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Abstract

In sequential analysis and starting with the seminal treatment of
the optimality of the SPRT due to Wald and Wolfowitz (1950) various
problems of optimal stopping with linear costs of observation arise. Here
we shall describe a new method for solving such problems. For a payoff

g(X}) — ¢t we propose a linear representation of the form
Q(Xt) —ct = h(Xt) + Mt

where M; is a local martingale, and the function h and the local mar-
tingale depend on a parameter \. In the case of a diffusion process X;
we shall show that, for a proper choice of A, the boundary points of the
optimal stopping region can be obtained from those points of the state
space where the maxima, of h are located. This method is inspired by
a method of Beibel and Lerche (1997,2001) who, for optimal stopping
problems with discounted payoff, used a multiplicative representation
e " g(Xy) = h(X;) My with a suitable martingale.
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1. INTRODUCTION

Starting from a basic filtered probability space (€, (F;):i>0,P) we consider
the continuous time optimal stopping problem for an adapted payoff process
(Z4)1>0- Hence we want to maximize FZ, among all stopping times 7 with
respect to the filtration for which EFZ, exists. In the notation of this paper
stopping times are, by definition, finite a.s. We consider a problem with linear
costs of observation and assume that, for some constant ¢ > 0, the payoff
process takes the form

Zy=g(X;) —ct, t > 0.

Here (X});>o is another stochastic process with state space E and g is a
real-valued measurable mapping on the state space.

Our treatment of this problem is inspired by a method of Beibel and Lerche
(1997) where the following approach is used. Assume that the payoff (Z;)i>o
has a multiplicative decomposition of the form Z, = h(X;)M; with a continuous
stochastic process (X¢);>o and a positive martingale (M;);>o. If h has a maxi-
mum uniquely located at some x* then the first time X; reaches z* is an optimal
stopping time under suitable conditions. Beibel and Lerche (1997) show that
this approach can be applied successfully to a variety of stopping problems
with discounting for payoff of the form e "g(X;). In (2001) they extend their
results to the case of one-dimensional diffusions under random discounting.
Within this framework, i.e. stopping problems for one-dimensional diffusions
with discounting, Dayanik, Karatzas (2003) and Dayanik (2003) present a new
approach by characterizing excessive functions via generalized concavity. This
allows to determine the value function as smallest concave majorant of the
reward function and leads to explicit solutions in a variety of problems.

In problems with linear costs of observation, a linear decomposition seems
to be more appropriate than one of multiplicative type. Starting point for
deriving such a linear decomposition is the following proposition formulated
for a general payoff process (Z;):>o.

1.1 Proposition If there exist a finite constant B and a stochastic process
(My)i>0 such that

sup(Zy — My) =B < oo a.s.
£>0

and

T*:1nf{tZOZt—Mt:B}



s a.s. finite with EM,« = EM,, then

EZ,. = sup{EZ, : 1 stopping time with EM, = EM,}
— B+ EM,.

Proof. For each stopping time 7 with EM, = EM, we get

EZ.=E(Z, — M;) + EMy < sup(Z, — M,) + EMy < B+ EM, .
>0

But the right hand bound is attained by using 7*. Hence the assertion follows.

Here the question arises whether such processes (M;);>o which would typi-
cally be local martingales can be found for problems of optimal stopping prob-
lems in nontrivial situations. It is the the aim of this paper to show that, as
for the Beibel and Lerche (1997) multiplicative decomposition for discounted
payoffs, this linear decomposition can successfully be applied to payoffs with
linear costs, hence in the realm of sequential analysis. So this method yields
an alternative to the method of obtaining optimal continuation regions via free
boundary problems. We shall consider the situation where the process

X = ((Xt)tZOa (Ft)tZOa (Pz)meE) ’

is a one-dimensional diffusion on an open interval E = (ry,r3) with —oo <
r1 < 19 < +00. We refer to Karatzas and Shreve (1988) for the standard facts
on diffusions which will be used in this paper. We assume that X is generated
by a second order elliptic differential operator

A= %02(36)82 + p(z)0,

with strictly positive continuous o and continuous p. This implies that

(f(Xy) = f(z) = /Ot Af(Xs)dS)tZO

defines a martingale with respect to P, for each twice continuously differen-
tiable function f on E with compact support and each starting point = € E.
This result, often refered to as Dynkin’s identity, will provide the local
martingales for our linear decomposition.
The speed measure and scale function of the diffusion are given by

T

m(dz) = s exp(()de, s(2) = [ exp(~v)dy,

a



where (z) = [J2u(y)/o*(y)dy and a € E may be chosen arbitrarily. Note
that the diffusion is assumed to be conservative. Thus the boundary points of
E are inaccessible and the corresponding semigroup is uniquely determined by
its differential generator A.

The scale function s is the unique solution of the equation

As=0 (1)
subject to the boundary conditions s(a) = 0, s'(a) = 1. By Dynkin’s identity,

(8(X¢t))e0

defines a local martingale with respect to P, for any x.
For ¢ > 0 the unique solution of the equation

Au=c

subject to the boundary conditions u(a) = 0 = u/(a) is given by

u@) =c [ [ mdwy 2)

for all x € E. Again by Dynkin’s identity,

(u(Xy) = ct)iso

defines a local martingale with respect to P, for any x.

As the diffusion is conservative, u(z) tends to infinity when z tends to a
boundary point. Let us call a stopping time 7 regular if there exists a first exit
time o; = inf{t: X; ¢ I} from some bounded interval I of E such that

7 <o07.

Note that E,0; < oo for bounded I. By Dynkin’s identity and optional sam-
pling we obtain for any regular stopping time 7

E;s(X;) = s(z) and E,(u(X;) — cr) = u(z) for all z.

To compare the growth of s and u near the boundaries we look at s/u.
Since u(z) — oo for z tending to a boundary we obtain by L’Hospital’s rule

1 LN S R LI S 1 - =, y.
$—>H¥'"li ’U,(.T) $—>1H7"li ’l,L’(SC) //a SI(Z)OZ(Z) dz T, 58

Our later considerations will be most clearcut if the scale function s increases
slower than u near a boundary. So we formulate the assumption
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(A1) ~; = 0 for both boundary points 71, 7.

We point out the following consequence of this assumption although this
will not be used in the sequel: The inaccessible boundary points rq, 7o may be
classified as being natural boundaries or entrance boundaries. For an entrance
boundary 7;, Lemma 10 of Lai (1973) shows that ~; > 0. Hence under (A1)
both boundaries are natural. It is shown in Lai (1973), Theorem 5, that
this holds if and only if (s(X}))i>0 and (u(X:) — ct)i>o are martingales. So
validity of (A1) implies that these processes are not only local martingales,
but martingales.

2 . OPTIMAL STOPPING WITH LINEAR COSTS

Let (X¢);>o be a diffusion as described in the Introduction. Using the filtration
generated by the diffusion we consider the optimal stopping problem for the
payoft

Zy=9(Xy) —ct,t >0

for a continuous g which is bounded from below and fixed ¢ > 0. Stopping the
diffusion at time point ¢ in state z gives the reward g(z) whereas taking the
observations will cost ¢t leading to g(z) — ct as payoff. We are faced with the
problem of maximizing the expected payoff

Ey(9(Xr) —c7)

among all stopping times 7 such that this expectation exists. The following
assumption ensures that the expected payoff exists for all stopping times and
that the optimal value is finite.

(A2) For each z € E there exists some € > 0 such that

E, st1>118(g(Xt) —(c—et) <oo.

2.1 Proposition Assume (A2). Then the optimal value
v(z) = sup Ey(g(X;) —c7)

1s finite for all x € E and can be obtained by maximizing over all reqular
stopping times. Furthermore the first exit time

™ =inf{t >0: X, ¢ C}
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from the continuation region

C ={z:v(z) > g(z)}
18 an optimal stopping time.

Proof. Obviously (A2) implies finiteness of v. The optimality of 7* is supplied
by the general theory of optimal stopping, see Shiryayev (1978). Writing

E,Z, = E,(9(X;) — (c—€)T) — eE,T

it is clear from (A2) that E,Z, = —oo if and only if E,7 = co. Hence it is
sufficient to maximize over all stopping times with finite expectation. Consider
any such stopping time 7.

Choose sequences (I,)n, (Sn)n in the state space with I, | r1, s, T 7. Let

o, =inf{t: t ¢ (I, s,)} and p, = min{o,, 7}.
Then p,, 1T 7, and Fatou’s lemma implies
E,9(X;) <liminf E,g(X,,).

Furthermore
lim E,p, = E,7 < 00.

This yields
Ey(9(X;) —cr) <liminf E,;(9(X,,) — cpn),

which shows that it suffices to maximize over all regular stopping times.

In the following we describe the basic idea how to apply Proposition 1.1 to
determine the continuation region C. We use the stochastic process

M} = u(X;) — ct — As(Xy), (3)

which is a local martingale for every A € IR. The optional sampling property
holds for any regular stopping time which, by Proposition 2.1, is sufficient
for our purposes. We may choose any A and with the right choice of \ will
be able to apply Proposition 1.1. Then we have the linear decomposition
Zy = (Zy — M) + M}, and the modified payoff takes the form

Zy— M} = g(Xy) — u(Xy) — As(Xy)



so that we have removed the cost of observation term. By considering the
function

h(A z) = g(x) — u(z) — As(x)

we are left to determine a A\* such that the supremum of h(\*,-) is attained at
two points b; < b,, since then, starting from z € (b;, b, ), the maximum will be
reached in finite time by a regular stopping time. We shall now show how to
apply this approach and start with a smooth reward function g.

3 . THE SMOOTH CASE

Here we assume that g is twice continously differentiable. To examine whether
the continuation region is non-empty we apply the following proposition. We
remark that the continuation region is an open set hence the union of open

intervals. Let us call any such non-empty open interval a generating interval
of C.

3.1 Proposition Let (A2) be valid. Then
(i) The continuation region is empty if and only if

Ag(z) <ec

forallz € F.

(ii) Each generating interval of the continuation region contains a point a
such that Ag(a) > c.

Proof. (i) Assume first Ag(xz) < ¢ for all z € E. For any regular stopping
time 7 and any x € E Dynkin’s identity implies

T

E.9(X,) = g(z)+ | Ag(X;)ds
< g(z) + cE,r

from which C = () follows.

Conversely, consider a starting point a such that Ag(a) > ¢. Then there
exists an interval I = (a — €,a + €) with 1 < a — €,;a + € < ry such that
Ag(z) > c for all z € I. Using the first exit time oy yields for every z € I

v(z) > E9(X,,) — cEy(or) = g(z) + /001 Ag(Xs)ds — cEzor > g(x) ,



hence I C C.

(77) Consider a generating intervall I*. Then for any starting point z € I*
v(x) = Ep(9(Xox) — co™),

where ¢* is the first exit time from [*. Necessarily we have F,0* < co. But if
Ag(z) < c for all z € I* we obtain a contradiction as in (7).

We may conclude that in the case of a non-empty continuation region
there exists an a € E such that Ag(a) > c¢. This a is the starting point for the
following considerations and is also used to define u and s, compare with (1),

(2).
To obtain suitable maxima the following assumption is needed.

(S1) limg,_,,, gi(% = 0 for both boundary points ry, rs.

This means that g increases slower than u near the boundaries. We recall
that this is also true for the scale function s under assumption (Al).
The following arguments will provide the maxima we need.

3.2 Lemma If A = ¢'(a), then © — h(\ x) has a strict local minimum at
T =a.

Proof. This follows from
g'(a) —u'(a) — Ns'(a) = ¢'(a) = A =0,

Ag(a) — Au(a) — AAs(a) = Ag(a) — Aula) = Ag(a) —c¢> 0.

(A1) and (S1) imply that for each A € IR the function
h(A z) = g(z) — u(z) — As()

is bounded above and attains its supremum. Under these assumptions we
deduce that for A = ¢'(a) the function A(),-) has at least two local maxima,
one located at a point smaller than a and the other at a point larger than
a. We will now change A in such a way that we obtain global maxima to the



left and to the right of a whose values of course must coincide. Therefore we
introduce the functions f,, 5; by

5,(3) = sup h(, 2) = sup(g (+) — u(a) — As(a) (4)
and similarly
Br(A) =suph(}, ) . (5)

3.3 Proposition Assume (A1) and (S1). Then there exist \* and b(\*) <
a < b(\*) such that

h(X*, b(A7)) = Bi(AT) = Br (A7) = h(A, br(XY)) .

Proof. As suprema of linear functions, 5; and 3, are convex hence continuous.
Due to s(z) > 0 for z > a and s(z) < 0 for z < a, the function £, is decreasing
from +o00 to —oo whereas [3; is increasing from —oo to +00. Thus there exists
A* with

Bi(A*) = B ()

Since the suprema are attained there exists some b;(A*) < a < b.(A\*) such that
h(A" 0i(A7)) = Bu(X*) = Br (A7) = h(A", (X))

It follows
bi(\*) < a < b (X%)

since otherwise h(A*,-) would have a global maximum in a. This would imply
A* = ¢'(a) contradicting Lemma 3.2.

The above points b;(\*), b.(A*) might not be unique but we choose those
with minimal distance to a and denote them by

b= bi(A), by = br(XY). (6)

These considerations result in the following theorem describing the continua-
tion region.

3.4 Theorem Assume (A1),(A2),(S1). Let g be twice continuously differen-
tiable. Let I be a generating interval of the continuation region. Choose a € 1
with Ag(a) > c. Define \*, by, b, with respect to a as in (6). Then

I=(b,b,)

and

v(z) = Bi(A*) + u(z) — X*s(z) for all z € (by, b,).



Proof. Due to Proposition 3.1, I contains a point a such that Ag(a) > c.
Starting with a, we determine as explained above \* b;, b, such that z —
g(x) —u(z) — N*s(z) attains its maximum at the points by, b,.

Note that vy < b;,b, < 7r9. To apply Proposition 1.1 we consider the
martingale M. defined in (3). For each starting point z, the first exit time
from (b, b,)

™ =inf{t > 0: X; ¢ (b,b,)}
is a.s. finite and, being regular, fulfills
E, MY = E, M} =u(z) — \*s(x) .
Now
B =sup(Z, - M7) = sup(g(z) — u(z) = \"s(z)) = A(X),
and for every z € (b, b,) we have
™ =inf{t > 0: Z, — M)-(t) = B}.
For every regular stopping time E,M»" = E, My and by Proposition 2.1
v(z) = sup{E,Z; : T regular }.
Hence by Proposition 1.1

v(x) = EyZ = Bi(A") + u(z) — As(x).

So we have optimality of 7* when starting from z € (b;, b, ).

Clearly (b;,b,) is contained in I since the immediate reward g(z) is strictly
less than [;(\*) for x € (b,b,). To prove I C (b, b,) we note that both
the first exit times from I and from (b, b,) are optimal when starting from
x € (b;,b,). But it is well known that the first exit time from the continua-
tion region is the minimal optimal stopping time. Thus I C (b;, b,) also holds.

This result leads to the following recursive procedure to determine the
whole continuation region C.

Step 1: Initialize C = ()

Step 2: Determine an a € F \ C such that Ag(a) > c.
If this is not possible, stop; otherwise continue with step 3.
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Step 3: Determine, with respect to a, the unique \*, b;, b, and put C = CU(by, b,.).
Goto step 2.

If the continuation region is connected then we obtain the optimal stopping
region in the first round.

4 . THE NON-SMOOTH CASE

In many applications, the reward function g is continuously differentiable ex-
cept for one point ¢ € E. This is e.g. the case if it has the form g(z) =
G(|z — al) or g(z) = G((z — a)™) for a continuously differentiable function G.
In the following we will give sufficient conditions under which « is contained in
an open interval I of the continuation region and we will determine such an I
explicitly. In order to adjust the considerations of the smooth case we suppose
the following condition on ¢ in a.

(52) ¢'(a—) = limgya ¢'(z) < limg |, g'(2) = ¢'(at)

Note that a is again used to define the functions v and s. As in the smooth
case there exists a unique A* and b;(A\*) < a < b,.(\*) such that

sup h(A*, z) = h(X*, b(X*)) = h(A\*, b, (X)) = sup h(\, ) .

z<a r>a
Due to

h'(X\*a—) = ¢'(a—) — X < ¢'(a+) — X* = h'(\*, a+)

(S2) shows that the points b;(\*), b,(\*) where the maxima are located do not
coincide with a and again we may choose b; < a < b, which are points of
maxima with minimal distance to a. Thus, as in the smooth case, we can
apply Proposition 1.1 to obtain the following theorem.

4.1 Theorem Let g be continuously differentiable except for the point a € E.
Assume (A1), (A2), (S1), (S2). Define X*, b, b, with respect to a as explained
above. Then a is contained in a generating interval I of the continuation region
and

I=(b,b,).

Furthermore

v(z) = Bi(A*) + u(x) — X's(x) for all z € (by, by).
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In various applications the function G is linear to the left and to the right
of a. If the diffusion has drift term p(z) = 0 then Ag(z) = 0 for  # @ hence
the continuation region is given by I = (b;,b,). In other cases we may repeat
the procedure on (71, b;) and (b, 72) as explained in the sequel of Theorem 3.4.

5. APPLICATIONS

We will show how our approach may be used in various examples, the first two
stemming from sequential analysis.

5.1 Example

Consider the problem of determining a locally best sequential test for the
drift of a Wiener process. As described in Irle (1981) this leads to the optimal
stopping problem for a driftless Wiener process with payoff

flz,t)=(x—a)" —ct.
The functions s, u subject to the boundary conditions at a € IR are given by
s(z)=z —a, u(x) =c(z —a)’.

We may apply Theorem 4.1, its assumptions being clearly fulfilled. The func-
tions (3, B, attain their maxima at

A 1- A
b =a—- 2, b =a+—

i A 1—A 1—A
2c 2¢c 2c

—¢(

1—A 1
2, & * _ T
)e— A 5 hence for \ 5

It follows that the continuation region is given by

1

C:(CL— 4_C

)

P
—.a
4c’

due to Ag(z) =0 for xz # a.
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5.2 Example

We look at the problem of sequentally testing simple hypotheses for the drift of
a Wiener process, see Shiryayev (1978), pp. 180. For a given prior probability
m € (0,1) the process of posterior probabilities (X[) fulfills the stochastic
differential equation

dX7 =X[(1—-X[)dW,, X =m.
This defines a diffusion with state space (0,1) and generator

1
For determining an optimal Bayes test we have to consider the optimal stopping

problem for this diffusion with payoff

f(z,t) = max{é(a — z),y(xr —a)} — ct .

The positive constants d,y denote the loss for a wrong decision and a = e

Subject to a the functions s, u are given by

s(r) = z—a,u(x) =cw(x) with pon 1
w(z) = 2(2z—1)log : f — (41log . i s a((la—_a)) (x —a))
—2(2a - 1) log - —
Note that
W' (z) = 4log T 22z -1) (410g a  2(2a-— 1))

l—z z(l-2) l—a a(l-a)
and that for A < —§,\ > v sup,, h(z,A) # sup,., h(z,A). Hence we only

have to consider —0 < A < 7.
The equation

-A—=9
o) —
w'(e) =
has a unique solution z = b;(\) < a if A > —§ whereas
A+
! —
w'(e) =

can be uniquely solved by some b,.(\) > a if A < 7. Hence to determine \* we
solve numerically

BOWBN) = BOLB, (V) on (—5,7).
Then the continuation region is given by (b;(A*), b.(\*)) due to Ag(xz) = 0 for
x # a.
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5.3 Example

Consider the following problem arising in mathematical finance. Investigating
portfolio optimization under transaction costs, Morton and Pliska (1995) were
led to the optimal stopping problem for the diffusion with generator

A= %xm — )2 + (1 — x)(% ),

and payoff

t) =1 —ct.
fla,t) =log — —c

Obviously for g(z) = log1/(1—x) the function Ag(z) has its unique maximum
at z = 1/2. So we assume Ag(1/2) > c as otherwise the continuation region
will be empty.

For a = 1/2 the functions s,u are given by

).

We note that g(x) — s(x)/2 and u are even functions with respect to a = 1/2

x
=log —— =c(l
s(x) ogl_x,u(x) c(og1 ”

which gives
1
A= —=.
2
We obtain b;, b, by solving
1

11—z

—u'(z) = N'$s'(z) =0.
Since Ag(z) < ¢ for x outside (b, b,) we obtain

C = (b, br).
5.4 Example

In this example we can compute an infinite sequence of generating intervalls of
the continuation set. Consider driftless Brownian motion with g(x) = — cos(z)
as reward function. Then Ag(z) < = Ag(0) = Ag(2mn) for alln € Z. Hence
the continuation region is empty if ¢ > % To apply our approach to ¢ < % we
consider a = 2n7 for some n € Z as starting point. Then

u(z) =c(z —a)®> , g(z)=—cosz = —cos(z — a)

are even functions with respect to a. If we put A* = 0 and denote by b the
unique solution of sinz = 2cx in (0, 7) then

g (x) —u'(z) =sin(z — a) — 2¢(x — a) = 0

14



has solutions @ — b,a + b in (a — 7, a + 7).
Due to Ag(z) < cfor z € (a — m,a+ m) \ (a — b,a + b) we obtain the
continuation set
C= {J (2nm —b,2n7 +b)

neEZ

6 . FURTHER EXTENSIONS
We shall show how to extend the forgoing approach.
6.1 Extensions to other diffusions

Some important examples like Brownian motion with drift or geometric
Brownian motion do not fulfill condition (A1). A slight refinement is neces-
sary to cover these examples. This will be explained in the following. In the

Introduction we have noted that % tends to 71,72 € [0,00) as z tends to
the boundaries r{, 5. For ay = 7%, Oy = %2 we obtain
u(z . u(z
(=) _ o (@) _ . 7)
w1 [s(x)] 2572 [s(z))|

We keep the assumptions (A2) and (S1) on the reward function g and con-
sider the smooth and non-smooth case simultanously. From a chosen starting
point a € E, we define the functions 3, 8, as in (4), (5) and can conclude:

Br(A) < if A> —ap,
ﬁl()\ < if A< ag,

g 3

Br(A) = 400 if A< —ap,
Gi(A) =400 if A > .

Thus, 3, 8. are strictly decreasing respectively increasing functions on (—ag, ay).
To get a unique interception point we assume

(A3) ﬁr(/\l) > ﬁl(/\l) , BT()\Q) < ﬂl(/\g) for some A\ < A\g € (—Ckz, Ckl).
Then there exists a unique point \* € (—ag, o) such that

Bu(A7) = B (A7)
Due to —as < A* < a it follows

lim g(z) —u(z) — A*s(z) = —o0,

T—T2
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wh_)nrll g(z) —u(z) — N's(x) = —oc.

Thus the functions f;, 5, attain there maxima at finite points b(\*) < a <
b,(A\*) and as in the preceding section we may conclude that (b;(A\*),b,(\*))
coincides with that generating interval of the continuation region that contains
a.

We may summarize that our approach remains valid for the general case
if the assumption (A1) is replaced by (A3). It also applies to diffusions with
entrance boundaries.

6.2 Example

Consider Brownian motion with drift as one example where our extension
yields a solution. For simplicity we assume drift and variance equal to one.
Thus, the generator is given by

1 2
A= 3+,

With respect to a = 0, the functions u, s are given by

1 1
u(z) = cl(—§1 +z+ 567258),
_ - 2
s(x) = 5 ¢ -

Hence
o) = —,0p = +00Q.
c

We consider the reward function
g(z) = max{—=z, 0}.

To obtain the points of maximum for hA(\, z) = g(z) — u(x) — X*s(x) we have
to solve
—l=c—ce ¥+ X

and
O=c—ce 4+ ) e

respectively. The solutions are

h(3) = 5 log(
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To compute the interception point A\* we solve

9(bi(A)) = u(be(A) = A"s(bi(A)) = g(br(A)) — u(br (X)) — A"s(br (X))

obtaining

1 1
N=c— - (1+o(—F

)¢ < 0.
By inserting into the avove equations we obtain, after some further calculations

1+¢c 1 1 1+¢ 1
b () = ~(1+0)] -~

Due to Ag(z) < 0 for z # 0 the continuation region coincides with (b;(\*), b.(A*)).

1
bi(X7) = ;clog(

6.3 Extension to unbounded g

In the forgoing we have assumed that g is bounded from below. This allows
us to restrict the maximization to regular stopping times by applying Fatou’s
lemma. Now consider a general g, of course keeping the other assumptions.

Assume that for some a with Ag(a) > ¢ we have obtained \*, b, and b,.
Now switch from g to g; such that g, > g, g1 bounded below, g1, 6,] = 9{5,,6]
and g¢; has the differentiability properties of g. Then for

ZM = g1 (X,) — et t >0,
with optimal value v; we obtain for
" =inf{t: X; & (b, b,)}

v(z) < v (z) = B, (Z%) = E,(Z,4).

T

Hence optimality of 7* holds also for g which is not necessarily bounded below.
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