ≤ C||c1 − c2||Hn(dθ),

holds for all c1, c2 ∈ Br(c0).

Proof: 1) Let c1, c2 ∈ Br(c0) and c(t, θ) be a piecewise smooth path such that c connects c1 and
c2 and len(c) < 2r. Then by Jensen’s inequality, Proposition 4.5 and Lemma 4.1 we have

||c1 − c2||Hn(dθ) ≤

∫ 1

0
||ct(t)||Hn(dθ) dt ≤ C

∫ 1

0
||ct(t)||Hn(ds) dt ≤ C

∫ 1

0

√
Gc(ct, ct) dt = C len(c).

Taking the infimum over all paths c between c1 and c2 yields the inequality.
2) Let c0 ∈ Immn and U be a convex, open neighborhood of c0. It is shown in [17, Prop. 6.1] that
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for a smooth, strong Riemannian metric the geodesic distance induces the manifold topology.
Hence, we can find an open ball Br(c0) with respect to the geodesic distance such that this ball
is contained in the open set U of the manifold topology. Define the path

c(t) := c1 + t(c2 − c1)

to be the linear interpolation between c1, c2 ∈ Immn. Then, c is a convex combination and hence
c ∈ Br(c0). Moreover, we have

distG(c1, c2) ≤ len(c) =
∫ 1

0

√
Gc(c2 − c1, c2 − c1) dt

4.5
≤ C ||c2 − c1||Hn(dθ). □

Theorem 4.7.
(
Immn(S 1,Rd), distG

)
is a complete metric space.

Proof: Consider a Cauchy sequence (c j) j∈N with respect to the geodesic distance. Choose R > 0
large enough such that the sequence is contained in a metric ball with radius R. By the previous
Lemma we obtain

||c j − ci||Hn(dθ) ≤ C distG(c j, ci), ∀ j, i ∈ N.

Thus, the sequence (c j) j∈N is also a Cauchy sequence with respect to || · ||Hn(dθ). Since the space
(Hn(S 1,Rd), || · ||Hn(dθ)) is complete, we can conclude that there exists a c∗ ∈ Hn(S 1,Rd) such
that

||c j − c∗||Hn(dθ)
j→∞
→ 0.

By Proposition 4.4, ∂θc j is bounded away from 0 and hence

||∂θc j||Hn(dθ) ≥ C > 0.

Since this inequality holds for all j ∈ N, we see that (∂θc j) j∈N does not converge to zero. Hence,
we have for the limit c∗

||∂θc∗||Hn(dθ) ≥ C > 0,

which implies that c∗ ∈ Immn. Moreover, the second statement of Lemma 4.6 gives the existence
of constants r > 0 and C > 0 such that

distG(c j, c∗) ≤ ||c j − c∗||Hn(dθ) ∀c j ∈ Br(c∗).

This converges to zero for all c j that are close to c∗ in the Hn(dθ)-norm. But the inequality holds
for all c j that are close to c∗ in the metric distance. With the first statement of Lemma 4.6 we
can always find a Hn(dθ)-ball that is contained in a metric ball. So the above holds for all c j in
that Hn(dθ)-ball and hence converges to zero. Thus, we have shown that an arbitrary Cauchy
sequence in Immn with respect to the geodesic distance converges. This proves metric complete-
ness of Immn. □
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4.2 Metric Completeness of the Space(
Immn((S1),Rd)/Diffn(S1),distI/D

)
Lemma 4.8. (Taken from [3, Lemma 6.5]). Consider a metric space (X, d) upon which the group
G acts by isometries. If the quotient space X/G is Hausdorff, then

dX/G(G.x,G.y) := inf
g,h∈G

d(g.x, h.y) = inf
h∈G

d(x, h.y)

defines a metric on X/G which coincides with the quotient topology. Moreover, the metric dX/G

is intrinsic, if d is intrinsic.

Proof: At first, we check that the properties of a metric are satisfied for dX/G. Since d is a metric
on X, the symmetry of dX/G is clear. Moreover, we have dX/G(G.x,G.x) = inf

g,h∈G
d(g.x, h.x) = 0,

take for example h = g = e, where e denotes the neutral element. Since we will show in the
following that the two topologies coincide, we know that the quotient space with the topology
induced by dX/G is Hausdorff as well. The Hausdorff property ensures that it is possible to
separate two distinct points by disjoint neighborhoods. Consequently, it is not possible to find
two distinct points G.x and G.y such that dX/G(G.x,G.y) = 0. Hence, dX/G(G.x,G.y) = 0 implies
G.x = G.y. Since G acts on X by isometries, i.e. d(g.x, h.y) = d(x, g−1h.y), we can write
inf

g,h∈G
d(g.x, h.y) = inf

h∈G
d(x, h.y). Moreover we have

dX/G(G.x,G.z) = inf
g∈G

d(x, g.z) ≤ d(x, h.y) + inf
g∈G

d(h.y, g.z) = d(x, h.y) + dX/G(G.y,G.z).

Taking the infimum over all h ∈ G, we get the triangle inequality.
To prove that the metric dX/G is compatible with the quotient topology on X/G, we need to

check that both topologies provide the same open sets. To accomplish this, let BX(x, ϵ) be an
open ball in X and BX/G(G.x, ϵ) be an open ball in X/G with respect to the topology induced by
dX/G. Denote by π : X → X/G the canonical projection. A set is open in the quotient topology
if the union of its orbits is open in X. For BX/G(G.x, ϵ) we have

π−1(BX/G(G.x, ϵ)
)
=

{
y : inf

h∈G
d(x, h.y) < ϵ

}
=

{
g.y : g ∈ G, y ∈ BX(x, ϵ)

}
= G.BX(x, ϵ).

Since G.BX(x, ϵ) is open in X, we get that BX/G(G.x, ϵ) is open in the quotient topology. Con-
versely, let U ⊆ X/G be open in the quotient topology and G.x ∈ U. Since U is open we can find
an ϵ such that BX(x, ϵ) ⊆ π−1(U). For G.y ∈ BX/G(G.x, ϵ) we have dX/G(G.x,G.y) < ϵ and hence
d(x, g.y) < ϵ for some g ∈ G. This implies g.y ∈ BX(x, ϵ) and thus G.y = π(g.y) ∈ U. This shows
that BX/G(G.x, ϵ) ⊆ U. Hence, we have proven that for an arbitrary element G.x ∈ U we can
find a neighborhood BX/G(G.x, ϵ) which is open with respect to the metric dX/G and completely
contained in U. Consequently, U is also open with respect to dX/G. Thus, the open sets of the
topologies coincide.

Next, we show that the metric dX/G is identical to the metric induced on the quotient space
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which is given by

distX/G(G.x,G.y) = inf
γ

{
len(γ) : γ(0) = G.x, γ(1) = G.y

}
= inf

γ

{
sup
{t1,...,tN }

N∑
i=1

dX/G(γ(ti), γ(ti−1)) : γ(0) = G.x, γ(1) = G.y
}
,

where we have taken the supremum over all finite partitions 0 = t1 < t1 < ... < tN = 1 of the
interval [0, 1]. On the one hand, we have distX/G(G.x,G.y) ≥ dX/G(G.x,G.y) due to the triangle
inequality

distX/G(G.x,G.y) = inf
γ

{
sup
{t1,...,tN }

N∑
i=1

dX/G(γ(ti), γ(ti−1)) : γ(0) = G.x, γ(1) = G.y
}

≥ dX/G(G.x,G.y).

On the other hand, we have distX/G(G.x,G.y) ≤ dX/G(G.x,G.y), which can be seen as follows.
Let γ be a path in X between G.x and G.y such that len(γ) ≤ dX/G(G.x,G.y) + ϵ/2 for ϵ > 0. Let
π be the projection into the quotient space and define π(γ) := γ̂. Choose {t1, ..., tN} ∈ [0, 1] such
that len(γ̂) =

∑N
i=2 dX/G(γ̂(ti), γ̂(ti−1)) + ϵ/2. Thus, γ(ti) ∈ G.γ(ti) = γ̂(ti). Then

distX/G(G.x,G.y) ≤ len(γ̂) =
N∑

i=2

dX/G(γ̂(ti), γ̂(ti−1)) + ϵ/2 =
N∑

i=2

inf
g∈G

d(γ(ti), g.γ(ti−1)) + ϵ/2

e ∈G
≤

N∑
i=2

d(γ(ti), γ(ti−1)) + ϵ/2 = len(γ) + ϵ/2 ≤ dX/G(G.x,G.y) + ϵ,

where we have used in the second last step that γ is optimal and the fact that d is in intrinsic
metric. For ϵ → 0 we get distX/G(G.x,G.y) ≤ dX/G(G.x,G.y) and hence distX/G(G.x,G.y) =
dX/G(G.x,G.y). □

Lemma 4.9. (Taken from [3, Lemma 6.5]). Let (X, d) be a metric space and dX/G a metric on
the quotient space, defined as above. If (X, d) is complete, then so is (X/G, dX/G).

Proof : Consider a Cauchy sequence (G.xn)n∈N in X/G. By the Cauchy property we can choose
a subsequence such that dX/G(G.xn,G.xn+1) < 2−n holds for all n ∈ N. Moreover, we can find
x̃n ∈ G.xn and x̃n+1 ∈ G.xn+1 such that d(x̃n, x̃n+1) < dX/G(G.xn,G.xn+1) + 2−n. Consider

d(x̃n, x̃n+k) ≤
n+k−1∑

i=n

d(x̃i, x̃i+1) ≤
n+k−1∑

i=n

dX/G(G.xi,G.xi+1) + 2−i ≤ 22−n(1 − 2−k).

Thus d(x̃n, x̃n+k)
n→∞
→ 0 and hence (x̃n)n∈N is a Cauchy sequence in X. Since X is complete by

assumption, we can find x̃ ∈ X such that x̃n
n→∞
→ x̃. Then

lim
n→∞

G.xn = lim
n→∞

π(x̃n) = π( lim
n→∞

x̃n) = π(x̃) = G.x̃.
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Hence we found a limit G.x̃ for the Cauchy sequence (G.xn)n∈N and hence (X/G, dX/G) is
complete. □

Corollary 4.10. The space (Immn/Diffn, dI/D) with the quotient metric induced by the geodesic
distance on (Immn, distG) is a complete metric space.

Proof: In Theorem 4.7 we proved the metric completeness of (Immn, distG) and it is shown in
[8, Thm. 2.1] that Immn/Diffn is Hausdorff. Thus, we can apply Lemma 4.8 and Lemma 4.9
and get that (Immn/Diffn, dI/D) with the quotient metric induced by the geodesic distance on
(Immn, distG) is a complete metric space. □

From now on we leave the subscript G in the notation of the dist-function. Instead, we write
distI for the induced distance function on Immn and distI/D for the induced distance function on
Immn/Diffn. Since distI is intrinsic by definition, it follows by Lemma 4.8 that dI/D is intrinsic
as well. Thus, we also get metric completeness of (Immn/Diffn, distI/D).
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5 Existence of Geodesics

As described in [12] the Hopf-Rinow Theorem asserts that in a complete finite-dimensional Rie-
mannian manifold, it is possible to connect any two points using a minimal geodesic. However,
this property does not hold in the infinite-dimensional case, as noted in [1] by Atkin. Hence, we
have to show the existence of geodesics in a different way. First, we show via the direct method
of Calculus of Variation that any two curves in Immn in the same connected component can be
joined by a geodesic. Then we transfer the existence result from the space of parameterized
curves to the shape space of unparameterized curves. Unless stated otherwise, the structure of
the proofs mainly follows from [3, Sec. 5,6].

5.1 Existence of Geodesics in Immn(S1,Rd)

In the following we will denote the unit interval by I = [0, 1]. For brevity we write

H1
t Hn

θ = H1
t Hn

θ

(
I × (S 1,Rd)

)
� H1(I,Hn(S 1,Rd)),

and similarly we write CtHn
θ , L

2
t L2

θ , etc. The norm || · ||H1
t Hn(dθ) is given by

||c||2H1
t Hn(dθ) =

∫ 1

0
||c(t)||2Hn(dθ) + ||ċ(t)||2Hn(dθ) dt, for c ∈ H1

t Hn
θ .

Theorem 5.1. Let G be a Sobolev metric of order n ≥ 2 with constant coefficients. Fix a curve
c0 ∈ Immn. Further suppose A ⊆ Immn is a weakly closed set concerning the Hn−topology such
that at least one curve in A belongs to the same connected component as c0. Then there exists
c1 ∈ A and a geodesic c(t) with c(0) = c0 and c(1) = c1 such that

L(c) = distI(c0, c1) = distI(c0, A) = inf
c̃∈A

distI(c0, c̃).

So the geodesic c(t) realizes the minimal distance between c0 and A. Moreover, the energy is
minimized by c as well.

Remark 5.2. The connected components of a space are the subsets in where every pair of points
can be connected by a continuous path that lies entirely within the subset. For d ≥ 3, the space
Immn is connected, i.e.it has only one component. Thus, the restriction from Theorem 5.1 that A
has to belong to the same connected component as c0 can be disregarded. However, if d = 2, this
is not the case. Nevertheless, as shown in Section 3, the connected components for immersions in
R2, which are also homotopy classes, consist of curves with the same winding number. Hence,
we can characterize the connected components by the winding number of the curves lying in
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them.
In the next subsection we will also consider the connected components of the quotient space

Immn/Diff n. Once again, for d ≥ 3 there is only one component. For d = 2 we have the
following decomposition

Immn/Diff n =
⋃
p>0

Immn
p/Diff n,+ ∪ Immn

0/Diff n,

where Immn
p denotes the space of curves with winding number p and Diff n,+ represents orientation-

preserving diffeomorphisms of order n as described in Definition 2.17.

For the proof of Theorem 5.1 we need the following lemma which describes the behavior of
weak convergence of arc length derivatives.

Lemma 5.3. Let s ∈ R, s > 3
2 and k ∈ N, 0 ≤ k ≤ s. If c j, c ∈ H1

t Imms
θ and h j, h ∈ L2

t Hk
θ , then

c j ⇀ c weakly in H1
t Imms

θ

h j ⇀ h weakly in L2
t Hk

θ

(h j) j∈N is bounded in L2
t Hk

θ

 ⇒ Dk
c jh j ⇀ Dk

ch weakly in L2
t L2

θ .

A proof of this lemma can be found in [3, Lemma 6.9].

Proof of Theorem 5.1: It is shown in [15, Lemma 2.4.3], that a minimizer of the energy

E(c) =
∫ 1

0
Gc(ċ, ċ) dt,

on the set
Ω :=

{
c ∈ H1(I, Immn) : c(0) = c0, c(1) ∈ A

}
is a minimizing geodesic between c0 and c(1) ∈ A. To show the existence of a minimizer of
the energy functional we use the direct method of the Calculus of Variation (see [16, Sec. 3]
for details on the direct method). Therefore, we need to show compactness of any minimizing
sequence. That is, if (c j) ⊂ Ω is a minimizing sequence for E, i.e.

lim
j→∞

E(c j) = inf
c∈Ω

E(c),

then there exists a subsequence (c jk) such that c jk ⇀ c∗ weakly in Ω to some c∗ ∈ Ω. Also we
need lower semicontinuity of the functional E, i.e. we need that

E(c) ≤ lim inf
j

E(c j) for all c ∈ Ω and (c j) ⊂ Ω s.t. (c j ⇀ c) weakly in Ω,

in order to apply the direct method.
We start by showing compactness. Let (c j) ∈ Ω be a minimizing sequence. Then we can

bound the energy E(c j) by r2 for some r > 0. Since each c j(t) starts in c0 and L(c j) ≤
√

E(c j),

32



CHAPTER 5. EXISTENCE OF GEODESICS Inga Giersch

as shown in Definition 2.7, we have

distI(c0, c j(t)) ≤
√

E(c j) ≤ r.

So every c j(t) lies in a metric ball around c0 with radius r. Hence, we can apply Proposition 4.5
and Lemma 4.1 to get the existence of a constant C > 0 such that

C−1||h||Hn(dθ) ≤

√
Gc j(t)(h, h) ≤ C||h||Hn(dθ)

is satisfied for all h ∈ Hn. Then

||c j(t)||Hn(dθ) ≤ ||c0||Hn(dθ) + ||c j(t) − c0||Hn(dθ) ≤ ||c0||Hn(dθ) +C1distI(c0, c j(t)) ≤ ||c0||Hn(dθ) +C1r,

where C1 is the constant from Lemma 4.6. Furthermore, we have

||c j||2H1
t Hn(dθ) =

∫ 1

0
||c j(t)||2Hn(dθ) + ||ċ

j(t)||2Hn(dθ) dt ≤
(
||c0||Hn(dθ) +C1r

)2
+C2

∫ 1

0
Gc j(t)(ċ

j, ċ j) dt

=
(
||c0||Hn(dθ) +C1r

)2
+C2E(c j).

Since E(c j) is bounded, we conclude that ||c j||H1
t Hn

θ
is bounded as well. By Banach-Alaoglu it

follows that there exists a subsequence which converges weakly to c∗ ∈ H1
t Hn

θ . We denote the
subsequence again by (c j). Consider the embedding H1

t Hn
θ ↪→ CtHn−ϵ

θ with n − ϵ > 3/2 and
0 < ϵ < 1. Since this embedding is compact by [2, Thm. 1], we can conclude that c j → c∗

converges strongly in CtHn−ϵ
θ . It remains to show that c∗ ∈ Ω. We use Lemma 4.4 to obtain a

constant C2 > 0 such that

|∂θc j(t, θ)| ≥ C2 ∀θ ∈ S 1,∀t ∈ [0, 1],∀ j ∈ N.

Due to the strong convergence this bound also holds for the limit c∗ and hence c∗(t) is indeed an
immersion for all t ∈ I. Since c j ⇀ c∗ weakly in H1

t Hn
θ , we have c j(1) ⇀ c∗(1) weakly in Hn

θ .
As the minimizing sequence c j(t) was chosen such that c j(0) = c0 and c j(1) ∈ A and by assump-
tion A is weakly closed concerning the Hn−topology we get that c∗(0) = c0 and c∗(1) ∈ A. Thus,
c∗ ∈ Ω and we have shown compactness of minimizing sequences.

Next, we show lower semicontinuity of the functional E. Note that we can write E as

E(c) =
n∑

k=0

ak

∣∣∣∣∣∣∣∣Dk
cċ

√
|c′|

∣∣∣∣∣∣∣∣2
L2

t L2
θ

.

Since the squared norm-function h 7→ ||h||2
L2

t L2
θ

is weakly sequentially lower semicontinuous, we

observe that if Dk
c j ċ j

√
|∂θc j|⇀ Dk

c∗ ċ
∗
√
|∂θc∗| weakly in L2

t L2
θ , then

n∑
k=0

ak

∣∣∣∣∣∣∣∣Dk
c∗ ċ
∗
√
|∂θc∗|

∣∣∣∣∣∣∣∣2
L2

t L2
θ

≤ lim inf
j→∞

n∑
k=0

ak

∣∣∣∣∣∣∣∣Dk
c j ċ j

√
|∂θc j|

∣∣∣∣∣∣∣∣2
L2

t L2
θ

.
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Hence, we have to prove the following implication

c j ⇀ c∗ weakly in H1
t Hn

θ ⇒ Dk
c j ċ j

√
|∂θc j|⇀ Dk

c∗ ċ
∗
√
|∂θc∗| weakly in L2

t L2
θ for k = 1, ..., n.

The boundedness of the (c j) in H1
t Hn

θ and Lemma 5.3 imply that Dk
c j ċ j ⇀ Dk

c∗ ċ
∗ weakly in L2

t L2
θ .

Moreover, we have c j → c∗ in CtHn
θ and thus

√
|∂θc j| ⇀

√
|∂θc∗| in CtHn−1−ϵ

θ . As ϵ was chosen
such that n − 1 − ϵ > 1/2, we get that the pointwise product Dk

c j ċ j
√
|∂θc j| converges weakly in

L2
t L2

θ , which proves the above implication. Now, if we put all the results together, we get that if
c j ⇀ c∗ weakly in H1

t Hn
θ , then

E(c∗) =
n∑

k=0

ak

∣∣∣∣∣∣∣∣Dk
c∗ ċ
∗
√
|∂θc∗|

∣∣∣∣∣∣∣∣2
L2

t L2
θ

≤ lim inf
j→∞

n∑
k=0

ak

∣∣∣∣∣∣∣∣Dk
c j ċ j

√
|∂θc j|

∣∣∣∣∣∣∣∣2
L2

t L2
θ

= lim inf
j→∞

E(c j).

This shows the lower semicontinuity of the functional E. Moreover, as we have seen in the first
step of the proof that c∗ ∈ Ω, we conclude that c∗ is indeed a minimizer for E. □

5.2 Existence of Geodesics in Immn(S1,Rd)/Diffn(S1)

In Section 2.4 we have introduced the concept of geometric curves in the quotient space. Here
we show the existence of geodesics also in the space of geometric curves. To do so, we make
use of the previous subsection and the fact that (Immn/Diffn, distI/D) is metrically complete.

Theorem 5.4. For C1,C2 ∈ Immn/Diffn in the same connected component, there exist c1, c2 ∈

Immn with c1 ∈ π
−1(C1) and c2 ∈ π

−1(C2) such that

distI/D(C1,C2) = distI(c1, c2).

In other words: The infimum in

distI/D(π(c1), π(c2)) = inf
ϕ∈Diffn

distI(c1, c2 ◦ ϕ)

is attained.

Proof: Fix c1, c2 ∈ Immn. As stated in Section 2, a minimizer of the energy functional is also a
minimizer for the path length with constant speed. So again, we consider the energy functional

E(c) =
∫ 1

0
Gc(ċ, ċ)dt,

on the set
Ω̃ :=

{
c ∈ H1 : c(0) = c1, c(1) ∈ c2 ◦ Diffn}.

As we do not know if the orbit c2 ◦Diffn is weakly closed, we are unable to proceed in the same
way as in the proof of Theorem 5.1. Nevertheless, we can adopt a similar approach as used in
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the proof of that theorem. We choose a minimizing sequence (c j) ∈ Ω̃ for E, that is

lim
j→∞

E(c j) = distI/D(π(c1), π(c2)).

Again, we can pass to a subsequence which converges weakly c j ⇀ c∗ in H1
t Hn

θ and strongly in
CtHn−ϵ

θ with ϵ such that n − ϵ > 3/2 and 0 < ϵ < 1. Analogous to the proof of Theorem 5.1, we
can show that E(c∗) ≤ lim inf j→∞E(c j) and that c∗ is an immersion. What remains to show, is
that c∗(1) ∈ c2◦Diffn, since in the previous proof this was guaranteed by the fact that A is weakly
closed. Since (c j) ∈ Ω̃, we have c j(1) ∈ c2 ◦ Diffn for all j ∈ N. Using the fact that Immn/Diffn

is Hausdorff and the strong convergence c j(1) → c∗(1) in Hn−ϵ
θ , we get c∗(1) ∈ c2 ◦ Diffn−ϵ . So

we can write c∗(1) = c2 ◦ ϕ with ϕ ∈ Diffn−ϵ . According to Lemma 2.8 we can assume that c2
has constant speed and hence

|c∗(1)′| = |c′2| ◦ ϕ · ϕ
′ =

len(c2)
2π

ϕ′.

Since c∗ ∈ Hn
θ , it follows c∗′ ∈ Hn−1

θ . This implies that ϕ′ ∈ Hn−1
θ and hence ϕ ∈ Diffn. Thus,

c∗(1) ∈ c2 ◦Diffn, so c∗ is indeed a minimizer of the functional E on the set Ω̃ . □

Finally, we are able to prove the main theorem of this section which provides the existence of
geodesics in the quotient space of Sobolev immersions.

Theorem 5.5. The space (Immn/Diffn, distI/D) with the induced metric is a length space and
any two shapes in the same connected component can be joined by a minimizing geodesic.

Proof: As already mentioned, (Immn/Diffn, distI/D) is a complete metric space. Hence, we can
apply Proposition 2.16 and it remains to show that for every C0 and C1 in the same connected
component there exists a midpoint. By Theorem 5.4 we know that there exist c0, c1 ∈ Immn

lying in the same connected component and such that Ci = π(ci) and

distI/D(C0,C1) = distI(c0, c1).

Using Theorem 5.1 we get the existence of a geodesic c(t) with constant speed, connecting c0
and c1. Hence, we have

distI(c0, c( 1
2 )) = distI(c( 1

2 ), c1).

Set C(t) = π(c(t)). If we can show that

distI/D(C0,C( 1
2 )) = distI(c0, c( 1

2 )) and distI/D(C( 1
2 ),C1) = distI(c( 1

2 ), c1),

then π(c( 1
2 )) = C( 1

2 ) is a midpoint between C0 and C1 and we are done. So let us assume the
converse:

distI/D(C0,C( 1
2 )) < distI(c0, c( 1

2 )) or distI/D(C( 1
2 ),C1) < distI(c( 1

2 ), c1).

35



CHAPTER 5. EXISTENCE OF GEODESICS Inga Giersch

Then

distI/D(C0,C1) ≤ distI/D(C0,C( 1
2 )) + distI/D(C( 1

2 ),C1)

< distI(c0, c( 1
2 )) + distI(c( 1

2 ), c1) = distI(c0, c1),

which yields a contradiction. □

5.3 Existence of Geodesics in Immn
f (S1,Rd) and

Immn
f (S1,Rd)/Diffn

Unfortunately, we cannot argue as in the previous subsections for the spaces Immn
f and

Immn
f /Diffn, since Immn

f is not a complete metric space. Nevertheless, Immn
f is contained in

Immn and hence two curves c0, c1 ∈ Immn
f in the same connected component can be joined by

a minimizing geodesic c(t). It remains to show that the geodesic itself is a free immersion for
each t ∈ (0, 1). This can be done with the help the following proposition.

Proposition 5.6. (Taken from [25, Sec. 2.2.3.5]). Let c0, c1 ∈ Immn
f be in the same connected

component and c(t) ∈ Immn a geodesic connecting c0 and c1. Then c(t) ∈ Immn
f ∀t ∈ (0, 1).

Proof: Let c0, c1 ∈ Immn
f and let the group of diffeomorphisms act on Immn. According to

Theorem 5.1 there exists a geodesic c(t) ∈ Immn such that c(0) = c0 and c(1) = c1. The isotropy
groups Gc0 and Gc1 are trivial, since c0 and c1 are free immersions. We have to prove that for
every t ∈ (0, 1) the isotropy group Gc(t) is trivial as well. Choose a ∈ Gc(t) \ Gc0 for a fixed but
arbitrary t ∈ (0, 1) and define the path

c̃(s) :=

ac(s) if s ≤ t,
c(s) else.

Then c̃(s) is a piecewise geodesic which connects ac0 and c1 and has the same length as c, since
the distance is invariant under the isometric action of Diffn. Observe that c̃ has a discontinuity at t
(otherwise c̃ would be equal to c in every point t, which would imply that a ∈ Gc0). This disconti-
nuity contradicts with the opitmality of c̃, since we can find a small neighborhood of t, where we
can shorten the path. Hence, there exists no a ∈ Gc(t) \Gc0 . Thus, Gc(t) ⊂ Gc0 for every t ∈ (0, 1).
As every isotropy group contains the neutral element, the isotropy groups of c(t) are also trivial.
Hence, the geodesic c(t) ∈ Immn

f for every t ∈ (0, 1). □

Theorem 5.7. Any two orbits C0,C1 ∈ Immn
f /Diffn in the same connected component can be

joined by a geodesic.

Proof: Taking into account Theorem 5.5 where we proved the existence of geodesics in the
quotient space, we can run the same argumentation as above. □
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6 The Manifold of free geometric Curves

The goal of this section is to prove the following theorem.

Theorem 6.1. The quotient space of the space of free immersions under the action of diffeo-
morphisms Imm f /Diff admits a manifold structure.

This theorem will be important for showing horizontality of geodesics in the next section. The
main work of the proof lies in finding open neighborhoods in the space of immersions such that
the properties of a manifold are satisfied. To do so, we need to introduce the concept of tubular
neighborhoods. The structure and the proofs of this section are mainly based on [19].

Before we start, we need to give two remarks. In the following we consider only curves in
the plane. In general, all the statements apply to higher dimensions as well, but for the sake
of simplicity we focus on curves in the plane. In this context a curve c is always given by
c : S 1 → Rd and has regularity at least C1. Moreover, in the proofs of the following lemmata
and propositions we will often reparameterize the curve c by arc parameter. This slightly changes
the assumptions of the theorems regarding the length of the curves which will depend on δc, and
distance to other curves which will depend on τc, in the following way:

1. Rotating and translating c does not affect τc, δc and len c|[σ,σ̃] for σ, σ̃ ∈ S 1.

2. Scaling c by a factor λ will result in the values τc, δc and len c|[σ,σ̃] being multiplied by λ
as well.

3. If we reparameterize c, then τc and δc remain unchanged. For ψ ∈ Diff and c̃ = c ◦ ψ we
get len c̃|[ψ(σ),ψ(σ̃)] = len c̃|[σ,σ̃].

In what follows we disregard these transformations, in order simplify the proofs, which work
analogously if we do the transformations, as described above. This means that if we assume c
to have constant speed, then the assumptions on c still hold.

6.1 Tubular Neighborhoods of Immersions

Proposition 6.2. Let c be in C2, a, b ∈ S 1 and L := len(c)| [a,b]. Assume that L ≤ 2δc, where δc

is defined as in Definition 2.6. Then |c(b) − c(a)| ≥ L/2.

Proof: For simplicity, we extend c to a periodic function c : R→ R2 and we identify the interval
in R that is associated with the arc of the curve, where the length len(c)| [a,b] is computed (see
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Def. 2.9). We call this interval [a, b] again. By Lemma 2.8 we can assume c to have constant
speed, i.e., |c′| = l = len(c)

2π . As noted in Definition 2.9 we then have

len(c)| [a,b] = l (b − a).

Consider the scalar curvature κ from Definition 2.5. We derived the following formula

|κ| =
|ϕ′|

|c′|
=
|ϕ′|

l
,

where ϕ is the angle function from Definition 3.1. Plugging this into the definition of δc, we
obtain

δc =
l π

(3 max|ϕ′|)
.

Let m = (a + b)/2 be the middle point of [a, b]. As |c′| = l and |V | = 1, we can rotate c such that
c′(m) = (l, 0) and V(m) = (1, 0). Consequently, we can assume that ϕ(m) = 0. By assumption
we have L = l (b − a) ≤ 2δc. As m is the middle point of [a, b], we get for θ ∈ [a, b]

l |m − θ| ≤ δc.

Plugging this in the above formula for δc, we get

|θ − m| ≤
π

(3 max|ϕ′|)
.

Since ϕ(m) = 0, we obtain for all a ≤ θ ≤ b

|ϕ(θ)| = |ϕ(θ) − ϕ(m)| =
∣∣∣∣∫ θ

m
ϕ′(σ) dσ

∣∣∣∣ ≤ |θ − m|max |ϕ′| ≤
π

3
.

Hence, we can conclude that cos(ϕ(θ)) ≥ 1/2. Finally, if a ≤ θ1 ≤ θ2 ≤ b, then we have for the
abscissa

c1(θ2)−c1(θ1) =
∫ θ2

θ1

c′1(θ) dθ =
∫ θ2

θ1

V1l dθ = l
∫ θ2

θ1

cos(ϕ(θ)) dθ ≥ l (θ2−θ1)
1
2
= len(c)| [θ1,θ2]/2,

where we have used that c′/l = V = (cos(ϕ), sin(ϕ)). Note that it is sufficient to prove the in-
equality only for the x−coordinate since |c(b) − c(a)| ≥ c1(b) − c1(a) and we rotated c′ in such
a way that it is reasonable to consider the distance in the direction of the x-axis. □

The above proposition states that the curve c restricted to [a, b] is an embedding, since |c(b)−
c(a)| ≥ L/2 implies that there a no intersection points in c.

Lemma 6.3 (Tubular Neighborhood). Let a, b ∈ S 1 such that len(c)| [a,b] ≤ 2δc. Define

Ψ : [a, b] × [−τc, τc]→ R2,

Ψ(s, t) = c(s) + tN(s).
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Then Ψ is a diffeomorphism with its image and if the arc [s1, s2] is contained in the arc [a, b],
then

|Ψ(s1, t1)Ψ(s2, t2)| ≥
1
4

len c| [s1,s2],

whereas
|Ψ(s, t1) − Ψ(s, t2)| = |t2 − t1|.

Proof: With no loss of generality, we may rescale and reparameterize c such that c has length
2π and is parameterized in arc parameter, i.e., |c′| = 1. As in the previous proof we extend c to a
periodic function c : R → R2 and identify the interval in R that is associated with the arc of the
curve, where the length len(c)| [a,b] is computed. Again, we denote this interval by [a, b].

As ∂
∂s c = c′

|c′ | = V and ∂
∂s N = −κV , we obtain for the Jacobian of Ψ

∂

∂s
Ψ = V(1 − κt)

∂

∂t
Ψ = N.

By assumption we have |t| ≤ τc = 1/(2max |κ|),. Thus, we get for the determinant (1 − κt) ≥
1/2. Applying the inverse function Theorem we get that Ψ is a local diffeomorphism. For a
global diffeomorphism, we must additionally show bijectivity. Surjectivity is clear, since we are
considering a diffeomorphism with its image, so what remains to prove is injectivity.

To accomplish this, we choose (s1, t1) and (s2, t2) with a ≤ s1 < s2 ≤ b and |t1|, |t2| ≤ τc.
Similar to the proof of Proposition 6.2, we set m = (s1 + s2)/2 and up to rotation we may
assume that V(m) = (1, 0) and ϕ(m) = 0. Again, we can conclude that cos(ϕ(s)) ≥ 1/2 for all
s1 ≤ s ≤ s2. Since |c′| = 1, we have V = c′. This yields

Ψ(s, t) = c(s) + tN(s) = c(m) +
∫ s

m
V(θ) dθ + tN(s).

With V(s) = (cos(ϕ(s)), sin(ϕ(s))) and N(s) = (− sin(ϕ(s)), cos(ϕ(s))) we get for the x-coordinate

Ψ(s, t)1 = c(m)1 +

∫ s

m
cos(ϕ(θ)) dθ − t sin(ϕ(s)).

Computing the derivative we get

∂

∂s
Ψ(s, t)1 = cos(ϕ(s))(1 − tϕ′(s)).

As c is parameterized in arc parameter, we have |κ| = |ϕ′|. Now, we use the facts that cos(ϕ(s)) ≥
1/2 and |t| ≤ τc =

1
2max |κ| to obtain

cos(ϕ(s)(1 − tϕ′(s))) ≥
1
4
.
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Hence, ∂
∂sΨ(s, t)1 ≥

1
4 . Then we observe that

Ψ(s2, t2)1 − Ψ(m, t2)1 ≥
1
4

(s2 − m),

Ψ(m, t1)1 − Ψ(s1, t1)1 ≥
1
4

(m − s1).

Adding these two equations and noting that Ψ(m, t1)1 = Ψ(m, t2)1 = c(m)1, since ϕ(m) = 0, we
obtain

Ψ(s2, t2)1 − Ψ(s1, t1)1 ≥
1
4

(s2 − s1).

Since c has unit speed parameterization, we have len(c)| [s1,s2] = 1(s2 − s1). By taking the norm
on both sides, we have proven the first inequality of the lemma. With the same argument as in the
previous proof, it is enough to show the inequality only for the abscissa. The second inequality
follows by

|Ψ(s, t1) − Ψ(s, t2)| = |c(s) + t1N(s) − c(s) − t2N(s)| = |t1 − t2| |N | = |t1 − t2|.

Moreover, we have shown injectivity of Ψ. Indeed, if Ψ(s2, t2) = Ψ(s1, t1), then we get

0 ≥
1
4

(s2 − s1),

which implies s2 = s1. Now, using the second inequality we get

0 = |Ψ(s1, t1) − Ψ(s1, t2)| = |t1 − t2|

and thus t1 = t2. □

If c̃(s) = Ψ(s, t) = c(s)+ tN(s), then we say that we can write c̃ in tubular coordinates around
c. We define the set of nearby points of c as Uτ := Ψ(S 1 × [−τ, τ]).

Lemma 6.4. The points in Uτ have distance at most τ from the trace c(S 1).

Proof: The distance function is given by

dc(S 1)(x) := inf
y∈c(S 1)

|x − y| = inf
θ∈S 1
|x − c(θ)|.

Consider an element x ∈ Uτ, then there exist (θ̃, t) ∈ S 1 × [−τ, τ] such that

x = c(θ̃) + tN(θ̃).

Then we have
|x − c(θ̃)| = |t| ≤ τ.

By geometric arguments the minimum of inf
θ∈S 1
|x − c(θ)| is attained in θ̃, since the segment of the
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minimal distance of x to a point on c is orthogonal to the tangent at this point. Hence,

dc(S 1)(x) = |x − c(θ̃)| ≤ τ. □

We have seen that for x ∈ Uτ we can always find (θ, t) ∈ S 1 × [−τ, τ] such that

x = c(θ) + tN(θ).

Now consider a curve c̃, instead of x, whose trace is contained in Uτ. One might think that we
will always find a continuous function φ : R→ R and a : R→ [−τ, τ] such that

c̃(θ̃) = Ψ(φ(θ), a(θ)) = c(φ(θ)) + a(θ)N(φ(θ)).

This would imply that if the trace of c̃ is contained in a tube of size 2τ around c, then we could
write each point of c̃ in tubular coordinates around c with the same φ and a. But this is not true.
A counterexample is shown in Figure 6.1. Here the two curves are close to each other, but we
cannot find φ and a such that the above equation holds. The problem is that we are considering
the trace of a curve and say that two curves are close to each other if every point on the one curve
is close to any point of the other curve. A suggestion of improvement would be to consider the
parameterization of the curves and say that two curves are close to each other if

|c̃(θ) − c(θ)| ≤ τ ∀θ ∈ S 1.

The next lemma acts on this idea.

Figure 6.1: The green curve is all contained in the set of nearby points Uτ of the red curve.

Lemma 6.5 (Nearby Projection). Let c be a fixed CR-curve with R ≥ 2. Then:

1. For x ∈ R2 and σ̃ ∈ S 1 such that

d := |x − c(σ̃)| <
δc

4
,

there exists an a ∈ R with |a| ≤ d and σ ∈ S 1 with

len(c)| [σ,σ̃] ≤ 4d,
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such that
x = c(σ) + aN(σ).

Observe that a is uniquely identified by σ.

2. They are unique in the family of σ, a such that |a| ≤ τc and

len(c)| [σ,σ̃] ≤ δc.

3. Let x̃ ∈ R2 and σ̃ ∈ S 1 such that

d := |x̃ − c(σ̃)| <
τc

2
.

Let ϵ > 0 small so that ϵ + d < δc/4 and define B = B(x̃, ϵ) = {x ∈ R2 : |x − x̃| < ϵ}. Then
there exist functions a, φ : B→ R of class CR−1 such that

x = Ψ(φ(x), a(x)) = c(φ(x)) + a(x)N(φ(x))

for all x ∈ B and they are unique as specified above.

Proof: Without loss of generality, we may assume that the curve c has length 2π and hence can
be parameterized in arc parameter. Thus, we can write |a − b| for len(c)| [a,b].

For proving 1) we choose x ∈ R2 and σ̃ ∈ S 1 such that d := |x − c(σ̃)| < δc
4 . Define

Jσ̃ := [σ̃ − δc, σ̃ + δc]. Let θ̂ be a minimum of

min
θ∈Jσ̃
|x − c(θ)|.

Then we have |x − c(θ̂)| ≤ d and hence

|c(σ̃) − c(θ̂)| ≤ |c(σ̃) − x| + |x − c(θ̂)| ≤ 2d.

By the definition of Jσ̃ we get |σ̃ − θ̂| ≤ δc. Thus, we may apply Proposition 6.2 and obtain

|c(σ̃) − c(θ̂)| ≥
1
2
|θ̂ − σ̃|.

These two inequalities yield
4d ≥ |θ̂ − σ̃|.

As 4d < δc, we see that |θ̂ − σ̃| < δc and hence the minimum is not attained at the boundary
of Jσ̃. Then by geometric arguments the minimal segment from x to c(θ̂) is orthogonal to the
tangent at c(θ̂), so we can find an a such that

x = c(θ̂) + aN(θ̂) = Ψ(θ̂, a),

which proves 1). Note that |a| = |a| |N(θ̂)| = |x − c(θ̂)| ≤ d. In the proof of 6.3 we have seen that
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Ψ is injective for |a| ≤ τc and |θ̂ − σ̃| ≤ 2δc. So if |a| ≤ τc and θ̂ ∈ Jσ̃, the uniqueness is given by
the injectivity of Ψ. This proves the second statement.

For the last one, consider x ∈ B. Then we obtain

|x − c(σ̃)| ≤ |x − x̃| + |x̃ − c(σ̃)| < ϵ + d <
δc

4
.

By 1) and 2) there exist a unique σ ∈ Jσ̃ and a with |a| ≤ τc such that

x = c(σ) + aN(σ).

As they are depending on x, we denote them by σ = φ(x), a = a(x). Furthermore, we have
shown in the proof of Proposition 6.3 that Ψ is a diffeomorphism with its image in CR−1. Hence,
we can invert the function and write

Ψ−1 : R2 → Jσ̃ × [−τc, τc]

Ψ−1(x) = (φ(x), a(x)),

which proves that φ, a ∈ CR−1. □

The main point of this lemma is that we fix σ̃ ∈ S 1 in the beginning and assume that x has
to be close to this point on the curve and not just close to any point on that curve. Hence, the
lemma provides some necessary conditions whether a curve c can be lifted into another curve c̃,
which is explained in detail in the following proposition.

Proposition 6.6 (Global Lifting). Let c : S 1 → R2 be in CR and c̃ : S 1 → R2 be in CR−1, with
R ≥ 2. Suppose that we have |c̃(θ) − c(θ)| ≤ τ for all θ ∈ S 1 and for a fixed τ < δc/4. Then there
exists a choice of a : S 1 → R and φ : S 1 → S 1 such that

c̃(σ) = Ψ(φ(σ), a(σ)) = c(φ(σ)) + a(σ)Nc(φ(σ)), ∀σ ∈ S 1,

with |a(σ)| ≤ τ and
len(c)| [σ,φ(σ)] ≤ 4τ

is satisfied for all σ ∈ S 1. Moreover, they are unique in the class of CR−1 functions such that
|a| ≤ τc and

len(c)| [σ,φ(σ)] ≤ δc.

Proof: We have demonstrated in the previous lemma that the statement is valid for all x ∈ S 1

which are close enough to c(σ̃). By substituting x = c̃(σ) we see that the statement is also true
for every point that is on the curve c̃. Uniqueness and regularity follow by the second and third
point of the previous lemma. □

Remark 6.7. If we can lift c1 into c2 with (a, φ), as explained in the proposition above, then
we have the following relation between c1 and c2 and (a, φ). If we translate or rotate the curves,
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we can still lift c1 to c2 with the same (a, φ). By rescaling both curves with λ > 0, we can use
(λa, φ) to lift the rescaled curve. If we reparameterize both curves at the same time by ϕ ∈ Diff,
i.e., c̃1 = c1 ◦ ϕ, c̃2 = c2 ◦ ϕ, then we can lift c̃1 to c̃2 by

c̃2(s) = c1(φ̃(s)) + ã(s)Nc̃1(φ̃(s)), ∀s ∈ S 1,

with

ã = a ◦ ϕ

φ̃ = ϕ−1 ◦ φ ◦ ϕ.

Moreover, let α > 0 and consider a third curve c3 such that

|c′2(θ) − c′3(θ)| ≤ α|c′1(θ)|.

If we now reparameterize all the curves at the same time by c̃i = ci ◦ ϕ, then

|c̃′2(θ) − c̃′3(θ)| ≤ α|c̃′1(θ)|.

This relation also holds for rescaling, rotation and translation.

It seems that we have found some sufficient hypotheses so that we can present c̃ in tubular
coordinates around c. However, the function φ of Proposition 6.6 is not necessarily a diffeomor-
phism, which is required in the definition of the tubular coordinates. An example where φ fails
to be a diffeomorphism is shown in Figure 6.2. In order to avoid such cases, we need to control
the difference of the derivatives of c′ and c̃′. This is done in the next lemma.

Figure 6.2: The curve c is presented in red and c̃ in green.

Lemma 6.8. Suppose all assumptions of Proposition 6.6 hold. Moreover, assume that τ ≤ τc/4
and

|c̃′(σ) − c′(σ)| ≤
1
2
|c′(σ)|, ∀σ ∈ S 1.
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Then c̃ is an immersed curve and φ is a diffeomorphism. For c being parameterized at constant
speed, we get

1
5
≤ φ′ ≤ 3.

Proof: As always, we may reparameterize c to have unit speed and do the same transformations
with c̃. Then the assumption |c̃′(σ) − c′(σ)| ≤ 1

2 |c
′(σ)| still holds, as mentioned in Remark 6.7.

Let θ = φ(σ). Consider the angle β between c̃′(θ) and c′(θ). Again by Remark 6.7, we have
|c̃′(θ) − c′(θ)| ≤ 1

2 |c
′(θ)|. This inequality implies

β ≤ arcsin(1/2) ≤ π/6.

Since c has unit speed, we obtain that |κ| = |ϕ′|, where ϕ is the angle function as in Definition
2.5. For the angle γ between c′(σ) and c′(φ(σ)) we have

|γ| = |ϕ(σ) − ϕ(θ)| =
∣∣∣∫ σ

θ
ϕ′(s) ds

∣∣∣ = ∣∣∣∫ σ

θ
κ(s) ds

∣∣∣ ≤ |σ − θ|max|κ|.

By assumption len(c)| [σ,φ(σ)] ≤ δc and |c′| = 1, hence |σ − θ| ≤ δc ≤ 4τ ≤ τc. This yields

|σ − θ|max|κ| ≤ τcmax|κ| =
1

2 max|κ|
max|κ| =

1
2
.

So we have shown that γ ≤ 1/2. Combining the two estimates, we obtain for the angle between
c′(σ) and c̃′(φ(σ))

β + γ ≤
π

6
+

1
2
<
π

2
.

Next, we compute the derivative of c̃(σ) = c(φ(σ)) + a(σ)N(φ(σ)) and recall that |c′| = 1. Then

c̃′(σ) = c′(φ(σ))φ′(σ) + a′(σ)N(φ(σ)) + a(σ)N′(φ(σ))φ′(σ)

= Vφ′(σ) + a′(σ)N + a(σ)(−κV)φ′(σ)

= Vφ′(σ)(1 − κa) + a′N,

where V,N and κ are evaluated at φ(σ). Now taking the scalar product on both sides with V and
using the fact that N ⊥ V , then we get

c̃′ · V = φ′(σ)(1 − κa).

Note that c̃′ · V > 0 and hence φ′ > 0. By the assumption of this lemma we have

|c̃′(σ)| − 1 = |c̃′(σ)| − |c′(σ)| ≤ |c̃′(σ) − c′(σ)| ≤
1
2
|c′(σ)| =

1
2
.

Moreover, we have

1 − |c̃′(σ)| = |c′(σ)| − |c̃′(σ)| ≤ |c′(σ) − c̃′(σ)| ≤
1
2
|c′(σ)| =

1
2
.
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Consequently, we get
1
2
≤ |c̃′| ≤

3
2
.

For |a| ≤ τc we observe as in the proof of Lemma 6.3

1
2
≤ (1 − κa) ≤

3
2
.

Now all this together yields

φ′(σ) ≥
c̃′(θ) · V

3/2
=

c̃′(θ) · c′(σ)
3/2

=
cos(β + γ) · |c̃′| · |c′|

3/2
≥

6/10 · 1/2 · 1
3/2

=
1
5

and
φ′(σ) ≤

c̃′(θ) · V
1/2

=
c̃′(θ) · c′(σ)

1/2
=

cos(β + γ) · |c̃′| · |c′|
1/2

≤
1 · 3/2 · 1

1/2
= 3.

Note that we have proven the estimates for a reparameterized φ̃ = ϕ−1 ◦ φ ◦ ϕ, as described
in Remark 6.7. But since φ̃ is a diffeomorphism, this implies that the original function φ from
Proposition 6.6 is a diffeomorphism as well. □

We now have all the results necessary to formulate a theorem concerning the representation
of c̃ in tubular coordinates around c.

Theorem 6.9 (Representation Theorem). Let c : S 1 → R2 be in CR and c̃ : S 1 → R2 be in CR−1,
with R ≥ 2. Assume that

|c̃(σ) − c(σ)| ≤ τ

and
|c̃′(σ) − c′(σ)| ≤

1
2
|c′(σ)|

for all σ ∈ S 1 and fixed τ ≤ τc/4. Then there exists a choice of a : S 1 → [−τ, τ] and φ ∈ Diff+

such that
c̃(φ(σ)) = Ψ(σ, a(σ)) = c(σ) + a(σ)Nc(σ), ∀σ ∈ S 1

with |a(σ)| ≤ τ and
len(c)| [σ,φ(σ)] ≤ 4τ, ∀σ ∈ S 1.

Moreover, they are unique in the class of CR−1 functions such that |a| ≤ τc and

len(c)| [σ,φ(σ)] ≤ δc.

Proof: Taking into account Remark 6.7, we can rescale and and reparameterize c and c̃ at the
same time and the assumptions of this theorem still hold. The proof then follows immediately
from Propositon 6.6 and Lemma 6.8. □

After establishing the conditions that allow us to express c̃ in terms of tubular coordinates
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around c, we can now define two kinds of neighborhoods of the curve c. To do so, we need to
look at the topology on the manifold of immersions. There are two ways on how to identify
open neighborhoods around an immersed curve c:

1. The first one is the usual way for Banach spaces where a neighborhood Uc,ϵ1 around c
includes all c̃ such that the distance between c and c̃ in the norm which comes with the
Banach space is smaller than ϵ1, i.e.,

U = Uc,ϵ1 =
{
c̃ : S 1 → R2 : ||c − c̃||CR < ϵ1

}
where ϵ1 > 0 determines the size of the neighborhood and ||.||CR is given by

||c||CR := max
σ∈S 1
|c(σ)| + |c′(σ)| + ... + |c(R)(σ)|.

2. In the “geometric way” a neighborhood Vc,ϵ2 around c includes all c̃ such that we can write
c̃ in tubular coordinates around c, i.e.,

c̃(σ) = Ψ(φ(σ), a(σ)) = c(φ(σ)) + a(σ)N(φ(σ)),

with a : S 1 → R and φ ∈ Diff such that

||a||CR < ϵ2

||φ − Id||CR < ϵ2,

where
||φ − Id||CR = max

σ∈S 1
dS 1(φ(σ), σ) + |φ′(σ) − 1| + ... + |φ(R)(σ) − 1|.

Note that these two neighborhoods are equivalent for c ∈ CR+1 in the following sense: For any
neighborhood Uc,ϵ1 we can find a neighborhood Vc,ϵ2 such that Vc,ϵ2 ⊆ Uc,ϵ1 . Conversely, for
each Vc,ϵ2 there exists a neighborhood Uc,ϵ1 such that Uc,ϵ1 ⊆ Vc,ϵ2 . The fact that the equivalence
of CR-neighborhoods only holds for curves in CR+1 justifies the study of the manifold of smooth
immersions.

6.2 Neighborhoods of free Immersions

So far, we have focused on parameterized curves where each point on the curve corresponds to a
unique point on the unit circle. This correspondence provided a condition, to be able to represent
curves in tubular coordinates in a unique way.

However, for geometric curves, we do not a priori have this correspondence, since we “re-
duce” curves to their image and disregard the parameterization. Nevertheless, the following
lemma will show that for a freely immersed curve c we can always find a neighborhood around
c such that for c̃ in this neighborhood every reparameterization of c̃ is given by the same tubular
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coordinates. Consequently, even for geometric curves we can find a unique representation in
tubular coordinates, if c is freely immersed.

Lemma 6.10 (Local Injectivity). Let c be a free immersion which is in C2. Then there exists a
r = rc > 0 such that if

c̃(s) := c(s) + a(s)N(s),

c̃(φ(s)) = c(s) + b(s)N(s),

with

||a||∞ ≤ r,

||b||∞ ≤ r,∣∣∣∣∣∣∣∣∣∣∂a
∂c

∣∣∣∣∣∣∣∣∣∣
∞

≤
1
2
,∣∣∣∣∣∣∣∣∣∣∂a

∂c

∣∣∣∣∣∣∣∣∣∣
∞

≤
1
2
,

where (∂/∂c) denotes the arc derivative, then a ≡ b and φ = IdS 1 .

Note that here, φ(s) is not the same function as in Theorem 6.9. It simply denotes another
reparameterization of c̃.
Proof : With no loss of generality we can parameterize c by arc parameter. If we rescale r by the
same factor, then the hypotheses remain unchanged.

First, we start with an estimate for the derivative of φ. Unfortunately, we cannot use the
estimate of Lemma 6.8 as the assumption is not satisfied. However, we have here the similar
condition |a′| ≤ 1/2. Consider

c̃(s) = c(s) + a(s)N(s).

The derivative is given by
c̃′ = T (1 − κa) + a′N.

From the previous proofs we know that for |a| ≤ τc we obtain

1
2
≤ (1 − κa) ≤

3
2
.

Then together with |a′| ≤ 1/2 we get

1
2
≤ |c̃′| ≤

∣∣∣∣32 + 1
2

∣∣∣∣ = √
9
4
+

1
4
≤ 2.

Similarly, for
c̃(φ(s)) = c(s) + b(s)N(s)

with |b| ≤ τc and |b′| ≤ 1/2 we have

1
2
≤ |c̃′|φ′ ≤ 2.
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Together with the estimate for |c̃′| we get

1
4
≤ φ′ ≤ 4.

Next, we assume by contradiction that there exist a sequence (φn) , IdS 1 and sequences (c̃n), (an)
and (bn) such that

c̃n(s) = c(s) + an(s)N(s)

c̃n(φn(s)) = c(s) + bn(s)N(s)

where

||an||∞ ≤
1
n
,

||bn||∞ ≤
1
n
,

||a′n||∞ ≤
1
2
,

||b′n||∞ ≤
1
2
.

If 1/n < τc/4 and len c̃n|[sn,φn(sn)] ≤ δc, then we could write c̃n in a unique way in tubular
coordinates around c. But since φn is not the identity, the uniqueness is obviously violated and
one of the uniqueness conditions is not fulfilled. If we choose n large enough, then 1/n < τc/4
is satisfied and hence there must exist a sn such that

len c̃n|[sn,φn(sn)] ≥ δc.

Now set φn(sn) = θn. Then by Lemma 2.10, we have

MdS 1(φ−1
n (θn), θn) = MdS 1(sn, φn(sn)) ≥ len c̃n|[sn,φn(sn)] ≥ δc,

with M = max|c̃′|. This yields

lim inf
n→∞

dS 1(φ−1
n (θn), θn) > 0.

Since S 1 is compact, every sequence has a convergent subsequence. So up to a subsequence we
have θn → θ̃. Moreover, we have by the earlier arguments that

1
4
≤ φ′n ≤ 4.

The boundedness of φ′n and the theorem of Arzelà-Ascoli imply that up to a subsequence φn → φ

and φ−1
n → φ−1 uniformly, so that φ is a bi-Lipschitz homeomorphism. Since the distance
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function and φn are continuous, we obtain

lim
n→∞

dS 1(φ−1
n (θn), θn) = dS 1(φ−1(θ̃), θ̃) =: d̃ > 0.

Furthermore, since an → 0 and bn → 0, we get c̃n → c and c̃n(φn)→ c. This yields

c̃ = c̃ ◦ φ,

which implies that a = b. Moreover, we have c̃n(φn)→ c(φ) and hence

c = c ◦ φ.

By assumption c is a free immersion, which implies that φ = IdS 1 . But this cannot be true, since
the distance between φ−1(θ̃) and θ̃ is strictly positive. Thus we have shown a contradiction, so
that the assumption (φn) , IdS 1 was false. □

Theorem 6.11. Free immersions are an open subset of immersions.

Proof: This is a simple consequence of the previous lemma. Let R ≥ 2 and Vc,ϵ2 be a tubular
neighborhood around c, with ϵ2 < min{rc, 1/2, τc/4} and rc from Lemma 6.10. Let φ ∈ Diff be
arbitrary and let c̃ and c̃ ◦ φ be defined as in Lemma 6.10. By the choice of ϵ2, c̃ is contained in
Vc,ϵ2 . If c̃(s) = c̃(φ(s)), then we know by Lemma 6.10 that a = b and φ is the identity. Hence
any curve c̃ ∈ Vc,ϵ2 is freely immersed, if c is freely immersed. As mentioned earlier, tubular
neighborhoods Vc,ϵ2 and neighborhoods Uc,ϵ1 induced by the Banach topology of the manifold
of smooth immersions are equivalent. Hence, the theorem is proven for both kinds of neighbor-
hoods. □

6.3 The Manifold structure

In this subsection we will finally give the proof of Theorem 6.1 which requires us to show that
Imm f /Diff satisfies the three properties of a manifold.

Definition 6.12. (Infinite-dimensional manifold, taken from [5, Def. 1.1]). A smooth manifold
modelled on the topological vector space E is a Hausdorff topological space M together with a
family of charts (uα,Uα)α∈A such that

1. Uα ⊆ M are open sets and
⋃
α∈A Uα = M.

2. uα : Uα → uα(Uα) ⊆ E are homeomorphisms onto open sets uα(Uα).

3. uβ ◦ u−1
α : uα(Uα ∩ Uβ)→ uβ(Uα ∩ Uβ) are C∞-smooth for all α, β ∈ A.

So far, we haven shown that free immersions are open in the space of immersions. For proving
the first property of a manifold, we need to find open sets in the quotient topology that cover the
quotient space.
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Proposition 6.13. Fix a free immersion c1 and let τ ≤ min{rc1 , τc1/4, 1/2}. Then the set

Uc1 :=
{
c̃ ∈ Imm : |c̃ − c1| ≤ τ, |c̃′ − c′1| <

|c′1|
3

}
is open in C∞.

Proof: Let c2 ∈ Uc1 and define

α := ||c2 − c1||∞

β :=
∣∣∣∣∣∣∣∣∣∣ ∂∂c1

c2 −
∂

∂c1
c1

∣∣∣∣∣∣∣∣∣∣
∞

.

By the definition ofUc1 we have α < τ and β < 1/3. Consider a smooth curve c3 which satisfies

||c3 − c2||∞ < (τ − α),

||c′3 − c′2||∞ < (
1
3
− β) m,

with m = min|c′1|. Then we obtain

||c3 − c1||∞ ≤ ||c3 − c2||∞ + ||c2 − c1||∞ < (τ − α) + α = τ

||c′3 − c′1||∞ ≤ ||c
′
3 − c′2||∞ + ||c

′
2 − c′3||∞ < (

1
3
− β) m + β =

1
3

m.

Hence, we have c3 ∈ Uc1 . So for every c2 ∈ Uc1 we can find a c3 close to c2 such that c3 is also
contained in that set. □

By Theorem 6.9 we know that Uc1 contains all curves c̃ which can be expressed in tubular
coordinates around c1. Moreover, we have seen in the proof of Theorem 6.11 that every curve
inUc1 is a free immersion. Now, consider the set of all curves inUc1 up to reparameterization,
that is

Wc1 :=
{
c̃ ◦ φ : |c̃ − c1| < τ, |c̃′ − c′1| <

|c′1|
3
, φ ∈ Diff

}
.

As already mentioned, the above conditions are invariant under reparameterization. SoWc1 can
be written as the union of open sets

Wc1 =
⋃

c2=c1◦φ,φ∈Diff

Uc2 .

Hence, Wc1 is an open set in C∞ as well. Now let π : Imm f → Imm f /Diff be the canonical
projection. Then set

W̃c1 := π(Wc1).

By the definition of the quotient topology, a setZ is open if the union of its orbits

π−1(Z) =
{
c ∈ Imm f : [c] ∈ Z

}
=

⋃
[c]∈Z

[c]
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is open in Imm f , respectively in C∞. Moreover, we have

π−1(W̃c1) =Wc1 =
⋃

c2=c1◦φ,φ∈Diff

Uc2

Hence W̃c1 is open in the quotient topology and⋃
c1∈Imm f

W̃c1 = Imm f /Diff.

This proves the first property of the definition of a manifold. For the second one we need to
define a vector space E. The motivation for this space can be seen as follows:

Consider a curve c = c̃◦φ ∈ Wc1 . Then by Theorem 6.9 we can write c̃ in tubular coordinates
around c1

c̃ ◦ ϕ = c1 + aN,

with |a| ≤ τ. So for c we have the following reparameterization in tubular coordinates

c ◦ φ−1 ◦ ϕ︸  ︷︷  ︸
=:ψ1

= c1 + aN.

We want to show that this reparameterization is unique. We know that ϕ is unique by the repre-
sentation theorem, but the representation of c̄ is not, i.e., there are lots of pairs (c̃, φ) such that
c = c̃ ◦ φ with c̃ ∈ Uc1 and φ ∈ Diff. So assume that there exists another reparameterization of c
in tubular coordinates

c ◦ ψ2 = c1 + bN,

with |b| ≤ τ. Define ĉ := c ◦ φ−1 ◦ ϕ = c ◦ ψ1. Then we have

ĉ = c1 + aN,

ĉ ◦ ψ−1
1 ◦ ψ2 = c ◦ ψ2 = c1 + bN.

Since we have chosen τ small enough, we can apply Lemma 6.10. This gives us ψ−1
1 ◦ ψ2 = Id.

Hence, ψ1 = ψ2. So we have shown that the reparameterization is uniquely identified for curves
inWc1 . Consequently, we will concentrate on a for the space E.

Proposition 6.14. Define

Qc1 :=
{
a : S 1 → R : ∃ c̃ ∈ Uc1 ,∃φ ∈ Diff, c̃ ◦ φ = c1 + aN

}
.

Then Qc1 is open.

Proof: Consider the map
(φ, a) 7→ (c1 + aN) ◦ φ−1,
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which splits the setWc1 smoothly as

Wc1=̃ Qc1 × Diff.

Clearly, this map is continuous, so the preimage of an open set is open. SinceWc1 is open and
Qc1 is simply the projection on the second component of the preimage ofWc1 , we have that Qc1

is open as well. □

Now define the vector space E as follows:

E :=
⋃

c1∈Imm f

Qc1 .

Next, we need to define the charts uα. Therefore, consider the map

Ψc1 : Qc1 →Wc1 ,

Ψc1(a) := c1 + aN1.

Then the composition with the canonical projection

Ψ̃c1 := π ◦ Ψc1 : Qc1 → W̃c1

is a bijective map, since we have already proven in Lemma 6.10, that Ψc1 is injective and the
surjectivity can be seen as follows: Let [c̃] ∈ W̃c1 , then

c̃ ∈ Uc1◦φ

for a unique φ and hence
c̃ ◦ φ−1 = c1 + aN1

for a unique a. So every a gets hit exactly one time. Moreover, Ψ̃c1 is a smooth mapping and
hence a homeomorphism. Now set uα:=Ψ̃−1

c1
. We have already seen in Proposition 6.14 that

Ψ̃−1
c1

(W̃c1) = Qc1 ⊆ E

is open. Thus the second condition for a manifold structure is satisfied.

For the last condition we consider the atlas given by the charts (Ψ̃−1
c1
,W̃c1)c1∈Imm f . It

must be compatible, meaning that any two charts in the atlas must agree on the overlaps of their
domains. So let [c̃] be in the overlap of two charts, i.e.

[c̃] ∈ W̃c1 ∩ W̃c2 .
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Then by Theorem 6.9 we can write c̃ as

c̃(ψ1) = c1(θ) + ã1(θ)Nc1(θ),

c̃(ψ2) = c2(θ) + ã2(θ)Nc2(θ),

where ψi := φ−1
i ◦ ϕi as described earlier. We can reparameterize c1 and c2 to get

c̃(θ) = c1(θ) + ã1(θ)Nc1(θ),

c̃(θ) = c2(θ) + ã2(θ)Nc2(θ).

Now we need to show that the map

Ψ̃−1
c2
◦ Ψ̃c1 : Ψ̃−1

c1
(W̃c1 ∩ W̃c2)→ Ψ̃−1

c2
(W̃c2 ∩ W̃c1)

ã1 7→ ã2

is smooth in a neighborhood of ã1. Since W̃c1 and W̃c2 are open, there exists a neighborhood
around [c̃] which is contained in both sets. Choose a1 sufficiently close to ã1 such that

c0(θ) := c1(θ) + a1(θ)Nc1(θ)

lies within this neighborhood, i.e., c0 ∈ Wc2 . Again, we obtain by Theorem 6.9 the existence of
ψ and a2 depending on a1 such that

c0(θ) = c1(θ) + a1(θ)Nc1(θ) = c2(ψ(θ)) + a2(ψ(θ))Nc2(ψ(θ)).

The proof of the representation Theorem (precisely the proof of Lemma 6.5 where we used the
inverse of the tubular coordinates) demonstrates the smooth dependence of a2 on a1. This proves
the third property for Imm f /Diff being a manifold. □
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7 Horizontal Lifting of Geodesics

In section 5 we have seen that we can project geodesics on the space of free immersions to the
quotient space with respect to the Diff-action. The goal of this section is to show that these are
projections of horizontal geodesics on Imm f . To this end, we use the fact that Imm f /Diff admits
a manifold structure. This can be reformulated in the framework of principal fiber bundles,
which was done in [8, Thm. 1.5]:

« Let i be a free immersion M → N. Then there is an open neighborhood W(i) in
Imm(M,N) which is saturated for the Diff(M)-action and which splits smoothly as

W(i) = Q(i) × Diff(M).

Here Q(i) is a smooth splitting submanifold of Imm(M,N), diffeomorphic to an
open neighborhood of 0 in C∞(N(i)). In particular the space of Immfree(M,N)
is open in C∞(M,N). Let π : Imm(M,N) → Imm(M,N/)Diff = B(M,N) be the
projection onto the orbit space, which we equip with the quotient topology. Then
π|Q(i) : Q(i) → π(Q(i)) is bijective onto an open subset of the quotient. If i runs
trough Immfree,prop(M,N) of all free and proper immersions these mappings define
a smooth atlas for the quotient space, so that(

Immfree, proper(M,N), π, Immfree, proper(M,N)/Diff(M),Diff(M)
)

is a smooth principal fiber bundle with structure group Diff(M).»

In particular, we have already proven this statement in Section 6, we just need to express the
results in terms of bundles. Therefore, we start with a few definitions on that topic, which are
mainly taken from [9, Sec. 1].

7.1 Fiber Bundles

Definition 7.1. (Bundle). A bundle is a triplet (E, π, B) where E, B are sets and π is a map from
E to B. We call E the total space, B the base space and π the projection.

This is the simplest case of a bundle. Normally, we consider bundles with an additional
structure, as the fiber bundle.

Definition 7.2. (Fiber Bundle). A fiber bundle (E, π, B, F) consists of manifolds E, B, F and
a smooth mapping π : E → B which has to satisfy the following triviality condition. For
each y ∈ B there exists an open neighborhood U ⊆ B such that there is a homeomorphism
ψ : E|U := π−1(U) → U × F such that π agrees with the projection onto the fist factor. In
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particular the following diagram should commute:

π−1(U)
ψ //

π
""

U × F

proj1||
U

Here, proj1 : U × F → U denotes the naturally projection onto the fist factor. If (Uα)α∈A is an
open cover of B, then we call the set of all fiber charts (Uα, ψα)α∈A a fiber bundle atlas. The fiber
of a point y ∈ B is given by its preimage π−1(y).

Definition 7.3. (Tangent Bundle). For every smooth manifold M we define the tangent bundle
T M as the union of all tangent spaces TxM at every point x ∈ M. Since the tangent space
TxM consists of all tangent vectors to M at x, the tangent bundle is the collection of all tangent
vectors, along with the information of the point to which they are tangent, that is

T M = ⊔
x∈M

TxM = ∪
x∈M
{x} × TxM = {(x, v) : x ∈ M, v ∈ TxM}.

So each element of the tangent bundle is given by (x, v) where x describes the point in the mani-
fold M and v denotes a tangent vector at this point. Moreover, speaking in terms of bundles, as
defined above, we have that the triplet (T M, π,M) where π : T M → M is the natural projection
defined as π(x, v) = x, is the tangent bundle over M. Here, the fiber of a point x ∈ M is given by
its tangent space TxM.

Definition 7.4. (Normal Bundle). Consider a Riemannian manifold M with a Riemannian metric
g. Let S ⊂ M be a Riemannian submanifold. The total space of the normal bundle to S is defined
just as above for the tangent space:

NS := ⊔
p∈S

NpS = {(p, n) : p ∈ S , n ∈ NpS },

where NpS denotes the normal space to S at p which is given by

NpS := {n ∈ TpM : g(n, v) = 0 ∀v ∈ TpS }.

Hence we can identify the normal bundle as the orthogonal complement of the tangent bundle,
NS = (TS )⊥.

In general, we can define the normal bundle for an immersion i : N → M as the quotient
space of the tangent space on M by the tangent space on N. Here N,M do not have to be
Riemannian.

Definition 7.5. (Principal Fiber Bundles). Let G be a Lie group, E, B manifolds and π : E → B.
The tuple (E, π, B,G) is called a G-principal fiber bundle over B if

1. G acts on E from the right as a Lie transformation group.

2. There exists a bundle atlas (Uα, ψα)α∈A consisting of a G-equivariant bundle charts, i.e.
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a) ψα : π−1(Uα)→ Uα ×G is a diffeomorphism.

b) proj1 ◦ ψα = π.

c) ψα(p · g) = ψα(p) · g for all p ∈ π−1(Uα) and g ∈ G, where G acts on Uα × G via
(x, a) · g = (x, a · g).

7.2 Application to the Space of free Immersions

Now that we have formally defined a principal fiber bundle, we can apply the results from Sec-
tion 6 and show that

(
Imm f , π, Imm f /Diff,Diff

)
is a principal fiber bundle with structure group

Diff. We remark that in the proof of [8] they were missing the two conditions about the size
of the neigborhoods (|c̃′ − c′1| < |c

′
1|/3 and τ ≤ τc). However, we are not going to discuss this

since we are more interested in the reformulation of Imm f /Diff being a manifold than showing
the differences of the proofs. Moreover, note that in [8] they proved the theorem for immersions
i : M → N, where M,N are general finite dimensional manifolds. Since the focus of this work
are immersions c : S 1 → c(S 1) ⊆ R2, we set M = S 1 and N = c(S 1).

We start with the normal bundle of an immersion c : S 1 → c(S 1) ⊆ R2. We know that the set
of normal vectors of c(θ) is given by

Nc(θ)c(S 1) =
{
tNc(θ) : t ∈ R

}
,

where Nc(θ) is defined as in Definition 2.4. Then the tangent bundle Nc(S 1) is provided by

Nc(S 1) =
{
(θ, t) ∈ S 1 × R : tNc(θ) ⊥ v ∀v ∈ Tc(θ)c(S 1)

}
.

Hence, the fiber F of the normal bundle is just given by R for planar immersions.

Now, consider the definition of a G-principal fiber bundle. Set E = Imm f , B = Imm f /Diff,
G = Diff and let π be the canonical projection on the quotient space. Note that by [23, Sec.
1.3.2] one can define a smooth structure on the space of diffeomorphisms such that it becomes a
Lie group. As described in the previous section the map

Φc1(φ, a) = (c1 + aN) ◦ φ−1

splits open sets Wc1 diffeomorphically into

Wc1 � Qc1 × Diff.

Now let [c1] ∈ Imm f /Diff. Then there exists an open neighborhood W̃c1 around [c1] such
that Imm f

∣∣∣W̃c1 := π−1(W̃c1) = Wc1 is diffeomorphic to W̃c1 × Diff via a fiber respecting
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diffeomorphism:

Wc1

ˆ̃Ψc1◦Φ
−1
c1 //

π !!

W̃c1 × Diff

proj1zz
W̃c1

where ˆ̃Ψc1(a, φ) := (Ψ̃c1(a), φ) with the diffeomorphism Ψ̃c1 : Qc1 → W̃c1 .
Moreover, it is obvious that Ψc1(a ◦ f ) = Ψc1(a) ◦ f with a ∈ Qc1 and f ∈ Diff. Hence,

Ψ̃c1(a◦ f ) = Ψ̃c1(a)◦ f . Clearly,Φ−1
c1

(c◦ f ) = Φ−1
c1

(c)◦ f . This proves that
(
Imm f , π, Imm f /Diff,Diff

)
satisfies all of the properties of a G-principal fiber bundle.

7.3 Riemannian Submersions and Connections

The following theory is presented for a general fiber bundle (E, π, B, F) and is principally based
on [20, Sec. 17, 24, 26]. In the end of this section we will come back to the case where E = Imm f

and B = Imm f /Diff. In order to define horizontal/vertical vectors in E, we need π to be a
submersion, i.e. a function, whose differential Dπp : TpE → Tπ(p)B is surjective for each p ∈ E.
This is true for every fiber bundle (E, π, B, F).

Lemma 7.6. The projection π of the fiber bundle (E, π, B, F) is a submersion.

Proof: By the definition of a fiber bundle, there exists a neighborhood U ⊆ B and a diffeomor-
phism ψ : π−1(U)→ U × F such that π|π−1(U) = proj1 ◦ ψ. Thus we need to show that

Dπp = D(proj1 ◦ ψ)p = D proj1(ψp) ◦ Dψp

is a surjection for every p ∈ E. As ψ is a diffeomorphism, it is obviously surjectiv and Dψ is an
isomorphism and hence also a surjective map. Moreover, D proj1 is surjectiv, since the projection
onto the first factor is a submersion. As the composition of two surjections is a surjection as well,
we obtain that Dπp is surjectiv. □

Definition 7.7. (Vertical Bundle). Let (E, π, B, F) be a fiber bundle. Consider the fiber linear
tangent mapping Dπ : T E → T B which has full rank everywhere by the previous lemma. Then
the vertical bundle VE → E is the subbundle of T E → E defined as

VE := ker Dπ =
{
v ∈ T E : Dπv = 0

}
⊆ T E.

The fibers of the vertical bundle VxE ⊆ TxE are called vertical subspaces. Since the vertical
subspaces are the sets of all vectors in T E that are tangential to any fiber, we have VxE =
Tx(Eπ(x)).

Definition 7.8. (Connection). A connection on the fiber bundle (E, π, B, F) is a vector valued
1-form Φ ∈ Ω1(E; VE) with values in the vertical bundle VE and such that Φ ◦ Φ = Φ and
ImΦ = VE. We obtain that Φ is just a projection T E → VE. The kernel ker Φ =: HE is a
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subvector bundle of T E and we call it the horizontal bundle. Obviously, we have T E = HE⊕VE
and TxE = HxE ⊕ VxE. If E is a Riemannian manifold with a metric g, then we can identify the
horizontal space HxE as the orthogonal complement

HxE = VxE⊥ =
{
v ∈ TxE : gx(v,w) = 0 ∀ w ∈ TxE with D π(x) w = 0

}
.

Assume that a connection Φ has been chosen. Then consider the mapping

(D π, pE) : T E → T M × E,

where the second component is just the projection to E. Since VE is the kernel of D π, we
obtain (D π, pE)−1(0π(x), x) = VxE. Hence (D π, pE) restricts to a fiber linear isomorphism
(D π, pE)|HE : HE → T M × E. We call its inverse

C :=
(
(D π, pE)|HE

)−1 : T M × E → HE ↪→ T E

horizontal lift associated to the connection Φ.
For the case of a principal bundle (E, π, B,G) with structure group G, we want to ensure that

the connection is "compatible" with the group action of G. More specifically, we say that a
connection is a principal connection if it is G-equivariant for the right action r : E ×G → E, i.e.

T (rg).Φ = Φ.T (rg)

where T (rg) is the tangent mapping of r for a fixed g ∈ G and T (rg).Φ is given by (Txrg.Φx)(h) =
Φx(h ◦ rg) for x ∈ E and h ∈ C∞(E). Additionally we require Φ to be rg-related to itself, i.e.

Trg ◦ Φ = Φ ◦ rg.

This means that the connection behaves nicely with respect to the group action, and allows us to
define a notion of parallel transport on the bundle. The idea of parallel transport is to transport
a vector along a curve in the base space B in such a way that the vector stays "parallel" to itself
as it moves along the curve. In other words, the vector should not rotate or change direction as
it moves along the curve.

Definition und Proposition 7.9. (Parallel Transport). Suppose we have a smooth principal
bundle (E, π, B,G) with a regular Lie group as its structure group and a principal connection
Φ. Then, the parallel transport associated with the connection Φ exists, is globally defined and
G-equivariant. This means that for every smooth curve c : R → B, there is a unique smooth
mapping Ptc : R × Ec(0) → E that satisfies the following conditions:

1. Pt(c, t, x) ∈ Ec(t), Pt(c, 0) = IdEc(0) and Φ( d
dt Pt(c, t, x)) = 0.

2. Pt(c, t) : Ec(0) → Ec(t) is G-equivariant, i.e. Pt(c, t, x.g) = Pt(c, t, x).g holds for all g ∈ G
and x ∈ E. Moreover, we have Pt(c, t)∗(ζX |Ec(t)) = ζX |Ec(0) for all X ∈ g.

3. For any smooth function f : R→ R we have Pt(c, f (t), x) = Pt(c ◦ f , t, Pt(c, f (0), x)).
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For the sake of completeness we stated all the three properties here, but actually we are only
going to use the first one. For this reason we do not specify the fundamental vector field ζX and
the Lie algebra g in the second condition. For further information and a proof of this proposition
see [20, Thm. 19.6.].

Theorem 7.10. (Taken from [20, Lemma 26.11]). Let (E, π, B,G) be a smooth G-principal
bundle with principal connection Φ : T E → VE and let c : [0, 1] → B be a geodesic. Then the
following holds:

1. The length and energy of c are preserved, when lifting c horizontally:

Lt
0(c) = Lt

0(PtΦ(c, ·, x)),

Et
0(c) = Et

0(PtΦ(c, ·, x)),

where x ∈ Ec(0) denotes the starting point of the parallel transport.

2. The horizontal lift of a curve is orthogonal to its fibers:

PtΦ(c, ., x) ⊥ Ec(t) ∀ t ∈ [0, 1].

3. t 7→ PtΦ(c, t, x) is a geodesic in E.

Proof: 1) Since π is a submersion by Lemma 7.6, we have that gE(x, y) = gB(X,Y) for π(x) = X
and π(y) = Y . By the properties of the parallel transport we have Φ( d

ds PtΦ(c, s, x)) = 0, which
implies that d

ds PtΦ(c, s, x) ∈ ker Φ and hence d
ds PtΦ(c, s, x) is a horizontal vector. Moreover, we

know that π(PtΦ(c, s, x)) = c(s) and as d
ds PtΦ(c, s, x) is horizontal, we obtain by the horizontal

lift C:
gB

(
c′(s), c′(s)

)
= gE

(
d
ds PtΦ(c, s, x), d

ds PtΦ(c, s, x)
)
.

Now computing the length of c:

Lt
0(c) =

∫ t

0
gB

(
c′(s), c′(s)

)1
2 ds

=

∫ t

0
gE

(
d
ds PtΦ(c, s, x), d

ds PtΦ(c, s, x)
)1

2 ds = Lt
0(PtΦ(c, ., x)).

Similarly for the energy we have

Et
0(c) =

∫ t

0
gB

(
c′(s), c′(s)

)
ds

=

∫ t

0
gE

(
d
ds PtΦ(c, s, x), d

ds PtΦ(c, s, x)
)
ds = Et

0(PtΦ(c, ., x)).

2) This is due to our choice ofΦ as the orthogonal projection onto the vertical bundle with respect
to the Riemannian metric on E. The vertical bundle consists of all vectors that are tangential to
any fiber the curve meets. Hence, this choice of Φ ensures that the parallel transport along c is
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the only horizontal curve that covers c, and it remains orthogonal to any fiber Ec(t).
3) Let e : [0, 1] → E be a (piecewise) smooth curve starting at Ec(0) and ending at Ec(1). Then
the composition π ◦ e is a (piecewise) smooth curve that starts at c(0) and ends at c(1). Since c
is a geodesic, we have L1

0(c) ≤ L1
0(π ◦ e). Now we decompose the tangent vectors of e into their

horizontal and vertical components. As the vertical vectors are not affected by D π, they can
only increase the length. Moreover, the projection π is a submersion, hence D π is an isometry
on the horizontal vectors. Therefore, the length of the horizontal components of e is preserved
under the projection π. All this together yields

L1
0(e) =

∫ 1

0
|e′(t)ver + e′(t)hor|gE dt ≥

∫ 1

0
|e′(t)hor|gE dt =

∫ 1

0
|(π ◦ e)′(t)|gM dt = L1

0(π ◦ e).

Now, by the previous observations we obtain

L1
0(e) ≥ L1

0(π ◦ e) ≥ L1
0(c)

1)
= L1

0(PtΦ(c, ., x)).

Since e was an arbitrary curve connecting Ec(0) and Ec(1), we see that the infimum of the length
functional over all curves from Ec(0) and Ec(1) gets attained in PtΦ(c, ., x), thus

L1
0(PtΦ(c, ., x)) = dist (Ec(0), Ec(1)).

Hence, t 7→ PtΦ(c, t, x) is a geodesic in E, that connects Ec(0) and Ec(1). □

Now we come back to the case where E = Imm f and B = Imm f /Diff. In Section 7.2 we have
seen that

(
Imm f , π, Imm f /Diff,Diff

)
is a G-principal fiber bundle. Hence, we may apply the

above theorem, which shows that geodesics in Imm f /Diff can be lifted to horizontal geodesics
on Imm f , which was the main object of this section.
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8 Conclusion and Outlook

This master’s thesis focused on investigating the existence of horizontal geodesics in the shape
space of unparameterized Sobolev immersions. To do so, we analysed properties of the Sobolev
norms and of the induced geodesic distance. Our findings revealed that the Hn(dθ)- and Hn(ds)-
norms are equivalent on metric balls in Imm. However, the equivalence between the induced
geodesic distance and the Hn(dθ)-norm could only be shown on metric balls in Immn. Neverthe-
less, we concluded that the space Immn is metrically complete. Building upon these results, we
deduced that the quotient space Immn/Diffn equipped with the metric dI/D respectively distI/D

is also metrically complete. This conclusion relied on the fact that dI/D is intrinsic and hence
coincides with the induced distance on the quotient space. Afterwards, we used a lemma which
provided the existence of geodesics, assuming the existence of midpoints and the metric com-
pleteness of the space. The latter one was already shown and the first one followed from the
existence of geodesic in the original space. Furthermore, we have shown that a geodesic be-
tween two free immersions is itself a free immersion.

We showed that the dense open subset Imm f /Diff of Immn/Diffn serves as a suitable space for
proving the horizontality of geodesics, since this space admits a manifold structure. Leveraging
this structure, we easily established that

(
Imm f , π, Imm f /Diff,Diff

)
forms a G-principal fiber

bundle, thereby ensuring that the canonical projection π is always a submersion. This was an
important prerequisite for defining horizontal and vertical vectors. Subsequently, we employed
parallel transport to demonstrate that we can lift the geodesics from Imm f /Diff horizontally to
Imm f . The one-to-one correspondence between geodesics on the quotient space and horizontal
geodesics in the total space provided an efficient way to compute geodesics in the quotient space,
on the assumption that the horizontal bundle is not too complicated.

In further work, one could analyse the existence of geodesics in the space of smooth immer-
sions. As previously noted, we were unable to establish all estimates presented in Section 4 for
this space and therefore, we cannot employ them in the same manner as in the proof for the
existence of geodesics in Immn. Also, it is not possible to prove metric completion and therefore
we cannot conclude that the quotient space is complete either. In fact, it was shown in [3] that
both spaces are not complete. Since the space of smooth immersions is contained in the space of
Sobolev immersions, we know that there exists a geodesic between two smooth curves in Imm.
However, the question of whether this geodesic itself qualifies as a smooth immersion remains
open. Nevertheless, the results for the space Immn are still valuable since we use geodesics in
numerical applications, where we often work with approximations of smooth curves.

Furthermore, one could study the concept of geodesic completeness, which explores the exis-
tence of geodesics for all time. Geodesic completeness ensures that certain dynamical systems
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or evolution equations defined on the space have well-defined solutions for all time. In this
work we focused on geodesics between two curves, and we did not delve into the behavior of
geodesics beyond the curves themselves. It is shown in [17, Ch. VIII, Prop. 6.5] that on a strong
Riemannian manifold the metric completeness implies geodesic completeness and hence the
space Immn is geodesically complete. In this context the term “strong” refers to the regularity of
the Riemannian metric. However, it raises the question of the long-time existence of geodesics
when considering a weak Riemannian manifold or geodesics in the quotient space Immn/Diffn

which is not a manifold .

Additionally, it would be interesting to have a look at the stability and sensitivity of geodesics
with respect to perturbations in the initial curves or variations in the underlying metric. Un-
derstanding how small changes in the curves or metric affect the corresponding geodesics can
provide insights into the stability of the metric space.
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