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Bounds for the American perpetual put
on a stock index

Abstract

Let us consider n stocks with dependent price processes each follow-
ing a geometric Brownian motion. We want to investigate the American
perpetual put on an index of those stocks. We will provide inner and
outer boundaries for its early exercise region by using a decomposition

technique for optimal stopping.

JEL classification G120, G130

1 . Introduction

Index options are commonly traded securities. Thus it is useful to provide rea-
sonable pricing formulas. Assuming that the index itsself follows a geometric
Brownian motion would lead to an ordinary Black-Scholes model of one single
stock and their well known pricing formulas can be applied. As Lamperton,
Lapeyre (1993) pointed out, this simplification is not consistent as far as the
weighted sum of geometric Brownian motions behaves not like a geometric
Brownian motion itsself. To be more precise we have to analyze the following
more complex model. Let

S(t) = (S1(t), .-, Sa(t)) ,t2>0
be the price process of n-stocks such that
(1) dS;(t) = Si(t)(rdt + o;dW;(t)) foralll<i<n

The constants r > 0,01,...,0, > 0 denote the interest rate and the volatil-
ity of each stock. Wy,..., W,, are dependent standard Wiener-processes with
(Wi, W;] = psjt as quadratic covariation process for each 1 <i,j <n .

These price processes live on a filtered probability space (€2, (F;)i>0, P) with
filtration generated by the n Wiener processes. The assumptions for the dy-
namics in (1) imply that P is a risk neutral probability measure, which in
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general can be achieved by a Girsanov transformation. Hence the discounted
price processes are martingales w.r.t. P and the fair price of contingent claims
are their expected discounted payoff, see Karatzas, Shreve (1998).

The n- dimensional price process can also be considered as a Markov-
process with state space (0, 00)" and generator

1 n 2 2 n

0 0 0
2 A== 2 2 O T T .
(2) 5 > ol 5 T > pijoio;ziz; 92:01, +r2xz6

i—1 iy i=1 0%

According to a = (aq, ..., a,) € (0,00)" the index I, of n stocks is defined
by

IL(t) => a;Si(t) =a-S(t) forallt>0
i=1

Our goal is to consider a put on the index, which is an option with payoff
(K —a-S(t)*, K denoting the strike-price. Let P, = P(-|S(0) = z) for all
x € (0,00)". Then

p(z,T)=Eye ™ (K —a-S(T))*"

is the fair price of the European put with running time 7" and can be computed
explicitly, see Lamperton, Lapeyre (1993) .

In the case of an American put the early exercise is possible according to each
stopping time 7. Hence the fair price is given by

(3) ve(z,T) =sup Eze " (K —a-S(1))" ,
7<T

see Karatzas, Shreve (1998). This computation respectively the determination
of the optimal early exercise strategy concerns the theory of optimal stopping.
In general, exact pricing formulas for American options with finite running time
seem not to be obtainable. Even in the ordinary one stock model the price can
only be computed numerically. Simpler is the analysis of the corresponding
stopping problem with infinite time horizon which would lead to an American
put with infinite running time. For this, so called American perpetual put,
an exact pricing formula can be calculated in the ordinary one stock Black
Scholes model. Thus, for the case of index options, it is natural to treat
first this case of infinite running time. The hope is that this investigation
yields new ideas to obtain approximations in the finite running time case too.
Furthermore, the knowledge of the early exercise region can be exploited for
numerical calculations in the finite running time case, as will be explained in
section 4.



Let me denote by S the set of all stopping times and define

(4) vo(t) = sup Eze ™" (K —a-S(7))" forall z € (0,00)",

TES
which is the fair price of an American perpetual put with initial stock price
z = (xy...,2,). Then the region &, of early exercise is defined by

Ea={r€(0,00)" : v4(x) = (K —a-xz)"}
Its complement
Co={z € (0,00)" : v4(x) > (K —a-1)"}

is called the continuation region. Thus an initial stock price vector x lies in
the early exercise region iff its price coincides with the payoff from immedi-
ate expiration and it is reasonable that the first entrance time into the early
exercise region is an optimal exercise strategy.

The case of a single stock was treated by several people and solved with
different methods see Mc Kean (1965) , Beibel, Lerche (1997) . It turns out
that the early exercise region is given by & = (0, K 12| with o = Z and

rYK)NK - Kyye) ifa > K=
(5) U1(IE) :{ ( 1—|—a) ( 1—|—a) — 1+a

K-z if v < K2
Note that v,(z) = v1(az) = ver(1) for a > 0 and therefore &, = (0, & %].

For an index of multiple stocks the corresponding optimal stopping prob-
lem is more difficult, since the payoff depends on a multidimensional diffusion
process. The main result stated in Theorem 2.4 gives an appropriate inner
approximation of the early exercise region. The used method relies basically
on an approach introduced by Beibel and Lerche (1997) and gives new insights
to optimal stopping problems for multidimensional Markov-process.

In section 3 a rough outer bound of the early exercise region can be given
by constructing an appropriate subharmonic function.

Finally in section 4 we calculate the early exercise region in the finite run-
ning time case by backward induction.

2 . The inner approximation

Let S = (S1,...,S,) be the price process of a vector of n-stocks each fol-
lowing a geometric Brownian motion, i.e. satisfying the stochastic differential



equation (1). Let a € (0,00)" be a vector indicating the weight of each stock
in the index I,(t) = a - S(t) = X1 a;S;(t). Recall that

Vo(z) =sup Epe” (K —a-S(1)" =sup Ege (K —a- S(7) 1{r<o0)
TES TES
for all x € (0,00)™ denotes the price of an American perpetual put with strike
K, initial stock price x and weight vector a . Broadie, Detemple (1997) stated
geometric properties of the early exercise region even in the case of finite
running time. Let us briefly adjust their results to our context. We introduce
the following notations for vectors z,y € (0,00)", a € IR".

vy = (T, Tala)
r<y <= x<yforalll<i<n |,
S IR e
1 = (1,...,1)
T. = {z€(0,00)":K—a-z>0}

n
lz] = sz
i—1

Since (28 S0 )t>0 has the same distribution w.r.t. P, as (S1(?),...,Su(t))i>0

x1 ? Tp

according to P it holds

sup Eze (K —a- S(7))* =sup Eye ""(K — (az) - S(7))*

TES TES
Thus v, () = v1(az) = v44(1) for all a,z € (0, 00)".
A subset M C (0,00)™ is called south-west connected , iff y € M implies z € M
for all z € (0,00)™ such that z < y. We may state

2.1 Theorem: The early exercise region &, is a closed, convez, SW-connected
subset of the simplex T,.
Furthermore

1 1
E, = {(alxl, ey an:vn) cx € &1}

1s the tmage of a linear transformation of &; .

Proof: That &, is a closed set relative to (0,00)™ follows from the theory of
optimal stopping. It is contained in the simplex 7}, since we have zero payoff
outside. It is the image of a linear transformation of &1 since v, (x) = v4,(1) =
v1(az) for all z € (0, 00)".



To prove SW-connectedness let y € £, and z < y. It holds for each stopping
time 7 due to 277 — 25 < (21 — 22)*

E1e7( K — (az) - S(7) ) 1l{r<oo}

Ere ™ ((K = (az) - S(r)* = (K = (ay) - S(T))*) Lreoo) + vay(1)
Eve™((ay — az) - S(7))1{r<oo} + va(y)
(ay—az)- 1+ K—-a-y=K—-a-x

IAIN N

The last inequality follows with Fatou’s lemma since (e7"S;());> is a positive
martingale for all 1 < 7 < n. Thus all points southwest to y belong to the
early exercise region &,.

The function v, is as supremum of convex functions itsself convex. This
yields the convexity of £, due to

Va(AZ + (1= A)y) < Avg(z) + (1 — Ava(y)
= MK—-a-2)+(1-A)(K-a-y)
K—a-QOz+(1-2\y)

forall A € (0,1),z,y € &,.

Considering a put of each single stock provides points

. K B
(6) 2 = (0,...,0,5%&,0,...,0) Bi=2r/(c?) foralll1<i<n
such that the convex hull of z(!) ... (™ is contained in the early exercise

region &,. This is the hyperplane determined by these points intersected with
(0,00)™. The SW-connectedness yields that all points below this hyperplane
belong to £, . Hence as a first consequence of Theorem (2.1) we may conclude

(7) G={z e (0,00)": 2z <y for some y € conv(z?,... M)}

is contained in the early exercise region &,.

A more advanced investigation is necessary to improve this result. The
method to apply relies basically on an approach introduced by Beibel, Lerche
(1997). The main task is a construction of appropriate martingales. Recall
the notations at the beginning of the section.

2.2 Lemma: Let p denote the following polynomial in n variables:

1 n n
52 (o + 1)o; +Zazajpwazaj rZai—r
-1 i=1

1<J
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Then for each o € IR"
M,(t)=eT"S{t)™™ , t>0

defines a positive sub(super)martingale if p(a) > (<)0. In particular M, is a
positive martingale for p(a) = 0.

Proof: From the stochastic differential equations (1) satisfied by S(¢) Ito’s
formula yields

® ase =507 () + i+ Yaadni)
i=1
due to d[SZ, Sz]t = Si(t)QO'Z?dt, d[Sz, Sj]t = Si(t)Sj(t)pijO'iO'jdt.
Let N(t) = X%, [S 050;dW;(s). Then X, (t) = e~ ®@+15(#)= is a local mar-
tingale, since

dXo(t) = Xo(t)dN(t) ,Xa(0) =2 P, as.
Thus X, is the exponential local martingale w.r.t. N and can be written as
1
Xo(t) =27 %exp(N(t) — §[N]t) ,t>0

From this the martingale property follows with Novikov’s criterion since [N];
is proportional to ¢ . Due to M,(t) = eP®* X (t) the assertion follows .

Considering the function h(z) = z~* the condition p(or) = 0 implies
Ah = rh, where A denotes the generator of the n-dimensional stock price
process. Hence e™""h(z) is a harmonic function for the associated space-time
process, which provides another argument for the martingale property of M,,.
Considering the discounted payoff in the light of the martingale M, yields the
following important decompostion:

9) e (K =3 S8i(t)" = Ma(t)ga(S (1))

with g,(z) = z*(K — X, z;)" . This decomposition will provide an upper
bound for the option price.

2.3 Lemma: Let a € (0,00)". Then go(z) = (K — X1 x;)t is uniformly

bounded in (0,00)"™ with mazimum at m, = K—2-, |a| = Y
1+]|af
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Proof: For 0 < s < K we consider g, on the hyperplane E; = {z € (0,00)" :

Y, x; = s}. Maximisation of * over E; with the method of Lagrange yields
a unique maximum at sﬁ
lo
14|

. Hence we have to maximize ga(sﬁ) on0< s <K,

providing s = K as unique maximum . Hence the assertion follows.

After these preliminaries the announced inner approximation of the early
exercise region can be given. The main point is that the convex set

Y={a€ (0,00)":p(a) <0}

can be mapped onto a subset £, of the early exercise region which contains
the set G of all points below the convex hull of 2, ... (™ see (6),(7). Let
us introduce the transformation

«
:(0,00)" — T50— K
,‘7b (700) 1, & 1+Of
with inverse
61T —> (0,00)75 7 > ——
: o) x — T
1 9 ) K]_—|.T|

These transformations map straight lines onto straight lines and preserves
therefore convexity. Recall the definition of the points 21, ... 2 given in
(6). We define vectors ) for all 1 < i < n by

(10) B =(0,...,0
and a set
I'={ae (0,00)":a<pforsome B e conv(fV,... M}

off all points below the hyperplane generated by g, ..., 3™ . Then we may
state

2.4 Theorem: Let a € (0,00)" be a weight vector. Then

(i) The set

E={zeT, :p(qb(alxl, ce ia:n)) <0}

1 n

1s contained in the early exercise region &, .

(11) E. is a convex set that contains G.
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(11i) The option price v,(x) satisfies

ve(z) < (}[Iel(fa ho(az)

with he(x) = (K %57)*(K — K25)27*, © = {a € (0,00)" : p(a) = 0}.

Proof: Note that v,(z) = v4,(1) = v1(azx) for all z € (0,00)". Thus we may
assume ¢ = 1, this means that we consider a put on the sum of n-stocks.
Recall for p(ar) = 0 the martingale M, from Lemma 2.2 and the function g,
from Lemma 2.3. For each stopping time 7 it holds

E.e (K — z Si(T))+ = Esza(T)ga(S(T))l{T<00}

< sup ga(y)EwMa(T)1{7'<0°}
yE(O,oo)"

< ga(K

¢
1+|oz\)

since M, is a positive martingale with E,M,(t) = x~*. Hence
(11) v1(z) < ho(z) for all z € (0,00)"

The latter is a majorant of the payoff (K—Y" ; z;)™ which touches it at K5

the expected

o
1+|al?
payoff from any early exercise strategie 7 does not exceed the immediate payoff

from expiration. Thus K

Hence, if the inital price of the stock vector is given by K

o
1+]|ef
collection of all these points is a n — 1 dimensional manifold

B={K

is contained in the early exercise region. The

(07

m :a € (0,00)", p(a) = 0}

which is the image of the manifold # = {a € (0,00)" : p(or) = 0} under .
Due to p(8®) = 0,9 (8®) = 2 for all 1 < i < n it holds

Y ={a€ (0,00)" : p(a) <0} = conv(®)UT

and
&1 =vY(X) = conv(B)UG

The first set of the union is contained in the early exercise region £ due to its
convexity and the second one due to its SW-connectedness. Thus assertion (i)
follows. The set &} is convex since it is the image of the convex set 3 under the
transformation v . The last part of the theorem finally follows immediately
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0.3

0.2

0.1

Figure 1: early exercise region under dependence

from (11).

To illustrate the theorem we determine approximately the early exercise
region for the sum of two stocks. Therefore we have to consider the polynomial

1 1
p(a, ) = 5041(041 + 1)0% + 5042(042 + 1)03 + o100ai00p — (0 + ) — 7

and solutions of the equation p(aq,as) = 0. Introducing polar coordinates
a1 = Rcos ¢,y = Rsin ¢ the above equation has for each ¢ € [0, 7] a positive
solution R(¢) which can be determined by solving the corresponding quadratic
polynomial in R. Thus all points of the curve v(¢) = (R(¢) cos ¢, R(¢) sin ¢),
¢ € [0, 7/2] solve the above equation and are to be transformed by v providing

K
L+ 71(6) + 72(9)

as boundary of &;.

(1(8),2(8)) . €[0,5]

The first figure shows the influence of the correlation p. For oy = 0.4 =
09,7 = 0.05, K = 1 the boundaries are plotted for p € {—0.9,0,0.9}.
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The second figure shows the dependence of the volatility. For 0o = 0.4, p =
0.0, K = 1,7 = 0.05 the boundaries are plotted for o; € {0.2,0.4,0.6}.

0.3

0.2

\

Figure 2: early exercise region when the volatilities differ

It turns out that the early exercise region shrinks with increasing correlation
p. Heuristicallly we may argue as follows. Positive correlation leads to a run
of both prices in the same direction. Thus the chance to get a lower sum is
larger. Hence the price of the put is higher and the region of early exercise
smaller than in the case of negative correlation.

The second plot shows that the early exercise region increases with decreas-
ing volatility. Shortly we may argue: the higher is the volatility the higher is
the price of the put and thus the smaller is the region of early exercise.

We may state the following conclusion. The early exercise region of a put
on an index is a convex set with different shapes depending on the volatility
and correlation parameters. Assuming a one stock model would lead to an
early exercise region of the form {z € (0,00)" : a -z < b} which can not
take into account this influence of the parameters. As was shown in the above
figures the shape of the inner approximation varies sensitively with a change
of the parameters. Thus it is even more reasonable to use the approximation
of the early exercise region in the complex model than the exact solution of
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the one stock model.

3 . An outer approximation

Let us fix a weight vector a € (0, 00)™ for the rest of this section. We want to
provide an outer approximation, a set £, such that £ C £/. To do this we
first construct an appropriate r-subharmonic function of the form

o(z)=fla-z) , =z€(0,00)".

Let us denote by

2 . . .
o . if 3 = ] ..
(]‘2) Q:{ ’ ip - . ) Za]:]-a""n
N pijoio; it #
the covariance matrix of the n-dimensional Wiener-process. The matrix )
is symmetric, positive definite with positive eigenvalues. Let A denote the
smallest eigenvalue of ). Then the following lemma can be shown.

3.1 Lemma: Let § = 2%, b= Kﬁ. The function

6 (0,00)" — (0,00), 7 — (%)*5(1( —b)

fulfills
(i) Ap>r1¢,
(1) ¢(z) =2 (K —a-z)* , =z€(0,00)",
(iii) (x) = (K —a-2)t on {x:a-z=>0}
Proof: Recall the definition of the generator A in (2). Since ¢(z) = f(a - x)
with f : (0,00) = (0,00); y — (£)~*(K — b), an easy calculation yields
Ap(z) = SQ(az)- (az) f'(a-z) +r(a-z)f'(a-z)
(13) > —ﬁ(a-x)Zf”(a-x) +r(a-z) f'(a-x).
The last inequality follows from

Qar) - (ar) > Alasl} > 2(> 0w = Sla- o

3
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Recall that the function f conicides with the price of an ordinary American
perpetual put on one stock with volatility \/% . Thus f fulfills

rfly) , ye€(0,00),
(K_ y)+ NUNS (O’OO)a
K-b

S0 ) +ruf )
fy)
(14 (0

v

and the assertion follows together with (13).

Property (i) of Lemma 3.1 shows that
(z,1) = e "'¢()

defines a subharmonic function for the space time process. This can be used
to derive an outer approximation

3.2 Theorem: Let a € (0,00)" be a weight vector. Then, the early ezercise
region &€, s contained in the set

E'={r€(0,0)": K—a-z>b}

: _ [ _ 2

Proof: Let H = {z € (0,00)" : K —a -2z = b} and
T=inf{t>0:S{t)e H}=inf{t >0: K —a-S(t) =b}

For 2 € (0, 00)" such that K —a -z < b we have to show that the price of the
American put exceeds the immediate payoff, i.e. vy,(z) > (K —a-x)*.

We consider the r-subharmonic function ¢ of Lemma 3.1. Since it is
bounded on {z € (0,00)" : K — a -z < b} a uniformly integrable bounded
submartingale is defined by

(e (S(1 A t)))i>o0

w.r.t. P,. Hence,

EwefrT(K —a- S(T))I{T<oo}

Eze_”ng(S(T))l{Koo}
¢(z) > (K —a-2)"

Va ()

v I v
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The preceding theorem improves the trivial fact that the early exercise
region &, is contained in the simplex T, = {z € (0,00)" : K —a -z = 0}. The
obtained outer approximation determines a non obvious simplex covering the
early exercise region. The disadvantage is that it does not take into account the
influence of the different parameters. Covariance matrices with same smallest
eigenvalue lead to the same outer approximation, whereas the early exercise
region may vary strongly.

4 . Numerical computations

To get an impression of the relation between the early exercise region and
its inner and outer approximation some numerical calculations for the case of
two stocks will be presented. The results will underline the conjecture that
the shape of the inner approximation almost coincides with that of the early
exercise region.

For numerical computations we choose a discrete Cox Ross Rubinstein
model, analogous to Musiela, Rutkowski (1997) p. 41, as an approximation of
the continuous time model. Since we use the backward induction algorithm
only optimal stopping problems with finite time horizon can be treated. Thus,
in principle a numerical evaluation of prices of American index options are
possible. But, one has to admit that the computational effort is very large and
only small dimensions can be treated.

Let us fix a maximal time to expiration 7" > 0. We divide the time interval
[0,T] into N periods of equal length T/N. At the time points (k%)ogng we
define a n-dimensional geometric random walk in the following way. Let

T T
(15) u; = exp(o; N) ,  di = exp(—o; N)

denote the possible percentual changes of the i-th stock during one period.
Then

T k Zi(J
(16) SN(k=) = x,-uizle D o<k<Ni<i<n
denotes the evolution of the i-th stock with initial price z; > 0 in a CRR

model at the discrete time points (kL )o<k<n. We assume that (Z(k))i<k<n is
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a sequence of iid {—1, 1}"-valued random vectors. We choose the probabilities
for an upward move such that the model is risk neutral. Thus we put

(1+T(N)) — dz
Ui—di

(17) pf =prob(Z;(1) =1) = . 1<i<N

(V)

with 7(") = exp(rZ) — 1 denoting the one period interest rate. Furthermore

we adjust the dependence structure of the continous time model by assuming
(18) COI'I"(ZZ'(l), Z](]_)) = Pij for all ¢ 7é j

By linear interpolation we can think of SV as an n-dimensional continuous
time process on the time interval [0, 7]. Donsker’s invariance principle yields
that the law of SV converges weakly to that of an n-dimensional stock price
process with dynamics as in (1).

For the case of two stocks we have applied the above method to compute
numerically the early exercise region for a put on a sum with strike K = 1.
For three cases we present the results and compare it to the bounds for the
perpetual put. In each figure the straight line determines the outer boundary

0.8

0. 6

0. 4

0.2

Figure 3: early exercise regions for different time maturities and equal volatility
of the early exercise region for the perpetual put. Furthermore, three curves
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indicate the boundary of the early exercise region for different maximal running
times. The innermost curve shows the boundary of the inner approximation
for the perpetual put. The next inner one is the boundary for a put with
running time 7" = 20/3 and finally the outermost one is that for running time
T = 2/3. For all treated cases we have assumed an interest rate r = 0.03.
The first figure shows the results for equal volatilities 0 = 0.2 = o, and the

0.8

0. 6

0. 4 \

\

Figure 4: early exercise regions for different time maturities and different

volatilities

second one those for different volatilities 07 = 0.3, 0o = 0.1. In both cases no
correlation is assumed. In the third figure the results for correlation p = —0.9
with volatilities 07 = 0.2 = o0y are presented. It turns out that in all three
cases the boundary according to the larger running time moves towards that
from the inner approximation of the perpetual put. In particular the shape of
both curves almost conicide. This indicates that the inner approximation is
quite reasonable since it takes into account the influence of all parameters.
To compute numerically the early exercise region according to a put with
finite running time needs a large effort which can be reduced in the following
way. Whenever in the backward induction algorithm a stock price falls into the
inner approximation set we know the price of the put which coincides with the
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0.8

0. 6

0. 4

0.2 \

Figure 5: early exercise regions under dependence for different time maturities

immediate payoff. Thus in each step of the algorithm only computations for
stock prices outside of the inner approximation are neccessary. This provides
a further argument why the obtained inner approximation for the perpetual
put is important, in particular for the computation of prices according to finite
running time.
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