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Abstract

In this paper the h-transformation is applied to optimal stopping
problems for one-dimensional diffusions. We will establish sufficient
conditions which lead to continuation regions in interval form for dis-
counted reward functions e *g(z). We will see that the approach can be
applied to various stopping problems related to mathematical finance.
In particular we can easily compute the price of an American perpetual

put in an extended Black-Scholes model.
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1 . Introduction

For the following we consider a one-dimensional, regular, conservative diffusion

(1) X = ((Xt)tZO; (ft)t207 (Px)er)



on an open interval E = (ry,r3) with —oco < r; < ry < +00 in canonical form,
see Freedman(1971), Rogers,Williams (1987) p.271 for a definition. Thus (2
consists of the set of all continuous functions from [0, 00) to E, X;(w) = w(t),
F=0(X,:s<t), Fi=F) forallt > 0.

We assume that X is generated by a second order elliptic differential oper-
ator

) A= 50" (@) + ()0,

with strictly positive continuous o and continuous p. This means that

(FO0) = F(X0) = [ AF(X,)ds)izo

defines a martingale w.r.t. P, for each f € C%(F) and each z € E. Here
C%(E) denotes the space of twice continuously differentiable functions with
compact support contained in E. The speed measure and scale function are
determined in this case by

2

(3) m(dz) = (1)

exp(B(@))dr , s(x) = [ exp(=Bly))dy

with B(z) = [F i‘;gzg dy and ¢ € E arbitrarily chosen. Note that the diffu-
sion is conservative. Thus the boundary points of E are inacessible and the
corresponding semigroup is uniquely determined by its differential generator
A.

We are interested in the problem of optimal stopping for a reward function

of the form
(4) (t,x) = e Mg(x)

with A > 0 and a measurable non negative function g. Let us denote by &
the set of all (F;);>0 Markov times. Then our aim is to determine an optimal
Markov time 7, such that

Exe_)‘T;g(Xr;) (rr<oo} = sgg Exe_ATg(XT)1{7_<OO}

and to compute the optimal value function

(5) ’U(LL’) = sup Ea:ei)\Tg(XT)l{T<oo}

TES

forall z € £ . If X is a geometric Brownian motion v would denote the price
of an American perpetual option corresponding to the payoff g, see section 3.
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In section 4 we treat the perpetual put on a stock in an extended Black Scholes
model with state dependent volatility. The calculation of the put price is a
non trivial problem where the results of section 2 can be applied to.

Another interesting example related to mathematical finance is given by a
diffusion with generator

A= %xZ(l — )2 + (b — 2)z(1 — )0,

on state space E = (0, 1), with be (0,1) . It is related to portfolio optimization
under consideration of transaction costs, see Morton,Pliska (1995). In section
5 we adapt their ideas to power utility functions.

The above described optimal stopping problem is well studied, see Shiryayev
(1978), van Moerbeke (1974a),(1974b) and others and solutions are usually ob-
tained by solving the corresponding free boundary value problem

Av = Xv on C
v=g , v=¢g on OC

Here C = {z : v(x) > g(x)} denotes the continuation region and its compli-
ment & = {z : v(z) = g(z)} is called stopping or early exercise region. Another
approach was suggested by Salminen (1985) who applied the Choquet repre-
sentation of \-excessive functions to optimal stopping.

Recently Beibel and Lerche (1997) use in the case of Brownian motion a
decomposition of the reward process into a positive martingale and a uniformly
bounded process to give another view to optimal stopping problems. Their
ideas combined with some aspects mentioned in Salminen are the starting point
for this paper. We will point out the relations which stand behind the approach
of Beibel and Lerche and how it can be extended to one dimensional diffusions.
The basic technique we use is the h-transformation and an associated change
of measure, see the following section.

2 . The h-transformation applied to optimal stopping

Let X be a one-dimensional diffusion on E with generator (2) . We fix a
discount factor A > 0 and consider a solution of

(6) %a2 ()W (2) + p(@) (x) = Ah(z) on E.

Then (e *h(X;))>o defines a local martingale w.r.t. P, for all x € E. We
assume that it is in fact a martingale. Then for each starting point x € E a



probability measure P, can be defined on (2, F) by

5 _ ef)\th’(Xt)
(7) P,(A)=E, ho)

].A faAE]:t,tZO

We denote by (T};);>0 the semigroup corresponding to (P,)scr and as usual
by bB the space of bounded measurable functions, B = B(E) the Borel o—
algbra on E.

It is well known, see Borodin, Salminen (1996) p.33 or Sharpe (1988) p.298
that the family of probability measures (P,),cp defines a regular diffusion on
E with semigroup (7});>0 given by

_ 1
(8) T,f = Ee”Tt(fh) for all f € bB,t > 0.

Furthermore its speed measure m and scale function s are determined by
1
h*(y)

From this relation it is easily verified that the generator A of (P,),cx coincides
with

9) m(dz) = h*(z)m(dz) , 35(dy) =

s(dy)

(10) 507003+ (ul) +07(0) )0
on C%(FE) . Furthermore
(1) Af = (A= (/)

for all f € b€ such that fh € D(A).

We want to exploit this h-transformation for optimal stopping to derive
continuation regions in interval form. In order to do this we have to choose an
appropriate A-harmonic function h satisfying (6). For this purpose we recall
the construction of positive, decreasing respectively increasing solutions of (6).

Let V' be the unique solution of

(12) %UQ(x)v"(x) Fu@)V'@) =1 . V(e)=0,V(c) = 0.

It can be written as



for all # € E. Since the boundaries of F are inaccessible, Feller’s test of
explosion provides
V(ry) = 400 =V(ry)

Following Mandl pp.25 the unique A-excessive function u satisfying (6) with
u(c) = 1,u'(c) = 0 fulfills

1+ V(x)A <u(z) <exp(AV(x))

We define for all z € F
13) w@) =u@) [ LD dy | @) =) [ED g,

u(y) e u(y)

Then compare to Mandl (1968) uq, us are positive decreasing respectively in-
creasing solutions of (6) and they satisfy

(14) uy(r) = +o00 ,  uy(ry) = 400

These A-harmonic functions uy, us play an important role for optimal stopping
by using their transformed measures. It turns out with Lai (1973) that the
martingale property of (e=*u;(X;));>o depends on whether r; is a natural or
entrance boundary.

2.1 Lemma:
1) 1 18 a natural boundary iff (e Muq(X;)) 28 a martingale.
- . l b d y . At X - . g l
1) 79 1S a natural boundary iff (e"Mu1(Xy)) s a martingale.
ji ' tural boundary iff (e Muy (X)) i tingal

(11i) Let 1,75 be natural boundaries and let h be a positive solution of (6).
Then (e=Nh(Xy)) defines a positive martingale.

Proof: The assertions follow immediately from Lai (1973) p.434 and p.428.

From Salminen (1985) we know that u;,i = 1,2 are minimal \-excessive func-
tions. This means that

T ) T

(15) lim X, =r, PW—a.s. lim X; =ry, P% —a.s.
t—o0 t— o0
with (PM),ep, (PP?),ep denoting the u;-respectively up-transformed family
of probability measures.
These facts can be exploited to derive continuation regions in interval form.

At first we will give sufficient conditions which lead to one-sided regions.
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2.2 Theorem: Let ry be a natural boundary and g : E — [0,00) be a non
negative measurable reward function that fulfills

(A1) © — 51(2’2) is uniformly bounded with a unique mazimum at b € E.

(A2) g is continuously twice differentiable on (ry,b+ €) for some € > 0 and it
holds Ag < Ag on (r1,b).

Then the continuation region is given by C = (b,re) and 7™ = inf{t > 0 :
X, < b} is an optimal Markov time. Furthermore the optimal value function

v fulfills

o() = {m(:c),ffé’,?) Z:fx > b
g(x) if e <b

Proof: Since ry is natural, (e *u;(X;)) defines a positive martingale and

we can exploit the u;-transformed familiy P(") of probability measures. De-

9(y)
u1(y)

pending on x € E we introduce the function f by f(y) = u(2) for all

y € E. Then we take the decomposition

Xi)
—At X,) = —At U]_( t X

€ g( t) € Uy (l‘) f( t)

of the reward process and obtain for each Markov time 7
g(b
Ul(

~—

Ea:ei)\Tg(X’r)l{T<oo} = Eg(pl)f(XT)l{T<oo} S ul(x)

(=

)

Thus the right side is an upper bound for the optimal value v(z). If x > b this
upper bound can be attained by the hitting time 7, = inf{t > 0 : X; = b},

since X; tends to the lower boundary r; P{") a.s. and

g(b)
uy(b)

This implies that (b,ry) is contained in the continuation region. It remains

(16) Ewei)\Tbg(XTb)l{Tb<OO} = Ea(:l)f(XTb)l{T<OO} = ul(l‘)

to examine that immediate stopping is optimal for z € (r1,b). This can be
deduced in the following way. For an arbitrary Markov time 7 it holds

(17) Exe_)\Tg(XT)l{T<OO} = Eg(vl)f(XT)l{T<oo} S Eg(pl)f(XT/\Tb)l{T<oo}

since f has a maximum at b. To treat the right side we use a localisation
argument with a sequence of hitting times (7,,),a, J 1. Since f is bounded
dominated convergence implies

(18) Eg(cl)f(XT/\Tb)]-{T<OO} = nlg{.lo Eg(;l)f(X’r/\Tan/\Tb)l{T<oo}
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The function f is C% on [a,,b]. Thus with optional sampling or Dynkin’s
formula we obtain with 7, , = 7,, ATy

(19) B (Xoun, ) = f) + B [T Ap(X)as
Due to .
Ar= 2 i =0,
1 Uy

on (ry,b) assumption (ii) implies Af < 0 on (ry,b) and therefore

E:ce_)\Tg(XT)l{T<OO} < f(.’E) = g(.’L‘)

Thus the payoff from immediate stopping cannot be improved by any Markov
time and the Theorem is proved.

If we consider the A-harmonic uy instead of u; the same conclusions can be
drawn and we obtain an analogous Theorem.

2.3 Theorem: Let r; be a natural boundary and g : E — [0,00) be a measur-
able reward function that fulfills

(B1) © — 52((“;)) s uniformly bounded with a unique mazimum at b € E.

(B2) g is continuously twice differentiable on (b — €,ry) for some € > 0 and it

holds Ag < Ag on (b,73).
Then the continuation region is given by C = (b,r3) and 7" = inf{t > 0: X; >
b} defines an optimal Markov time. Furthermore

o(x) = {u2(x)52(€2) zf:r <b
g(x) ifx >0

To obtain a two sided stopping region we have to consider a positiv linear
combination of u; and us.



2.4 Theorem: Let ry,ry be natural boundaries and g : E — [0,00) be a
measurable function that satisfies

(C1) there exist q1,q2 > 0 such that the A-harmonic function h defined by
h(z) = qui(z) + qua(x) fulfills © — % is uniformly bounded with
mazimum attained at exactly two points by < bsy.

(C2) g is continuously twice differentiable on (ry,b; +€) U (by —€,12) for some
€ >0 and Ag < Ag on (r1,b1) U (bg, 13).

Then C = (b1,by) and 7" = inf{t > 0 : X; € (by,b2)} is an optimal Markov
time. Furthermore
o() = {h,(:r) 901) — p(z) 282l i < o < by
9(x) if © ¢ (b1, b2)
Proof: Since r, 7y are natural we can consider the h-transformed family

(P,)zep of probability measures defined by (7). For x € E we introduce

fly) = %h(:r) and obtain as in Theorem (2.2) that the optimal value v(z) is

bounded by the maximum f(b;) = f(b2) = %h(x) due to

Exe_)\Tg(XT)l{T<oo} - Exf(XT)1{7'<oo}
for all Markov times 7. If & € (b1, by) the first exit time of (b;,bs) coincides

with 7* | is P, a.s. finite, and attains the upper bound f(b;) = f(bs) as ex-
pected payoff. Thus 7 is optimal and (b;, by) is contained in the continuation

region.

If x < by the expected payoff of an arbitrary Markov time 7 can be improved
by 7 A 75, and as in Theorem (2.2) assumption (C2) leads to v(z) < g(z).
Thus (rq, by] lies in the stopping region. The same holds true for (by,75) by an
analogous argument.

Contrary to the preceding Theorems the condition (C1) cannot be easily ex-
amined. For the case of Brownian motion Beibel, Lerche (1997) give sufficient
conditions which can easily adapted to general diffusions. Simpler is the sym-
metric case, i.e. there exists an m € FE such that o(m + ) = o(m — x) ,
p(m+x) = —p(m — ) for all m+x € E. For a symmetric reward function g
with g(m+x) = g(m — x) we can choose ¢; = ¢, and have to examine whether
y — g(m + y)/h(m + y) is uniformly bounded at a point S. Then (C1) is
fulfilled with by =m — 5,0y = m + f.

In the following we will apply these results to stopping problems coming
from mathematical finance.



3 . American perpetual options in the Black-Scholes model

In the Black-Scholes model the price process (S;);>o of a stock is given by a
geometric Brownian motion

(20) Sy = Spexp(oWy + (10 — 302)15) , t>0.

This is a diffusion with state space (0, 00), natural boundaries and differential

s220%02 + pad, with p € R,0 > 0. We assume that money on a

generator
bank account grows with a constant interest rate A > 0. To calculate prices
for European or American claims one has to consider the risk neutral proba-
bility measure which leads to a change of drift of the stock price process. Its

differential generator is then given by
1
(21) A= 53720285 + A\x0,

Decreasing respectively increasing A-harmonic functions wuy, us which satisfy
Au; = Au; are given by

(22) w(z) =z , w(r)==x

with & = 2)\/o?. Then the conditions (A1),(A2) of Theorem (2.2) for a reward
function ¢ are fulfilled if y®¢(y) is bounded with a unique maximum at b €
(0,00) and Ag < Ag on (0,b). As a generalization of the ordinary put we
consider reward functions g of the form g(x) = f((K — x)*) with K > 0.

3.1 Theorem: If f is strictly increasing , twice differentiable and concave
with f(0) =0 then x — x*f((K — x)*") is bounded at a unique b € (0, K) and
the early exercise region corresponding to the reward function g(x) = f((K —
x)) is given by € = (0,b]. Furthermore the price of the American perpetual
option satisfies

T (K =b)F) difr>b
o) = {g(x) if e <b

Proof: At first we examine that the function ¢(y) = y“g(y) has a unique
maximum b in (0, K). Due to

¢y) =0 & af(K-y)—yf'(K-y)=0
this follows from ¥ (y) = f(K —y) — yf'(K — y) is strictly decreasing with
¥(0) > 0,9 (K) < 0. Secondly it holds Ag < Ag on (0, K) since
1

Ag(z) = 502:r2f"(K —x) =X f (K —x)<0



Thus Theorem (2.2) can be applied and yields the assertion.

For f(x) = x we obtain the American put with early exercise region & =
(0, Ki%]- In the case f(z) = 2 with 0 < 8 < 1 the unique maximum of
x — 2z f((K —2)") is attained at K %5 and therefore £ = (0, K ;$5].

In the convex case 8 > 1 the Theorem can not be applied but it is easy to
examine that conditions (A1),(A2) are fulfilled if § < 2a/(1 + «).

The reward function g(x) = e 7 with v > 0 leads to an early exercise region
E=(0,a/y].

An example of an unbounded reward function ¢ which leads to an early
exercise region (0,b] is given by g(z) = 2 Pe 7 with 0 < 8 < . Then z%g(x)
is bounded with maximum at b = O‘Tfﬁ Furthermore Ag < Ag on (0, b), since
Ag(z) = g(x)P(z) with

1 1
P(z) = 5026(1 + B) + vBo*x + 5’)/202372 — A8 = Ay

and P(0) < A, P(b) < A. Hence (0, O‘Tfﬁ] denotes the early exercise region.
For call-type reward functions g conditions (B1),(B2) of Theorem (2.3) read
z — g(z)/z is bounded at a unique maximum b and Ag < Ag on (b, +00).
This of course does not hold in the case of an ordinary call g(x) = (z—K)*.
Reward functions of the form g(z) = ((z — K)*)? with 0 < 8 < 1 satisfy the
1

above conditions. The unique maximum of g(z)/z is attained at b = K5

and Ag < Ag on (b, 00) since
Ag(r) < Ag(x) & Pr) <0

with P(z) = 30%2?6(6 — 1) + Azf(z — K) — Az — K)? and P(K{5) <0

1
1) ="
4 . The perpetual put in an extended Black-Scholes model

A generalization of the classical Black.Scholes model of section 3 can be ob-
tained by assuming a state dedending volatility. This means that the stock
price process fulfills the dynamics

(23) dS; = Sy(udt 4+ o (Sy)dWy)

For pricing options we have to consider, as in the preceding section, the evo-
lution under the risk neutral probability measure. Hence with A denoting the
constant interest rate we have to consider a diffusion with generator

(24) A= %#@)ﬁ@i + A,
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on (0,00). We assume that o : (0,00) — (0,00) is a continuous function
satisfying

(25) 0 < info(z) <supo(z) < 0o
x>0 x>0

Then ,for each starting point = € (0, 00), a unique weak solution of the stochas-
tic differential equation (23) with Sy = z can be defined up to an explosion
time, which is the first exit time of (0,00). Due to Feller’s test the condition
(25) yields that an explosion cannot occur amlost surely. Thus the familiy of
laws of weak solutions of (23), which depend on the starting point z € (0, 00),
forms a conservative regular diffusion with generator A and natural bound-
aries. Note that X denotes its coordinate process.
We want to apply the results of section 2 for calculating the price

(26) v(z) = sup Eye ™ (K — X,)*

of an American perpetual put with strike K > 0. Therefore we have to deter-
mine the decreasing respectively increasing solutions uy, uy of

(27) Au=Xu on (0,00).
Since (e"*X,);>o defines a P,-martingale for all = € (0, co)
us(z) =

is a non negative increasing solution of (27).
To determine a decreasing one the reduction procedure of d’Alembert for
ordinary linear differential equations can be applied. We define

@) )= el [ o) e = - [T Sy
for all z € (0,00). Then

ur(z) = wn(x) +¢(x) , 2 €(0,00)
is a decreasing solution of (27) since

ui(x) =n(z) <0 forall z € (0,00).
Furthermore an easy calculation yields, due to (25),
(29) }gr(l) uy(z) =00 Jim up(x) =0

An application of Theorem 2.2 provides
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4.1 Theorem: The function v — % has a unique maximum at a point
b e (0,K). The price of the American perpetual put with strike K and initial

stock price x satisfies

(30) o(x) = {(K —b) le((ﬁ)) if x> b
K-z ifx <b

The Markov time T = inf{t > 0: X; < b} defines an optimal exercise strategy.

Proof: The function f(z) = £=% fulfills on (0, K)

u1(z)

—C(x) = Kn(x)

uq (z)?

(31) f'(x) =

Thus we have to show that the function h(z) = —Kn(z) — ((z) equals zero at
a unique point in (0, K). Due to
/
w@) @) 1

W ) T i ) Ty =

and h(K) = —n(K) < 0 there exists a point b € (0, K) such that h(b) = 0.
This point is uniquely defined since

W () = ¢(x) (L(l - K1)> <0

o?(x)x x
on (0, K). An application of Theorem 2.2 yields the remaining assertion.
Usually the integrals in (28) cannot be determined explicitly. But by using

numerical methods the perpetual put price function can easily be computed.
As an example we have considered the put for the case

(32) a(x):'y\/c(i;r;V—I-I , >0

with v, m,c > 0. Thus the state dependent volatility coincides in m with
and increases to v/c + 17 as x increases to infinity or decreases to zero. The
parameter ¢ determines the variability of volatility.

For the case m = 100,y = 0.3, K = 100 and interest rate A = 0.03 we
have calculated the put price for ¢ € {0.1,1,10}. The resulting plot, see
the following figure, shows that the price functions w.r.t. ¢ = 0.1,1 almost
coincide. For ¢ = 10 the variation of volatility is large enough. This provides
a significantly higher price on the continuation region compared to that of the
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Figure 1: put prices

first two cases. Note that in the figure the payoff function (K — x)* and the
function © — (K —b) le((:g)) is plotted for the three choices of c.

Other choices for o like decreasing or increasing volatilities were also in-
vestigated and we emphasize that for given o the early exercise region and
put price function can be determined easily with numerical methods by using
Theorem 4.1.

5 . Portfolio optimization

In this section we will consider stopping problems for a diffusion with state
space (0,1) and generator

1 .
(33) A= 50%2(1 —2)202 + o’z(1 — 2)(b — )0,

with b € (0,1). At first we will explain its relation to mathematical finance in
particular portfolio optimization.

An obvious question for a capital investor is how to divide his money into
a risk free bank account and a risky asset like a stock. We assume that the
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risky asset follows a geometric Brownian motion with dynamics

volatility o and rate of expected return p which is larger than the constant
interest rate r of the bankaccount 3; = e™. We denote as in Kartzas (1997) p.3
by (7¢)i>0 a self financing trading strategy. Thus m, is the fraction of wealth
invested in the risky asset at time t. Associated to a portfolio strategy = is its
wealth process V' that satisfies

(35) dVy = Vi((1 — mp)rdt + mi(pdt + odWy)) , Vo=

with initial capital > 0, see Morton, Pliska (1995) p.339.

It is well known that for a given finite time horizon 7" > 0 and a utility
function U a portfolio strategy can be determined that maximizes the expected
utility of terminal wealth

(36) EU(Vy)

among all self-financing portfolio strategies, see Karatzas (1997) p.41 Th.2.3.2.
In particular for U;(z) = log(z) and U, (z) = 12 with 0 < a < 1 the optimal
portfolio strategy consists of holding a constant fraction of wealth in the risky
asset over time see Example 2.2.4, 2.2.5 in Karatzas (1997).

The practical problem is that continuously an investor has to change the
number of shares of the risky asset to hold this optimal balance point. This
causes transaction and management costs which may not be neglegible.

Morton and Pliska (1995) investigated the log-utility under consideration
of transaction costs and suggested the following procedure. Starting with a
fraction b of wealth in the risky asset we do not trade until a random stopping
time 7. Then we rebalance our changed fraction to b, do not trade until a
random stopping time 7y, rebalance the portfolio etc.. The sequence of inter-
transaction times (7,41 — 7, )nenv should be chosen according to the solution
of a stopping problem corresponding to the payoff process

(37) log(Vi/Vo) = (R—n)t , t>0

with r < R < r+ %l;(u — r). By assuming wealth proportional transaction
costs they determined an optimal fraction b and growth rate R. Compare to
section 3 and 4 of Morton, Pliska (1995).

In the following we will adapt this idea to the power utility function U(x) =
ix"‘. Note that allowing costless trading would lead to a growth of the optimal
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expected utility as

1 a RT » 1(“_7“)2 o
(38) a‘/oe , R:TOZ+§T1_Q

Thus with transaction costs the expected utility of wealth would grow slowlier

than e, Hence adapting the procedure of Morton and Pliska to power utility
leads to a stopping problem corresponding to the payoff process

(39) e BV >0

with ra < R < R. Helpful for the treatment of this stopping problem is the
following important observation. Starting with a fraction b of wealth in stock
and holding the number ¢ = bV;/Sy of stocks constant over time correspond
to a portfolio strategy that satisfies 7, = ¢S;/V;. Due to (35) it fulfills

(40) dry = m(1 — m) (02(b — mp)dt + odW,) w9 = b.

Thus (7;) evolves like a Markov process with generator A. Since in a trading
strategy without transactions the number of shares of the bond is constant
over time it holds (1 — m;)V; = (1 — b)Vpe™ and therefore

1
(41) e Ve = ((Vo(1 — b))a(1 ) (Bt forall t > 0
—

Thus we have introduced a stopping stopping problem w.r.t. a Markov

process with generator A and reward function g(z) = ﬁa and we can apply

the results of the preceding sections. At first we examine that the boundary
conditions are fulfilled. A scale function s is defined by

(/1 —2)2 ifb<!
s(x) = { log 7% ifl;:%
—(Z)? ifh> L

Thus for b = : the diffusion is non-exploding and recurrent on (0,1). In the
other cases it tends to the left respectively right boundary as b is less or larger
than % From the general form

2 . - )
— = ((2b—1)1 -1 1+ c2(———)1-2
T T B Dles o D+ )

fx) =

for solutions of Af = 1 we can easily deduce that the diffusion is non exploding
for b # % too. To apply the forgoing results we have to consider positive
decreasing respectively increasing solutions of Af = Af. They are given by

1—=x

Qe
—
|
8

PmEER L up(a) = (———)PEER

12)  w) = (— -



with v = \/02(1 — 2b)2 + 8). Note that

-1 1y - 1 1y
43 —h—-+-T50 —h—-—=T
(43) a 52, ) X 2 2g

and that 0,1 are natural boundaries.
In the following we assume

(44) =t L o

0?2 11—«

Note that b denotes the fraction of wealth to be held constant over time when
maximizing the expected utility of terminal wealth, see Karatzas (1997), Ex.
2.2.5.

In a first step we want to show that the continuation region of the reward
g is non empty if the discount factor A satisfies

(45) max{0, %OZa(l _a)@2h—1)} < A< %E(H ~

5.1 Proposition For A\ satisfying the above inequalities we define

G 2A = [ 2\
510w()\):b—\/52—m : ﬁup()‘):b‘f‘\/bZ—ﬁ

1—a)o

Then 0 < Biow(A) < b < Bup(N) < 1 and the continuation region contains

(Biow(A), Bup(X))-
Proof: Due to Ag(xz) = P(x)g(x) with
P(z) = %UZOZ(CY —1)a® + o%ab(l — o)z
it follows
(46) Ag(z) > Ag(z) & P(x) > A & x € (Biow(A), Bup(N))

Due to (45) the rightside interval is contained in (0,1). Furthermore g is A
subharmonic on it. Thus starting from = € (B (A), Bup(A)) the first exit time
7 from (Biow(A), Bup(A)) fulfills

B g(X,) = gla) + B [ (Ag(X,) = Ag(X.)ds > g(a)

Hence z is contained in the continuation region.

To apply Theorem 2.4 we have to consider A-harmonic functions of the form

u(z,c) = cuy(z) + (1 — c)ug(x)
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with 0 < ¢ < 1. Due to (45) the function 2 — <% is bounded on (0,1) since

u(x,c)

1

—y = \/(%—(1—&)5)24—%4—5—(1—&)5

> \/(%—(1—&)5)2+a(1—a)(2l~)—1)+%—(l—a)l;:a

An analogous argument as in Beibel, Lerche (1997) p.98 yields a unique 0 <

¢* < 1 such that z — ué’ﬁ)*) has a maximum attained at two points ;' (\) <

BE(A). This can be exploited to verify

5.2 Theorem: Let A fulfill condition (45). Then the continuation region C(\)

w.r.t. the reward function g(x) = (7=)* satisfies

CA) = (B (N, Bu(N)

with 0 < B (A) < Brow(A) < b < Bup(N) < B5(N). Furthermore the first ewit

time from C(X) is an optimal Markov time.

Proof: The above considerations imply the condition (C1) of Theorem 2.4 and
it remains to prove 57 (A) < Brow(A) < b < Bup(A) < B5(A). Then condition
(C2) is satisfied and the assertion follows with Theorem 2.4. Since the function
attains its maximum at 3 € {5/ (A), B5(A)} it follows

u

JB _vB) B _ )
gB) B " gB) " ()

Thus ‘L;-‘Z(ﬂ[;) < 2B) _ ) and the desired inequalities follow from (46).

9
u('7C*)

The boundaries S/ (\), B(\) can easily be computed numerically. For the

case ;4 = 0.09, » = 0.03, 0 = 0.5, @ = 0.6 we have plotted the continuation
region with its inner approximations [, (), Bup(A) for

\e (%UQa(l —a)(2h—1), %E(M ~ )

The obtained figure demonstrate the following property: the larger A\ the
smaller is the continuation region. Thus, to obtain a larger growth rate of
expected utility of wealth, more frequent transactions are necessary. For \ =
+b(p — r)a the continuation region is empty, since continously rebalancing is
necessary to obtain the optimal growth rate when trading is costless.
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Figure 2: continuation regions in dependence of A
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