
V

Preface
The new Workstation Compiler from the IBM Corporation, originally available only for the
OS/2 Operating System, has since made its way from Windows and AIX (IBM's version of
Unix) to the mainframe z/OS Operating System, including the version Unix System Ser-
vices.

This book claims to be a basis for certification as an “IBM PL/I Certified
Programmer/Developer”. On IBM computers, there is now decimal floating-point hardware
available, which PL/I supports via the well-known DECIMAL FLOAT attribute and a new
compiler option. So in the 7th edition, the section on floating-point arithmetic has been sub-
stantially rewritten.

IBM has worked on a set of questions which enables one to become certified as a PL/I Cer-
tified Programmer as well as a PL/I Certified Developer. Since the author was honored to
help in developing the questionnaire, I have modified the text to reflect this test.

A Certified Programmer is expected to have only two to three years of experience with IBM
PL/I. The expectation of the PL/I Certified Developer is that he or she will have had five to
six years experience with the programming language. I would go so far as to imply that any-
one who has read and understood this book should not have any problems answering the
PL/I related questions of the certification test.

This book offers a modern introduction to “Programming Language Number One”. Its aim
is to provide beginners with material for self-study as well as to provide professionals with
new ideas, particularly on the basis of its comprehensive presentation of the language. If an
example should at first appear unintelligible to an experienced PL/I programmer, I hope that
from its explanation he or she can pick up something new in the language.

You should expect no theoretical discussions of algorithms or structure diagrams, but
instead a practical introduction which should allow you to solve real problems with the help
of PL/I in a straightforward way. In contrast to a reference manual, I will always advise you
which usage of the language is “good” and which is “bad”.

This book would not exist without the Internet. It's obvious that I could not inflict an
English reader to read a book written by a non-native speaker. So I wrote a posting to the
PL/I mailing list asking for proofreaders. It's a great honor for me to thank Richard Barrow,
Francis Byrne, Peter Elderon, Peter Flass, John Gilmore, Tom Linden, Ray Mullins and
Robin Vowels for undertaking the task to correct and improve the English created by a Ger-
man who never lived more than three weeks in succession in an English speaking country.

An unexpected but inevitable side effect happened: many suggestions helped even improve
the German version of this book. If you nevertheless find errors, then this is probably my
fault when incorporating the proofreaders' comments into the final text.

All examples and the PARSE macro mentioned in the next to last section (similar to the
REXX statement) can be found on the web under:

http://www.uni-muenster.de/ZIV/Mitarbeiter/EberhardSturm.html

Münster, August 2008 E. S.

VII

Contents
Preface..V
Introduction...1
1. Elementary PL/I...3

1.1 The programming environment..3
1.1.1 Highest instance – the operating system..3
1.1.2 How are things – program and compiler..3

1.2 Data attributes...5
1.2.1 In central place – main storage ...5
1.2.2 A whole thing – fixed-point numbers...6
1.2.3 Going to pieces – floating-point numbers ...9
1.2.4 A language of character – character strings ..11
1.2.5 It doesn't get any smaller – bits..13
1.2.6 Everything with everything – operators ...15

1.3 Loops ...17
1.3.1 Ask first – the WHILE loop ..17
1.3.2 Shoot first – the UNTIL loop ..18
1.3.3 Upward and downward – the counting loop ...19

1.4 Input and output..20
1.4.1 There is something to get – the GET statement ..20
1.4.2 Nothing there any more – the ON statement ...22

1.5 Distinction of cases...24
1.5.1 Either, or – the IF statement ..24
1.5.2 For each individual case – the SELECT group ...26

2. Extending the basics..31
2.1 Input and output of a character stream ..31

2.1.1 Not to count with – the FILE attribute...31
2.1.2 Self-determination – EDIT-directed input/output..33
2.1.3 A language in itself – data formats..36

2.2 The general loop ..40
2.2.1 Endlessly – LOOP and accessories ...40
2.2.2 The whole truth – DO generally ..42

2.3 Arrays ..45
2.3.1 A thousand or one variable – working with arrays ...45
2.3.2 In convoy – array operations ...48
2.3.3 Not only for mathematicians – several dimensions..49
2.3.4 The last run fastest – the INITIAL attribute ...51

2.4 Structures..52
2.4.1 Mind the hierarchy – working with structures ..52
2.4.2 Why not – array of structures ..56
2.4.3 That's the limit – multiple declarations ...57

2.5 Manipulation of character strings ..59
2.5.1 Two would do – SUBSTR and LENGTH ..59
2.5.2 Where and how many times – INDEX and TALLY61
2.5.3 Hocus-pocus – TRANSLATE ..62
2.5.4 Forward and backwards – VERIFY(R) and SEARCH(R)...............................64
2.5.5 What you will – more functions ..67
2.5.6 Self-made – PICTURE character strings...68

VIII

2.5.7 Without detour – STRING instead of FILE...69
2.6 Arithmetic ..69

2.6.1 Having a different base – the FIXED attribute ...70
2.6.2 Disappearingly small – the FLOAT attribute ..74

2.6.2.1 Floating-point since time immemorial ...75
2.6.2.2 Floating-point binary..77
2.6.2.3 Floating-point decimal...78

2.6.3 Arithmetic means – rules and pitfalls...81
2.6.3.1 Mixed operations...81
2.6.3.2 FLOAT operations..82
2.6.3.3 FIXED operations in the ANSI standard ..82
2.6.3.4 FIXED operations in the IBM standard..83
2.6.3.5 Built-in functions...84
2.6.3.6 The default concept ..86

2.6.4 Janus-faced – PICTURE numbers ..86
2.6.5 Character weakness – calculating with character strings.................................91
2.6.6 Nothing real – complex numbers...92

2.7 Manipulation of bit strings ...94
2.7.1 A sister of character – bit operations ..94
2.7.2 Set theory – working with bit strings ..96
2.7.3 Orienting the machine – UNSPEC and others...97

2.8 Abstract data types..100
2.8.1 Types having aliases – DEFINES ALIAS ..100
2.8.2 Showing colors – enumerating types...101
2.8.3 Strong types – DEFINE STRUCTURE ..104

2.9 Time calculations ...105
2.9.1 The fright of the turn of the millenium – date and time.................................105
2.9.2 A language with SECS – the Lilian format..106
2.9.3 Revenge of the inherited – conversion of years ..108

3. Block and program structure..111
3.1 Scope and lifetime of variables...111

3.1.1 Useful overhead – the BEGIN block ..111
3.1.2 More than once – the PROCEDURE block...112
3.1.3 Taking care – nesting of blocks...113

3.2 Structure of a PL/I program ...115
3.2.1 A matter of order – parameters ...115
3.2.2 One-way street – dummy arguments ...118
3.2.3 (Not) lasting long – AUTOMATIC and STATIC ..119
3.2.4 Home-made – functions ..121
3.2.5 As in the Munchausen story – recursive procedures122
3.2.6 Compile separately, execute united – external procedures............................125
3.2.7 Packed procedures – PACKAGE ...129
3.2.8 A dynamic load – FETCH, RELEASE and DLLs...135

3.3 Exceptional conditions...138
3.3.1 As a precaution – handling of conditions...138
3.3.2 Also Roman numerals – computational conditions144
3.3.3 Close encounters – program testing...147
3.3.4 Red alert – remaining conditions ..154

IX

4. Dynamic storage management..159
4.1 The CONTROLLED attribute..159

4.1.1 Only when desired – ALLOCATE and FREE ..159
4.1.2 A new construction – the stack ...161
4.1.3 As general as could be – the INITIAL CALL attribute164

4.2 The BASED attribute ...165
4.2.1 Change of address – dynamic storage interpretation165
4.2.2 Using paper and pencil – linear lists ...169
4.2.3 Into botany – general lists ...174

4.3 The AREA attribute..178
4.3.1 Good neighbourhood – use of areas ..179
4.3.2 Closing holes – garbage collection..181

4.4 Dynamics with structure types..185
4.4.1 For a thorough grasp – the HANDLE attribute ...185
4.4.2 New – further type functions..187

5. Use of files...191
5.1 PL/I files...191

5.1.1 Generalized – file values..191
5.1.2 Alternative and additive – file attributes ...192
5.1.3 Works also automatically – opening and closing ..193

5.2 Input and output of records ..196
5.2.1 Variously – data sets ...197
5.2.2 One after the other – CONSECUTIVE data sets ..198
5.2.3 Numbered – REGIONAL (1) data sets ...200
5.2.4 At discretion – VSAM data sets ..203

5.2.4.1 organization (consecutive) – ESDS...204
5.2.4.2 organization (relative) – RRDS...206
5.2.4.3 organization (indexed) – KSDS..207

5.3 Special possibilities of input and output...209
5.3.1 Directly – LOCATE mode...209
5.3.2 Unformatted – FILEREAD and FILEWRITE...212
5.3.3 One after the other – PLISRTx..213

6. Special PL/I techniques..217
6.1 Array expressions...217

6.1.1 A straight guess – built-in array functions ..217
6.1.2 Generalized – array function values...220

6.2 Definition of variables ...221
6.2.1 We're in the cell – the UNION attribute ...222
6.2.2 New names – correnspondence definition ..223
6.2.3 A question of position – overlay definition ..224
6.2.4 Overwhelming – iSUB definition ...224

6.3 Parallel processing..226
6.3.1 For re-entry – the task attribute..227
6.3.2 Move by move – synchronization of threads ..229

6.4 Program generation at compile time ..234
6.4.1 As usual – basics of the macro language..234
6.4.2 As called for – the preprocessor procedure...238
6.4.3 Self-made – definition of statements of your own...241

X

7. Interfaces to the world...245
7.1 Low-level programming...245

7.1.1 C-bits – bit manipulations on numbers ...245
7.1.2 Anonymous – storage manipulations...246
7.1.3 Internals – foreign data formats...249
7.1.4 Systematically – API programming...251
7.1.5 For long runners – checkpoint/restart..254

7.2 Manipulation of Wide Characters ..255
7.2.1 The first attempt – the GRAPHIC attribute ..256
7.2.2 The second attempt – the WIDECHAR attribute ..256

7.3 Using REXX Components ...258
7.3.1 Relationship – REXX calling conventions..259
7.3.2 Simply huge – REXX programs in PL/I variables...260

7.4 Utilizing Java components..262
7.4.1 Using the front end – PL/I sub-programs for Java...263
7.4.2 Without Java – Java classes for PL/I...266

7.5 CGI and XML...269
7.5.1 Classical – CGI in PL/I..269
7.5.2 Working to rule – interpreting XML..274

Appendix A: Solution ideas..281
Appendix B: Built-in functions/subroutines..285

Arithmetic..285
Array-handling...285
Buffer-management...285
Condition-handling..286
Date/time..286
Floating-point inquiry (constants)..287
Floating-point manipulation...288
Input/Output...288
Integer manipulation..288
Mathematical...289
Miscellaneous..289
Ordinal-handling..290
Precision-handling...290
Pseudovariables...291
Storage control...291
String-handling..292
Subroutines..293
Type functions...294
Preprocessor..294

Index..297

2.6 Arithmetic 79

digits and let the hardware set a floating decimal point. Such interest rates have exactly to
be taken into account. Binary floating-point numbers would be out of the question.

So that we know what we are talking about, first the internal coding of such numbers, again
as a 4-byte number, 8-byte number and a 16-byte number:

S Combo field Cont. Exponent Continuation Mantissa

1 5 6 20

S Combo field Cont. Exponent Continuation Mantissa

1 5 8 50

S Combo field Cont. Exponent Continuation Mantissa

1 5 12 110

Figure 31. Decimal floating-point format (IEEE) on IBM mainframe

Let's start from the right. The digits of the mantissa are, of course, decimal digits (as the
name suggests). But not the already well-known fixed decimal numeric format has been
used, in which two digits are packed in one byte, but a new format (“densely packed deci-
mal”) where three digits fit in ten bits. Such a decimal digit is called a declet. Let us look at
the 4-byte format: so 20 bits are six declets. But now we read something about "continua-
tion mantissa": Another digit is hidden in the combination field, the latter serving several
purposes as we will see.

We also see that float decimal (7) needs only four bytes, we have one digit more than
in the other floating-point formats. Also, the maximum precision is 34, not 33.

The next field from the right is the continuation of the exponent. You have certainly
guessed it, the beginning of the exponent is also hidden in the combo field! The exponent is
indeed to base 10, but it itself is a binary number. As with the IEEE binary format, the range
of the exponent is also larger in the longer formats (in contrast to hexadecimal). It is a
happy coincidence that a growing field for the exponent arises when the continuation field
of the mantissa is a multiple of 10.

The range of exponent of 4-byte numbers is from -94 to +97, 8-byte numbers go from -382
to +385, and 16-byte numbers from -6142 to +6145. This is, in any case, much more than
for binary floating-point numbers, since here an exponent to base 10 is encoded.

Let us now turn to the combination field (in the figure called combo field). Understanding
all bits is a little intellectual challenge and is left to the interested reader. Here is just so
much: in the combination field not only the first decimal digit is coded and the beginning of
the exponent, but also the “special numbers” plus and minus infinity and NaN (abbrev. of
Not a Number). The latter is suitable, for instance, to identify a variable as being without
value:

dcl F float decimal init ('7E000000'x); /* NaN */
F += 1;

96 2. Extending the basics

are simply concatenated row by row. You have to read the table in such a way that the result
of the combination of a value of the first row with one of the first column is to be found
inside the table in the same row and column. Thus you see that '0'b combined with '0'b
again results in '0'b, both '0'b with '1'b as well as '1'b with '0'b yields '1'b, and
'1'b with '1'b again '0'b.

2.7.2 Set theory – working with bit strings
Bit strings are particulary well suitable for accomplishing set operations.36 You can write
very elegant programs, like the following example shows (pay attention also to the addi-
tional parentheses around the initial expressions!):

B30: /* Set theory (BIT) */
procedure options (main);

dcl Friday bit (366) init (((52)'0000001'b || '00'b));
dcl Thirteenth bit (366)
 init (((12)'0'b || '1'b || (30)'0'b
 || '1'b || (28)'0'b || '1'b || (30)'0'b
 || '1'b || (29)'0'b || '1'b || (30)'0'b
 || '1'b || (29)'0'b || '1'b || (30)'0'b
 || '1'b || (30)'0'b || '1'b || (29)'0'b
 || '1'b || (30)'0'b || '1'b || (29)'0'b
 || '1'b || (18)'0'b));

put list ('First Friday, the 13th in 2000 is day number '
 || search(Friday & Thirteenth, '1'b) || '.');
end B30;

The analogy of ordered sets to bit strings is obvious: The maximum power of the set corre-
sponds to the length of the bit string. Each possible element corresponds to a bit in the
string; if the element is contained in the set, the appropriate bit is set to '1'b, otherwise to
'0'b.

In this way you can map the days of a year to bit (366), if it concerns a leap year. In the
year 2000 the 1st of January was a Saturday, in the variable Friday each 7th day is set to
'1'b. The variable Thirteenth similarly contains a '1'b for each 13th of a month. If you
want to determine now, which day in the year 2000 is a Friday, the 13th, you need only form
the intersection from the set of Fridays and the set of the 13th. The intersection of two sets is
the set of those elements, which are contained in both sets. Thus in the analogy it concerns a
bit string, which exactly contains '1'b at those positions, where both basic strings are
'1'b: thus the logical “and” is searched, expressed in PL/I: Friday & Thirteenth.

If we now look for the first Friday, the 13th, in the year, then we don't care for sets any
longer, but call upon the power of PL/I bit manipulation: with search we determine either,
whether there is none (i.e. function value 0), or get the position of the first bit, which is
equal to '1'b. For those who are interested: the first Friday, the 13th in the year 2000 was
surprisingly not until October.

We can keep in mind:

36 In languages such as Pascal or Modula-2 there are special data types and operators for set operations. With
the definition of the programming language Ada one has intentionally omitted these and instead also
recommends bit operations for this purpose.

2.8 Abstract data types 101

Here the keyword type clarifies to everyone the fact that the word int is not a PL/I
attribute, but was invented by you. (The PL/I attribute indeed exists, having a different
meaning, however, but you don't need to worry about that.) You might even define, by the
way, a variable Int as type int, which would not negatively be noticeable. It is said, that
the so-called name spaces for variables and types are different!

You must not expect more advantages than saving writing effort or higher clarity. Variables
of type int and variables of type fixed bin (31) are considered to be of the same type,
can be combined, for example, with one another.38 As a base type, all kinds of computa-
tional data and all kinds of program control data are permitted, also those with which we
will become acquainted later in this book. You must not specify, however, the dimension
attribute or a structuring.

2.8.2 Showing colors – enumerating types
Whereas the alias names were only other words for already well-known data types, now real
data types of your own are to be presented, which do not have to do anything with already
well-known ones. For this, we first introduce another kind of define statement:

define ordinal Color
 (red, orange, yellow, green, blue, indigo, violet);

Behind define ordinal you see the data type which is to be defined. In parentheses, a list
of possible values is enumerated. Thus the colors red, orange etc. are constants. Still the
question remains, how to declare variables:

dcl Surface_color type Color;
Only constants from the list or expressions of type color may be assigned to the variable
Surface_color. The compiler prevents everything else! ordinal types cannot be com-
bined with other data types.

We encounter the first problem, if we try to go through all colors with the help of the do
loop. The to option is meant for numbers and not for colors. If you remember, the control
variable of the counter loop always counted one increment too far – it is not really evident,
which will come after violet in our list. But we can take remedial measures by using the
keyword upthru instead of the keywords to and by. It is defined in such a way that exactly
only the possible values will be run through, in the order of the definition list. In reverse
order you can go through the list by using downthru; here are examples of both possibili-
ties:

do Color = red upthru violet;
 ...
 end;

do Color = indigo downthru orange;
 ...
 end;

The next problem arises, if you want to read in or write out ordinal data. How can you write
out values, which are intentionally not represented by numbers or character strings? Well –
nevertheless there is a built-in function, the purpose of which is to convert an ordinal value

38 For language theoreticians: This is not strong typing!

266 7. Interfaces to the world

An ID is something which Java uses for finding a thing such as a pointer or any other num-
ber. A catch in Java is that Java prescribes using a slash in the signature of the string ele-
ment, i.e. you have to write java/lang/String for an element of class
java.lang.string. A real Java program obviously does not need to execute the calls for
the purpose of provision and releasing of PL/I readable strings – Java only knows Unicode,
as mentioned before!

The sub-program for determining the value of a Roman numeral has been discussed in sec-
tion 3.3.2, with only slight modifications.

7.4.2 Without Java – Java classes for PL/I
In the early years of PL/I, every new feature which the then IBM operating system OS/360
had brought, was built-in as a statement in PL/I; as an example think of multitasking. After
this got out of hand, however, they confined themselves to the possibility of utilizing some-
thing new by calling assembler sub-programs from PL/I. At the present time, the creators of
Java have the ambition to provide the Java programmer with everything the programmer's
scene offers as a package with classes and methods – whether it be either connecting to the
Internet or using encryption, to name but two. Using the so-called Invocation Interface of
JNI you can also use all of this from PL/I.

In the following example, I will show how to start the so-called Java Virtual Machine
(JVM) from a PL/I main program, then to connect to the Internet with the help of Java
classes, then to ask a time-server for date and time and then to stop the JVM again. Before a
PL/I-programmer would code call statements using obscure parameter lists, the program-
mer would most likely prefer to invent some PL/I macros and thus think about the depen-
dencies only once. Therefore, I have presented a very clear program here which gives the
impression that dealing with objects is something built-in in PL/I. The macros are outwardly
defined purely in a way that the positional parameter, which comes directly after the macro
name in the invocation, receives a value, with the other parameters are only to be “taken
note of”:

 B76: /* Asking a time server for the time (PL/I calls Java) */
 package;

 %include java;

 Mainprogram: /**/
 procedure options (main);

 dcl Timeserver char (*) value ('time.uni-muenster.de');

 put ('Timeserver ' || Timeserver || ' claims, that it is '
 || Date_and_time(TimeServer) || ' GMT.');

 end Mainprogram;

 Date_and_time: /**/
 procedure (Timeserver) returns (char (17));

 dcl Timeserver widechar (*) varz parm nonasgn;
 dcl DataInputStreamClass type jclass;
 dcl DataInputStream type jobject init (null());
 dcl Inputstream type jobject;

7.5 CGI and XML 269

7.5 CGI and XML
The Common Gateway Interface (CGI) is a standard that defines the exchange of informa-
tion with, for example, a Web server. The client is a browser, such as Firefox or Microsoft
Internet Explorer. In this section we will describe how a PL/I program can work with the
wishes of the browser and how to implement quite complex XML documents in response to
the client.

7.5.1 Classical – CGI in PL/I
Let us assume that a user has entered a web address (URL) in the appropriate field of their
browser and has pressed the Enter key. This web server then calls the specified program
which is our PL/I program. In this simple case, we write a HTTP document in our reply to
the standard output file, that is to Sysprint:

Content-type: text/html
<html><head>
<title>Conversion of Roman numerals</title>
</head><body>
<h1>Conversion of Roman numerals</h1>
<form action="http://www.anywhere.com/out_pli_program">
<p>Enter a Roman numeral, please:
<input type='text' name='X'>
<input type='submit' name='Y' value='Go'></p>
</form>
</body></html>

What is important is the blank line after the Content-Type line. Furthermore, we see the
definition of a form. Our browser interprets this data and shows the following picture:

When a user now enters a Roman numeral in the entry field and clicks on the Go-button,
input data is sent to our program, that is the name and contents of the entry field as well as
name and contents of the button pressed. How will a program now get at this data? The fol-
lowing example program shows us how it is done:

Figure 78. Browser picture of Example B77 of the first call.

	Preface
	2.7.2 Set theory – working with bit strings
	2.8.2 Showing colors – enumerating types
	7.4.2 Without Java – Java classes for PL/I
	7.5 CGI and XML
	7.5.1 Classical – CGI in PL/I

