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Abstract

Lerche (Ann. Statist. 14, 1986b, 1030–1048) considered a sequential Bayes-test problem for
the drift of the Wiener process. In the case of a normal prior an o(c)-optimal test could be
constructed. In this paper a new martingale approach is presented, which provides an expansion
of the Bayes risk for a one-sided SPRT. Relations to the optimal Bayes risk are given, which
show the o(c)-optimality for suitable nonnormal priors. c© 1999 Elsevier Science B.V. All
rights reserved.
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1. Introduction

We observe a standard Wiener process (Wt)t¿0 with unknown drift �∈R and want
to test sequentially

H = {0} against K = R\{0}:
Darling and Robbins (1967,1968) introduced the concept of tests of power one. Such
a test is given by each stopping time T with the properties

P0(T ¡∞)¡ 1; (1.1)

P�(T ¡∞) = 1 for all �∈K: (1.2)

The purpose of T is to control the drift in the sense that every drift will be detected,
if it occurs. As long as we observe, we believe that the hypothesis H is true. Stopping
means that due to the observations the hypothesis must be rejected. The power of such
a test is determined by the error probability (1.1) and the mean time E�T; �∈K , which
is needed to detect the alternative drift �. Weighting the power function with respect
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to a prior probability measure de�nes the Bayes risk B(T ) of T . We consider priors
of the form

�= 
0�0 + (1− 
0)F; (1.3)

where 
0 ∈ (0; 1) and F is a probability measure on the real line with F({0})=0. Thus
B(T ) is de�ned by

B(T ) = 
0P0(T ¡∞) + (1− 
0)c
∫

� 2E�TF(d�): (1.4)

Here c is a cost constant, which takes into account the cost of observation. Since the
order of the singularity of E�T as function of � is at least 2, the costs of observation
must depend on the parameter to get a �nite Bayes risk. The choice of � 2 is quite
natural due to the fact that it is proportional to the Kullback–Leibler information of P�

with respect to P0. The problem is to �nd a test, that minimizes the Bayes risk B(T )
among all tests of power one, and to calculate the optimal Bayes risk B∗(c)= inf T B(T ).
As usual this cannot be done in the case of composite hypotheses. Thus, we may ask
for an asymptotic analysis of the problem for c tending to zero. An expansion of the
Bayes risk up to an o(c)-term should be given and a test T ∗

c be determined such that

B(T ∗
c )− B∗(c) = o(c) for c → 0:

One reasonable procedure is to stop, when the posterior probability of the hypothesis
falls under a small level. Such a test is given by

Tb(c) = inf
{
t¿0 : 
(Wt; t)6

2c
1 + 2c

}
= inf{t¿0 : f(Wt; t)¿b(c)} (1.5)

with b(c)=
0=(1−
0)2c. Here 
(x; t) denotes the posterior probability of the hypothesis
given Wt = x and can be expressed with

f(x; t) =
∫
exp
(
�x − 1

2
� 2t
)

F(d�) (1.6)

as


(x; t) =

0


0 + (1− 
0)f(x; t)
for all x∈R; t ¿ 0:

An important fact is that Tb(c) is a one-sided SPRT, since (f(Wt; t))t¿0 is the density
process of �P=

∫
P�F(d�) with respect to P0. Thus properties of one-sided SPRTs can

be applied to it. Another way to de�ne Tb for b¿ 1 is given by

Tb = inf{t¿0 : Wt 6∈ ( −
b (t);  

+
b (t))};

where the functions  +b ;  −
b are the unique solutions of the equation f(x; t)= b in the

positive, respectively, negative half-plane. Properties of these functions, especially the
asymptotic behaviour at in�nity are given in Lai (1976).
Using methods of nonlinear renewal theory, Robbins and Siegmund (1974),

Hagwood and Woodroofe (1982), Alsmeyer and Irle (1986) gave expansions for the
expectation E�Tb and variance Var�Tb, when the level b tends to in�nity. Thus for �xed
� an expansion of the power can be given. Since � 2E�Tb converges to in�nity, when �
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tends to zero, compare Farell (1964), it is not obvious, whether the weighted expected
sample size

∫
� 2E�TbF(d�) has an analogous expansion. In the case of a normal prior

F Lerche (1986a, b) obtained that expansion and showed the o(c)-optimality of Tb(c),
when according to the cost constant c the level b(c) is chosen by b(c)= 
0=(1− 
0)2c.
The normal case is easier to handle, since posterior distributions are normal again and
the weighted likelihood function f(x; t) can be computed.
In this paper a new martingale approach is introduced. The representation of the

density process (f(Wt; t))t¿0 as exponential martingale together with some facts on
one-sided SPRTs provide the key formula∫

� 2E�TbF(d�) = 2 log b+ �E
∫ Tb

0
v(Ws; s) ds;

v denoting the variance of the posterior distribution, which allows an asymptotic ex-
pansion for b tending to in�nity. This will de done in Sections 3 and 4. Finally, in
Section 5 this can be used to prove the o(c)-optimality of Tb(c).

2. Properties of the one-sided SPRT

We list some basic facts of one-sided SPRTs, which are used in the following
sections. Let (Ft)t¿0 be a right continuous �ltration and F∞=�(Ft : t¿0): We assume
that there are orthogonal probability measures P0 and P1 on F∞, which are locally
equivalent. This means that P1|Ft is equivalent to P0|Ft for each t¿0. Then there exists
a density process (Lt)t¿0 such that Lt is the Radon–Nikodym derivative of P1|Ft w.r.t.
P0|Ft for all t¿0. L is up to indistinguishable processes uniquely de�ned and has right
continuous paths. We additionally assume that L has continuous paths. Let

Mt
def=
∫ t

0
L−1
s dLs for all t¿0: (2.1)

M is a local P0-martingale and L is the exponential martingale of M , i.e.,

Lt = exp(Mt − 1
2 [M ]t); (2.2)

see Jacod and Shiryaev (1987), Williams and Rogers (1987). The one-sided SPRT Tb

is de�ned by

Tb = inf{t¿0 : Lt¿b}= inf{t¿0 : Mt − 1
2 [M ]t¿log b}: (2.3)

The theorem of Girsanov implies:

Proposition 2.1.

P0(Tb ¡∞) = 1
b

and E1[M ]Tb
= 2 log b (2.4)

for all b¿1.

Proof. Due to the continuity of L the one-sided SPRT Tb hits its boundary. The or-
thogonality yields P1(Tb ¡∞) = 1. Thus

P0(Tb ¡∞) = E1L−1
Tb
=
1
b
: (2.5)
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The theorem of Girsanov, see Jacod and Shiryaev (1987), implies that M − [M ] is
a P1-local martingale with [M ] as quadratic variation process w.r.t. P1. This provides a
sequence (Sn)n∈N of reducing stopping times such that Sn ↑ ∞ and (M − [M ])Sn is a
uniformly integrable martingale. Hence the optional sampling theorem yields

E1(M − [M ])Sn∧Tb = 0 for all n∈N: (2.6)

Together with log b¿(M − [M ])Sn∧Tb +
1
2 [M ]Sn∧Tb

this provides E1[M ]Sn∧Tb
62 log b:

Hence the monotone limit ful�lls E1[M ]Tb
62 log b: This implies, see Weiza̋cker and

Winkler (1990),

E1(M − [M ])Tb = 0: (2.7)

Hence

1
2E1[M ]Tb

= E1 log LTb = log b: (2.8)

One important poperty of the one-sided SPRT is that it minimizes the expected stopped
quadratic variation of the loglikelihood among all tests with no higher error probability.

Proposition 2.2. Let b¿ 1. Then

E1[M ]T¿E1[M ]Tb
= 2 log b (2.9)

for each stopping time T with P0(T ¡∞)61=b.

Proof. We may assume E1[M ]T ¡∞. Then E1 log LT = 1
2E1[M ]T and

E1 log LT¿− logE1L−1
T =−logP0(T ¡∞)¿log b:

Proposition 2.2 also states that the Kullback Leibler information of P1|FT w.r.t. P0|FT

is minimized by Tb among all tests T with P0(T ¡∞)61=b.

Besides these optimality results another useful relation between the stopped quadratic
variation of Tb and log b can be given.

Proposition 2.3.

log b
[M ]Tb

b→ 1
2

P1-a:s:

Proof. Since Tb hits its boundary,

log b= (MTb − [M ]Tb
) + 1

2 [M ]Tb
:

As mentioned before, M − [M ] is w.r.t. P1 a continuous local martingale with [M ] as
its quadratic variation process. Due to the orthogonality of P1 w.r.t. P0 the quadratic
variation [M ]t tends to in�nity P1-a.s. Since M−[M ] is a time changed Wiener process,

(M − [M ])t
[M ]t

t→ 0; P1-a:s:;

see Williams and Rogers (1987) theorem of Dubin, Schwarz. Thus the assertion
follows.
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3. The martingale approach

At �rst some notations are given. The observed process (Wt)t¿0 is adapted to a right
continuous �ltration (Ft)t¿0. On F∞=�(Ft : t¿0) probability measures (P�)�∈R are
de�ned such that (Wt)t¿0 is a standard Wiener process with drift � according to P�.
Let F be the part of the prior on the alternative. This means that F is a probability
measure on the real line with F({0})=0. We assume throughout this paper that F has
a �nite second moment. The weighted-likelihood function f is de�ned by

f(x; t) =
∫
exp
(
�x − 1

2
� 2t
)

F(d�) for all x ∈ R; t¿0: (3.1)

Obviously, f is on R× (0;∞) a real-valued function, which solves the heat equation

(@t + 1
2@
2
x)f = 0: (3.2)

The mixture �P of (P�)�∈R with respect to F is de�ned by

�P(A) =
∫

P�(A)F(d�) for all A∈F∞:

The posterior distribution Fx; t w.r.t. F given Wt = x is de�ned by

Fx; t(d�) =
exp(�x − 1=2� 2t)

f(x; t)
F(d�):

The mean, second moment and variance of the posterior distribution Fx; t are denoted
by �(x; t); �(x; t); v(x; t). Since the second moment of F is �nite, they are well de�ned.
If h is a function of � such that

∫ |h(�)|pF(d�)¡∞ for some p¿1, it is easy to
check that the posterior expectation

Mh(Wt; t) =
∫

h(�)FWt; t(d�) for all t¿0

de�nes a Lp-bounded �P-martingale. In view of this we can ensure that (�(Wt; t))t¿0
and (�(Wt; t))t¿0 are �P-martingales.
The dependence of the density process on the posterior mean process can be

given by

Lemma 3.1. (f(Wt; t))t¿0 is the density process of �P with respect to P0 and has the
martingale representation

f(Wt; t) = exp(Mt − 1
2 [M ]t) (3.3)

with

Mt =
∫ t

0
�(Ws; s) dWs; t¿0: (3.4)

[M ] =
∫ ·
0 �(Ws; s)2 ds denotes the quadratic variation process of M .
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Proof. (exp(�Wt − 1
2�

2t))t¿0 is the density process of P� with respect to P0 for each
� ∈ R. Integrating over � provides the �rst part of the assertion.
Since f solves the heat equation, Ito’s formula yields

f(Wt; t) = 1 +
∫ t

0
@xf(Ws; s) dWs = 1 +

∫ t

0
f(Ws; s)

@xf(Ws; s)
f(Ws; s)

dWs

= 1 +
∫ t

0
f(Ws; s)�(Ws; s) dWs:

Hence (f(Wt; t))t¿0 is a solution of the stochastic di�erential equation

dLt = Lt dMt; L0 = 1;

which implies representation (3:3), see Williams and Rogers (1987).
Let

�Wt =Wt −
∫ t

0
�(Ws; s) ds for all t¿0:

Then in view of Lemma 3.1 Girsanov’s theorem implies that �W is a standard Wiener-
process with respect to �P. It is natural to search for a stochastic integral representation
for a given �P-semimartingale. �(Wt; t) and t�(Wt; t)−Wt ful�ll a representation which
is very useful in the following section.

Lemma 3.2. The �P-semimartingales �(Wt; t) and t�(Wt; t) − Wt admit the following
representation as stochastic integral processes:

�(Wt; t) = �(W0; 0) +
∫ t

0
v(Ws; s) d �Ws; (3.5)

t�(Wt; t)−Wt =
∫ t

0
(v(Ws; s)s− 1) d �Ws: (3.6)

Proof. f solves the heat equation and @xf(x; t)=f(x; t) = �(x; t). Hence

@x�(x; t) = v(x; t);

1
2@
2
x�(x; t) + @t�(x; t) =−�(x; t)@x�(x; t):

Thus Ito’s formula implies

d�(Wt; t) = @x�(Wt; t) dWt + (@t�(Wt; t) + 1
2@
2
x�(Wt; t)) dt

= v(Wt; t) dWt − v(Wt; t)�(Wt; t) dt

= v(Wt; t) d �Wt

and

d(t�(Wt; t)) = t d�(Wt; t) + �(Wt; t) dt

= tv(Wt; t) d �Wt + dWt − d �Wt:

This provides the above stochastic integral representations.
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For the expansion of the Bayes risk for one-sided SPRTs in the following section
we need su�cient conditions to check, whether the local martingale t�((Wt; t)) − Wt

is in fact a Lp bounded martingale. This leads to

Proposition 3.3. Let F have a density g with the properties:
(A1) g is absolutely continuous with

∫
((g′(�)=g(�))1{g¿0})pF(d�)¡∞ for some

p¿1;
(A2) g(�)6C exp(|�|�) for some C ¿ 0 and �¡ 2.
Then (t�(Wt; t)−Wt)t¿0 is a Lp-bounded �P-martingale.

Proof. It su�ces to show that

t�(Wt; t)−Wt =
∫

g′(�)
g(�)

1{g¿0}F(Wt;t)(d�); (3.7)

since the right-hand side of Eq. (3.7) is the posterior expectation of the function h(�)=
(g′(�)=g(�))1{g¿0}. The integrability condition in (A1) implies then the Lp-bounded
martingale property. Eq. (3.7) follows with partial integration:

t�(Wt; t)−Wt =
∫
(t�−Wt)F(Wt;t)(d�)

=
1

f(Wt; t)

∫
(t�−Wt) exp

(
�Wt − 1

2
� 2t
)

g(�) d�

=
1

f(Wt; t)

∫
exp
(
�Wt − 1

2
� 2t
)

g′(�) d�

=
∫

g′(�)
g(�)

1{g¿0}(�)F(Wt; t)(d�):

The boundary terms in the partial integration step vanish since due to (A2) g(�)exp(�x−
1
2�

2t)→ 0 for all x; t. Hence Eq. (3.7) is valid and the proof is �nished.

Finally the relation of the Bayes risk to the posterior second moment process
(�(Wt; t))t¿0 is given. This can be exploited in the one-sided SPRT case.

Proposition 3.4. For each (F)t¿0 stopping time T it holds∫
� 2E�TF(d�) = �E

∫ T

0
�(Ws; s) d s: (3.8)

In particular; this provides for Tb = inf{t¿0: f(Wt; t)¿b}; b¿ 1;

B(Tb) = 
0
1
b
+ (1− 
0)c

(
2 log b+ �E

∫ Tb

0
v(Ws; s) ds

)
: (3.9)

Proof. Let us �rst assume that T is a bounded stopping time. Recall that F has a
�nite second moment. Thus (�(Wt; t))t¿0 is a �P-martingale as was pointed out at the
beginning of this section. Hence,

�E�(WT ; T )1{T¿s} = �E�(Ws; s)1{T¿s} for all s¿0:
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This leads to∫
� 2E�TF(d�) =

∫ ∫
� 2TdP�F(d�) =

∫
T
∫

� 2F(WT ;T )(d�) d �P

= �ET�(WT ; T ) = �E
∫ ∞

0
�(WT ; T )1{T¿s} ds

=
∫ ∞

0

�E�(Ws; s)1{T¿s} ds= �E
∫ T

0
�(Ws; s) d s:

Thus formula (3:8) is valid for bounded stopping times. In the unbounded case we
approximate T by T ∧ t and use the monotone convergence on both sides of Eq. (3.8).
To get Eq. (3.9), notice that

�E
∫ Tb

0
�(Ws; s) ds= �E

∫ Tb

0
�(Ws; s)2 ds+ �E

∫ Tb

0
v(Ws; s) ds

and

�E
∫ Tb

0
�(Ws; s)2 ds= �E[M ]Tb

= 2 log b; P0(Tb ¡∞) = 1
b
;

see Proposition 2:1.

4. Asymptotic expansion of
∫
� 2E�TbF(d�)

Starting point for the analysis of the integrated expected sample size of a one-sided
SPRT is the fact that∫

� 2E�TbF(d�) = 2 log b+ �E
∫ Tb

0
v(Ws; s) ds:

The main idea is that we can replace the posterior variance v(Wt; t) by 1=(t + r), the
posterior variance with respect to the prior F =N(0; 1=r). Thus the problem is reduced
to �nd an expansion for �E log((Tb + r)=r). But as we will see

Tb

2 log b
� 2 b→∞−→ 1; P�-a:s:

Hence we guess

�E log
(
Tb + r

r

)
= log(2 log b)−

∫
log � 2F(d�)− log r + o(1):

In the following we become more precise and verify each step.

Lemma 4.1. Assume that the �P-local martingale ((t + r)�(Wt; t) − Wt)t¿0 is in fact
an L2-bounded martingale. Then

�E
∫ ∞

0

∣∣∣∣v(Ws; s)− 1
s+ r

∣∣∣∣ ds¡∞ (4.1)

and

�E
∫ Tb

0
v(Ws; s) ds= �E log

(
Tb + r

r

)
+ �(r) + o(1) (4.2)

for all r ¿ 0 with �(r) = �E
∫∞
0 v(Ws; s)− 1=(s+ r) ds.
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Proof. Let � denote the �rst moment of F . It follows from Eq. (3.6) that the martingale
Xt = (t + r)�(Wt; t)−Wt − �r has the representation

Xt =
∫ t

0
(s+ r)v(Ws; s)− 1 d �Ws:

Hence

�E
∫ ∞

0
((s+ r)v(Ws; s)− 1)2 ds= �E[X ]∞ ¡∞:

H�older’s inequality provides∫ ∞

0

∣∣∣∣v(Ws; s)− 1
s+ r

∣∣∣∣ ds6
(∫ ∞

0

(
1

s+ r

)2)1=2(∫ ∞

0
((s+ r)v(Ws; s)−1)2 ds

)1=2
:

This implies Eq. (4.1). The second assertion follows from the dominated convergence
theorem, since

�E
∫ Tb

0
v(Ws; s) ds− �E log

(
Tb + r

r

)
= �E

∫ Tb

0
v(Ws; s)− 1

s+ r
ds:

Proposition 4.2. Let � denote the limiting random variable of the uniformly inte-
grable martingale (�(Wt; t))t¿0:
Then

Tb

2 log b
b→∞−→ 1

�2 ;
�P-a:s:

and �= � P�-a.s. for F-almost every �.

Proof. It holds

1
Tb

∫ Tb

0
�(Ws; s)2 ds

b→∞−→ �2; �P-a:s:;

[M ]Tb

2 log b
b→∞−→ 1; �P-a:s:;

see Proposition 2.3. Hence the �rst part of the assertion follows. To prove the additional
remark, recall that Wt −

∫ t
0 �(Ws; s) ds is a standard Wiener process w.r.t. �P: Hence

Wt

t
t→∞−→ �; �P-a:s:;

due to limt→∞1=t
∫ t
0 �(Ws; s)=�: But Wt=t tends to � P�-a.s. for all � ∈ R. Thus �=�

P�-a.s. for F-almost every �.
In view of the limiting random variable � it holds∫

� 2E�TbF(d�) = �E�2Tb:

From Eq. (3.9) or Proposition 2.2 we obtain the trivial lower bound∫
� 2E�TbF(d�)¿2 log b:

A �rst upper bound is given in the following:
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Lemma 4.3. Let ((t + r)�(Wt; t) − Wt)t¿0 be an L2-bounded martingale and∫ |log(� 2)|F(d�)¡∞. Then∫
� 2E�TbF(d�)64 log b+ o(1):

Proof. From Lemma 4.1 and Proposition 4.2 it follows:

�E�2(Tb + r) = r �E�2 + �E�2Tb

= r �E�2 + 2 log b+ �E
∫ Tb

0
v(Ws; s) ds

= r �E�2 + 2 log b+ �E log
(
(Tb + r)

r

)
+ �E

∫ Tb

0
v(Ws; s)− 1

s+ r
ds

= 2 log b+ �E log(�2(Tb + r)) + O(1):

Using Jensen’s inequality and log x6 1
2x for all x¿2, we obtain f.a. b¿e,

�E�2(Tb + r)6 2 log b+ log �E(�2(Tb + r)) + O(1)

6 2 log b+ 1
2
�E�2(Tb + r) + O(1);

since �E�2(Tb + r)¿2 log b¿2. Hence the assertion follows.

To get the desired expansion for �E log((Tb + r)=r), notice that

P�

(
Tb6

(2− �)log b
� 2

)
= o((log b)−1) (4.3)

uniformly in � ∈ R\{0} for all 0¡�¡ 2. This can be shown by nearly the same
arguments as in Woodroofe (1982), (p. 69).

Lemma 4.4. If the assumptions of Lemma 4:3 are valid; then

�E log
(
Tb + r

r

)
= log(2 log b)−

∫
log � 2F(d�)− log r + o(1): (4.4)

Proof. Due to Proposition 4.2 it holds

log
(
(Tb + r)�2

2 log b

)
b→∞−→ 0; �P-a:s:

Let � b = ((Tb + r)�2)=2 log b and Ab = {Tb¿(log b)=�2}: |log(� b)| is bounded on
Ab ∩ {� b6M} by logM for each M ¿ 2. Hence we may conclude by dominated
convergence

�E log � b1{� b6M}∩Ab

b→∞−→ 0 for all M ¿ 2: (4.5)

On Ac
b ∩ {� b6M} it holds

r�2

2 log b
6� b6M:
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Furthermore,

�E log
(

r�2

2 logb

)
1Ac

b∩{� b6M} = �E log r�21Ac
b∩{� b6M}

−log(2 logb) �P(Ac
b ∩ {� b6M}):

Both terms on the right tend to zero due to Eq. (4.3). Thus it follows

lim
b→∞

�E1Ac
b∩{� b6M}log � b = 0: (4.6)

The last step is

�E1{� b¿M}log � b6 sup
x¿M

log x
x

�E� b:

The �rst factor tends to zero for M to in�nity, the second remains bounded in b due
to Lemma 4.3. This together with Eqs. (4:5) and (4:6) yields

lim
b→∞

�E log � b = 0

from which the desired expansion follows.
The preceding considerations run into the following:

Theorem 4.5. Under the assumptions of Lemma 4:3 it holds∫
� 2E�TbF(d�) = 2 log b+ log(2 log b)−

∫
log � 2F(d�)

−log r + �(r) + o(1) (4.7)

and

B(Tb(c)) =

0

b(c)
+(1− 
0)c(2 logb(c)+log(2 logb(c))−A− log r+�(r)+o(1))

with �(r) = �E
∫∞
0 v(Ws; s)− 1=(s+ r)ds; b(c) = 
0=(1− 
0)2c; A=

∫
log(� 2)F(d�).

Proof. Eq. (4.7) follows immediatly from Eqs. (3:9); (4:2) and (4:4). Due to P0(Tb¡∞)
= 1=b the expansion for B(Tb(c)) holds.

5. o(c)-optimality of the one-sided SPRT Tb(c)

In this section we show that the expansion for the Bayes risk of the one-sided SPRT
Tb(c) in Theorem 4.5 is an expansion for the optimal Bayes risk B∗(c) too. Throughout
this section let F be a probability measure on the real line with �nite second moment
and Lebesgue-density g such that
(A1) g is absolutely continuous with

∫
((g′(�)=g(�))1{g¿0})2 F(d�)¡∞

(A2) g(�)6C exp(|�|�) for some C ¿ 0 and �¡ 2 .
Note that then the assumptions of Theorem 4.5 are ful�lled. Furthermore, let T ∗

c be a
o(c)-optimal Bayes test. This means that

B(T ∗
c )− B∗(c) = o(c):

At �rst the Bayes test problem is expressed as an optimal stopping problem.
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Lemma 5.1. Let h(x) = 
0 exp(−x) + (1− 
0)2cx for all x ∈ R and Dt = logf(Wtt):
Then

B(T ) = �E
(
h(DT ) + (1− 
0)c

∫ T

0
v(Ws; s) ds

)

¿ h(log(b(c)) + (1− 
0)c �E
∫ T

0
v(Ws; s) ds (5.1)

holds for each stopping time T with �nite Bayes risk.

Proof. Since T has �nite Bayes risk it is �P-a.s. �nite. Then due to the assumptions
on F Eq. (3.8) provides

B(T ) = 
0P0(T ¡∞) + (1− 
0)c
(
�E[M ]T + �E

∫ T

0
v(Ws; s) ds

)
:

�EDT = 1
2
�E[M ]T , since �E[M ]T ¡∞ and P0(T ¡∞) = �E exp(−DT ). Hence the �rst

equation of Eq. (5.1) follows. The inequality holds due to the fact that h is a convex
function with minimum at log b(c).

Lemma 5.1 provides a lower bound for the optimal Bayes risk with the leading term
h(b(c)) from the expansion of B(Tb(c)): The remainder term �E

∫ T
0 v(Ws; s) ds can be

expanded by the methods of Section 4. Eq. (4.2) yields

�E
∫ T∗

c

0
v(Ws; s) ds= �E

(
log
(
T ∗
c + r
r

))
+ �(r) + o(1)

for all r ¿ 0: To get an expansion for the �rst term on the right, we have to analyse
the error probability �(c)=P0(T ∗

c ¡∞) of the o(c)-optimal test T ∗
c . Eq. (5.1) together

with the expansion of B(Tb(c)) can be used to get an upper bound for �(c). Especially
it tends to zero fast enough.

Lemma 5.2. The error probability �(c) of T ∗
c is a function less than O(log b(c)=b(c)):

Proof. We compare T ∗
c to T�(c)−1 , the one-sided SPRT with the same error probabil-

ity. T�(c)−1 minimizes the expected quadratic variation �E[M ]T among all tests T with
P0(T ¡∞)6�; see Proposition 2.2. Hence

�E[M ]T∗
c
¿ �E[M ]T�(c)−1

= 2 log �(c)−1

and in view of Eq. (5.1)

B(T ∗
c )¿ 
0�(c) + (1− 
0)c

(
2 log �(c)−1 + �E

∫ T∗
c

0
v(Ws; s) ds

)

¿ h(log �(c)−1):

Together with the expansion of B(Tb(c)) and b(c)−1 = O(c) the estimation

h(log �(c)−1)6B(T ∗
c )6B(Tb(c)) + o(c)6h(log b(c)) + O

(
c log log

1
c

)
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follows. The convex function h has a unique minimum at log b(c). Hence

06
0

(
�(c)− 1

b(c)

)
− (1− 
0)2c log (�(c)b(c))6O

(
c log log

1
c

)
:

Thus

�(c)6
1

b(c)
+

1
b(c)

log(�(c)b(c)) + O
(
c log log

1
c

)
6O

(
log b(c)
b(c)

)
:

In particular, this lemma yields b(c)��(c) → 0 for 0¡�¡ 1. Thus nearly the same
arguments as in Woodroofe (1982) p. 69 provide

P�

(
T ∗
c 6

(2− �)log b(c)
� 2

)
= o((log b(c))−1) (5.2)

for all 0¡�¡ 2 uniformly in � ∈ R\{0}. This is the key to:

Lemma 5.3. For each r ¿ 0 and 0¡�¡ 2

�E log
(
T ∗
c + r
r

)
¿log((2− �)log b(c))−

∫
log � 2F(d�)− log r + o(1):

Proof. Let

R(c) =
∫
log

(
(2− �)log b(c)

� 2r

)
P�

(
T ∗
c 6

(2− �)log b(c)
� 2

)
F(d�)

Eq. (5.2) yields

|R(c)|6
∫ ∣∣∣∣log

(
(2− �)log b(c)

� 2r

)∣∣∣∣P�

(
T ∗
c 6

(2− �)log b(c)
� 2

)
F(d�)

6 log((2− �)log b(c))
∫

P�

(
T ∗
c 6

(2− �)log b(c)
� 2

)
F(d�)

+
∫ ∣∣∣∣log 1

� 2r

∣∣∣∣P�

(
T ∗
c 6

(2− �)log b(c)
� 2

)
F(d�)

= o(1):

Hence for all 0¡�¡ 2 it holds

�E log
(
T ∗
c + r
r

)
=
∫

E� log
(
T ∗
c + r
r

)
F(d�)

¿
∫

E� log
(
T ∗
c + r
r

)
1{

T∗
c ¿

(2−�)log b(c)
� 2

}F(d�)
¿
∫
log
(
(2− �)logb(c)

� 2

)
P�

(
T ∗
c ¿

(2− �)logb(c)
� 2

)
F(d�)

= log((2− �)log b(c))−
∫
log � 2F(d�)− log r − R(c):

Thus the claim holds.

We can use Lemma 5.3 to give a lower bound for the Bayes risk of T ∗
c . This di�ers

from the Bayes risk of Tb(c) only up to a o(c) term. Hence Tb(c) is a o(c)-optimal test.
This is summarized in the following.
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Theorem 5.4. Let F have a density g with properties (A1) and (A2). Then for all
r ¿ 0 and 0¡�¡ 2

B(T ∗
c )¿


0
b(c)

+ (1− 
0)c(2 log b(c) + log((2− �)log b(c))

−A− log r + �(r) + o(1))

with A =
∫
log � 2F(d�); �(r) = �E

∫∞
0 v(Ws; s) − 1=(s + r)ds; b(c) = 
0=(1 − 
0)2c.

Tb(c) is an o(c)-optimal test and the expansion

B∗(c) =

0

b(c)
+ (1− 
0)c(2log b(c) + log(2log b(c))− A− log r + �(r) + o(1)):

holds for the Bayes risk.

Proof. Theorem 4.5 and Lemma 5.3 provide for each �¿ 0 a function R�(c) with
R�(c) = o(1) such that

B(Tb(c))− B(T ∗
c )6(1− 
0)2c

(
log
(

2
2− �

)
+ R�(c)

)
:

Let �¿ 0. We can choose a �0 and a c0 such that

2(1− 
0)log
(

2
2− �0

)
¡

�
2
; 2(1− 
0)R�0 (c)¡

�
2

for all c6c0:

Hence
B(Tb(c))− B(T ∗

c )
c

6� for all c¡c0

and the claim follows.

6. Examples of priors

In this section some examples for the choice of a prior probability measure F on the
alternative are given. One interesting class was introduced by Diaconis and Ylvisaker
(1979). Let � be a measure on the real line with the Borel �-�eld and �= {(�1; �2) ∈
R2 :

∫
exp(��1 − 1

2�2�
2)�(d�)¡∞}. For � ∈ � a probability measure F� is de�ned

by the �-density

g�(�) = exp(�1�− 1
2�2�

2 − C(�1; �2))

with

C(�1; �2) = log
(∫

exp(�1�− 1
2�2�

2)�(d�)
)

:

(F�)�∈� de�nes a two parameter exponential family that is closed under posterior dis-
tribution. Starting with a prior F�, the posterior distribution given Wt= x is F (�1+x;�2+t)

for all x ∈ R; t ¿ 0 . The moments can be calculated by the partial derivatives of the
function C. Hence the posterior mean- and second moment process are given by

�(Wt; t) = @1C(�1 +Wt; �2 + t); �(Wt; t) =−2@2C(�1 +Wt; �2 + t):

If � is the Lebesgue measure, F� = N (�1=�2; 1=�2). Thus the normal case is included.



V. Paulsen / Stochastic Processes and their Applications 80 (1999) 177–191 191

We can verify the assumptions on the prior in Theorem 5.4 if the measure � has a
Lebesgue density h with the following properties:
(i) h is absolutely continuous with

∫
(h′(�)=h(�))2exp(��1 − 1

2�2�
2)h(�) d�¡∞,

(ii) h(0)¿ 0.
The following choices of h are possible:
(a) h ≡ 1 leads to a normal prior,
(b) h(�) = (1 + |�|)p; p¿ 0,
(c) h(�) = 1[0;∞)(�) + (�+ �)p�−p1(−�;0)(�) �¿ 0; p¿ 1:
Condition (i) is not valid for p = 1. For �1¡ 0; �2 = 0 and small � this is nearly

an exponential distribution. The second term has to smooth the jump at zero.
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