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Preface
The new Workstation Compiler from the IBM Corporation, originally available only for the 
OS/2 Operating System, has since made its way from Windows and AIX (IBM's version of 
Unix) to the mainframe z/OS Operating System, including the version Unix System Ser-
vices.

This  book  claims  to  be  a  basis  for  certification  as  an  “IBM  PL/I  Certified 
Programmer/Developer”. On IBM computers, there is now decimal floating-point hardware 
available, which PL/I supports via the well-known DECIMAL FLOAT attribute and a new 
compiler option. So in the 7th edition, the section on floating-point arithmetic has been sub-
stantially rewritten.

IBM has worked on a set of questions which enables one to become certified as a PL/I Cer-
tified Programmer as well as a PL/I Certified Developer. Since the author was honored to 
help in developing the questionnaire, I have modified the text to reflect this test.

A Certified Programmer is expected to have only two to three years of experience with IBM 
PL/I. The expectation of the PL/I Certified Developer is that he or she will have had five to 
six years experience with the programming language. I would go so far as to imply that any-
one who has read and understood this book should not have any problems answering the 
PL/I related questions of the certification test.

This book offers a modern introduction to “Programming Language Number One”. Its aim 
is to provide beginners with material for self-study as well as to provide professionals with 
new ideas, particularly on the basis of its comprehensive presentation of the language. If an 
example should at first appear unintelligible to an experienced PL/I programmer, I hope that 
from its explanation he or she can pick up something new in the language.

You  should  expect  no  theoretical  discussions  of  algorithms  or  structure  diagrams,  but 
instead a practical introduction which should allow you to solve real problems with the help 
of PL/I in a straightforward way. In contrast to a reference manual, I will always advise you 
which usage of the language is “good” and which is “bad”.

This  book would not  exist  without  the  Internet.  It's  obvious that  I  could  not  inflict  an 
English reader to read a book written by a non-native speaker.  So I wrote a posting to the 
PL/I mailing list asking for proofreaders. It's a great honor for me to thank Richard Barrow, 
Francis Byrne,  Peter Elderon, Peter Flass, John Gilmore, Tom Linden, Ray Mullins and 
Robin Vowels for undertaking the task to correct and improve the English created by a Ger-
man who never lived more than three weeks in succession in an English speaking country.

An unexpected but inevitable side effect happened: many suggestions helped even improve 
the German version of this book. If you nevertheless find errors, then this is probably my 
fault when incorporating the proofreaders' comments into the final text.

All examples and the PARSE macro mentioned in the next to last section (similar to the 
REXX statement) can be found on the web under:

http://www.uni-muenster.de/ZIV/Mitarbeiter/EberhardSturm.html

Münster, August 2008 E. S.
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digits and let the hardware set a floating decimal point. Such interest rates have exactly to 
be taken into account. Binary floating-point numbers would be out of the question. 

So that we know what we are talking about, first the internal coding of such numbers, again 
as a 4-byte number, 8-byte number and a 16-byte number: 

S Combo field Cont. Exponent Continuation Mantissa

1 5 6 20

S Combo field Cont. Exponent Continuation Mantissa

1 5 8 50

S Combo field Cont. Exponent Continuation Mantissa

1 5 12 110

Figure 31. Decimal floating-point format (IEEE) on IBM mainframe

Let's start from the right. The digits of the mantissa are, of course, decimal digits (as the 
name suggests). But not the already well-known fixed decimal numeric format has been 
used, in which two digits are packed in one byte, but a new format (“densely packed deci-
mal”) where three digits fit in ten bits. Such a decimal digit is called a declet. Let us look at 
the 4-byte format: so 20 bits are six declets. But now we read something about "continua-
tion mantissa": Another digit is hidden in the combination field, the latter serving several 
purposes as we will see.

We also see that float decimal (7) needs only four bytes, we have one digit more than 
in the other floating-point formats. Also, the maximum precision is 34, not 33.

The  next  field  from the  right  is  the  continuation  of  the  exponent.  You  have  certainly 
guessed it, the beginning of the exponent is also hidden in the combo field! The exponent is 
indeed to base 10, but it itself is a binary number. As with the IEEE binary format, the range 
of the exponent is also larger  in the longer formats (in contrast to hexadecimal). It  is a 
happy coincidence that a growing field for the exponent arises when the continuation field 
of the mantissa is a multiple of 10. 

The range of exponent of 4-byte numbers is from -94 to +97, 8-byte numbers go from -382 
to +385, and 16-byte numbers from -6142 to +6145. This is, in any case, much more than 
for binary floating-point numbers, since here an exponent to base 10 is encoded. 

Let us now turn to the combination field (in the figure called combo field). Understanding 
all bits is a little intellectual challenge and is left to the interested reader. Here is just so 
much: in the combination field not only the first decimal digit is coded and the beginning of 
the exponent, but also the “special numbers” plus and minus infinity and NaN (abbrev. of 
Not a Number). The latter is suitable, for instance, to identify a variable as being without 
value: 

dcl F float decimal init ('7E000000'x); /* NaN */
F += 1;
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are simply concatenated row by row. You have to read the table in such a way that the result 
of the combination of a value of the first row with one of the first column is to be found 
inside the table in the same row and column. Thus you see that '0'b combined with '0'b 
again results in '0'b, both '0'b with '1'b as well as '1'b with '0'b yields '1'b, and 
'1'b with '1'b  again '0'b.

2.7.2  Set theory – working with bit strings 
Bit strings are particulary well suitable for accomplishing  set operations.36 You can write 
very elegant programs, like the following example shows (pay attention also to the addi-
tional parentheses around the initial expressions!):

B30: /* Set theory (BIT) */
procedure options (main);

dcl Friday bit (366) init (((52)'0000001'b || '00'b));
dcl Thirteenth bit (366)
                init (((12)'0'b || '1'b || (30)'0'b
               || '1'b ||  (28)'0'b || '1'b || (30)'0'b
               || '1'b ||  (29)'0'b || '1'b || (30)'0'b
               || '1'b ||  (29)'0'b || '1'b || (30)'0'b
               || '1'b ||  (30)'0'b || '1'b || (29)'0'b
               || '1'b ||  (30)'0'b || '1'b || (29)'0'b
               || '1'b ||  (18)'0'b));

put list ('First Friday, the 13th in 2000 is day number '
          || search(Friday & Thirteenth, '1'b) || '.');
end B30;

The analogy of ordered sets to bit strings is obvious: The maximum power of the set corre-
sponds to the length of the bit string. Each possible element corresponds to a bit in the 
string; if the element is contained in the set, the appropriate bit is set to '1'b, otherwise to 
'0'b. 

In this way you can map the days of a year to bit (366), if it concerns a leap year. In the 
year 2000 the 1st of January was a Saturday, in the variable Friday each 7th  day is set to 
'1'b. The variable Thirteenth similarly contains a '1'b for each 13th of a month. If you 
want to determine now, which day in the year 2000 is a Friday, the 13th, you need only form 
the intersection from the set of Fridays and the set of the 13th. The intersection of two sets is 
the set of those elements, which are contained in both sets. Thus in the analogy it concerns a 
bit  string,  which exactly contains  '1'b at  those positions,  where both basic  strings  are 
'1'b: thus the logical “and” is searched, expressed in PL/I: Friday & Thirteenth.

If we now look for the first Friday, the 13th, in the year, then we don't care for sets any 
longer, but call upon the power of PL/I bit manipulation: with search   we determine either, 
whether there is none (i.e. function value 0), or get the position of the first bit, which is 
equal to '1'b. For those who are interested: the first Friday, the 13th in the year 2000 was 
surprisingly not until October.

We can keep in mind: 

36 In languages such as Pascal or Modula-2 there are special data types and operators for set operations. With 
the definition of the programming language Ada one has intentionally omitted these and instead also 
recommends bit operations for this purpose. 
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Here  the keyword  type   clarifies  to  everyone the fact  that  the word  int is  not  a  PL/I 
attribute, but was invented by you.  (The PL/I attribute indeed exists, having a different 
meaning, however, but you don't need to worry about that.) You might even define, by the 
way, a variable Int as type int, which would not negatively be noticeable. It is said, that 
the so-called name spaces for variables and types are different! 

You must not expect more advantages than saving writing effort or higher clarity. Variables 
of type int and variables of type  fixed bin (31) are considered to be of the same type, 
can be combined, for example, with one another.38 As a base type, all kinds of computa-
tional data and all kinds of program control data are permitted, also those with which we 
will become acquainted  later in this book. You must not specify, however, the dimension 
attribute or a structuring.  

2.8.2  Showing colors – enumerating types
Whereas the alias names were only other words for already well-known data types, now real 
data types of your own are to be presented, which do not have to do anything with already 
well-known ones. For this, we first introduce another kind of define statement: 

define ordinal Color
   (red, orange, yellow, green, blue, indigo, violet);

Behind define   ordinal you see the data type which is to be defined. In parentheses, a list 
of possible values is enumerated. Thus the colors red, orange etc. are constants. Still the 
question remains, how to declare variables:

dcl Surface_color type Color; 
Only constants from the list or expressions of type color may be assigned to the variable 
Surface_color. The compiler prevents everything else! ordinal types cannot be com-
bined with other data types. 

We encounter the first problem, if we try to go through all colors with the help of the do 
loop. The to option is meant for numbers and not for colors. If you remember, the control 
variable of the counter loop always counted one increment too far – it is not really evident, 
which will come after violet in our list. But we can take remedial measures by using the 
keyword upthru instead of the keywords to and by. It is defined in such a way that exactly 
only the possible values will be run through, in the order of the definition list. In reverse 
order you can go through the list by using downthru; here are examples of both possibili-
ties:

do Color = red upthru violet; 
   ... 
   end;

do Color = indigo downthru orange; 
   ... 
   end;

The next problem arises, if you want to read in or write out ordinal data. How can you write 
out values, which are intentionally not represented by numbers or character strings? Well – 
nevertheless there is a built-in function, the purpose of which is to convert an ordinal value 

38 For language theoreticians: This is not strong typing!
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An ID is something which Java uses for finding a thing such as a pointer or any other num-
ber. A catch in Java is that Java prescribes using a slash in the signature of the string ele-
ment,  i.e.  you  have  to  write  java/lang/String for  an  element  of  class 
java.lang.string. A real Java program obviously does not need to execute the calls for 
the purpose of provision and releasing of PL/I readable strings – Java only knows Unicode, 
as mentioned before!

The sub-program for determining the value of a Roman numeral has been discussed in sec-
tion 3.3.2, with only slight modifications.

7.4.2  Without Java – Java classes for PL/I
In the early years of PL/I, every new feature which the then IBM operating system OS/360 
had brought, was built-in as a statement in PL/I; as an example think of multitasking. After 
this got out of hand, however, they confined themselves to the possibility of utilizing some-
thing new by calling assembler sub-programs from PL/I. At the present time, the creators of 
Java have the ambition to provide the Java programmer with everything the programmer's 
scene offers as a package with classes and methods – whether it be either connecting to the 
Internet or using encryption, to name but two. Using the so-called Invocation Interface of 
JNI you can also use all of this from PL/I.

In  the following example,  I  will show how to start  the so-called  Java Virtual  Machine 
(JVM) from a PL/I main program, then to connect to the Internet  with the help of Java 
classes, then to ask a time-server for date and time and then to stop the JVM again. Before a 
PL/I-programmer would code call statements using obscure parameter lists, the program-
mer would most likely prefer to invent some PL/I macros and thus think about the depen-
dencies only once. Therefore, I have presented a very clear program here which gives the 
impression that dealing with objects is something built-in in PL/I. The macros are outwardly 
defined purely  in a way that the positional parameter, which comes directly after the macro 
name in the invocation, receives a value, with the other parameters are only to be “taken 
note of”: 

 B76: /* Asking a time server for the time (PL/I calls Java) */
 package;

 %include java;

 Mainprogram: /**************************************************/
 procedure options (main);

 dcl Timeserver char (*) value ('time.uni-muenster.de');

 put ('Timeserver ' || Timeserver || ' claims, that it is '
    || Date_and_time(TimeServer) || ' GMT.');

 end Mainprogram;

 Date_and_time: /************************************************/
 procedure (Timeserver) returns (char (17));

 dcl Timeserver           widechar (*) varz parm nonasgn;
 dcl DataInputStreamClass type jclass;
 dcl DataInputStream      type jobject init (null());
 dcl Inputstream          type jobject; 
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7.5  CGI and XML
The Common Gateway Interface (CGI) is a standard that defines the exchange of informa-
tion with, for example, a Web server. The client is a browser, such as Firefox or Microsoft 
Internet Explorer. In this section we will describe how a PL/I program can work with the 
wishes of the browser and how to implement quite complex XML documents in response to 
the client.

7.5.1  Classical – CGI in PL/I
Let us assume that a user has entered a web address (URL) in the appropriate field of their 
browser and has pressed the Enter key. This web server then calls the specified program 
which is our PL/I program. In this simple case, we write a HTTP document in our reply to 
the standard output file, that is to Sysprint:

Content-type: text/html
<html><head>
<title>Conversion of Roman numerals</title>
</head><body>
<h1>Conversion of Roman numerals</h1>
<form action="http://www.anywhere.com/out_pli_program">
<p>Enter a Roman numeral, please:
<input type='text' name='X'>
<input type='submit' name='Y' value='Go'></p>
</form>
</body></html>

What is important is the blank line after the Content-Type line. Furthermore, we see the 
definition of a form. Our browser interprets this data and shows the following picture:

When a user now enters a Roman numeral in the entry field and clicks on the Go-button, 
input data is sent to our program, that is the name and contents of the entry field as well as 
name and contents of the button pressed. How will a program now get at this data? The fol-
lowing example program shows us how it is done:

Figure 78. Browser picture of Example B77 of the first call.
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