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tIn this paper the h-transformation is applied to optimal stoppingproblems for one-dimensional di�usions. We will establish suÆ
ient
onditions whi
h lead to 
ontinuation regions in interval form for dis-
ounted reward fun
tions e��tg(x). We will see that the approa
h 
an beapplied to various stopping problems related to mathemati
al �nan
e.In parti
ular we 
an easily 
ompute the pri
e of an Ameri
an perpetualput in an extended Bla
k-S
holes model.Key words: Ameri
an option, optimal stopping, portfolio optimization, dif-fusion, 
hange of measure ;JEL 
lassi�
ation G11, G12 ;Mathemati
s Subje
t Classi�
ation (1991): 60G40, 62L15, 60J70,60J60 ; 1 . Introdu
tionFor the following we 
onsider a one-dimensional, regular, 
onservative di�usionX = ((Xt)t�0; (Ft)t�0; (Px)x2E)(1) 1



on an open interval E = (r1; r2) with �1 � r1 < r2 � +1 in 
anoni
al form,see Freedman(1971), Rogers,Williams (1987) p.271 for a de�nition. Thus 

onsists of the set of all 
ontinuous fun
tions from [0;1) to E, Xt(!) = !(t),F0t = �(Xs : s � t), Ft = F0t+ for all t � 0.We assume that X is generated by a se
ond order ellipti
 di�erential oper-ator A = 12�2(x)�2x + �(x)�x(2)with stri
tly positive 
ontinuous � and 
ontinuous �. This means that(f(Xt)� f(X0)� Z t0 Af(Xs)ds)t�0de�nes a martingale w.r.t. Px for ea
h f 2 C2K(E) and ea
h x 2 E. HereC2K(E) denotes the spa
e of twi
e 
ontinuously di�erentiable fun
tions with
ompa
t support 
ontained in E: The speed measure and s
ale fun
tion aredetermined in this 
ase bym(dx) = 2�2(x) exp(B(x))dx ; s(x) = Z x
 exp(�B(y))dy(3)with B(x) = R x
 2�(y)�2(y)dy and 
 2 E arbitrarily 
hosen. Note that the di�u-sion is 
onservative. Thus the boundary points of E are ina
essible and the
orresponding semigroup is uniquely determined by its di�erential generatorA. We are interested in the problem of optimal stopping for a reward fun
tionof the form (t; x)! e��tg(x)(4)with � > 0 and a measurable non negative fun
tion g. Let us denote by Sthe set of all (Ft)t�0 Markov times. Then our aim is to determine an optimalMarkov time � �x su
h thatExe����xg(X��x )1f��x<1g = sup�2S Exe���g(X�)1f�<1gand to 
ompute the optimal value fun
tionv(x) = sup�2S Exe���g(X�)1f�<1g(5)for all x 2 E . If X is a geometri
 Brownian motion v would denote the pri
eof an Ameri
an perpetual option 
orresponding to the payo� g, see se
tion 3.2



In se
tion 4 we treat the perpetual put on a sto
k in an extended Bla
k S
holesmodel with state dependent volatility. The 
al
ulation of the put pri
e is anon trivial problem where the results of se
tion 2 
an be applied to.Another interesting example related to mathemati
al �nan
e is given by adi�usion with generatorA = 12x2(1� x)2�2x + (b̂� x)x(1� x)�xon state spa
e E = (0; 1), with b̂ 2 (0; 1) . It is related to portfolio optimizationunder 
onsideration of transa
tion 
osts, see Morton,Pliska (1995). In se
tion5 we adapt their ideas to power utility fun
tions.The above des
ribed optimal stopping problem is well studied, see Shiryayev(1978), van Moerbeke (1974a),(1974b) and others and solutions are usually ob-tained by solving the 
orresponding free boundary value problemAv = �v on Cv = g ; v0 = g0 on �C :Here C = fx : v(x) > g(x)g denotes the 
ontinuation region and its 
ompli-ment E = fx : v(x) = g(x)g is 
alled stopping or early exer
ise region. Anotherapproa
h was suggested by Salminen (1985) who applied the Choquet repre-sentation of �-ex
essive fun
tions to optimal stopping.Re
ently Beibel and Ler
he (1997) use in the 
ase of Brownian motion ade
omposition of the reward pro
ess into a positive martingale and a uniformlybounded pro
ess to give another view to optimal stopping problems. Theirideas 
ombined with some aspe
ts mentioned in Salminen are the starting pointfor this paper. We will point out the relations whi
h stand behind the approa
hof Beibel and Ler
he and how it 
an be extended to one dimensional di�usions.The basi
 te
hnique we use is the h-transformation and an asso
iated 
hangeof measure, see the following se
tion.2 . The h-transformation applied to optimal stoppingLet X be a one-dimensional di�usion on E with generator (2) . We �x adis
ount fa
tor � > 0 and 
onsider a solution of12�2(x)h00(x) + �(x)h0(x) = �h(x) on E:(6)Then (e��th(Xt))t�0 de�nes a lo
al martingale w.r.t. Px for all x 2 E. Weassume that it is in fa
t a martingale. Then for ea
h starting point x 2 E a3



probability measure �Px 
an be de�ned on (
;F1) by�Px(A) = Exe��th(Xt)h(x) 1A f.a. A 2 Ft; t � 0:(7)We denote by (Tt)t�0 the semigroup 
orresponding to (Px)x2E and as usualby bB the spa
e of bounded measurable fun
tions, B = B(E) the Borel ��algbra on E.It is well known, see Borodin, Salminen (1996) p.33 or Sharpe (1988) p.298that the family of probability measures ( �Px)x2E de�nes a regular di�usion onE with semigroup ( �Tt)t�0 given by�Ttf = 1he�tTt(fh) for all f 2 bB; t � 0:(8)Furthermore its speed measure �m and s
ale fun
tion �s are determined by�m(dx) = h2(x)m(dx) ; �s(dy) = 1h2(y)s(dy) ;(9)From this relation it is easily veri�ed that the generator �A of ( �Px)x2E 
oin
ideswith 12�2(x)�2x + (�(x) + �2(x)h0(x)h(x) )�x(10)on C2K(E) . Furthermore �Af = 1h(A� �)(fh)(11)for all f 2 bE su
h that fh 2 D(A).We want to exploit this h-transformation for optimal stopping to derive
ontinuation regions in interval form. In order to do this we have to 
hoose anappropriate �-harmoni
 fun
tion h satisfying (6). For this purpose we re
allthe 
onstru
tion of positive, de
reasing respe
tively in
reasing solutions of (6).Let V be the unique solution of12�2(x)V 00(x) + �(x)V 0(x) = 1 ; V (
) = 0; V 0(
) = 0:(12)It 
an be written as V (x) = Z x
 s0(y) Z y
 2s0(z)�2(z)dy4



for all x 2 E. Sin
e the boundaries of E are ina

essible, Feller's test ofexplosion provides V (r1) = +1 = V (r2) :Following Mandl pp.25 the unique �-ex
essive fun
tion u satisfying (6) withu(
) = 1; u0(
) = 0 ful�lls1 + V (x)� � u(x) � exp(�V (x)) :We de�ne for all x 2 Eu1(x) = u(x) Z r2x p0(y)u(y)2dy ; u2(x) = u(x) Z xr1 p0(y)u(y)2dy :(13)Then 
ompare to Mandl (1968) u1; u2 are positive de
reasing respe
tively in-
reasing solutions of (6) and they satisfyu1(r1) = +1 ; u2(r2) = +1 :(14)These �-harmoni
 fun
tions u1; u2 play an important role for optimal stoppingby using their transformed measures. It turns out with Lai (1973) that themartingale property of (e��tui(Xt))t�0 depends on whether ri is a natural orentran
e boundary.2.1 Lemma:(i) r1 is a natural boundary i� (e��tu2(Xt)) is a martingale.(ii) r2 is a natural boundary i� (e��tu1(Xt)) is a martingale.(iii) Let r1; r2 be natural boundaries and let h be a positive solution of (6).Then (e��th(Xt)) de�nes a positive martingale.Proof: The assertions follow immediately from Lai (1973) p.434 and p.428.From Salminen (1985) we know that ui; i = 1; 2 are minimal �-ex
essive fun
-tions. This means thatlimt!1Xt = r1 P (1)x � a:s: ; limt!1Xt = r2 P (2)x � a:s:(15)with (P (1)x )x2E; (P (2)x )x2E denoting the u1-respe
tively u2-transformed familyof probability measures.These fa
ts 
an be exploited to derive 
ontinuation regions in interval form.At �rst we will give suÆ
ient 
onditions whi
h lead to one-sided regions.5



2.2 Theorem: Let r2 be a natural boundary and g : E ! [0;1) be a nonnegative measurable reward fun
tion that ful�lls(A1) x! g(x)u1(x) is uniformly bounded with a unique maximum at b 2 E.(A2) g is 
ontinuously twi
e di�erentiable on (r1; b+ �) for some � > 0 and itholds Ag � �g on (r1; b).Then the 
ontinuation region is given by C = (b; r2) and � � = infft � 0 :Xt � bg is an optimal Markov time. Furthermore the optimal value fun
tionv ful�lls v(x) = (u1(x) g(b)u1(b) if x > bg(x) if x � b :Proof: Sin
e r2 is natural, (e��tu1(Xt)) de�nes a positive martingale andwe 
an exploit the u1-transformed familiy P (1)x of probability measures. De-pending on x 2 E we introdu
e the fun
tion f by f(y) = u1(x) g(y)u1(y) for ally 2 E. Then we take the de
ompositione��tg(Xt) = e��tu1(Xt)u1(x) f(Xt)of the reward pro
ess and obtain for ea
h Markov time �Exe���g(X� )1f�<1g = E(1)x f(X� )1f�<1g � u1(x) g(b)u1(b) :Thus the right side is an upper bound for the optimal value v(x). If x > b thisupper bound 
an be attained by the hitting time �b = infft � 0 : Xt = bg,sin
e Xt tends to the lower boundary r1 P (1)x a.s. andExe���bg(X�b)1f�b<1g = E(1)x f(X�b)1f�<1g = u1(x) g(b)u1(b) :(16)This implies that (b; r2) is 
ontained in the 
ontinuation region. It remainsto examine that immediate stopping is optimal for x 2 (r1; b). This 
an bededu
ed in the following way. For an arbitrary Markov time � it holdsExe���g(X� )1f�<1g = E(1)x f(X� )1f�<1g � E(1)x f(X�^�b)1f�<1g(17)sin
e f has a maximum at b. To treat the right side we use a lo
alisationargument with a sequen
e of hitting times (�an); an # r1. Sin
e f is boundeddominated 
onvergen
e impliesE(1)x f(X�^�b)1f�<1g = limn!1E(1)x f(X�^�an^�b)1f�<1g(18) 6



The fun
tion f is C2 on [an; b℄. Thus with optional sampling or Dynkin'sformula we obtain with �an;b = �an ^ �bE(1)x f(X�^�an;b) = f(x) + E(1)x Z �^�an;b0 �Af(Xs)ds :(19)Due to �Af = 1u1 (A� �)(fu1) = u1(x)u1 (A� �)gon (r1; b) assumption (ii) implies �Af � 0 on (r1; b) and thereforeExe���g(X� )1f�<1g � f(x) = g(x) :Thus the payo� from immediate stopping 
annot be improved by any Markovtime and the Theorem is proved.If we 
onsider the �-harmoni
 u2 instead of u1 the same 
on
lusions 
an bedrawn and we obtain an analogous Theorem.2.3 Theorem: Let r1 be a natural boundary and g : E ! [0;1) be a measur-able reward fun
tion that ful�lls(B1) x! g(x)u2(x) is uniformly bounded with a unique maximum at b 2 E.(B2) g is 
ontinuously twi
e di�erentiable on (b� �; r2) for some � > 0 and itholds Ag � �g on (b; r2).Then the 
ontinuation region is given by C = (b; r2) and � � = infft � 0 : Xt �bg de�nes an optimal Markov time. Furthermorev(x) = (u2(x) g(b)u2(b) if x < bg(x) if x � b :To obtain a two sided stopping region we have to 
onsider a positiv linear
ombination of u1 and u2.
7



2.4 Theorem: Let r1; r2 be natural boundaries and g : E ! [0;1) be ameasurable fun
tion that satis�es(C1) there exist q1; q2 > 0 su
h that the �-harmoni
 fun
tion h de�ned byh(x) = q1u1(x) + q2u2(x) ful�lls x ! g(x)h(x) is uniformly bounded withmaximum attained at exa
tly two points b1 < b2.(C2) g is 
ontinuously twi
e di�erentiable on (r1; b1+ �)[ (b2� �; r2) for some� > 0 and Ag � �g on (r1; b1) [ (b2; r2).Then C = (b1; b2) and � � = infft � 0 : Xt 2 (b1; b2)g is an optimal Markovtime. Furthermorev(x) = (h(x) g(b1)h(b1) = h(x) g(b2)h(b2) if b1 < x < b2g(x) if x =2 (b1; b2) :Proof: Sin
e r1; r2 are natural we 
an 
onsider the h-transformed family( �Px)x2E of probability measures de�ned by (7). For x 2 E we introdu
ef(y) = g(y)h(y)h(x) and obtain as in Theorem (2.2) that the optimal value v(x) isbounded by the maximum f(b1) = f(b2) = g(b1)h(b1)h(x) due toExe���g(X� )1f�<1g = �Exf(X� )1f�<1gfor all Markov times � . If x 2 (b1; b2) the �rst exit time of (b1; b2) 
oin
ideswith � � , is �Px a.s. �nite, and attains the upper bound f(b1) = f(b2) as ex-pe
ted payo�. Thus � � is optimal and (b1; b2) is 
ontained in the 
ontinuationregion.If x < b1 the expe
ted payo� of an arbitrary Markov time � 
an be improvedby � ^ �b1 and as in Theorem (2.2) assumption (C2) leads to v(x) � g(x).Thus (r1; b1℄ lies in the stopping region. The same holds true for (b2; r2) by ananalogous argument.Contrary to the pre
eding Theorems the 
ondition (C1) 
annot be easily ex-amined. For the 
ase of Brownian motion Beibel, Ler
he (1997) give suÆ
ient
onditions whi
h 
an easily adapted to general di�usions. Simpler is the sym-metri
 
ase, i.e. there exists an m 2 E su
h that �(m + x) = �(m � x) ,�(m+ x) = ��(m� x) for all m+ x 2 E. For a symmetri
 reward fun
tion gwith g(m+x) = g(m�x) we 
an 
hoose q1 = q2 and have to examine whethery ! g(m + y)=h(m + y) is uniformly bounded at a point �. Then (C1) isful�lled with b1 = m� �; b2 = m + �.In the following we will apply these results to stopping problems 
omingfrom mathemati
al �nan
e. 8



3 . Ameri
an perpetual options in the Bla
k-S
holes modelIn the Bla
k-S
holes model the pri
e pro
ess (St)t�0 of a sto
k is given by ageometri
 Brownian motionSt = S0 exp(�Wt + (�� 12�2)t) ; t � 0:(20)This is a di�usion with state spa
e (0;1), natural boundaries and di�erentialgenerator 12x2�2�2x + �x�x with � 2 IR,� > 0. We assume that money on abank a

ount grows with a 
onstant interest rate � > 0. To 
al
ulate pri
esfor European or Ameri
an 
laims one has to 
onsider the risk neutral proba-bility measure whi
h leads to a 
hange of drift of the sto
k pri
e pro
ess. Itsdi�erential generator is then given byA = 12x2�2�2x + �x�x :(21)De
reasing respe
tively in
reasing �-harmoni
 fun
tions u1; u2 whi
h satisfyAui = �ui are given byu1(x) = x�� ; u2(x) = x(22)with � = 2�=�2. Then the 
onditions (A1),(A2) of Theorem (2.2) for a rewardfun
tion g are ful�lled if y�g(y) is bounded with a unique maximum at b 2(0;1) and Ag � �g on (0; b). As a generalization of the ordinary put we
onsider reward fun
tions g of the form g(x) = f((K � x)+) with K > 0.3.1 Theorem: If f is stri
tly in
reasing , twi
e di�erentiable and 
on
avewith f(0) = 0 then x! x�f((K � x)+) is bounded at a unique b 2 (0; K) andthe early exer
ise region 
orresponding to the reward fun
tion g(x) = f((K �x)+) is given by E = (0; b℄. Furthermore the pri
e of the Ameri
an perpetualoption satis�es v(x) = (x��b�f((K � b)+) if x > bg(x) if x � b .Proof: At �rst we examine that the fun
tion �(y) = y�g(y) has a uniquemaximum b in (0; K). Due to�0(y) = 0 , �f(K � y)� yf 0(K � y) = 0this follows from  (y) = f(K � y) � yf 0(K � y) is stri
tly de
reasing with (0) > 0;  (K) < 0: Se
ondly it holds Ag � �g on (0; K) sin
eAg(x) = 12�2x2f 00(K � x)� �xf 0(K � x) � 0 :9



Thus Theorem (2.2) 
an be applied and yields the assertion.For f(x) = x we obtain the Ameri
an put with early exer
ise region E =(0; K �1+� ℄: In the 
ase f(x) = x� with 0 < � � 1 the unique maximum ofx! x�f((K � x)+) is attained at K ��+� and therefore E = (0; K ��+� ℄:In the 
onvex 
ase � > 1 the Theorem 
an not be applied but it is easy toexamine that 
onditions (A1),(A2) are ful�lled if � � 2�=(1 + �):The reward fun
tion g(x) = e�
x with 
 > 0 leads to an early exer
ise regionE = (0; �=
℄:An example of an unbounded reward fun
tion g whi
h leads to an earlyexer
ise region (0; b℄ is given by g(x) = x��e�
x with 0 < � < �. Then x�g(x)is bounded with maximum at b = ���
 : Furthermore Ag � �g on (0; b), sin
eAg(x) = g(x)P (x) withP (x) = 12�2�(1 + �) + 
��2x + 12
2�2x2 � �� � �
and P (0) � �; P (b) � �. Hen
e (0; ���
 ℄ denotes the early exer
ise region.For 
all-type reward fun
tions g 
onditions (B1),(B2) of Theorem (2.3) readx! g(x)=x is bounded at a unique maximum b and Ag � �g on (b;+1).This of 
ourse does not hold in the 
ase of an ordinary 
all g(x) = (x�K)+.Reward fun
tions of the form g(x) = ((x �K)+)� with 0 < � < 1 satisfy theabove 
onditions. The unique maximum of g(x)=x is attained at b = K 11��and Ag � �g on (b;1) sin
eAg(x) � �g(x) , P (x) � 0with P (x) = 12�2x2�(� � 1) + �x�(x�K)� �(x�K)2 and P (K 11�� ) � 0 .4 . The perpetual put in an extended Bla
k-S
holes modelA generalization of the 
lassi
al Bla
k.S
holes model of se
tion 3 
an be ob-tained by assuming a state dedending volatility. This means that the sto
kpri
e pro
ess ful�lls the dynami
sdSt = St(�dt+ �(St)dWt) :(23)For pri
ing options we have to 
onsider, as in the pre
eding se
tion, the evo-lution under the risk neutral probability measure. Hen
e with � denoting the
onstant interest rate we have to 
onsider a di�usion with generatorA = 12�2(x)x2�2x + �x�x(24) 10



on (0;1): We assume that � : (0;1) ! (0;1) is a 
ontinuous fun
tionsatisfying 0 < infx>0 �(x) � supx>0 �(x) <1(25)Then ,for ea
h starting point x 2 (0;1), a unique weak solution of the sto
has-ti
 di�erential equation (23) with S0 = x 
an be de�ned up to an explosiontime, whi
h is the �rst exit time of (0;1). Due to Feller's test the 
ondition(25) yields that an explosion 
annot o

ur amlost surely. Thus the familiy oflaws of weak solutions of (23), whi
h depend on the starting point x 2 (0;1),forms a 
onservative regular di�usion with generator A and natural bound-aries. Note that X denotes its 
oordinate pro
ess.We want to apply the results of se
tion 2 for 
al
ulating the pri
ev(x) = sup� Exe��� (K �X� )+(26)of an Ameri
an perpetual put with strike K > 0. Therefore we have to deter-mine the de
reasing respe
tively in
reasing solutions u1; u2 ofAu = �u on (0;1):(27)Sin
e (e��tXt)t�0 de�nes a Px-martingale for all x 2 (0;1)u2(x) = xis a non negative in
reasing solution of (27).To determine a de
reasing one the redu
tion pro
edure of d'Alembert forordinary linear di�erential equations 
an be applied. We de�ne�(x) = exp(� Z x1 2��2(y)ydy) ; �(x) = � Z 1x 2��2(y)y2�(y)dy(28)for all x 2 (0;1). Thenu1(x) = x�(x) + �(x) ; x 2 (0;1)is a de
reasing solution of (27) sin
eu01(x) = �(x) < 0 for all x 2 (0;1):Furthermore an easy 
al
ulation yields, due to (25),limx!0u1(x) =1 ; limx!1u1(x) = 0 :(29)An appli
ation of Theorem 2.2 provides11



4.1 Theorem: The fun
tion x ! (K�x)+u1(x) has a unique maximum at a pointb 2 (0; K). The pri
e of the Ameri
an perpetual put with strike K and initialsto
k pri
e x satis�esv(x) = ( (K � b)u1(x)u1(b) if x > bK � x if x � b .(30)The Markov time � = infft � 0 : Xt � bg de�nes an optimal exer
ise strategy.Proof: The fun
tion f(x) = K�xu1(x) ful�lls on (0; K)f 0(x) = ��(x)�K�(x)u1(x)2 :(31)Thus we have to show that the fun
tion h(x) = �K�(x)� �(x) equals zero ata unique point in (0; K). Due tolimx!0 �(x)�(x) = limx!0 �0(x)� 0(x) = limx!0�1x = �1and h(K) = ��(K) < 0 there exists a point b 2 (0; K) su
h that h(b) = 0.This point is uniquely de�ned sin
eh0(x) = �(x) 2��2(x)x(1�K 1x)! < 0on (0; K). An appli
ation of Theorem 2.2 yields the remaining assertion.Usually the integrals in (28) 
annot be determined expli
itly. But by usingnumeri
al methods the perpetual put pri
e fun
tion 
an easily be 
omputed.As an example we have 
onsidered the put for the 
ase�(x) = 
s
(x�mx+m)2 + 1 ; x > 0(32)with 
;m; 
 > 0. Thus the state dependent volatility 
oin
ides in m with 
and in
reases to p
+ 1
 as x in
reases to in�nity or de
reases to zero. Theparameter 
 determines the variability of volatility.For the 
ase m = 100; 
 = 0:3; K = 100 and interest rate � = 0:03 wehave 
al
ulated the put pri
e for 
 2 f0:1; 1; 10g. The resulting plot, seethe following �gure, shows that the pri
e fun
tions w.r.t. 
 = 0:1; 1 almost
oin
ide. For 
 = 10 the variation of volatility is large enough. This providesa signi�
antly higher pri
e on the 
ontinuation region 
ompared to that of the12
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Figure 1: put pri
es�rst two 
ases. Note that in the �gure the payo� fun
tion (K � x)+ and thefun
tion x! (K � b)u1(x)u1(b) is plotted for the three 
hoi
es of 
.Other 
hoi
es for � like de
reasing or in
reasing volatilities were also in-vestigated and we emphasize that for given � the early exer
ise region andput pri
e fun
tion 
an be determined easily with numeri
al methods by usingTheorem 4.1. 5 . Portfolio optimizationIn this se
tion we will 
onsider stopping problems for a di�usion with statespa
e (0; 1) and generatorA = 12�2x2(1� x)2�2x + �2x(1� x)(b̂� x)�x(33)with b̂ 2 (0; 1). At �rst we will explain its relation to mathemati
al �nan
e inparti
ular portfolio optimization.An obvious question for a 
apital investor is how to divide his money intoa risk free bank a

ount and a risky asset like a sto
k. We assume that the13



risky asset follows a geometri
 Brownian motion with dynami
sdSt = St(�dt+ �dWt) ; t � 0(34)volatility � and rate of expe
ted return � whi
h is larger than the 
onstantinterest rate r of the banka

ount �t = ert. We denote as in Kartzas (1997) p.3by (�t)t�0 a self �nan
ing trading strategy. Thus �t is the fra
tion of wealthinvested in the risky asset at time t. Asso
iated to a portfolio strategy � is itswealth pro
ess V that satis�esdVt = Vt((1� �t)rdt+ �t(�dt+ �dWt)) ; V0 = x(35)with initial 
apital x > 0, see Morton, Pliska (1995) p.339.It is well known that for a given �nite time horizon T > 0 and a utilityfun
tion U a portfolio strategy 
an be determined that maximizes the expe
tedutility of terminal wealth EU(VT )(36)among all self-�nan
ing portfolio strategies, see Karatzas (1997) p.41 Th.2.3.2.In parti
ular for U1(x) = log(x) and U�(x) = 1�x� with 0 < � < 1 the optimalportfolio strategy 
onsists of holding a 
onstant fra
tion of wealth in the riskyasset over time see Example 2.2.4, 2.2.5 in Karatzas (1997).The pra
ti
al problem is that 
ontinuously an investor has to 
hange thenumber of shares of the risky asset to hold this optimal balan
e point. This
auses transa
tion and management 
osts whi
h may not be neglegible.Morton and Pliska (1995) investigated the log-utility under 
onsiderationof transa
tion 
osts and suggested the following pro
edure. Starting with afra
tion b of wealth in the risky asset we do not trade until a random stoppingtime �1. Then we rebalan
e our 
hanged fra
tion to b, do not trade until arandom stopping time �2, rebalan
e the portfolio et
.. The sequen
e of inter-transa
tion times (�n+1 � �n)n2IN should be 
hosen a

ording to the solutionof a stopping problem 
orresponding to the payo� pro
esslog(Vt=V0)� (R� r)t ; t � 0(37)with r < R < r + 12 b̂(� � r). By assuming wealth proportional transa
tion
osts they determined an optimal fra
tion b and growth rate R. Compare tose
tion 3 and 4 of Morton, Pliska (1995).In the following we will adapt this idea to the power utility fun
tion U(x) =1�x�. Note that allowing 
ostless trading would lead to a growth of the optimal14



expe
ted utility as1�V �0 eR̂T ; R̂ = r�+ 12 (�� r)2�2 �1� � :(38)Thus with transa
tion 
osts the expe
ted utility of wealth would grow slowlierthan eR̂T . Hen
e adapting the pro
edure of Morton and Pliska to power utilityleads to a stopping problem 
orresponding to the payo� pro
esse�RtV �t ; t � 0(39)with r� < R < R̂. Helpful for the treatment of this stopping problem is thefollowing important observation. Starting with a fra
tion b of wealth in sto
kand holding the number 
 = bV0=S0 of sto
ks 
onstant over time 
orrespondto a portfolio strategy that satis�es �t = 
St=Vt. Due to (35) it ful�llsd�t = �t(1� �t)(�2(b̂� �t)dt+ �dWt) ; �0 = b:(40)Thus (�t) evolves like a Markov pro
ess with generator A. Sin
e in a tradingstrategy without transa
tions the number of shares of the bond is 
onstantover time it holds (1� �t)Vt = (1� b)V0ert and thereforee�RtV �t = ((V0(1� b))�( 11� �t )�e�(R�r�)t for all t � 0 :(41)Thus we have introdu
ed a stopping stopping problem w.r.t. a Markovpro
ess with generator A and reward fun
tion g(x) = 11�x� and we 
an applythe results of the pre
eding se
tions. At �rst we examine that the boundary
onditions are ful�lled. A s
ale fun
tion s is de�ned bys(x) = 8>><>>: (x=1� x)1�2b̂ if b̂ < 12log x1�x if b̂ = 12�( x1�x)1�2b̂ if b̂ > 12 :Thus for b̂ = 12 the di�usion is non-exploding and re
urrent on (0; 1). In theother 
ases it tends to the left respe
tively right boundary as b̂ is less or largerthan 12 . From the general formf(x) = 2(2b̂� 1)2�2 ((2b̂� 1) log x1� x � 1) + 
1 + 
2( x1� x)1�2b̂for solutions of Af = 1 we 
an easily dedu
e that the di�usion is non explodingfor b̂ 6= 12 too. To apply the forgoing results we have to 
onsider positivede
reasing respe
tively in
reasing solutions of Af = �f . They are given byu1(x) = (1� xx )b̂� 12+ 12 
� ; u2(x) = (1� xx )b̂� 12� 12 
�(42) 15



with 
 = q�2(1� 2b̂)2 + 8�. Note that�1 = b̂� 12 + 12 
� > 0 ; �2 = b̂� 12 � 12 
� < 0(43)and that 0; 1 are natural boundaries.In the following we assume~b = �� r�2 11� � 2 (0; 1) :(44)Note that ~b denotes the fra
tion of wealth to be held 
onstant over time whenmaximizing the expe
ted utility of terminal wealth, see Karatzas (1997), Ex.2.2.5.In a �rst step we want to show that the 
ontinuation region of the rewardg is non empty if the dis
ount fa
tor � satis�esmaxf0; 12�2�(1� �)(2~b� 1)g < � < 12~b(�� r)� :(45)5.1 Proposition For � satisfying the above inequalities we de�ne�low(�) = ~b�s~b2 � 2��(1� �)�2 ; �up(�) = ~b+s~b2 � 2��(1� �)�2 :Then 0 < �low(�) < ~b < �up(�) < 1 and the 
ontinuation region 
ontains(�low(�); �up(�)).Proof: Due to Ag(x) = P (x)g(x) withP (x) = 12�2�(�� 1)x2 + �2�~b(1� �)xit follows Ag(x) > �g(x), P (x) > �, x 2 (�low(�); �up(�))(46)Due to (45) the rightside interval is 
ontained in (0; 1). Furthermore g is �subharmoni
 on it. Thus starting from x 2 (�low(�); �up(�)) the �rst exit time� from (�low(�); �up(�)) ful�llsExe���g(X�) = g(x) + Ex Z �0 (Ag(Xs)� �g(Xs))ds > g(x) :Hen
e x is 
ontained in the 
ontinuation region.To apply Theorem 2.4 we have to 
onsider �-harmoni
 fun
tions of the formu(x; 
) = 
u1(x) + (1� 
)u2(x)16



with 0 < 
 < 1. Due to (45) the fun
tion x! g(x)u(x;
) is bounded on (0; 1) sin
e��2 = s(12 � (1� �)~b)2 + 2��2 + 12 � (1� �)~b> s(12 � (1� �)~b)2 + �(1� �)(2~b� 1) + 12 � (1� �)~b = � :An analogous argument as in Beibel, Ler
he (1997) p.98 yields a unique 0 <
� < 1 su
h that x ! g(x)u(x;
�) has a maximum attained at two points ��l (�) <��u(�). This 
an be exploited to verify5.2 Theorem: Let � ful�ll 
ondition (45). Then the 
ontinuation region C(�)w.r.t. the reward fun
tion g(x) = ( 11�x)� satis�esC(�) = (��l (�); ��u(�))with 0 < ��l (�) < �low(�) < ~b < �up(�) < ��u(�). Furthermore the �rst exittime from C(�) is an optimal Markov time.Proof: The above 
onsiderations imply the 
ondition (C1) of Theorem 2.4 andit remains to prove ��l (�) < �low(�) < ~b < �up(�) < ��u(�). Then 
ondition(C2) is satis�ed and the assertion follows with Theorem 2.4. Sin
e the fun
tiongu(�;
�) attains its maximum at � 2 f��l (�); ��u(�)g it followsg0(�)g(�) = u0(�)u(�) ; g00(�)g(�) < u00(�)u(�)Thus Ag(�)g(�) < Au(�)u(�) = � and the desired inequalities follow from (46).The boundaries ��l (�); ��u(�) 
an easily be 
omputed numeri
ally. For the
ase � = 0:09, r = 0:03, � = 0:5, � = 0:6 we have plotted the 
ontinuationregion with its inner approximations �low(�); �up(�) for� 2 (12�2�(1� �)(2~b� 1); 12~b(�� r)�) :The obtained �gure demonstrate the following property: the larger � thesmaller is the 
ontinuation region. Thus, to obtain a larger growth rate ofexpe
ted utility of wealth, more frequent transa
tions are ne
essary. For � =12~b(� � r)� the 
ontinuation region is empty, sin
e 
ontinously rebalan
ing isne
essary to obtain the optimal growth rate when trading is 
ostless.17
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