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We consider the insurance companies’ problem of optimal management of unit-
linked life insurance contracts with a guarantee (ULLIG). The premium inflow from
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tive of expected portfolio maximization, with the inclusion of a high penalty term
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of new contracts. In the latter case, the parameters of the contract are determined
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benefit outflows.
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1 Introduction

Unit-linked life insurance contracts with guarantee (ULLIG) combine insur-
ance and investment so that by sacrificing some of the upside gain, the client
gets some guarantee on the downside. This feature makes such contracts at-
tractive for a wide, mostly risk averse public.

Here are typical conditions for such a contract:

The client pays a deposit b at the beginning of the contract and an annual
premium B at the beginning of the subsequent years 2,3, ..., T (The premium
may also be paid in monthly or quarterly installments). By setting b or B to
zero, we get the special cases of regular annual payment resp. single install-
ment. The premium inflow is split into an insurance part and an investment
part. The latter is used to build a customer-specific portfolio Y; consisting of
shares of the reference fund as well as bonds, which is rebalanced at regular
times.

If the client dies in year t before the maturity date of the contract (which
is the end of year T'), her/his legal successors get the death benefit D, and
the contract expires. If the client survives the maturity date, she/he gets a
survival benefit S, which is the maximum of the actual portfolio value Y, and
some guaranteed sum Gr.

The death benefit as well as the guaranteed survival benefit may depend on
the performance of the reference fund Z; within the contract period. These
values are determined by the death benefit formula

Dt:Dt(b,B,Zo,Zl,...,Zt> (1)

and the minimal guarantee formula

Gr=G(b,B,Zy,...,Z7). (2)
Both formulas as well as the specification of the reference fund are part of the
contract. The survival benefit S is

S = max(Yr, Gr).

Examples for death and survival benefit formulas are presented in section 2.2.

Some contracts give also the right to lapse the contract and specify the lapse
times and the surrender values. In this paper, this option is not considered.
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Fig. 2. The cash-flows, if the customer survives year T

The cash-flows originating from such a contract are shown in Figures 1 and
2. A bar in the up direction symbolizes a positive cash flow for the insurance
company, a downwards bar is a negative cash-flow.

This paper discusses the methodology of optimally managing ULLIG contracts
on the customer level, to find the optimal allocation of the insurance part and
the investment part as well as the composition of the investment portfolio. As
a byproduct, the model allows to calculate the profit margins for the insurance
company as well as to design new ULLIG products.

The first papers about products with minimal guarantee concentrated on
pricing such contracts, such as Brennan and Schwartz (1976) and Boyle and
Schwartz (1977).

More recent papers about pricing are Miltersen and Persson (1999), Grosen
and Jgrgensen (2000), Jensen et al. (2001). Specific features of contracts due
to legal pecularities were described by Bacinello (2001), Susinno and Giraldi
(2000), Siglienti (2000), for the Italian market and Chadburn (1997) for the
UK market.

The stochastic programming approach, which is very suitable for solving long-
term Asset Liability Management models (see Ziemba and Mulvey (1998),
Ziemba (2003) and e.g. Hgyland and Wallace (2005) in this volume) was also
successfully applied to handle guarantee-based products, see e.g. Consiglio
et al. (2001) and Consiglio et al. (2005b) with application to the UK market
in Consiglio et al. (2002) and to the Italian market in Consiglio et al. (2003).



In Chapter 5 of this volume (Consiglio et al. (2005a)) the Prometeia model
for the Italian market is proposed. In this model, the initial capital, which
consists of the initial equity captial plus the premium payments of the cus-
tomers, is invested into a portfolio, which consists of stocks and bonds. The
initial portfolio portfolio composition is kept constant for the full holding pe-
riod. Only single payment contracts are considered. Neither, a premium inflow
from customers to the company, nor a rebalancing due to bad performance
takes place at later stages. Liabilities grow at market rate, but not slower than
the minimal guaranteed rate. Lapse probabilities may depend on the market
performance (variable lapse), mortality is only considered through its expec-
tation. If the funds are not sufficient, new equity captial has to be put into the
company to cover the liablities. The objective is to maximize the Certainty

Equivalent Excess Return on Equity (CEexROE) for shareholders using the
assets—liabilities
equity capital

Log or Power Utility function. The excess return is defined as

at the terminal stage.
In contrast, our model is based on the following design principles:

e The model is on the level of single contracts. Specific features of single
contracts like age and gender of the client, single installment or periodic
installments are taken into account.

e Mortality risk is a separate risk factor independent of market risk and is
modeled by fully coupling the event risk model with market risk model.

e A dynamic portfolio strategy is considered. The portfolio is rebalanced at
predetermined stages.

e The portfolio decision does not only concern the allocation of assets, but
also the amount invested in short term conventional life insurance.

Pricing of contingent claims and dynamic management of portfolios are just
the two sides of the same coin. Since the survival and and death benefits
are contingent on the tradable fund value, we may consider the problem as a
pricing problem for contingent claims, which depend on an underlying fund
and mortality.

Pricing and managing of contingent claims by stochastic optimization

Suppose that a claim S contingent to a stock price Zr must be paid by some
financial agent at time 7.

The pricing problem for St finds the minimal initial capital v needed to su-



perreplicate St with a portfolio of stocks (fund values) and bonds, i.e.

Minimize in z, ys : v (3a)
subject to

To+ yolo < v (3b)
T 1(14+7r)+ys1Zs > xs+ysZs; 1<s<T (3c)
xr +yrZr > St. (3d)

Here x; denotes the amount invested in a risk-free asset (with return r) and
ys is the number of shares bought from the stock or fund in year s.

The correct price of a contingent claim does not apply the formula: ”Price
equals the expected, discounted cash-flow”. Whenever replication (or super-
replication) with already priced instruments is possible, then the price has to
be determined by an optimal management problem of type (3).

The Black-Scholes formula (see e.g. Karatzas and Shreve (1998), p. 49) is the
limit of the optimal values of optimization programs of type (3), when the
number of time steps between 0 and the maturity time 7" tends to infinity and
the process Z; converges in distribution to the geometric Brownian Motion

(GBM).

If the initial capital vy is given and is larger than the minimal capital v required
by (3), the usual way of formulating an optimal management problem is to
optimize the expected utility of excess over the claim i.e.

Maximize in zs, ys : E(U(zr + yrZr — Sr)) (4a)
subject to

Ty + YoLo < o (4b)
T 1(14+7r)+ys1Zs > x5+ ysZs; 1<s<T (4c)
xr +yrZr > St (4d)

where U is an utility function. In this formulation, there are no transaction
costs, but by a slight extension, they may be built in.



2 A discrete time decision model

Pricing and management of ULLIG contracts follows the general pattern pre-
sented in the introduction. The management model for these contracts, which
is developed in this paper, consists of the following building parts:

e a mortality model,
e a stochastic fund value model,
e a stochastic interest rate model.

Mortality depends on gender and age of the customer. Let 7 be the residual
lifetime variable of the customer at the beginning of the contract. If death
occurs in year ¢, then 7 = t.

Let 2 = P{r = t} be the death probabilities and n®) = P{r > t} the
survival probabilities, all conditional on the fact that the customer is alive at
the beginning of the contract.

The death probabilities can be found using mortality tables. Let ¢{*) be the
yearly hazard rates in published such tables, where a is the age of the customer
at the beginning of the contract and s = m, f is his/her gender. Then ¢{*) and

ﬂt(D) respectively Wt(s) are related by

D s s s s
=1 =g =) =)l 1<t<T

S s s s s
=1 =g —aDy) . (=g )1 —ql)  1<t<T

For very long term contracts, cohort specific projected mortality tables must
be used.

The fund value model and the interest rate model are typically estimated
using historic data and/or expert opinion. Plethora of models have been de-
veloped in the past years to model financial time series, among them are simple
random walk models, ARMA models, GARCH models with all its variants,
diffusion processes, jump-diffusion processes and much more. Since we use a
computational approach, there are no limitations for the type of model for the
fund process and the interest rate process. In the second part of the paper,
we follow an analytic approach and specialize the fund process to a geometric
Brownian Motion and the interest rate process to a deterministic process.

Once the models for Z; are determined, the contingent values for the death
benefits D;, using the death benefit formula (1) and the minimal guarantee
Gr using the minimal guarantee formula (2) can be calculated.



At every time of decision the insurance company may decide to restructure
the customers portfolio. The total capital at time ¢ may be invested in three
investment forms:

e in the reference fund Z;,

e in bonds accruing a random interest Ry,

e in conventional death insurance with contract duration of one year. In case
of death, the insurance pays a sum of «; for each unit of premium in the
subsequent year. We use the simple formula a; = 0.95/ q((lit_l, where a is
the age and s is the gender of the customer at beginning of the contract.
An extension to more complicated formulas can be easily made.

Let us first consider the cash-flow process of the company only in the survival
case. This process consists in income of size b at the beginning of the contract
and of B every subsequent year as well as a payment of S at the end of
year T'. The insurance company builds a portfolio of consisting of x; invested
in bonds and y; pieces of the fund (Z;). An amount of w, goes to insurance.
Suppose that, following its portfolio strategy, the insurance company has built
a individual portfolio value of Y. The objective is to maximize

E([Yr — Gr]" = d[Yr — Gr]7)

under the financing constraints for the portfolio. Here 6 > 1 is a penalty for
shortfall. The optimization problem is

Maximize in zy, ys, ws : E([Yr — Gp]" = 6[Yr — Gr]7) (ha)
subject to

Yo=m-0 (5b)
Yo = 20 + yoZo + wo (5¢)
Y= (s 1(14+ R 1) + ys 1725+ B)ya > w5+ ys Zs + ws; 1 < s < T'(5d)
Yr=2r1(1+ Rr_1) + yr—1Z7 (5e)
Ty, Y, wy 2> 0. <5f>

The constants 0 < 7,7 < 1 represent the net factors, after deduction of
management fees, taxes, etc.

In model (5), the insurance part w; does not play a role and the optimal choice
is w; = 0 for all ¢.

The full model considers the death events as well. If the residual lifetime of
the customer is 7 = t, then the payment is D; at the end of year ¢t and the
whole process stops. We use a technical discount rate r to compare payments
at different times. The full model is



Maximize in xg, ys, Ws :
T
S0+ )tV E(Y: + apwi g — DY = 0[Y; + apw oy — D))" =1t)

t=1

+(1+ ) TR (Yr — Gt = 8[Yr — G| |7 > T) (6a)
subject to

Yo=m-b (6b
3/0 = X0+ y()Zo + wop (6C

Yy = (25 1(1 4+ Rs_1) + ys1Zs + B)ya > w5 + ys Zs + ws; 1 < s < T (6d
YT = JIT_l(l + RT_1> + yT_lZT (66
Ly Yty Wy Z 0 <6f

~— — ~—

Alternatively, one could use the interest rate process R; itself to discount
future payments.

Maximize in g, ys, Wy :

T

SomVE((1+ Ria) ™ - (L4 Ro) ™ (Vi + awwpy — D]
t=1

—0[Y; + awi_y — D] ") |7 = 1)
(14 7) TP E(L 4 Ryeoy) ™t (14 Ro) ™ (Ve — Gl

~8[Yr — Gr]7) | > T) (7a)
subject to
Yo=m-0 (7b)
Yo = 20 + yoZo + wo (7c)
Y = (xs—1(1 + Rs—1) + Ys—1Zs + B)ya > @5 + ys Zs + ws; 1 < s < T'(7d)
Yr=zr 1(14+ Rr_1) +yr—1Zr (Te)
Tey Y, wy > 0. (7f)

Both models (6) and its variant (7) are linear optimization problems in the
decision functions xg, ¥, ws. In order to solve them numerically one has to
use approximations in order to bring the decision functions x;, v, w; down
to decision vectors. To do so, the processes Z; and R; are approximated by
processes, which may only take a small finite number of values, i.e. by tree
processes.
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Fig. 3. An example tree of height 3, representing the processes Ry, Z;.

2.1 Computational issues: The tree model

A discrete-time, non-recombining tree is a simple but flexible model for ap-
proximating all kinds of stochastic processes. If the process is Markovian, a
lattice model (recombining tree) may suffice for the representation. However,
since the decisions may depend on the whole history of the observed financial
processes, it is on the complete history tree, where the decision variables have
to be placed. Hence, we assume that a tree was estimated for the financial
processes anyway.

Moreover, trees represent also processes, which are not first order Markovian,
for example higher order Markovian or non-Markovian processes. We assume
that the lifetime is independent of the finance processes (R, Z:), we allow
however a dependency between the fund process (Z;) and the interest rate
process (R;), as shown in Figure 3.

First, a tree process representing the fund values and the interest rates is
estimated using historical data and expert projections. A more detailed de-
scription of how to get from data to trees is contained in section 2.3.

The lifetime process is a binary process consisting of survival nodes (s), which

branch in the next level and death nodes (d), which are terminal nodes. The

path probabilities are given by 7T§D), e ,W(TD) for the death paths and W(TS) for



ValueTree Event (Mortality) Tree

Fig. 4. The finance process tree and the lifetime tree will be combined by the tensor
product operation. The lifetime tree contains the survival (s) and the death (d)
events.

Fig. 5. The product tree.

the one survival path.

Since statistical independence of the financial processes and the mortality
process is assumed, the two trees can be combined by constructing the product
tree (tensor product of trees).

The size of the product tree mainly depends on the tree structure of the value
tree. Consider the value tree and let n; be the total number of nodes in stage
t and N; be the number of total nodes up to stage ¢, i.e. >t_, n; (without root
node). The total number of nodes of the product tree is shown in Table 1. E.g.
coupling a binary value tree of height T = 3 with a mortality tree of the same
height (see Figure 4) results in a n = (1,4, 10, 14) product tree, as shown in
Figure 5.

Let N be the set of the nodes of the combined tree (except the root), let
N; = N7 UNZ be the set of all nodes at time ¢, where N7 is the set of all
survival nodes and N¢ is the set of all death nodes. Let 7 = N the set of all

10



Stage 0 1 2 oo T4 T

Value tree 1 m N9 nr—_1 nr

Event tree 1 2 3 T-1 T-1

Product tree 1 N;y+ny No+ng Npr_1+np_1 Np_1i+np=Np
Table 1

Number of nodes in the value, event and product tree

terminal nodes and 7° the subset of all terminal survival nodes. If n is a node
except the root, then n— denotes the predecessor of n. The set of successors of
n is denoted by n+. The probability to reach node n is p,. By t(n) we denote
the time of node n.

The fund values and the interest rate process live on the tree, i.e. they are
defined as Z,,n € N, resp. R,,n € N. Using the contracted formulas for
the death benefit (1) and the minimal guarantee (2), one may calculate the
death benefits D,, for all death nodes and the guarantees G,, for the terminal
survival nodes.

The optimization problem (6) in tree formulation is

Maximize in x,, Yn, Wy, :
T

S+ Y pu([Ya + aqw, — D)t = 8[Y, + aqw, — D))

t=1 nEMd

F(1+7) T2 S palYe — Gt = Y, — Gu]) (8a)
ne7Ts

subject to

Yo=x0+yoZo <710 (Sb)

(n-(1+ Ry) +Yn-Zn+ B)ye > Ty + YnZn +w, forn e N\ 7T (8¢)

Yo=2, 1+ R, )+ yn-2, forneT? (8d)

Ty Yny Wy, > 0. (8e)

By solving this model, one finds not only the optimal risk management strat-
egy (Zn, Yn, wy,) of the insurance company, but also the probability of shortfall
i.e. the probability that Y, + ayn) < D, or Y, < G,,.

The multiperiod stochastic optimization model (8) can be seen as a black box.
Inputs are the characteristic features of the contract (survival benefit, death
benefit, guarantee, but also the stochastic fund model etc.) and output is the
risk associated with the optimal management of the contract, in particular the
shortfall probability and the expected size of the shortfall.

11



The primary use of the model is to transform the characteristics of the contract
in the characteristics of the optimal management and the associated risk.
However, the model may also be used for the design of new products: By
choosing a constraint for risk exposure (expressed e.g. in terms of the shortfall
probability for instance), the maximal guarantee which does not lead to a
violation of the risk constraint may be calculated.

The model can be extended easily. A variant of this model would include
a lapse model. In that case, it is slightly more difficult to model the lapse
events. Empirical evidence shows that the frequency of lapses depends on the
performance of the fund and on the credit rating of the insurance company
(see discussion in Consiglio et al. (2000). If lapse occurs, the surrender values
are calculated by usual formulas employed by insurance companies. Thus the
best way to model is to introduce an additional dependent risk factor in the
tree. This would make the tree bigger, but allows for more flexibility.

2.2 Ezramples for contract specification

ULLIG contracts differ in the way how the death benefit and the guarantee is
calculated.

Here are some examples for death benefit formulas:

Fixed death benefit. D, = f; - b+ fo - B, where f;, fy are some factors,
depending on age and gender of the customer

Death benefit depending on total contribution D, = f-(b+B-(1—1)),
where f is some factor.

Portfolio dependent death benefit. The benefit is the maximum of a fixed
sum and the actual portfolio value.

Fund value dependent death benefit. The benefit is the maximum of fixed
sum and some percentage of the fund value increase.

Examples for guarantee formulas:

e Guaranteed annual increase.

T-1
G=bl+g)"+B-Y (1+g""

t=1
e Guaranteed yield to maturity.

T-1

G=f-(bmax(Zr/Zy,(1+9)") + B> max(Zr/Z;,(1+g)" "))

t=1

where 0 < f < 1 is some factor.

12



Age at time t Male Female

18-40 1.09 1.24
41-50 1.04 1.08
51-60 1.014 1.03
61-75 1.004 1.008
76- 1.0 1.0

Table 2
The factors f

Ezxample: SU2001

A good example for an ULLIG contract with complex benefit formulas is the
contract SU 2001 (Safe Unit 2001) issued by the Italian company CARIVITA
(today called IntesaVITA).

SU 2001 was placed from January 15th to April 10th, 2001. The total volume
was 215 million Euro. The conditions for this contract were given as follows:

The client pays fixed sum b (multiples of 2500 Euro) at the initial date and
makes no more payments until maturity of the contract. SU2001 is based
on the fund SUG2001, which values are denoted by Z;. The quota of fund
ownership is defined as Q = 0-0.98 /7. (An underwriting fee of 2% is deducted
at the beginning).

The contract matures at time 7. The minimal guarantee is

G=Q- rrlaux(orglr%)%1 Z;,0.8 - Jnax Zy). 9)

1<t<T

Here T} < T is an intermediate observation date. The death benefit D; at
time t is

D; = Q[Z; + min(f - Z;,10)] (10)

where f is a factor which depends on the gender and age at time t of death
the customer (see Table 2).

2.8 Numerical results

The multi-stage stochastic optimization models (problems 5 and 8) were mod-
eled with AMPL (Fourer et al. (2002)) and solved using the MOSEK solver.

13
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Fig. 6. Scenario tree: Values (left), probabilities of scenarios in final stage (right)

The workflow to conduct numerical evaluations was implemented in MatLab
and additional parsers have been developed in the Python programming lan-

guage.

The coupled value and mortality (product) scenario trees might get large, even
with a moderate number of stages and number of succeeding nodes at each
node of the tree, see Table 1 above. Hence, the scenario generation method-
ology for generating the value tree must be chosen carefully. To obtain the
numerical results below, a multi-stage scenario generator was used, where the
number of nodes per stage can be specified in advance, i.e. the scenario tree
exhibits a stage-wise fixed structure and the generator calculates the optimal
values of the respective number of nodes per stage as well as the optimal links
between stages and assigns correct probabilities to these arcs. The scenario
generation is based on a minimization of probability metrics (see Pflug (2001)
for more details).

The system offers a rich set of parameters to modify to allow for an optimal
adoption of the model to the needs of the company issuing the pension fund as
well as including contract specific details. Hence, only a subset of all possible
results is shown below.

For the future development of the underlying fund, the Standard and Poors
500 Index was taken as a reference for the simulation and scenario generation
of the forecast. Daily closing values of 8 years (January 1996 to January 2004)
have been used to fit an ARMA(1,1)/GJR(1,1) time series model, from which
1000 paths have been simulated for a possible fund development of the next
5 years. It is obvious, that the choice of the underlying fund development
process has a quite large impact on the results.

A scenario tree with a stage-wise fixed structure (25/50/75/100/200 nodes per

stage) was generated. This scenario tree as well as the probabilities of each
scenario in the final stage are shown in Figure 6.

14



Age Gender Year 1 2 3 4 5

30  Female 0.29 037 037 047 0.53

30 Male 0.88 0.81 1 099 1.12
50  Female 2.60 275 3.15 331 3.49
50  Male 4.73 559 6.04 6.66 7.32

Table 3
Example: Death probabilities qi‘?t (-1073) for five subsequent years

1.8

16

0.8

0.6

041

0.2
0

Fig. 7. Example: Underlying fund tree and wealth development

Furthermore, Austrian mortality tables (years 2000/2001) have been used to
calculate survival and death probabilities for different age and gender classes.
Table 3 summarizes death probabilities for selected age and gender classes. As
discussed above, cohort specific projected mortality tables have to be used, if
long term models are considered.

The investment problem is to decide on the investment into three basic asset
categories: the underlying fund, a risk-free bond and the yearly re-insurance.
The time horizon in the above example is T' = 5 yearly stages, and there is a
single installment B = 1000 at the beginning of the contract.

The underlying fund tree and one possible wealth development is shown in
Figure 7. In this case, the calculation was done for a 30-year old woman, with
a fixed Euro 80000 death benefit, an annual guaranteed survival benefit of 2
percent on the initial installment. A risk-free rate of 4 percent per year was
used.

Two different numerical examples have been conducted to show the variety of
possible report generation from the model for the management of the pension
fund. Section 2.3.1 shows the shortfall probability as well as the expected short-

15
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Fig. 8. Shortfall probability for different levels of guaranteed survival benefit rates.
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Fig. 9. Expected shortfall for different levels of guaranteed survival benefit rates.

fall over a range of guaranteed annual survival benefit rates. These diagrams
support the decision on which level of this rate should be granted. Section
2.3.2 shows the suggested amount of wealth invested in the re-insurance asset
per stage.

2.3.1 Shortfall probability and expected shortfall

Figure 8 shows the shortfall probability of a 30-year old woman (left) and a
50-year old man (right). A fixed Euro 80000 death benefit was used. Figure
9 shows the expected shortfall in these two cases. The calculations have been
conducted for 4 different risk free rates r = 1.04,1.06, 1.07, 1.08 over a a range
of guaranteed annual survival benefit rates s = 1.02, 1.025,1.03, 1.035, 1.04, 1.045, 1.05.

2.8.2  Amount of insurance per stage

Figure 10 shows the amount invested into the conventional (one-year) life
insurance per stage for four person classes (Female/Male, Age 30/50). Nothing
will be invested in the last stage, as the current model is designed to pay the
survival benefit, even if the client dies in the last stage. As above a fixed Euro

16
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Fig. 11. Insurance per stage with different guaranteed death benefits

80000 death benefit and an annual guaranteed survival benefit of 2 percent
on the initial installment was assumed. The risk-free rate was set to 3 percent
per year.

Figure 11 summarizes the effects of higher guaranteed death benefits on the
amount invested in insurance. The two examples were calculated for a 30-year
old man (left) and a 50-year old woman (right) with the same assumptions on
the survival benefit and the risk-free rate as above.
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3 A continuous time model

In this section, we present a continuous time variant of our decision model
and derive — on a pure analytical basis — some of its properties. We assume
that the insurance company does investment and trading on a continuous time
basis, while the premium inflow as well as the outflow of death resp. survival
benefits occurs only at discrete times

O=to<t1i < - <tp<tp1=T.

To allow for slightly more flexibility, we allow that these fixed dates may also
be fractions of years. Thus the customer pays an initial installment b and at
times ¢;;4 = 1,...,n the premium B. In case of death in the interval (¢;,t;41],
the death benefit D is paid. In case of survival to maturity 7', the survival
benefit S is paid, and this sum is guaranteed. As before, denote by 7 the
residual lifetime variable of the customer.

The fundamental difference between the continuous time model and the dis-
crete model introduced in Section 2 is that the guarantee — given that it is
feasible by pure bond investments — may be reached with probability 1. There-
fore, the objective in this section is no longer to penalize the shortfall, but to
maximize the utility of the surplus, under the constraint that the shortfall is
zero. In case of a linear utility, the previous discrete model is just a penalty
cost formulation of the continuous time model.

3.1  The market model

We suppose that the market consists of d + 1 assets. One asset is a standard
bond and has no systematic risk. Its price process is (8(t))o<t<r. The other d
assets are risky and their prices are

Z(t) = (Zl(t)7 e de(t))v te [OvT}

We assume a Black-Scholes (geometric Brownian motion) model with random
coefficients. Thus we have the dynamics

dp(t) = 6(t)r(t)dt,  5(0) =1 (11)

for the bond process and
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9Z(0) = Z0) | ma(t) At + 30, 0W, (0| Z0) = 2 € (0.00)  (12)

Jj=1

i = 1,---,d for the equities. Here W(t) is a d dimensional Wiener process
Wit) = (Wi(t), -+ ,Wy(t)),0 < t < T which generates after augmenta-
tion a complete filtered probability space (€2, (F;)o<t<r, P). The interest rate
(r(t))o<t<r, drift vector u(t) = (pi(t), -, pa(t)) and the volatility matrix
processes 0; (t)1<i j<a, 0 < t < T are progressively measurable with respect to
the filtration (F;)o<i<r and satisfy the mild integrability condition

[ o]+ 1ol + o) de < oo, as (13)

To have an arbitrage-free model of a complete financial market we assume
that the volatility matrix o(t) is invertible at each 0 < ¢ < T". Furthermore
the market price of risk process

0(t) = o(t) " (u(t) —r()1) , 0<t<T, 1=(1,---,1) (14)

is supposed to fulfill

/OT 10(8)]|2dt < oo (15)

and

E [exp<— [ owaw - L[ H@(t)ﬂ?dt)] . (16)

For this market model the process

L(t) exp(—/otﬁ(s) AT (s) — ;/Ot 16(s)|Pds), 0<t<T (17)

is a martingale and the unique martingale measure P* equivalent to P can be
defined by
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An application of Girsanov’s Theorem provides that
t
:Wt)+/9(s)ds 0<i<T (19)
0

is a Wiener process w.r.t. P* and the stock price processes fulfill w.r.t. W the
dynamics

dZ;(t) = Z;(t) |r dt+Za” YAW; ()|, i=1,---,d. (20)

7=1

The martingale measure P* can be used for pricing contingent ¢-claims, which
are JF; measurable random variables S payable at time t. The unique arbitrage-
free initial price V5(S) of such a contract in our complete financial market is
the expected discounted payoff w.r.t. to the martingale measure P*:

Vo(S) =E"B(t)7'S. (21)

Trading strategies are progressively measurable R?valued processes

§t) = (&(t), - &), 0<t<T

with

/ I1€(E) ||2dt+/ D) dt < 00, as. (22)

The real number &;(t) denotes the amount of money the investor holds in the
i-th stock at time t. If we denote by Y®¢(¢) the wealth of the investor at t,
assuming that the initial budget was b and the trading strategy & is followed,
then Y (t) — X%, &(t) is the amount invested in bonds. If no additional in-
vestment or consumption is allowed we are in a self-financing setting and the
wealth process Y¢(t) satisfies the dynamics

dY"4(t) = (Y4 (t) — €T () 1) r(t) At + &(8)'[u(t) dt + o (t) AW ()],
YP£(0)=b (23)

A solution of the above equation for the discounted wealth can be given in the
following form
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SOV = b+ [ B Tols) AW (S) + (uls) — r(9)1) ds] - (24)

for0<t<T.

We emphasize that each contingent ¢-claim S can be replicated from initial
wealth b = V4(S) by a self-financing trading strategy ¢ followed up to time t,
i.e. the associated wealth process satisfies

YWEE() = s, (25)

i.e. coincides at maturity ¢ with S.

The optimal management problem may now formulated as follows: The in-
surance company receives initial premiums and regular installments B, given
that the customer is alive. On the other hand, it has to pay the death benefit
in case of death and the survival benefit in case of survival. Such strategies are
no longer self financing strategies, but allow money inflow until a stopping cri-
terion (the death event or the maturity) is met. In addition, some constraints
may be put on the set of feasible strategies.

The goal is to maximize the expected final utility under the given constraints.
In general, this problem is a dynamic optimization problem. However, the
powerful martingale method suited for the Black-Scholes model allows to re-
duce the problem to a static variational problem. Given the solution of the
static problem, the optimal strategy may be derived in a second step.

We review this technique briefly here. The books of Karatzas (1997) or Korn
(1997) serve as a standard reference.

3.2 Maximizing expected utility

Let U be strictly increasing, continuously differentiable and concave utility
function defined on the positive reals fulfilling the Inada condition (see Inada
(1963))

lim U'(v) =0 , lmU'(v) = +4o0. (26)

V—00 v—0

The most important examples are U(v) = log(v) and U(v) = 2v*, o € (0, 1).

The problem of an investor who would like to maximize its expected utility
of terminal wealth by investing in a self-financing trading strategy ¢ and who
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has initial capital b > 0, which will never fall negative is the so called Merton
problem

ax U(YP(T)). (27)

where A(b) the set of all self-financing trading strategies £ such that its associ-
ated wealth process Y%¢(¢) becomes never negative and satisfies EU (Y*$(T))~ <
0.

This dynamic optimization problem was firstly solved by Merton (1971) using
the standard tools of control theory. The so called martingale method, was
introduced by Pliska (1986), Cox and Huang (1989), Karatzas et al. (1991)
and others.

We briefly would like to recall the main ideas in the following. Because of
the fundamental relationship between strategies and correctly prices contin-
gent claims (25, every attainable terminal wealth from an initial capital not
exceeding b can be seen as a contingent 7T-claim with initial price not larger
than b and vice versa. Hence to determine an optimal terminal wealth one
has to look (A) for an optimal T-claim financeable from an initial capital not
exceeding b and (B) a trading strategy replicating this optimal claim.

The static problem (A) can be easily solved by a pointwise Lagrange ap-
proach. Denote by B(b) the set of contingent non negative T-claims S such
that EU(S)~ < oo and V4(S) < b. Then the static problem is given by

dnax EU(S). (28)

For to solve this by a Lagrange approach we note that the constraint can be
expressed as

Vo(S) = E*B(T)™'S = EA(T) ™' L(T)S = EH(T)S (29)

with H(t) = B(t)"'L(t),0 < t < T denoting the discounted martingale
process. Introducing a Lagrange multiplier A the pertaining unconstrained
static problem is

rglg(})c]E (U(S)—AH(T)S). (30)
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If the utility function satisfies the Inada conditions (26), the solution is given
by

S = I(\H(T)) (31)

where [ is the inverse of U’.

To determine finally a solution to (28) we calculate a Lagrange multiplier A
satisfying the constraint, hence

EH(T)I(AH(T)) = b. (32)

If U’ does not vanish at infinity, then there is no finite solution, since H(7T') is
unbounded. This fact distinguishes the continuous time geometric Brownian
motion model from the discrete model discussed in the previous sections. In
fact maximizing expected wealth is a reasonable objective in discrete models,
but not in the Black-Scholes situation.

The above mentioned arguments can be made rigorous and we refer to Theo-
rem 2.3.2 in Karatzas (1997):

3.3 Proposition: In order to solve the dynamic problem (27) it is sufficient
to solve the static problem (28) and then find the strategy which replicates this
solution. Suppose the static problem (28) has a finite optimal value for each
wnitial capital b > 0, then the optimal attainable terminal wealth is given by
(31) with A the unique solution of (32).

The second step (B) is to determine the optimal trading strategy £ that repli-
cates the optimal terminal wealth [(AH(T')). Note that its associated wealth
process Y (t),0 <t < T fulfills

Y(t) = —E[H(TYIANH(T)|F], 0<t<T. (33)

Due the martingale representation theorem there exists a progressively mea-
surable process ¢ such that

HOY (1) = b+/OT¢(s) Aw,, 0<t<T (34)

Together with (24) and integration by parts we obtain the optimal trading
strategy & by solving
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o' (t)E(t) = ;b[((?) +Y()0(t), 0<t<T. (35)

For U(v) = log(v) the previous approach leads to the optimal terminal wealth

b
S=—. 36
Its associated wealth process fulfills Y (t) = %, 0 <t < T and can be

obtained by using the so called Merton strategy
Et) = (o)™ () (u(t) —rODY(t), 0<t<T, (37)

which is an optimal trading strategy. For power utility an explicit solution
can be obtained in a model of deterministic coefficients, see page 39, Example
2.2.5 in Karatzas (1997) for further details.

3.4 A guarantee constraint

For guaranteed products, we now add the constraint that the terminal wealth
must exceed an initially set benchmark G > 0. For simplicity we assume that
G is a positive constant but our arguments will also work for a contingent
T-claim. We only need to adapt the previous approach to obtain a solution.

Let A;(b) be the set of trading strategies £ € A(b) such that its terminal wealth
a.s. exceeds G and By (b) the set of those contingent claims S € B(b) such that
S > G almost surely. Then the optimization problem with guaranteed payoff
G at terminal time 7T is

EU(Y*$(T)). 38
(nax (Y™(T)) (38)

Its static counterpart is

Jmax EU(S). (39)

To ensure a guaranteed payoff G at terminal time at least an initial capital
G - P(0,T) is necessary. Here we denote with P(t,7T") the price at ¢ of a zero
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coupon bond which pays 1 at maturity 7. We have that

P(t,T) = E*<§;|ﬂ>. (40)

We assume b > G - P(0,7T) for our initial capital b and a pointwise Lagrange
maximization yields an optimal terminal wealth S = S(\) given by

S(A\) =max{G,[(AH(T))}. (41)
The Lagrange multiplier A can be computed by solving
Vo(S(ON) = G- P(0,T) + C(L(H(T)), S) = b (42)

with C(I(AH(T)),S) denoting the initial price of a call with strike G on an
asset with payoff I(AH(T)) at T. Since the call price tends to oo for A — 0
respectively 0 for A — oo the above equation can be solved for each b >
G - P(0,T) and we get an analogous statement to proposition 3.3.

3.5 Proposition: Let the assumptions of proposition 3.3 be fulfilled and let
b > G- P(0,T). Then a solution of (39) is given by (41) with X being the
unique solution of (42). The optimal trading strategy, a solution of (38), can
be determined by

(1) buying G zero coupon bonds with maturity T for a price of P(0,T) each
and

(i1) investing the remaining initial capital of b— G- P(0,T) in a strategy that
replicates a call on [(ANH(T)) which is the optimal wealth in the uncon-
strained portfolio optimization problem w.r.t. a modified initial capital.

Example. Consider the Black Scholes model for a bond with constant interest
rate r, one stock with constant coefficients (u, o) and log-utility. In this model,
the Black-Scholes call price has volatility |¢| = |*>*|. Thus the equation (42)
for a G > 0 such that Ge™™" < b is

Ge ™' + C(XH(T), S)="b (43)
where
C(LH(T),S) = 1olmn(5 7))~ Seoloa(5,T) (14)
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with

We may solve (43) to obtain the optimal expected utility of terminal wealth

w(\) = E log(max{G, iH(T)})

A straightforward calculation yields

w(N) = Tog § +108OG)((N) + (r+ J0T®(hs(A)) + 0¥ Tilhs (X45)

with functions

_ log(AG) — (r+ 362)T ha(\) = log(AG) + (r + 302)T (47)

02T 02T

hi(N)

and ¢, ® denoting the density respectively distribution function of a standard
normal distribution. The optimal expected return is

R(A) = 7 (w(A) - logd) (48)

—rT

with A depending on the initial capital Ge needed to ensure the terminal

wealth guarantee.

We have plotted the above defined function R when 7 = log(1 + 0.03), initial
capital b = 1000 and |f| = 0.1, resp. |#| = 0.3. The more money we need
to reserve for the terminal wealth guarantee, the less is the optimal expected
return and this effect is more intensive for higher |6|. At the limit we obtain
a return from a pure Bond respectively Merton strategy. In the plot we have
included the bounds on R(\) given by

max{r, ;(log(i) “logh) + (r + ;92)} <R\ <r+ ;92. (49)
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Fig. 12. Optimal expected return in a Black-Scholes model

The upper bound follows from the fact that investing money without a con-
straint on terminal wealth must lead to a higher return than trading subject
to a terminal constraint. The lower bound is true since

E log(max{G, i\H(T)}) >E log(i\H(T)) = log(i\) +(r+ ;HQ)T. (50)

3.6 Periodical investment and consumption

The next step is to introduce the periodical inflows and outflows of the port-
folio. Assume that the investor additionally to its initial capital b receives
nonnegative amounts B(ty),--- , B(t,) and has to pay nonnegative amounts
C(t1),...C(T,) at time points 0 < t; < -+ < t, < tp,41 = T. Introduce the
net values A(t;) = B(t;) — C(t;). These values may be random.

We assume that each A(t;) is an F;, measurable contingent t;-claim which is
uniformly bounded. Thus it admits a unique price process given by
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Vi(A(t:)) = BOE (B(t:) T At)|F), 0<t<t (51)

and the capitalized initial value of the income-outcome stream A is
Vo(A) = > Vo(A(t:))- (52)

We might have initial negative wealth but assume that V5(A) + b > 0. The
investor may choose a trading strategy & that is financed by the net income
stream A. This means that its associated wealth process Y¢(¢) fulfills (23)
with initial condition b and additionally

V() = YE(ti—) = A(t) (53)

for each 1 < ¢ < n. Thus starting from an initial wealth b the trading strategy
is self-financing between the ¢; and the income B(t;) at t; provides a jump for
the wealth process which will be invested immediately according to £(¢;). In
this setting the maximization of expected utility of terminal wealth has been
treated by Karatzas et al. (1991), El Karoui and Jeanblanc-Picque (1998).

Denote by A(b, A) the set of all trading strategies £ financed by A such that its
associated wealth process Y¢ has initial value b, is allowed to become negative
but the terminal wealth must be non negative and fulfills EU(Y$(T))~ < oo.
Then the following borrow strategy becomes optimal (compare El Karoui and
Jeanblanc-Picque (1998)):

- sell for each ¢; a contract that delivers a payoff B(t;) at ¢,

- buy for each ¢; a contract that delivers C'(¢;) at ¢;,

- invest ¥ = b+ Vo(A) in an optimal trading strategy & as defined in
Proposition 3.3 and trade until end,

- at each ¢; use the income B(t;) to deliver the payoff w.r.t. our initially
sold contract,

- at each t; take the payoff from our initially bought contract to satisfy our
consumption C(¢;).

If we include the constraint that terminal wealth must exceed a predetermined
benchmark G' > 0 we have to assume that the initial net capitalized value
b+ Vo(A) > G- P(0,T). Then an optimal trading strategy can be defined as
above only replacing the optimization step by its guaranteed terminal wealth
counterpart, see Proposition 3.5,

- invest ' = b+ V5(A) in an optimal trading strategy ¢ as defined in
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Proposition 3.5 and trade until end.

The above strategy is indeed optimal as can be seen by the following propo-
sition.

3.7 Proposition: Let Vy(A) = Y7 Vo(Ay,) be the capitalized value of the net
income stream A = (A(ty),--- , A(t,)) such that b/ = b+ Vo(A) > 0. Then for
each trading strategy ¢ € A(b, A) there exists a trading strategy & € A(b') such
that their terminal wealth coincide, hence Y&(T) = Y¢(T) and vice versa. In
particular, the optimal value of both optimization problems coincide, i.e.

EU(Y?(T)) = EU(YS(T)). 54
o (Y(T)) Jnax, (YH(T)) (54)
Proof:

Let ¢ € A(b, A). Since the financial market is complete we may consider for
each t; a B-contract that delivers payoffs of B(t;) and a C-contract that de-
livers payoffs of C'(¢;) at t;. These contracts have unique fair price processes
Vo(B(t;)) and Vo(C(t;)) with Vo(A(t)) = Vo(B(t:)) — Vo(C(t;)). The corre-
sponding trading strategy & can be defined in the following way: Use the
initial wealth o' > 0

- to go long in the B-contract for each ¢;, 1 < i < n,

- to go short in the C-contracts for each ¢;, 1 <7 <n

- to invest b w.r.t. the trading strategy ¢ and trade according to ¢ until
end,

- use at each ¢; the payoff A(t;) = B(t;) — C(ty of the contracts to invest
and trade until end.

Then the associated wealth process of £ fulfills for each 0 < k <n

YO(t) + fj ViAW) =Y5(t)  for ty <t < tpyy. (55)
i=k+1

In the last trading interval from ¢, to T" both wealth processes coincide, hence
also at terminal time. Due to our requirements Y®(¢) and therefore Y¢(t) stay
always above a fixed lower bound and have non negative terminal wealth. Since
€ is self-financing, arbitrage arguments provide that Y*(¢) is non negative for
all 0 <t <T. Hence £ € A(V).

To prove the other direction we define according to § € A(b') the trading
strategy ¢ € A(b, A) in the following way:
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- go short in the B-contracts for each t;,

- go long in the C-contracts for each ¢;,

- invest the obtained capital ' to invest w.r.t. the trading strategy & and
trade until end,

- use at each t; the net income B(¢;) to deliver the payoff at t; from our
short position in the B-contract and pay C(¢;) from our long position in
C-contract.

Then we get the same evolution of wealth as in (55), hence the terminal wealth
of both strategies coincide. That ¢ is indeed contained in A(b, A) can be seen
from (55) due to the fact that Y*(t) > 0, 0, ., Vi(A(¢;)) stays uniformly
bounded for all 0 < ¢ < T.

Remark. Suppose that there is only inflow B and no outflow (C' = 0). The
following trading strategy seems to be intuitively reasonable: Invest each re-
ceived income B(t;) at t; in an optimal trading strategy for the remaining
trading interval [t;, T]. It turns out, that the optimal strategy described above
has a better performance. We illustrate this in a Black-Scholes model with
constant coefficients and log-utility. Consider the case where we have initial
capital b and one additional investment the same amount of b at t; € (0,7).

Then the first strategy without borrowing leads to an evolution of wealth given
by

b b
FE0) for 0 <t<t; and + (tl forty <t <T (56)

with H(t) = e " exp(—6W; — 162t),0 = £=". Tts terminal wealth Y has the
expected utility

ElogY :Elog(H(bT)(l + H(t1)))

=log b+ Elog

1
H(T) + Elog(1+ H(t1))
1
=logb+ (r + 562)T + Elog(1+ H(t1))
1
<logz + (r + 592)T +log(1+EH(t1))

1
=log(b+be ™) + (r + 562)T (57)

where the last term on the right is the expected utility of terminal wealth from
the optimal borrow strategy described above, i.e. which invests the enlarged
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initial capital b + bexp(—rt;) on the whole trading interval [0,7] into the
optimal Merton strategy.

If we include the guarantee constraint Y (7') > G a.s., we have to assume that
the initial net capitalized value is large enough b + V4(A) > G - P(0,7T), to
make the problem feasible. Then an optimal trading strategy can be defined as
above only replacing the optimal investment step by its guaranteed terminal
wealth counterpart, as in Proposition 3.5,

- invest ' = b+ V5(A) in an optimal trading strategy ¢ as defined in
Proposition 3.5 and trade until end.

3.8  Mortality risks

So far we have investigated how to optimally invest, if periodical in- and
outflows from the portfolio may happen. In this section we clarify how the
preceding notions can be applied in an insurance setting.

We take the view of an insurance company that has to manage a large portfolio
of insurance contracts. In such a case the fluctuations average out and one
might work with expected flows instead of random flows. Alternatively, one
could consider an insurer who strictly separates his insurance portfolio from his
investment portfolio. While the market risk is modeled in the Black-Scholes
model, the event risk (mortality risk) is replaced by the expectations only.
Extra costs in risk capital provision for mortality fluctuations are not taken
into consideration.

First we investigate what amount of money an insurance company must pe-
riodically consume to cover its obligation from mortality risk. As before we
consider a contract running time [0, 7'] which is divided into n+1 periods with
endpoints

O:t0<t1<"'<tn<tn+1:T

and investigate from an actuarial point of view the obligation from a death
insurance contract. Ingredients of such a contract are

- the distribution of the random residual life time 7 of an individual of age
a’

- the death benefit D > 0 which has to be delivered at the end of that time
period at that a death would occur.

At of view that at the beginning of each time period a manager in the insurance
company must announce what amount of money is needed for each contract
to cover its mortality risk for the next period. If the injured individual is alive
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at t;_1 the risk sum D is payable at ¢; in the case of death during (¢;_1,%;].
Hence the insurance company has to reserve respectively consume for each
individual alive at ¢;_; the expected payoff

D P(ti_l,ti)]P)<T S tz|7' > ti—l) (58)

But only with probability P(7 > t;_1) such a contract is alive at our portfolio
of contracts at t;_;. Hence at beginning, at ¢y, the manager must announce a
consumption of

C(ti_l) =D- P(ti_l,ti)P(ti_l <7< tz) (59)

at t;_;. This leads to an initial consumption of C'(0) = D-P(0,¢,)P(r < t;) for
covering the mortality risk of the first time period and a future consumption
stream C' = (C(ty),---,C(t,)) for the remaining future time periods. The
initial consumption together with the capitalized value of the consumption
stream C' can be seen from an actuarial point of view as the initial price of
such a death insurance contract. Its value is

C(0) + Vo(C) = 3" D P(0, by )Pty < 7 < t1s) (60)

k=0

A death insurance contract will be financed by a premium income stream.
The insurer demands at each ¢; a constant premium b > 0 from each injured
individual alive at ¢;. Thus a portfolio manager in the insurance company may
initially calculate the expected income at ¢;

B(t;) =bP(r >t;) for0<i<n.

Hence we receive an initial income x = b and a future income stream

B=(B(t), -, B(t)).

The capitalized value of all incomes are

b4+ Vo(B) = b+ > B- P0,ta)B(r > t). (61)
k=1

If this value coincide with that of the initial price determined by the consump-
tion stream, i.e.
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b+ Vo(B) = C(0) + Vo(C), (62)

then the equivalence principle holds. The premium income stream just suffices
to cover the mortality risks. No additional capital can be invested in financial
markets.

3.9 Managing unit-linked life insurance contracts

If
b+ Vo(B) > C(0) + V4(C)

the insurance company may not only cover its obligations from mortality risk
but also has capital left for investing in a financial market. Hence it can be
seen as an investor that would like to maximize his terminal wealth by taking
into consideration his income-outcome stream defined by B respectively C'
and his initial wealth given by b — C(0).

If there is no guaranteed survival payoff at terminal time, then it is a death
insurance contract which allows the insurance company to invest a part of the
received premium in risky assets of a financial market. Ingredients of such a
contract are

a running time interval [0, 7] divided into periods with endpoints
O=to<ti < - <t,<thu1 =1,

a mortality risk sum D payable at the end of that time period at that a
death will occur,

constant premium income B at each t¢; from each injured individual alive
at ti;

investment of a part of the premium in financial markets.

The portfolio manager in an insurance company may see the above investment
problem as a portfolio optimization problem with income-outcome stream A =
(A(t1),--- , A(t,)) defined by

for each 1 < ¢ < n. Furthermore the initial wealth of such a contract is

b/ =b— DP(O,tl)]P(T S t1)7 (64)
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i.e. the first premium b minus the the insurance premium for mortality risk
during the first period. In this setting we may apply the results of our pre-
ceding sections and refer to the optimal strategy defined in continuation to
Proposition 3.7.

Include now in addition to the preceding unit-linked life insurance contract a
guaranteed survival payoff S > G payable at terminal time T if the insured
person is alive at maturity. This leads to a portfolio optimization problem
with income-outcome stream A, initial wealth b and constraint on terminal
wealth given by SP(r > T'). To finance this constraint our capitalized net
value b+ Vy(A) must exceed the initial capital GP(7 > T')P(0,T) needed for
ensuring the terminal wealth constraint. By applying the modified Proposition
3.7 we obtain the following optimal strategy

- sell for each t; a contract that delivers a payoff B(t;) = BP(1t > t;) at t;,
- buy for each t; a contract that delivers at t;

C(tz) = Dp(tl,tH_l) ]P)(tl <7< ti+1)7

- buy GP(7 > T') zero coupon bonds with maturity 7'
- invest b+ Vo(B) — G P(0,T)P(7 > T) in a Call on I(AH(T)) with strike
GP(r > T) and maturity 7" with A solving the equation

b+ Vo(A) = GP(r > T) P(0,T) + Vo (I(\H(T)) = GP(r > T))*),,

- at each t; use the income B(t;) to deliver the payoff w.r.t. our initially
sold contract,

- at each t; take the payoff from our initially bought contract to satisfy our
consumption C/(t;).

With this strategy we obtain the terminal wealth

GP(r>T)+ (INH(T)) — GP(r > T))".

We give an application of this procedure for the log-utility case in a one stock
Black-Scholes model with constant coefficients as has been treated in the first
example with # = 0.3. We consider a 30 year old male individual who pays
a yearly premium of 1500 Euro for a time period of 30 years. This income
stream is initially valued via

b+ Vo(B) = 29290 Euro.

He is injured against mortality risk with a risk sum of 100000 Euro which
leads to the initial price of the consumption stream

C(0) + Vp(C) = 7826 Euro.
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Fig. 13. Optimal expected return for a unit-linked contract with survival payoff

Dependent on the survival payoff we have calculated the optimal expected
return from managing a unit-linked contract w.r.t.

V' =b+ Vo(B) — C(0) + Vo(C) = 21463 Euro,

the initial net capital that can be invested. We may obtain the plot as in our
first example and observe that a survival payoff less than 60000 Euro can be
financed by the income stream. Furthermore the higher the survival payoff
the less is the optimal expected return. In the limits we get the return from
a pure Bond respectively optimal Merton strategy. As in the previous plot we
have included the theoretical lower and upper bound on the optimal expected
return.
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4 Conclusion

We presented a model, which allows for pricing, managing and designing UL-
LIG products subject to various legal circumstances. The basic model is a
multi-stage stochastic optimization model for managing assets to balance li-
abilities emerging from such a contract. The model may be used to find the
fair price of such a product. However, the model also finds risks, in particular
the shortfall risk associated with such a contract and allows for limiting and
controlling this source of risk. Extensions in many directions such as to in-
clude transaction costs, taxes, legal constraints, lapse risk etc. may be added
easily to this basic model. The availability of extremely efficient mathematical
programming solvers based on interior point methods (such as e.g. MOSEK)
makes the described programs amenable to fast computation.

The main idea is to view insurance as an additional investment category.
The return of such an investment is contingent to the death event and is
sharply distinct from the return of market investments. It turns out that the
fraction invested in insurance depends on the mortality risk as well as the fund
performance. The rule is that the higher the funds and the lower the mortality
risk, the smaller is the amount invested in insurance. Numerical results were
presented to substantiate the usability of this model for management purposes.

In a second part, an analytic model for optimal investment under guarantee
was studied. It is based on the Geometric Brownian Motion model for prices
of all investment categories. Therefore, in this model the investment in in-
surance cannot be optimized and we only considered the situation of a fixed
predetermined insurance part. For such a simplified model, we were able to
demonstrate — adopting the log utility — that the optimal management un-
der guarantee can be found by rules of going short or long in term contracts,
buying options and using the delta hedge. This is in accordance with the find-
ings of Brennan and Schwartz (1976). However, it turns out that the optimal
dynamic strategy is to capitalize the expected premium inflow right from the
beginning, and not to wait until the inflows happens.

While the detailed stochastic optimization model allows for considering all
types costs and constraints and comes up with a optimal multi-stage solution,
the analytic model shows how conventional instruments have to be composed
for hedging the contract.
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