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Chapter 1

Introduction

Problems of optimal stopping arise in various fields of applied mathematics.

In sequential analysis, the determination of optimal Bayes-tests leads to a

problem of optimal stopping for a functional of the process of posterior dis-

tributions. In mathematical finance, pricing of American contingent claims

may be reduced to solving an optimal stopping problem for a diffusion pro-

cess. Furthermore in portfolio optimization, Morton and Pliska [47] introduced

an appropiate stopping problem to determine an asymptotic optimal growth

rate under consideration of transaction costs. In quality control, optimality of

the CUSUM procedure may be derived via an optimal stopping problem, see

Beibel [4], Ritov [51].

In the following, we will give a brief overview on the development of the

theory of optimal stopping. This type of decision problems can in general be

described by a mathematical model as follows:

Ingredients are

• a time parameter set T ⊂ [0,∞),

• a filtered probability space (Ω, (Ft)t∈T , P ),

• an adapted payoff process (Zt)t∈T .

Sucessively one obtains informations represented by the filtration (Ft)t∈T . At

each time point t ∈ T one has the choice between immediate stopping, receiv-

ing the payoff Zt, and continuation of the observations in the hope of obtaining

a larger gain. Since the decision to stop must not depend on the future infor-

mation strategies for termination of the observation procedure are the stopping
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times w.r.t. (Ft)t∈T . Denoting this set by S the problem is to maximize the

expected payoff EZτ among all τ ∈ S and to determine an optimal τ ∗ ∈ S
that attains this supremum.

Starting point for the theory of optimal stopping was the work of Wald and

Wolfowitz [60], [59] in sequential statistics. In 1948 they determined Bayes-

solutions for sequential tests by introducing and solving an appropriate optimal

stopping problem. Snell [57] formulated the general problem in discrete time

and investigated the relation to martingales and supermartingales. He showed

the existence of a minimal dominating regular supermartingale (Ut)t∈T and

proved under suitable assumptions that

τ ∗ = inf{t ∈ T : Zt = Ut}

defines an optimal stopping time. Haggstrom [24] and Chow, Robbins [11]

further developed the results of Snell by determining the form of U as

Ut = ess sup
τ≥t

E(Zτ |Ft) , t ∈ T,

which in the sequel has been called Snell-envelope.

Although the existence and a characterization of an optimal stopping time

could be clarified, the explicit computation involves the determination of the

above minimal dominating regular supermartingale U . For finite time points

this can be done recursively backwards in time by the so called backward

induction method which already appeared in [1]. In the monograph of Chow,

Robbins and Siegmund [12] this is described in full detail.

In infinite time, generally an explicit construction of an optimal stopping

time cannot be obtained. For the so called monotone problems Chow, Robbins

[9], [10] showed that an optimal stopping time is given by

τ ∗ = inf{n ∈ IN0 : Zn ≥ E(Zn+1|Fn)} .

Starting with a paper of Dynkin [14] a theory of optimal stopping for Markov

processes has been developed. With an underlying Markov process

X = ((Xt)t∈T , (Ft)t∈T , (Px)x∈E)

the payoff process has the form Zt = h(Xt) with a function h : E → IR.

Depending on the starting point the optimal expected payoff is a function

v : E → IR defined by

v(x) = sup
τ∈S

Exh(Xτ )
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for all x ∈ E. Introducing excessive and regular excessive functions, a char-

acterization of v as minimal h dominating regular excessive function could be

given, see Shiryayev [56], Theorem 8. Furthermore, the optimality of

τ ∗ = inf{t ∈ T : h(Xt) = v(Xt)} (1.1)

was shown. This led to a division of the state space E into a continuation and

a stopping region, denoted by C and E . Thus

C = {x ∈ E : v(x) > h(x)} , E = {x ∈ E : v(x) = h(x)}

and the optimal stopping time, defined in (1.1), is the first exit time from C.
For various Markov processes the set of excessive functions could be deter-

mined, leading to explicit solutions for associated optimal stopping problems,

see Dynkin, Yushkevich [15] for some examples.

The ideas for discrete time stopping problems can be used also in contion-

uous time. Following the martingale direction Fakeev [19], Mertens [42], [43]

and Thompson [58] carried over the approach of a minimal dominating regular

supermartingale from discrete to continuous time. Monotone case stopping

problems in continuous time were introduced and solved in Irle [27].

For so called standard Markov processes the same could be done, initiated

by Dynkin[14] and further developed by Engelbert [16], [17] , Shiryayev [55],

Engelbert [18]. For solving optimal stopping problems explicitly, a free bound-

ary value approach was introduced and led to explicit solutions for various

problems, see Bather [2], p. 606 , Bather [3], Shiryayev [54], Mikhalevich [46],

Shiryayev [56], Chapter 4, Mc Kean [41], von Moerbeke [44],[45] , Shiryayev

[53].

In a simplified way, one may say that an explicit solution can be obtained

if the underlying Markov process has a one-dimensional state space and the

payoff does not depend on time. For payoffs, depending linearly on time in the

form of h(x, t) = g(x)− ct, a reduction to an appropiate one-dimensional free

boundary value problem often leads to an explicit soluion as well.

If the payoff is a more complicated function of space and time, the de-

termination of an explicit solution usually is not possible. Here one turns to

asymptotic expansions of the continuation region. Such asymptotic expansions

were derived for various problems, see for example Chernoff [7],[8], Breakwell,

Chernoff [6], Lai [39],[40], Bather [2]. Methods related to variational inequali-

ties were used by Friedman [20],[21] to obtain asymptotic results.
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An alternative approach to optimal stopping of one-dimensional diffusions

was introduced by Salminen [52], using the Choquet representation of excessive

functions.

Following the martingale direction, Jacka [32] gave a new characterization

of the Snell-envelope for payoff processes, that are semimartingales, by study-

ing local time.

Beibel, Lerche [5] found a simple method to solve some stopping problems

related to mathematical finance. Their basic idea is to decompose the payoff

process into a product of a martingale and a uniformly bounded process. This

has been carried over to one-dimensional diffusions by Paulsen [48] using the

h-transformation.

Karatzas [35] showed the significance of optimal stopping for pricing of

American options. The price of the so called American perpetual put in the

Black-Scholes model could be already explicitly computed by Mc Kean [41] by

using a free boundary value approach. Various other methods were introduced,

see Karatzas, Shreve [36], Beibel, Lerche [5]. For finite running time no explicit

computation has been available until now. The structure of the continuation

region could be obtained by Jacka [32]. He derived an integral equation which

uniquely determines its boundary function.

Also in other fields of mathematical finance, optimal stopping has become

a topic of great interest. Morton, Pliska [47] used an appropiate problem for

maximizing an asymptotic growth rate in portfolio theory. This paper leads

to one basic application of the theory which will be developed in this thesis.

Starting point has been the fact that various stopping problems for Markov

processes have a payoff function of the form

h(x, t) = g(x)− ct .

This type of payoff occurs in sequential statistics when the costs for sam-

pling are assumed to be proportional to time, and also in the paper of Morton,

Pliska [47] in portfolio optimization by using a log-utility function. But it

is also reasonable to introduce a nonlinear cost function c(t). In sequential

statistics one can argue that, due to learning mechanisms, the cost rate should

decrease which would lead to a concave instead of linear growth of costs. In

the framework of Morton, Pliska [47] this could lead to a treatment of other

utility functions.
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At the begining were several papers by Irle [29], [30], [31] who investigated,

motivated by the problems of locally best tests, optimal stopping problems for

the Wiener process w.r.t. the reward function

(x, t)→ g(x)− c(t) .

In Irle [29], [30] g(x) = x+ was treated for different typ of cost functions. As

a first result it was clarified, how the continuation region can be enscribed

between two boundary curves. These methods were then extended to obtain

analogous results for various typs of reward functions g, see Irle [31]. But in

those papers an asymptotic expansion of the boundary function of the contin-

uation region was not obtained. This was firstly done in Kubillus, Irle, Paulsen

[37] who derived such an expansion for payoff functions of the form

(x, t)→ x+ − c(t)

with increasing concave or convex c satisfying mild additional assumptions.

It is the topic of this thesis to derive asymptotic expansions for rewards of

the general form

(x, t)→ g(x)− c(t) ,

not only for the Wiener process but for a wide class of diffusions generated

by a second order elliptic differential operator. It will provide a new approach

to handle such type of optimal stopping problems. Several applications will

be presented which justify the hope that the presented methods will give a

powerful tool in the asymptotic analysis of optimal stopping problems.

The main idea is to determine an inner and outer approximation of the

continuation region, being asymptotically equivalent. In the case of concave c,

an inner approximation can be easily derived by applying the results for linear

cost functions. It is more difficult to find a suitable outer approximation. This

will be done by defining a majorant Φ : E×(0,∞)→ IR of the payoff g(x)−c(t),
touching it at two curves m±β+(t). Additionally, Φ is superharmonic for large

t, i.e.

(∂t + A)Φ(x, t) ≤ 0 , x ∈ E, t ≥ t0

for some t0 > 0, with A denoting the differential generator of the diffusion.

These properties then can be used to show that the continuation region after

t0 is contained in the region enscribed between the boundary curves (m ±
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β+(t))t≥t0 . Note, that symmetry of the diffusion and the reward g w.r.t. a

midpoint m ∈ E has to be supposed.

For convex c, an application of the results for linear costs leads to an outer

approximation of the continuation region. To determine an inner approxima-

tion a majorant Φ will be defined, touching the payoff at two curves m±ζ−(t).

Here, Φ is subharmonic for large t, i.e.

(∂t + A)Φ(x, t) ≥ 0 , x ∈ E, t ≥ t0

for some t0 > 0. With these properties we can prove that the region enscribed

between the curves (m ± ζ−(t))t≥t0 is contained in the continuation region,

providing the desired inner approximation.

We emphasize that we can formulate rather general conditions, which lead

to an asymptotic expansion for the boundary of the continuation region. Two

examples from sequential statistics and one from portfolio optimization will ac-

company us through this thesis and indicate that it is worth to study problems

of optimal stopping for nonlinear costs of observations.

The thesis is organized as follows. In Chapter 2 we recall some basic facts on

one-dimensional diffusions and introduce three examples of optimal stopping

problems that will accompany us through this thesis. The easier case of linear

costs of observations will be treated in Chapter 3. The obtained results play

an important role for the analysis of the nonlinear problem. For concave and

convex costs of observations the principal shape of the continuation region can

be derived and an asymptotic expansion of its boundary function will be given

in Chapter 4 and 5. Finally in Chapter 6 we weaken our assumptions such

that a wider class of payoff functions can be treated.

Each chapter ends with an application of the obtained results to examples

coming from sequential statistics and financial mathematics.



Chapter 2

Preliminaries

2.1 Diffusions

In this section, we want to clarify what we will understand under a one-

dimensional diffusion generated by a differential operator A. We fix an open

interval E of IR which shall become the state space and consider at first a non

terminating, strong Markov process with continuous paths

X = ((Xt)t≥0, (Ft)t≥0, (Px)x∈E)

defined on a measurable space (Ω,F) governed by a right continuous filtration

(Ft)t≥0 , see Shiryayev [56] p.18, Karatzas, Shreve [34], Def. 6.3, p.81 for a

definition. As discussed in Rogers, Williams [50], p. 110, this class of processes

is too wide and embraces examples with unruly behaviour. So we restrict our

attention to strong Markov processes on E with continuous paths that are

generated by stochastic differential equations. As Ikeda, Watanabe [25], p.

188, pointed out this class of processes is known to be sufficiently wide both

in theory and applications.

To be more precise, we consider an elliptic differential operator

A =
1

2
a2(x)∂2

x + b(x)∂x (2.1)

with continuous dispersion and drift functions a, b : E → IR. We assume that

the nondegeneracy condition

a2(x) > 0 for all x ∈ E (2.2)

9
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holds, and can then define the scale function

s(x) =
∫ x

m
exp(−2

∫ y

m

b(z)

a2(z)
dz)dy (2.3)

for all x ∈ E, where m is an arbitrary chosen element of E. The function s

is twice continuously differentiable, strictly increasing and satisfies As = 0 on

E. We introduce the function u : E → IR by

u(x) =
∫ x

m
s′(y)

∫ y

m

2

s′(z)a2(z)
dzdy (2.4)

for all x ∈ E . It is obvious that the function u is twice continuously differen-

tiable and satisfies

Au = 1

on E, subject to the boundary conditions u(m) = u′(m) = 0. We assume that

the diffusion is non-exploding. Due to Feller’s test of explosion this means

that u(x) tends to infinity when x converges to a boundary point of E; see

Theorem 5.29, Karatzas, Shreve [34].

We combine these two objects, the differential operator A and the Markov

process X, in the following definition.

2.1.1 Definition: Let the elliptic differential operator A fulfill the preceding

assumptions. Then a triple

X = ((Xt)t≥0, (Ft)t≥0, (Px)x∈E)

is called an A-diffusion with state space E if

(i) X is a strong Markov process with continuous paths on E and

(ii) for each f ∈ C2
K(E) the process

(f(Xt)− f(X0)−
∫ t

0
Af(Xs)ds)t≥0

defines a Px-martingale w.r.t. (Ft)t≥0 for all x ∈ E.

Here and in the following C2
K(E) denotes the space of twice continuously

differentiable functions with compact support contained in E. Condition (ii)

states that C2
K(E) is contained in the domain of the infinitesimal generator of

X, which coincides on C2
K(E) with the elliptic differential operator A. For the
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following we want to denote by C2 the space of twice continuously differentiable

functions.

For the purpose of optimal stopping, the martingale introduced in (ii) can

be used to derive the following formula, which will be used in this thesis several

times.

2.1.2 Proposition Let X be an A-diffusion with state space E. Let U, V ⊂ E

be open sets such that V̄ is bounded and contained in U . Let furthermore

g : U → IR be a C2-function and τ = inf{t ≥ 0 : Xt /∈ V } the first exit time

from V .

Then for each stopping time σ

Exg(Xτ∧σ) = g(x) + Ex

∫ τ∧σ

0
Ag(Xs)ds (2.5)

for all x ∈ V .

Proof: The claim follows immediately with optional stopping, since there

exists an f ∈ C2
K(E) that conicides on V with g. Hence

(g(Xτ∧t)− g(x)−
∫ τ∧t

0
Ag(Xs)ds)t≥0

is a bounded martingale. 2

The main examples that we are going to consider bring together the concept

of martingale problems and stochastic differential equations. For each x ∈ E
we consider the stochastic differential equation

dYt = a(Yt)dWt + b(Yt)dt , Y0 = x, (2.6)

with W denoting a standard Wiener process. Since the coefficients fulfill the

nondegeneracy and local integrability condition, the above equation (2.6) ad-

mits a weak solution up to an explosion time and this solution is unique in

the sense of probability law, see Theorem 5.15 of Karatzas, Shreve [34]. Due

to Feller’s test, an explosion cannot occur and a probability measure Qx on

(C([0,∞), E),B∞) can be uniquely defined by the law of a solution of equation

(2.6). Here C([0,∞), E) denotes the space of continuous functions from [0,∞)

to E, endowed with the Borel σ-field B∞.
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Let us denote the coordinate process by Xt(ω) = ω(t) for ω ∈ C([0,∞), E),

t ≥ 0, and by Bt the σ-field generated by {Xs : s ≤ t}. Then, from a weak

solution of (2.6), we obtain with Ito’s formula that

f(Xt)− f(X0)−
∫ t

0
Af(Xs)ds

is a Qx martingale w.r.t. (Bt+)t≥0 for each x ∈ E and f ∈ C2
K(E). This shows

that Qx is the unique solution to the corresponding martingale problem, see

Rogers, Williams [50] V.19.

The assumptions made on A imply that the corresponding martingale prob-

lem is well-posed. This is equivalent to the well-posedness of the corresponding

stochastic differential equation (2.6). This fact furthermore implies that the

familiy of distributions (Qx)x∈E together with the coordinate process (Xt)t≥0

and filtration (Bt+)t≥0 defines a strong Markov process, giving an A-diffusion

in canonical representation.

Throughout this thesis, only symmetric diffusions will be treated.

2.1.3 Definition: An A-diffusion X is called symmetric w.r.t. a midpoint

m ∈ E, if the following holds:

(i) E = (m− l,m+ l) with l ∈ (0,∞] ,

(ii) a(m+ y) = a(m− y), b(m+ y) = −b(m− y) for all y ∈ (0, l).

It is called mean reverting if b(m+ y) ≤ 0 for all y ∈ (0, l) .

Note that the case l = ∞ is included in the definition and corresponds to

E = IR. In this case, different to bounded E, multiple choice of a midpoint

may be possible.

Mean reverting diffusions have the tendency to pull back to the midpoint.

For us, a further property is of interest and will be used in the following

chapters.

2.1.4 Proposition Let X be a symmetric, mean reverting A-diffusion w.r.t.

m ∈ E. Then the unique solution u of Au = 1 subject to u(m) = u′(m) = 0 is

a strictly convex function, even w.r.t m.
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Proof: Due to (2.3),(2.4) and the symmetry conditions, the function u is even

w.r.t. m, i.e. u(m + y) = u(m − y) for all y ∈ (0, l). Furthermore, due to

Au = 1, u satisfies

u′′(x) = 2
1− b(x)u′(x)

a2(x)

for all x ∈ E. Since X is mean reverting the right-hand side is strictly positive

and thus the assertion is valid. 2

The symmetry conditions for the coefficients of A leads to a symmetry

property for the laws of the corresponding diffusion.

2.1.5 Proposition Let X be a symmetric A-diffusion w.r.t. m ∈ E. Then

the law of 2m − X w.r.t Px coincides with the law of X w.r.t. P2m−x for all

x ∈ E.

Proof: The result follows from uniqueness in the corresponding martingale

problem. As well one may argue with uniqueness of law of a weak solution of

(2.6); see Rogers, Williams V.19 [50]. To be precise, we examine that

f(2m−Xt)− f(2m−X0)−
∫ t

0
Af(2m−Xs)ds

is a Px-martingale for all f ∈ C2
K(E). This follows from the symmetry condition

(ii), if we define the one-to-one map φ : C2
K(E)→ C2

K(E) , φ(f)(x) = f(2m−x)

for all x ∈ E. Then for g = φ(f) we have Ag(x) = Af(2m− x) for all x ∈ E,

and the above martingale property follows from that of an A-diffusion. This

implies that the law of 2m−X w.r.t. Px is a solution to the martingale prob-

lem with initial point 2m − x. Since this solution is unique, it must coincide

with the law of X w.r.t. P2m−x and the assertion is shown. 2

2.2 Main examples

We introduce three examples coming from different areas of probability theory

and statistics that will accompany us throughout this thesis.
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2.2.1 Brownian motion

The basic diffusion is Brownian motion. It is an A-diffusion with E = IR

and A = 1
2
∂2
x. Furthermore, it is symmetric and mean reverting w.r.t. each

m ∈ IR. For simplicity we choose the origin as midpoint. Then the scale

function defined in (2.3) and the symmetric solution of Au = 1 vanishing at

zero are given by

s(x) = x , u(x) = x2

for all x ∈ IR.

For our purpose of optimal stopping with nonlinear costs, it is important

to note that

Ex sup
t≥0

(|Xt|α − tβ) <∞ (2.7)

for all x ∈ IR, if α > 0 and β > α/2, see Irle [31], Chow and Teicher [13], Ch.

10.4.

2.2.2 Process of posterior probabilities

This is an example of an A-diffusion with state space E = (0, 1) and differential

generator

A =
1

2
x2(1− x)2∂2

x . (2.8)

It arises in sequential statistics when testing the drift of a Wiener process, see

Shiryayev [56], Ch. 4.2, as we will briefly discuss in the following.

Let (Wt)t≥0 be a standard Wiener process, that is a Browinan motion

starting from the origin, defined on a probability space (Ω,F , Pπ) and Θ a

random variable, independent of the Wiener process and satisfying

Pπ(Θ = 1) = π = 1− Pπ(Θ = 0)

for some π ∈ (0, 1) . One observes the stochastic process

ζ(t) = rΘt+ σWt , σ2 > 0, r 6= 0. (2.9)

Thus, given Θ = 1, the observed process behaves like a Wiener process with

drift r, whereas ζ is a Wiener process without drift given Θ = 0. The statistical
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problem consists of testing the hypothesis of no drift against the alternative

of drift r, based upon the observations obtained by ζ. As usual in Bayesian

statistics, a reasonable procedure relies on the process of posterior probabilities

(Πt)t≥0, defined by

Πt = Pπ(Θ = 1|F ζt )

for all t ≥ 0 with F ζt = σ({ζs, s ≤ t}). Πt denotes the posterior probability

of the alternative, given the information up to time t. An application of the

theorem of Girsanov provides the existence of a standard Wiener process W̄

on (Ω,F , Pπ) such that (Πt)t≥0 satisfies

dΠt =
r

σ
Πt(1− Πt)dW̄t , Π0 = π . (2.10)

For simplicity, we assume r
σ

= 1. Then the family of laws of (Πt)t≥0 w.r.t. Pπ,

when π runs through (0, 1), constitutes an A-diffusion with generator (2.8) in

canonical representation.

It is symmetric w.r.t m = 1
2

and mean reverting. Since there is no drift,

we have a natural scale. The unique symmetric solution of Au = 1, vanishing

at m, fulfills

u(x) = 2(2x− 1) log
x

1− x
, u′(x) = 4 log

x

1− x
+

2(2x− 1)

x(1− x)
. (2.11)

We note that the assumptions on A are satisfied, since u(x) tends to infinity

when x converges to one of the boundary points.

2.2.3 Portfolio optimization

We will introduce an A-diffusion with state space E = (0, 1) and generator

A =
1

2
x2(1− x)2∂2

x + x(1− x)(
1

2
− x)∂x , (2.12)

and furthermore give its relation to mathematical finance, in particular port-

folio optimization.

An obvious question for a capital investor is how to divide his money into

a risk-free bank account and a risky asset like a stock. In the Black-Scholes

model, the price process (St)t≥0 of the risky asset follows a geometric Brownian

motion,

dSt = St(µdt+ σdWt) , t ≥ 0. (2.13)
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The positive constants σ, µ denote the volatility and rate of expected return

respectively. One unit of money increases in the risk-free bank account as

(ert)t≥0 with r denoting the constant interest rate. Obviously, one may suppose

µ > r. This means that, on average, the risky asset has larger growth than

the risk-free security.

Starting from a fraction π0 of the initial capital x, we invest xπ0 in the

stock and put (1 − π0)x into the bank account. Then we have the ability

to trade continuously in a self-financing manner. This means, that no extra

money can be invested from outside and no money can be withdrawn. This

kind of trading strategy is uniquely determined by the evolution of the fraction

of wealth held in the risky asset, denoted by (πt)t≥0. The so-called trading or

portfolio startegies are linked together with their corresponding wealth process

(Vt)t≥0 via the stochastic differential equation

dVt = Vt((1− πt)rdt+ πt(µdt+ σdWt)) , V0 = x. (2.14)

We set b̂ = µ−r
σ2 and assume b̂ ∈ (0, 1) . The high volatility of the stock

compensates the higher return µ compared to r. It is well known that, for a

given time horizon T , the portfolio strategy π∗t ≡ b̂, 0 ≤ t ≤ T , maximizes the

expected return (E log VT )/T among all portfolio strategies π; see Karatzas,

Shreve [36]. The maximal obtained value, independent of the time horizon, is

given by

R∗ = (1− b̂)r + b̂µ− 1

2
b̂2σ2 = r +

1

2
b̂(µ− r) . (2.15)

This strategy requires that an investor has to change the number of shares of

the risky asset continuously to stay at the optimal point b̂ of balance. This

causes substantial transaction and management costs which may not be desir-

able. To avoid these costs, the following procedure seems reasonable.

Starting with an initial fraction π0, we consider that portfolio strategy that

forbids any transaction. This means that the number c = π0V0/S0 of shares of

the stock will be held constant over time. The corresponding portfolio strategy

π satisfies πt = cSt/Vt. Due to (2.14), it fulfills

dπt = πt(1− πt)(σ2(b̂− πt)dt+ σdWt) . (2.16)

Thus (πt) evolves like an A-diffusion if b̂ = 1
2

and σ = 1. The assumption

σ = 1 is only made for simplicity and not necessary. The condition b̂ = 1
2

is

restrictive but has to be supposed to obtain symmetry for the A-diffusion.
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We note that in this symmetric case the diffusion also is mean reverting

with scale function s(x) = log(x/(1 − x)) for all x ∈ (0, 1). Furthermore, the

unique symmetric solution of Au = 1, vanishing at m, satisfies

u(x) = log(
x

1− x
)2 , u′(x) = 2 log(

x

1− x
)

1

x(1− x)
(2.17)

for all x ∈ (0, 1).

The following transformation will be useful.

2.2.4 Proposition Let X be a weak solution of

dXt = Xt(1−Xt)((
1

2
−Xt)dt+ dWt) , X0 = x.

Then the law of (log( Xt
1−Xt ))t≥0 coincides with that of a Wiener process starting

from log x
1−x .

Proof: Using Ito’s formula, we obtain

d
Xt

1−Xt

=
Xt

1−Xt

(
1

2
dt+ dWt) ,

X0

1−X0

=
x

1− x
.

Applying the logarithm yields the assertion. 2

From this, we obtain the following corollary which will be used frequently.

2.2.5 Corollary: Let A be the differential generator defined in (2.12), and

let X be an A-diffusion on E = (0, 1). Then for all α, β > 0 such that β > α
2

Ex(sup
t≥0
| log

Xt

1−Xt

|α − tβ) <∞ (2.18)

for all x ∈ E.

Proof: Since log Xt
1−Xt is a Wiener process, the assertion follows immediately

from (2.7). 2
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2.3 Optimal stopping

We consider an A-diffusion

X = ((Xt)t≥0, (Ft)t≥0, (Px)x∈E) ,

introduced in Chapter 2.1.1 and want to treat related problems of optimal

stopping.

Associated with the diffusion X is a payoff function

h : E × [0,∞)→ IR; (x, t)→ h(x, t) (2.19)

The value h(x, t) will be interpreted as the payoff for stopping the diffusion

at time point t in state x. Starting from x0 at time point t0, we observe

the diffusion and have at each t ≥ 0 the choice between immediate stopping,

receiving the payoff h(Xt, t0 + t), and continuation of the observations in the

hope of obtaining a larger gain.

Of course, our decision to stop must not depend on the future behaviour

of our observed process. Thus our strategies consist of the set of all (Ft)t≥0

stopping times τ such that the expected payoff

Ex0h(Xτ , t0 + τ) (2.20)

exists. Denoting this set of stopping times by S, the problem is to determine

an optimal strategy τ ∗ and the optimal value

v(x0, t0) = sup
τ∈S

Ex0h(Xτ , t0 + τ) (2.21)

In many situations, we can describe the optimal strategy in the following way.

Let us define the sets

C = {(x, t) : v(x, t) > h(x, t)} (2.22)

and

E = {(x, t) : v(x, t) = h(x, t)} . (2.23)

Then C is called the region of continuation, whereas its complement E is called

early exercise region or stopping region. Intuitively one would expect that,

starting from x0 at time point t0, the strategy

τ ∗t0 = inf{t ≥ 0 : v(Xt, t0 + t) = h(Xt, t0 + t)}
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= inf{t ≥ 0 : (Xt, t0 + t) /∈ C} (2.24)

is optimal. This is indeed the case in many situations, see Shiryayev [56], Lai

[39].

Often, in particular in sequential statistics, the payoff function has the form

h(x, t) = g(x)− c(t) for all x ∈ E, t ≥ 0.

The function g measures the reward one obtains from the states of the diffusion,

whereas the non-negative function c indicates the costs which arise from the

observation of the process. This typ of payoff functions will be treated in this

thesis.

In the following, we will discuss various optimal stopping problems.

2.3.1 Locally best tests

We briefly repeat some results from Irle [26],[28] and give its relation to our

context for the problem of testing the drift of a Wiener process.

Let (Ω,F) be a measurable space with a right continuous filtration (Ft)t≥0

and let (Pθ)θ≥0 be a family of probability measures on (Ω,F) such that an

observed process (Wt)t≥0 is a Wiener process with drift θ w.r.t. Pθ for all

θ ≥ 0. We consider the problem of sequentially testing the hypothesis H = {0}
against the alternative K = {θ : θ > 0}. For a sequential test (τ, ψ), consisting

of a stopping time τ and a terminal Fτ -measurable decision function ψ, the

power function β(τ, ψ) is defined by

β(τ, ψ)(θ) = Eθψ1{τ<∞} = E0ψ exp(θWτ −
1

2
θ2τ)1{τ<∞}

for all θ ≥ 0.

According to a given error probability α and a given bound T > 0, the

concept of locally best tests consists of maximizing the slope of the power

function at zero among all sequential tests with the same error probability α

and an expected sample size not exceeding T .

As a measure for the slope, motivated by formal differentiation under the

integral, we define

λ(τ, ψ) = E0ψWτ .

Clearly, we can restrict our attention to sequential tests with finite expected

sample size.
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We consider for m ∈ IR and c > 0 with m − 1
4c
< 0 < m + 1

4c
the optimal

stopping problem for

((Wt −m)+ − ct)t≥0 (2.25)

w.r.t. P0. The optimal stopping time is given by

σm,c = inf{t ≥ 0 : |Wt −m| >
1

4c
} ,

see Irle [26]. We define the decision function

ψm,c = 1{Wσm,c≥m+ 1
4c
}

and obtain

λ(τ, ψ) ≤ λ(σm,c, ψm,c)

for all sequential tests (τ, ψ) which satisfy

β(τ, ψ)(0) = β(σm,c, ψm,c)(0) , E0τ ≤ E0σm,c .

Thus, if we choose m, c such that

E0σm,c = (
1

4c
)2 −m2 = T ,

E0ψm,c = P0(Wσm,c ≥ m+
1

4c
) =

1
4c
−m
1
2c

= α ,

then (σm,c, ψm,c) defines a locally best test w.r.t. error probability α and

expected sample size T .

The forgoing approach relies on the assumption that costs for observations

grow linearly in time. But due to learning mechanisms it is also reasonable to

assume that the cost rate decreases, and this leads to a concave cost function.

Hence, inserting in (2.25) a general nonlinear cost function, leads to a stopping

problem of the type we are going to investigate in this thesis, and a solution of

the correspong stopping problem leads to an alternative locally best sequential

test. Note that the stopping problem with payoff (x, t)→ x+−c(t) is equivalent

to that for the symmetric payoff

(x, t)→ |x| − c(t) ,

see [31].
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2.3.2 Bayes tests

In general, the theory of optimal stopping arises in sequential statistics when

determining an optimal Bayes-test. For the problem of testing the drift of a

Wiener process, we want to establish the associated optimal stopping problem.

We recall the notations of 2.2.2 and note that the Bayes-risk of a sequential

test (τ, ψ), based upon the observation process ζt = rΘt+ σWt, is defined by

B((τ, ψ)) = Eπ(Πτ1{ψ=0} + (1− Πτ )1{ψ=1} + cτ)

≥ Eπ(min{Πτ , 1− Πτ}+ cτ) .

For given stopping time τ , we choose the decision rule

ψ∗ = 1{Πτ≥1−Πτ} ,

and obtain a Bayes test by minimizing Eπ(min{Πτ , 1 − Πτ} + cτ) among all

(F ζt ) stopping times. This minimization problem is equivalent to the optimal

stopping problem w.r.t. theA-diffusion introduced in 2.2.2 with payoff function

h(x, t) = |x− 1

2
| − ct .

As in the preceding example, a replacement of linear costs by concave or convex

costs leads to a corresponding optimal Bayes test when solving the modified

optimal stopping problem.

2.3.3 Portfolio optimization

We continue the discussion of 2.2.3. The optimal portfolio strategy for max-

imizing the expected return consists of holding the constant fraction b̂ = µ−r
σ2

of wealth in the risky asset. This strategy yields an optimal growth rate

R∗ = r + 1
2
b̂(µ− r), but has the disadvantage of causing non neglegible trans-

action costs as continuous trading is necessary. To avoid transaction costs, the

following procedure seems reasonable, as mentioned by Morton, Pliska [47].

Starting from the initial fraction b̂, the number c = b̂V0/S0 of shares of the

risky asset will be held constant over time as long as the fraction of wealth in

stock is not too far away from b̂. When the departure from b̂ exceeds a certain

level, we rebalance our portfolio to b̂.

The question on hand is, how this random non anticipating time point for

rebalancing should be chosen. One reasonable strategy is the following. We
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compare at each t ≥ 0 the return log Vt of the trading strategy without trans-

actions to R∗t, the optimal expected return, receiving from portfolio strategies

that allow transactions. Thus we consider the payoff process

log Vt −R∗t , t ≥ 0 .

We solve the corresponding optimal stopping problem and use its solution τ ∗

as rebalancing time point for our portfolio.

Since the wealth process is associated with the evolution (πt) of the fraction

in stock by (1−πt)Vt = (1− b̂)V0e
rt, the optimal stopping problem is equivalent

to that one for an A-diffusion with generator (2.12) according to the payoff

function

h(x, t) = log
1

1− x
− (R∗ − r)t .

Instead of taking linear growth from the optimal strategy a generalization

would be obtained by assuming a nonlinear one and solving the corresponding

optimal stopping problem.



Chapter 3

Linear costs of observations

3.1 General theory

We consider optimal stopping problems for one-dimensional diffusions with

payoff functions h of the form

h(x, t) = g(x)− ct

with a positive cost constant c > 0. As was mentioned in the introduction,

these problems were often investigated by a free boundary value approach. For

specific payoffs the continuation region, giving by two straight line boundaries,

could be obtained, see Shiryayev [56], Ch. 4 , Morton, Pliska [47]. We want

to adjust the approach of Beibel, Lerche [5] to symmetric A-diffusions. This

results in sufficient conditions for the reward function g providing continuation

regions of the above form, see Theorem 3.1.1. These results are necessary for

the analysis of the stopping problem with nonlinear costs leading to inner, and

outer approximations respectively, as we will see in the following chapters.

We recall the notations and assumptions from the preceding chapter. Thus

X denotes an A-diffusion with state space E and differential generator

A =
1

2
a2(x)∂2

x + b(x)∂x . (3.1)

We assume the symmetry conditions

a(m+ y) = a(m− y) , b(m+ y) = −b(m− y) for all y ∈ (0, l).

The real number m denotes the midpoint of E = (m−l,m+l) and 2l its length.

E = IR is covered to l = ∞. An essential role in the analysis of the linear

23
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stopping problem is played by the symmetric solution u of Au = 1. Since X is

non-exploding u tends to infinity at the boundary of E. For symmetric reward

functions g and positive constants c we will study the problem of optimal

stopping for the payoff function

(x, t)→ g(x)− ct .

We define the optimal value by

v(x) = sup
τ∈S

Ex (g(Xτ )− cτ) (3.2)

for all x ∈ E, with S denoting the set off all stopping times. The problem is to

determine an optimal one that attains this supremum. We introduce functions

G,U : [0, l)→ [0,∞) by

G(y) = g(m+ y) , U(y) = u(m+ y) (3.3)

for all y ∈ (0, l). We state the following conditions, which will lead to straight

line boundaries for the optimal continuation region.

(L1) For each x ∈ E there exists some ε > 0 such that

Ex sup
t≥0

(g(Xt)− (c− ε)t) <∞ .

(L2) y → G(y)− cU(y) has a unique maximum at ψ(c) ∈ (0, l).

(L3) g is C2 on (m+ ψ(c)− ε,m+ l) for some ε > 0 and fulfills Ag(x) ≤ c

for all |x−m| > ψ(c).

The main task is to prove that the continuation region defines an open

interval.

3.1.1 Theorem: Let g be a symmetric continuous reward function bounded

from below, and let c > 0. Assume conditions (L1)-(L3).

Then the continuation region C coincides with the open interval C = (m −
ψ(c),m+ ψ(c)) and

τ ∗ = inf{t ≥ 0 : |Xt −m| ≥ ψ(c)}
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defines an optimal stopping time. Furthermore the optimal value function v

fulfills

v(x) =

{
cu(x) + (g − cu)(m+ ψ(c)) if |x−m| < ψ(c)

g(x) if |x−m| ≥ ψ(c)
(3.4)

for all x ∈ E.

For the proof we use the following Lemmata. At first we show that we need

only consider stopping times with finite expectation. Let us denote this set by

S1.

3.1.2 Lemma: If condition (L1) is fulfilled, then the optimal value function

is finite, and

v(x) = sup
τ∈S1

Ex (g(Xτ )− cτ)

for all x ∈ E.

Proof: Let x be an arbitrary element of E. Due to

g(Xt)− ct ≤ sup
s≥0

(g(Xs)− (c− ε)s)− εt

for all t ≥ 0 the left-hand side tends to −∞ Px-a.s. . Furthermore for each

stopping time τ due to (L1)

Ex (g(Xτ )− cτ) ≤ Ex sup
s≥0

(g(Xs)− cs) <∞ .

If Exτ =∞ then

Ex (g(Xτ )− cτ) ≤ Ex sup
s≥0

(g(Xs)− (c− ε)s)− εExτ = −∞ .

Thus we only have to maximize among stopping times with finite expectation

and the lemma is proved. 2

Thus only stopping times with finite expectation are of interest, and this

permits an application of the following lemma.

3.1.3 Lemma: For each stopping time τ with Exτ <∞

Ex u(Xτ ) ≤ u(x) + Ex τ (3.5)

for all x ∈ E.
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Proof: Since u is a non-negative solution of Au = 1, (u(Xt)− t)t≥0 defines

a local martingale. We use the sequence of reducing stopping times τn,

τn = inf{t ≥ 0 : |Xt −m| ≥ rn} , (3.6)

with rn an increasing sequence in (0, l) converging to l. Since the diffusion is

non-exploding, τn increases to infinity. Furthermore,

Ex u(Xτ∧τn) = u(x) + Ex τ ∧ τn (3.7)

for all x ∈ (m− rn,m+ rn), since u is bounded there. The right-hand side of

(3.7) increases to Ex τ and with Fatou’s lemma we get

Ex u(Xτ ) ≤ lim inf
n→∞

Ex u(Xτ∧τn) = u(x) + Ex τ .

Hence the assertion holds . 2

We are now prepared for a proof of Theorem 3.1.1 . Due to (L2), the

function g(x) − cu(x) is bounded with maximum attained at m ± ψ(c). We

start by showing that the first exit time τ ∗ from (m−ψ(c),m+ψ(c)) is optimal

for starting points x ∈ (m − ψ(c),m + ψ(c)). For each stopping time τ with

Exτ <∞, due to Lemma 3.1.3 and (L2),

Ex (g(Xτ )− cτ) = Ex(g(Xτ )− cu(Xτ ) + cu(Xτ )− cτ)

≤ (g − cu)(m+ ψ(c)) + cu(x) .

The upper bound on the right-hand side is attained by τ ∗, since

u(m+ ψ(c)) = Ex u(Xτ∗) = u(x) + Exτ
∗ , (3.8)

see Proposition 2.1.2. Hence τ ∗ is optimal, and each x ∈ (m−ψ(c),m+ψ(c))

is contained in the continuation region. Furthermore, the optimal value fulfills

v(x) = (g − cu)(m+ ψ(c)) + cu(x) .

Secondly, we show that immediate stopping is optimal when starting from x

with |x − m| > ψ(c). We use the sequence (τn) of reducing stopping times

introduced in the proof of Lemma 3.1.3, and consider an arbitrary stopping

time τ with Exτ <∞. Due to (L1) and

g(Xτ∧τn)− c(τ ∧ τn) ≥ inf
z∈E

g(z)− cτ for all n ∈ IN ,
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we may apply the dominated convergence theorem and obtain

Ex (g(Xτ )− cτ) = lim
n→∞

Ex(g(Xτ∧τn)− c(τ ∧ τn)) . (3.9)

From symmetry, we may assume w.l.o.g. x > m+ψ(c). We introduce the first

hitting time of m+ ψ(c) by

σ = inf{t ≥ 0 : Xt = m+ ψ(c)} .

Since u is bounded on [m+ ψ(c),m+ rn]

Ex u(Xτ∧τn∧σ) = u(x) + Ex(τ ∧ τn ∧ σ) , (3.10)

and furthermore the expected payoff of τ ∧ τn can be improved by τ ∧ τn ∧ σ,

since σ stops at a maximal point of g − cu:

Ex (g(Xτ∧τn)− c(τ ∧ τn)) ≤ Ex (g(Xτ∧τn)− cu(Xτ∧τn)) + cu(x)

≤ Ex (g(Xτ∧τn∧σ)− cu(Xτ∧τn∧σ)) + cu(x)

= Ex(g(Xτ∧τn∧σ)− c(τ ∧ τn ∧ σ)) .

Boundedness of g and Ag ≤ c on [m+ ψ(c),m+ rn] imply due to (2.1.2)

Ex g(Xτ∧τn∧σ) = g(x) + Ex

∫ τ∧τn∧σ

0
Ag(Xs) ds ≤ g(x) + cEx (τ ∧ τn ∧ σ) .

Hence Ex g(Xτ∧τn)− c(τ ∧ τn) ≤ g(x) and, plugging this into (3.9), we obtain

v(x) ≤ g(x). Thus (m + ψ(c),m + l) is contained in the stopping region. By

symmetry, this is also true for (m− l,m−ψ(c)) and Theorem 3.1.1 is proved.

3.2 General applications

We want to apply the forgoing result for linear costs to two typs of reward

functions. At first we consider the case, when the reward is a power of the

symmetric solution u of Au = 1.

3.2.1 Theorem: For the reward function g(x) = u(x)α with 0 < α < 1, the

conditions (L2),(L3) are valid for each cost rate c > 0. If additionally (L1)

holds, the continuation region is given by

C = (m− ψ(c),m+ ψ(c))

with ψ(c) = φ(( c
α

)
1

α−1 ) and φ denoting the inverse of U(y) = u(m+ y).
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Proof: Note that g(x) = G(|m − x|) with G(y) = U(y)α for all y ∈ (0, l).

Then G′(y)/U ′(y) = αU(y)α−1 is decreasing, since α < 1, with

lim
y→0

G′(y)

U ′(y)
=∞ , lim

y→l

G′(y)

U ′(y)
= 0 . (3.11)

Hence the equation

G′(y)− cU ′(y) = 0

has a unique solution ψ(c), and y → G(y)− cU(y) attains its maximum there.

Furthermore, due to G′(y) = αU(y)α−1U ′(y), the above equation is equivalent

to

U(y) = (
c

α
)

1
α−1 (3.12)

and therefore ψ(c) = φ(( c
α

)1/(α−1)).

To verify condition (L3), we compute on (m,m+ l)

Ag(x) =
1

2
a2(x)G′′(x−m) + b(x)G′(x−m)

= αu(x)α−1 +
1

2
a2(x)α(α− 1)u(x)α−2u′(x)2 .

For x > m+ ψ(c)

αu(x)α−1 ≤ αu(m+ ψ(c))α−1 = c ,

and therefore

Ag(x) ≤ c ,

since a2(x)α(α − 1)u(x)α−2u′(x)2 ≤ 0. Hence (L3) holds, and an application

of Theorem 3.1.1 yields the assertion. 2

A second application can be given for reward functions of the form g(x) =

G(|x −m|) with concave increasing G. Here we distinguish between the case

of bounded and unbounded E and consider mean reverting diffusions, where

b(m+ y) ≤ 0 for all y ∈ (0, l).

3.2.2 Theorem: Let l < ∞, and let X be a mean reverting diffusion on

E = (m − l,m + l). Let g(x) = G(|m − x|) be a reward function with strictly

increasing , concave C2-function G. Then the continuation region is given by

C = (m− ψ(c),m+ ψ(c)) ,
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where ψ(c) is the unique solution of the equation

G′(y) = cU ′(y) on (0, l).

Furthermore:

(i) If for some α1, q1, p1 > 0, γ1 ≥ 0

lim
y→l

U ′(y)(l − y)α1 = p1 , lim
y→l

G′(y)

q1(l − y)γ1
= 1 , (3.13)

then

lim
c→0

(l − ψ(c))(
cp1

q1

)
− 1
α1+γ1 = 1 . (3.14)

(ii) If for some α2, q2, p2 > 0, γ2 ≥ 0

lim
y→0

U ′(y)

yα2
= p2 , lim

y→0
G′(y)yγ2 = q2 , (3.15)

then

lim
c→∞

ψ(c)(
cp2

q2

)
1

α2+γ2 = 1 . (3.16)

Proof: We examine the conditions (L1)-(L3) and then apply Theorem 3.1.1.

Since G is concave, it is bounded on (0, l) and condition (L1) is satisfied. Since

X is mean reverting, the even solution u of Au = 1 is convex, see 2.1.4. Thus

G′/U ′ is decreasing with

lim
y→l

G′(y)

U ′(y)
= 0 , lim

y→0

G′(y)

U ′(y)
=∞ . (3.17)

From this it follows that y → G(y) − cU(y) has a unique maximum attained

at a point ψ(c) with ψ denoting the inverse function of F = G′/U ′.

Finally condition (L3) holds true, since b(x) ≤ 0 on (m,m+l), and therefore

Ag(x) =
1

2
a2(x)g′′(x) + b(x)g′(x) ≤ 0 .

Thus Theorem 3.1.1 provides that the continuation region has the form

C = (m− ψ(c),m+ ψ(c)) .
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Due to

lim
y→l

G′(y)

U ′(y)
(l − y)−(α1+γ1) =

q1

p1

, lim
y→0

G′(y)

U ′(y)
yα2+γ2 =

q2

p2

(3.18)

we have

lim
c→0

c (l − ψ(c))−(α1+γ1) =
q1

p1

, lim
c→∞

c ψ(c)α2+γ2 =
q2

p2

, (3.19)

from which the assertion follows. 2

Almost the same result holds true for unbounded E. Only condition (L1)

has to be assumed separately. We obtain

3.2.3 Theorem: Let X be a mean reverting diffusion on E = IR. We assume

that condition (L1) holds for a reward function g(x) = G(|m−x|) with strictly

increasing , concave C2-function G. Then the continuation region coincides

with

C = (m− ψ(c),m+ ψ(c)) ,

where ψ(c) denotes the unique solution of the equation

G′(y) = cU ′(y) on (0,∞).

Furthermore:

(i) If for some α1, p1, q1 > 0, 0 ≤ γ1 < 1

lim
y→∞

U ′(y)

yα1
= p1 , lim

y→∞
G′(y)yγ1 = q1 , (3.20)

then

lim
c→0

ψ(c)(
p1

q1

c)
1

α1+γ1 = 1 . (3.21)

(ii) If for some α2, p2, q2 > 0, γ2 ≥ 0

lim
y→0

U ′(y)

yα2
= p2 , lim

y→0
G′(y)yγ2 = q2 , (3.22)

then

lim
c→∞

ψ(c)(
p2

q2

c)
1

α2+γ2 = 1 . (3.23)
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3.3 Special applications

We want to apply the preceding results to the three main examples introduced

in Chapter 2. We investigate for several reward functions how the boundary of

the continuation region depends asymptotically on the cost constant c. This

will be useful in the analysis of the stopping problem with nonlinear costs in

the following chapters. At first we consider Brownian motion.

3.3.1 Brownian motion

The differential generator of Brownian motion is given by

A =
1

2
∂2
x .

We consider the origin as midpoint, and note that u(x) = x2 is the even

solution of Au = 1 vanishing at zero. Theorem 3.2.3 for Brownian motion

takes the following form:

3.3.2 Theorem: Let g(x) = G(|x|) be a reward function with strictly increas-

ing, concave C2-function G. If

lim
y→∞

G′(y)yγ1 = q1 with q1 > 0, 0 ≤ γ1 < 1,

then the continuation region satisfies C = (−ψ(c), ψ(c)) with

ψ(c) = (
2

q1

c)
− 1

1+γ1 (1 + o(1)) for c→ 0. (3.24)

If limy→0G
′(y)yγ2 = q2 for some γ2 ≥ 0, q2 > 0, then C = (−ψ(c), ψ(c)) with

ψ(c) = (
2

q2

c)
− 1

1+γ2 (1 + o(1)) for c→∞. (3.25)

Proof: The assertion follows immediately from Theorem 3.2.3, since U ′(y) =

2y. 2

The preceding result derives the asymptotic behaviour of the boundary

ψ(c) of the continuation region for c tending to zero, and infinity respectively.

For special reward functions we can determine ψ(c) explicitly.
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1. g(x) = |x| :

This reward is strongly related to sequential statistics, see 2.3.1 . We

obtain

ψ(c) =
1

2c
for all c > 0 . (3.26)

2. g(x) = |x|α with 0 < α ≤ 1 :

This is an example of a concave reward function. We get the boundary

ψ(c) = (
2

α
c)−

1
2−α for all c > 0 , (3.27)

by solving αyα−1 − 2cy = 0 .

3. g(x) = |x|α with 1 < α < 2:

This is a convex reward and Theorem 3.2.3 yields that the continuation

region is the interval (−ψ(c), ψ(c)) with

ψ(c) = (
2

α
c)−

1
2−α for all c > 0.

Although this result coincides with the preceding one, we have seperated

it since the arguments differ.

4. g(x) = log(1 + |x|):
Again this is a concave reward and Theorem 3.2.3 yields that the con-

tinuation region is of the form (−ψ(c), ψ(c)). The boundary

ψ(c) = −1

2
+

√
1

4
+

1

2c
(3.28)

is obtained by solving (1 + y)2y = 1
c
.

3.3.3 Process of posterior probabilities

We continue the example introduced in 2.2.2. Thus we consider an A-diffusion

with generator

A =
1

2
x2(1− x)2∂2

x (3.29)

on E = (0, 1). Using the midpoint m = 1
2
, a symmetric solution u of Au = 1,

vanishing at m, is given by

u(x) = 2(2x− 1) log
x

1− x
for all x ∈ (0, 1).
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It is of the form U(|x− 1
2
|) with U : (0, 1/2)→ (0,∞) satisfying

U(y) = 4y log
1/2 + y

1/2− y
, U ′(y) = 4 log

1/2 + y

1/2− y
+

4y

(1/2 + y)(1/2− y)
.

Hence

lim
y→1/2

U ′(y)(1/2− y) = 2 , lim
y→0

U ′(y)

y
= 32 , (3.30)

and Theorem 3.2.2 takes the form:

3.3.4 Theorem: Let g(x) = G(|x − 1/2|) , x ∈ (0, 1), be a reward function

with strictly increasing concave C2-function G. Then the continuation region

satisfies C = (−ψ(c), ψ(c)) and

(1/2− ψ(c)) = (
2c

q1

)
1

1+γ1 (1 + o(1)) for c→ 0 , (3.31)

if limy→1/2G
′(y)(1/2− y)−γ1 = q1 for some q1 > 0, γ1 ≥ 0.

If limy→0G
′(y)yγ2 = q2 for some q2 > 0, γ2 ≥ 0, then

ψ(c) = (
32c

q2

)
− 1

1+γ2 (1 + o(1) for c→∞ . (3.32)

Proof: The assertion is an immediate consequence of Theorem 3.2.2 together

with (3.30). 2

We consider the following examples for reward functions.

1. g(x) = |x− 1/2|:
This reward was introduced in 2.3.2 yielding an optimal Bayes test for

simple hypothesis for the drift of a Brownian motion. An application

of the preceding theorem shows that the continuation region fulfills C =

(1/2− ψ(c), 1/2 + ψ(c)) where ψ(c) is the unique solution of

1− c
(

4 log
1/2 + y

1/2− y
+

4y

(1/2 + y)(1/2− y)

)
= 0 on (0, 1/2).

Furthermore we obtain

1

2
− ψ(c) = 2c(1 + o(1)) for c→ 0,

ψ(c) =
1

32c
(1 + o(1)) for c→∞. (3.33)
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2. g(x) = G(|x− 1
2
|) with G(y) = −(1

2
− y)α for α ≥ 1:

This is a further example for a concave reward and Theorem 3.3.4 shows

C = (1
2
− ψ(c), 1

2
+ ψ(c)) with

1

2
− ψ(c) = (2c/α)

1
α (1 + o(1)) for c→ 0,

ψ(c) =
q

32c
(1 + o(1)) for c→∞ , (3.34)

with q = α(1
2
)α−1.

3. g(x) = u(x)α =
(

2(2x− 1) log x
1−x

)α
with 0 < α < 1 :

This is an example for an unbounded reward function, where we can

apply Theorem 3.2.1. Thus the continuation region fulfills C = (1
2
−

ψ(c), 1
2

+ ψ(c)), and ψ(c) is the unique solution of

(
c

α
)

1
α−1 = U(y) = 4y log

1
2

+ y
1
2
− y

on (0, 1
2
).

3.3.5 Portfolio optimization

We consider portfolio strategies without transaction costs that initially invest

a fraction of capital in a risky asset and hold this until stopping. The fraction

of wealth in the risky asset is a diffusion with generator

A =
1

2
x2(1− x)2∂2

x + x(1− x)(
1

2
− x)∂x , (3.35)

see 2.2.3 and 2.3.3. This is symmetric w.r.t. the midpoint m = 1
2

and mean

reverting. Furthermore a symmetric solution of Au = 1 vanishing at m is given

by

u(x) = (log
x

1− x
)2 = U(|x− 1

2
|)

for all x ∈ (0, 1) with

U(y) = (log
1/2 + y

1/2− y
)2 , U ′(y) = 2

log 1/2+y
1/2−y

(1/2 + y)(1/2− y)

for all y ∈ (0, 1
2
). We consider some reward functions
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1. g(x) = u(x)α = | log(x/(1− x))|2α with 0 < α < 1:

Theorem 3.2.1 and Corollary 2.2.5 yield

C = (
1

2
− ψ(c),

1

2
+ ψ(c)) ,

with ψ(c) the unique solution of

(log
1/2 + y

1/2− y
)2 = (

c

α
)

1
α−1 on (0,

1

2
).

Thus

ψ(c) =
1

2

exp(( c
α

)
1

2α−2 )− 1

exp(( c
α

)
1

2α−2 ) + 1
for all c > 0. (3.36)

2. g(x) = | log x
1−x |:

This is a special case of the preceding example with α = 1
2

. Thus

C = (1
2
− ψ(c), 1

2
+ ψ(c)) with

ψ(c) =
1

2

exp( 1
2c

)− 1

exp( 1
2c

) + 1
.

3. g(x) =

{
log 1

1−x ,if x > 1
2

log 1
x

,if x < 1
2

:

Here we want to apply Theorem 3.1.1 and have to verify (L1)-(L3). The

first condition holds as in the second example. To prove (L2) note that

G(y) = g(1
2

+ y) satisfies

G(y) = − log(
1

2
− y) , G′(y) =

1

1/2− y
. (3.37)

Thus

F (y) =
G′(y)

U ′(y)
=

1

2

1/2 + y

log 1/2+y
1/2−y

is strictly decreasing with limy→0 F (y) = ∞, limy→1/2 F (y) = 0. Hence

y → G(y) − cU(y) has a unique maximum attained at ψ(c), and ψ(c)

is the unique solution of F (y) = c on (0, 1
2
). The condition (L3) follows

since

Ag(x) =
1

2
x(1− x)

is decreasing on (1
2
, 1). Therefore Theorem 3.1.1 shows that the contin-

uation region fulfills C = (1
2
− ψ(c), 1

2
+ ψ(c)) for all c > 0.
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Chapter 4

Concave costs of observations

4.1 Asymptotics of the continuation region

In the case of nonlinear costs, the analysis of the corresponding optimal stop-

ping problem becomes more difficult. As before we consider an A-diffusion X

on an open interval E = (m− l,m+ l). We assume that X is symmetric w.r.t.

the midpoint m, see Definition 2.1.3. Instead of linear costs we investigate

payoff functions of the form

(x, t)→ g(x)− c(t)

with concave increasing c and continuous, w.r.t. m symmetric g.

We recall Chapter 2 and note that, starting from x ∈ E at time t, the

optimal value is denoted by

v(x, t) = sup
τ∈S

Ex (g(Xτ )− c(t+ τ)) .

for all x ∈ E, t ≥ 0. The continuation region C is defined by

C = {(x, t) : v(x, t) > g(x)− c(t)}

and its compliment is called stopping or early exercise region.

For concave cost functions the cost rate decreases. Thus one may expect that

the continuation region increases. This is indeed true and we will determine

in this section its asymptotic growth rate. We assume the following conditions

for the cost function c : [0,∞)→ [0,∞).

37
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(cc1) c is strictly increasing with limt→∞ c(t) =∞ ,

(cc2) c is twice continuously differentiable and concave ,

(cc3) For each x ∈ E there exists an α ∈ (0, 1) such that

Ex sup
t≥0

(g(Xt)− αc(t)) <∞ .

Since c is increasing and concave the condition (cc3) implies that for each

x in E there exists an α ∈ (0, 1) such that for all t0 ≥ 0

Ex sup
t≥0

(g(Xt)− αc(t0 + t)) <∞ . (4.1)

Hence, as in the linear case,

lim
t→∞

(g(Xt)− c(t0 + t)) = −∞ Px a.s. for all x ∈ E, t0 ≥ 0. (4.2)

Furthermore, for determining v(x, t0) we need only consider stopping times τ

with Exc(t0 + τ) <∞. Condition (4.1) allows us to apply the standard results

of optimal stopping for continuous time Markov processes. We obtain

4.1.1 Theorem: If the conditions (cc1)-(cc3) are fulfilled with a symmetric

continuous reward function g, then

(i) For each t0 ≥ 0 the first exit time from C,

τ ∗t0 = inf{t ≥ 0 : (Xt, t0 + t) /∈ C} ,

is an optimal stopping time, satisfying Px(τ
∗
t0
<∞) = 1 for all x ∈ E.

(ii) The optimal value function v is lower semi-continuous on IR × [0,∞),

the continuation region C is an open subset of IR× [0,∞) .

(iii) If additionally the coefficients a, b of A are locally Hölder-continuous,

then v is twice continously differentiable in x, once continuously differ-

entiable in t on the continuation region C, and fulfills

(∂t + A)v = 0 on C .
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Proof: Assertions (i) follows from Shiryayev [56], Theorem 6, with following

corollary. Approximating v by the optimal value function of the truncated

stopping problem with finite horizon yields an increasing sequence of lower

semi-continuous functions. Hence the limit v is lower semi-continuous itsself,

see section 3.2.4 Shiryayev [56]. Furthermore this implies that C is an open

subset of E × [0,∞).

It is well known, that the optimal value function is harmonic on the con-

tinuation region. In the case of a one-dimensional non-exploding diffusion this

implies that v is continuous on G, see Lai [39], Theorem 2 and the remark

on page 423. To examine that v fulfills the above parabolic equation, we fix

(x0, t0) ∈ C and consider an open rectangle R = (x1, x2)× (t1, t2) contained in

C such that (x0, t0) ∈ R. The first-initial boundary value problem

(∂t + A)w = 0 on R

w = v on ∂R (4.3)

with ∂R = [x1, x2]×{t2} ∪ {x1}× [t1, t2]∪ {x2}× [t1, t2] has a unique solution

w, see Friedman [22], Theorem 3.6, page 138. Since v is harmonic, it coin-

cides with w on R and is therefore a solution of the above partial differential

equation, due to

v(x, t) = Exv(Xτ , t+ τ) = Exw(Xτ , t+ τ)

= w(x, t) + Ex

∫ τ

0
(∂t + A)w(Xs, t+ s)ds = w(x, t) (4.4)

for all (x, t) ∈ R with τ denoting the first exit time from R. 2

The preceding theorem in principle gives the solution to the optimal stop-

ping problem. But it remains to determine the continuation region explicitly.

As was pointed out in the introduction this seems not to be possible. Thus

we want to give in the following an asymptotic description of the continuation

region. As a first step we will determine some facts on its shape with the

following lemma. Let us denote the difference between optimal expected and

immediate payoff by

d(x, t) = v(x, t)− (g(x, t)− c(t)) .
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4.1.2 Lemma: If the conditions (cc1)-(cc3) are fulfilled with a symmetric

continuous reward function g, then

(i) v(x, ·) is decreasing for all x ∈ E,

(ii) d(x, ·) is increasing for all x ∈ E,

(iii) v(·, t) is even w.r.t. m for all t ≥ 0, and the continuation region is

symmetric w.r.t. m, i.e.

(m+ y, t) ∈ C ⇐⇒ (m− y, t) ∈ C for all y ∈ (0, l), t ≥ 0 .

Proof: Since c is increasing, the expected payoff Ex (g(Xτ )−c(t+τ)) decreases

in t for each stopping time τ . Thus assertion (i) follows. To verify (ii) we note

that c(t+ τ)− c(t) is decreasing in t as c is concave. Hence,

d(x, t) = sup
τ
Ex (g(Xτ )− g(x)− (c(t+ τ)− c(t)))

is increasing in t . (iii) follows from the fact that the law of X w.r.t. Px

coincides with the law of 2m − X w.r.t. P2m−x, see Chapter 2.1.5, and from

g(x) = g(2m− x) for all x ∈ E. 2

We want to apply the results for linear costs to obtain an inner approxi-

mation of the continuation region, and to achieve this, we make the following

assumptions for the reward function g. Recall that G(y) = g(m + y), U(y) =

u(m+ y) for all y ∈ (0, l).

(R1) G is twice continuously differentiable and strictly increasing.

(R2) G′

U ′
is strictly decreasing with

lim
y→0

G′(y)

U ′(y)
=∞ , lim

y→l

G′(y)

U ′(y)
= 0 .

(R3) Ag is decreasing on (m,m+ l) or Ag ≤ 0 .

Although not explicitly mentioned, these conditions were often examined

in the examples of Chapter 3. In the following we show that mean reverting

diffusions satisfy (R1)-(R3) for concave G.
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4.1.3 Proposition Let g(x) = G(|x−m|) be a reward with strictly increasing

concave C2-function G. Then the conditions (R1)-(R3) are valid for any mean

reverting diffusion.

Proof: We have to verify (R2) and (R3). We recall that U is strictly convex

in the case of a mean reverting diffusion, see 2.1.4. Hence U ′ is strictly increas-

ing. Furthermore, due to concavity the derivative G′ is decreasing. Hence F =

G′/U ′ is strictly decreasing. Furthermore, limy→l F (y) = 0 and limy→0 F (y) =

+∞, since U ′(0) = 0 and U ′(l) = +∞. Thus (R2) is valid. Condition

(R3) holds since X is mean reverting and therefore Ag(x) = 1
2
a2(x)g′′(x) +

b(x)g′(x) ≤ 0 for all x > m. 2

In the following we define an increasing curve β− which will lead to an inner

approximation of the continuation region for concave costs of observations.

4.1.4 Definition: We define the function F : (0, l)→ (0,∞) by

F (y) =
G′(y)

U ′(y)
for all y ∈ (0, l) . (4.5)

If condition (R2) is valid, F has an inverse function which we denote by ψ.

Furthermore, for a concave cost function c we define the increasing curve β−

by

β−(t) = ψ(c′(t)) for all t > 0. (4.6)

Thus the moving boundary β− is determined by applying the results for

linear costs to each cost rate c′(t). This is possible as will be explained below.

The C1-function ψ is strictly decreasing and a one-to-one map of (0,∞)

onto (0, l). The point ψ(k) is the unique solution of the equation

G′(y) = kU ′(y) (4.7)

on (0, l) for any k ∈ (0,∞). Thus the function

y → G(y)− kU(y)

has ψ(k) as unique extremal point in (0, l) which must be a maximum due to

(R2). Thus condition (L2) holds true and furthermore

G′′(ψ(k)) ≤ kU ′′(ψ(k)) , G′(ψ(k)) = kU ′(ψ(k)) . (4.8)
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Hence,

Ag(m+ ψ(k)) ≤ kAu(m+ ψ(k)) = k . (4.9)

From Ag is decreasing on (m,m+l) it follows Ag(x) ≤ k for all |x−m| ≥ ψ(k).

Thus we have verified that condition (L3) holds, and we can state the following

lemma.

4.1.5 Lemma: If g satisfies (R1)-(R3) and c fulfills (cc1)-(cc3), then the

conditions (L1)-(L3) are valid for each cost rate k > 0. Thus the results for

linear costs can be used.

As a first application we derive the following inner approximation.

4.1.6 Proposition Under the conditions (cc1)-(cc3), (R1)-(R3), the set

Cin = {(x, t) : |x−m| < ψ(c′(t))}

is contained in the continuation region

Proof: Let us fix an arbitrary t0 > 0. Since the cost function c is concave,

c(t0 + t) − c(t) ≤ c′(t0)t for all t ≥ 0. An application of the linear case, see

Theorem 3.1.1, yields for |x−m| < ψ(c′(t0)) the existence of a stopping time

τ such that

Ex (g(Xτ )− c′(t0)τ) > g(x) .

Hence

v(x, t0) ≥ Ex (g(Xτ )− c(t0 + τ)) ≥ Ex(g(Xτ )− c′(t0)τ)− c(t0)

> g(x)− c(t0) .

and the assertion is proved. 2

We can use the inner approximation to prove that the continuation region

is a set enscribed between two boundary curves m±β∗(t). This basically relies

on

Ag(x) ≤ c′(t)

for all (x, t) with |x−m| > ψ(c′(t)).
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4.1.7 Theorem: If the cost function c fulfills (cc1)-(cc3) and the reward func-

tion g satisfies (R1)-(R3), then there exists an increasing function β∗ such that

C = {(x, t) : |x−m| < β∗(t)} .

The boundary function β∗ is continuous from the left and fulfills

ψ(c′(t)) ≤ β∗(t) < l for all t > 0. (4.10)

Proof: We define for all t ≥ 0

β∗(t) = inf{y ∈ (0, l) : d(m+ y, t) = 0} = inf{y ∈ (0, l) : (m+ y, t) /∈ C}

with the convention inf ∅ = l. Due to the inner approximation β∗(t) ≥ ψ(c′(t)),

and it remains to prove that all points (x, t0) with |x − m| > β∗(t0) belong

to the stopping region. From symmetry it is sufficient to consider the case

x > m + β∗(t0). We introduce the first hitting time of the moving boundary

(m+ ψ(c′(t0 + t)))t≥0,

σ = inf{t ≥ 0 : Xt = m+ ψ(c′(t0 + t))} , (4.11)

and recall the optimal stopping time

τ ∗ = inf{t ≥ 0 : (Xt, t0 + t) /∈ C} .

Since the starting point x lies above m + β∗(t0) /∈ C, the diffusion will

first exit the continuation region before it reaches the moving boundary m +

ψ(c′(t0 + ·)), hence τ ∗ ≤ σ. As in the linear case, we use the sequence (τn) of

reducing stopping times defined by

τn = inf{t ≥ 0 : |Xt −m| ≥ rn}

with rn ↑ l, see (3.6). Dominated convergence implies

Ex(g(Xτ∗)− c(t0 + τ ∗)) = lim
n→∞

Ex (g(Xτ∗∧τn)− c(t0 + τ ∗ ∧ τn)) . (4.12)

Since g is bounded on [m− rn,m+ rn],

Exg(Xτ∗∧τn) = g(x) + Ex

∫ τ∗∧τn

0
Ag(Xs)ds , (4.13)
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see 2.1.2, and

Ag(Xs) ≤ Ag(m+ ψ(c′(t0 + s))) ≤ c′(t0 + s) ,

due to Xs ≥ m+ ψ(c′(t0 + s)) for all s ≤ τ ∗ ≤ σ and (R3). Thus

Ex

∫ τ∗∧τn

0
Ag(Xs)ds ≤ Exc(t0 + τ ∗ ∧ τn)− c(t0) ,

and inserting into the above equation 4.13 shows

Ex(g(Xτ∗)− c(t0 + τ ∗)) ≤ g(x)− c(t0) .

Hence (x, t0) is contained in the stopping region.

The boundary β∗ is increasing since the difference d(x, t) between immedi-

ate payoff and optimal payoff increases in t for fixed x. A point (x, t) lies in

the continuation region if d(x, t) > 0, but then d(x, t + s) > 0 and therefore

(x, t+ s) ∈ C for all s ≥ 0.

The increasing function β∗ cannot reach l in finite time, say t0. Otherwise

the region E × (t0,∞) would be contained in the continuation region and the

first exit time from C would not be finite when starting after t0, and this would

contradict Theorem 4.1.1.

To prove the continuity from the left let (tn) be a sequence increasing to

t. Then β∗(tn) increases to β∗(t−) ≤ β∗(t). Since the stopping region E is

closed the sequence (β∗(tn), tn) converges in E to (β∗(t−), t). Hence the other

inequality β∗(t) ≤ β∗(t−) is valid, and the theorem is proved. 2

We now know that the continuation region is an open set enscribed between

the moving boundaries m ± β∗(t). In the following, we will show as a main

result that the growth of the inner approximation coincides asymptotically

with that of the continuation region, i.e.

1 =

 limt→∞
B−β∗(t)

B−ψ(c′(t)))
,if B <∞

limt→∞
β∗(t)
ψ(c′(t))

,if B =∞ .
(4.14)

with B = limt→∞ ψ(c′(t)).

To verify this we need mild additional conditions. We recall that ψ :

(0,∞)→ (0, l) denotes the inverse function of F = G′/U ′ and β−(t) = ψ(c′(t))

for all t > 0. Furthermore we set c′(∞) = limt→∞ c
′(t), B = limt→∞ ψ(c′(t))

and formulate the following condition:
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There exists an increasing differentiable function h ≥ 0 with the following

properties:

(cc4) limx↓c′(∞) h(x) = 0 , limx↓c′(∞) xh
′(x) = 0 ,

(cc5) The curve β+ defined by

β+(t) = ψ(c′(t)(1− h(c′(t)) for all t > 0 (4.15)

is asymptotically equivalent to β−, i.e.

1 =

 limt→∞
B−β−(t)
B−β+(t)

, if B <∞
limt→∞

β−(t)
β+(t)

, if B =∞ ,

(cc6)

lim
t→∞

c′′(t)U(β+(t))

h(c′(t))c′(t)
= 0 .

Note that m ± β−(t) determines the boundary of the inner approxima-

tion Cin. Since ψ is decreasing, β+ exceeds β− and both are asymptotically

equivalent in the sense of condition (cc5). In the following we will see that

asymptotically the optimal boundary β∗ lies between β− and β+. In a first

step we will construct a function Φ : E × (0,∞) → IR, superharmonic for

large t, that exceeds g(x) − c(t) and touches it at the curves m ± β+(t). The

following lemma gives the precise formulation:

4.1.8 Lemma: Let the reward function g fulfill the conditions (R1)-(R3), and

let the cost function c satisfy (cc1)-(cc6). Then there exists a function

φ : E × (0,∞)→ IR

and some t0 > 0 such that

(i) (∂t + A)φ(x, t) ≤ 0 for all x ∈ E, t ≥ t0.

(ii) φ is even w.r.t. m .

(iii) φ(x, t) ≥ g(x)− c(t) for all x ∈ E, t > 0 .

(iv) φ(m± β+(t), t) = g(m± β+(t))− c(t) for all t > 0.
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Proof: At first we recall that x → g(x) − ku(x) has a unique maximum at

m ± ψ(k) for each k ∈ (0,∞). Furthermore, u is a non-negative symmetric

function satisfying Au = 1. We define

η(t) = 1− h(c′(t)) , f(t) = η(t)c′(t) for all t > 0 (4.16)

and

φ1(x, t) = η(t)c′(t)u(x)− c(t) for all t > 0, x ∈ E . (4.17)

Due to (cc4), η increases to 1, and f fulfills

f ′(t) = η′(t)c′(t) + η(t)c′′(t) = c′′(t)(1− h(c′(t)))− c′′(t)h′(c′(t))c′(t) .

Hence f ′(t) ≤ 0 for large t. From this it follows that φ1 is superharmonic for

large t and x ∈ E, since

(∂t + A)φ1(x, t) = f ′(t)u(x)− c′(t) + η(t)c′(t)

= f ′(t)u(x)− c′(t)(1− η(t)) ≤ 0 .

In the next step, φ1 will be lifted up such that it exceeds (x, t) → g(x)− c(t)
and touches it at the curves m± β+(t). For a fixed t > 0 the function

x→ g(x)− c′(t)η(t)u(x)

has its maximum at m± ψ(c′(t)η(t)) = m± β+(t) . Thus

x→ c′(t)η(t)u(x) + γ(t)

with γ(t) = g(m + β+(t)) − c′(t)η(t)u(m + β+(t)) exceeds the function g and

touches it at x = m± β+(t). Hence

φ(x, t) = φ1(x, t) + γ(t) = η(t)c′(t)u(x) + γ(t)− c(t) (4.18)

fulfills the properties (ii)-(iv).

To prove (i) we note that

γ′(t) = g′(m+ β+(t))β+
′(t)

−u′(m+ β+(t))β+
′(t)c′(t)η(t)− u(m+ β+(t))f ′(t)

= −f ′(t)u(m+ β+(t))
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since g′(m+ ψ(k))− ku′(m+ ψ(k)) = 0 for all k ∈ (0,∞). Furthermore

(∂t + A)φ(x, t) = f ′(t)u(x)− c′(t)(1− η(t)) + γ′(t)

= f ′(t)u(x)− c′(t)(1− η(t))− f ′(t)u(m+ β+(t))

and φ is superharmonic for large t, if f ′(t)u(m + β+(t)) tends to zero faster

than c′(t)(1− η(t)) = c′(t)h(c′(t)). Since

f ′(t) = c′′(t)(1 + o(1)) , (4.19)

this follows from condition (cc6). 2

Note that (cc5) implies the asymptotic equivalence of β+ and β−. Thus, if

the region enscribed the curves m±β+(t) contains the continuation region for

large t, we will have determined the desired asymptotic shape of the continu-

ation region.

4.1.9 Theorem: Let the reward function g fulfill the conditions (R1)-(R3),

and let the cost function c satisfy (cc1)-(cc6). Then there exists some t0 > 0

such that the continuation region C fulfills

C ∩ (E × (t0,∞)) ⊂ Cout

with Cout = {(x, t) : t > t0, |m− x| < β+(t)}. Thus

β∗(t) ≤ β+(t) for all t ≥ t0.

Proof: We consider the function φ from the preceding lemma and fix some

t0 > 0 such that φ satisfies the properties (i)-(iv). We note that as in the linear

case, see 3.1.2, the optimal expected payoff v(x, t) is obtained by maximizing

Ex g(Xτ ) − c(t + τ) among all stopping times τ with Exc(t + τ) < ∞. As in

the linear case we consider a sequence (ρn) of reducing stopping times defined

by

ρn = inf{t ≥ 0 : |Xt −m| ≤ rn} ∧ n (4.20)

with rn ↑ l. Note that each ρn is bounded in time. Condition (cc3) and

g(Xτ∧ρn)− c(t+ τ ∧ ρn) ≥ g(m)− c(t+ τ) for all n ∈ IN



48 CHAPTER 4. CONCAVE COSTS OF OBSERVATIONS

allows us to apply dominated convergence which leads to

Ex (g(Xτ )− c(t+ τ)) = lim
n→∞

Ex (g(Xτ∧ρn)− c(t+ τ ∧ ρn)) . (4.21)

We will prove that the curves (m± β+(t), t)t≥t0 are contained in the stopping

region. Then Theorem 4.1.7 implies β∗(t) ≤ β+(t) for all t ≥ t0.

Therefore we fix t ≥ t0 and consider an arbitrary stopping time τ with

Exc(t+ τ) <∞. Since ρn is bounded in time, (φ(Xs, t+ s))0≤s≤ρn is uniformly

bounded. Hence, using the generator of the space time process

Exφ(Xτ∧ρn , t+ τ ∧ ρn) = φ(x, t) + Ex

∫ τ∧ρn

0
(∂t + A)φ(Xs, t+ s)ds ≤ φ(x, t) .

For x = m± β+(t) we obtain

Ex g(Xτ∧ρn)− c(t+ τ ∧ ρn) ≤ Exφ(Xτ∧ρn , t+ τ ∧ ρn)

≤ φ(x, t) = g(x)− c(t) .

Thus (4.21) shows that the immediate payoff g(x) − c(t) cannot be improved

by the expected by any stopping time, hence

v(x, t) ≤ g(x)− c(t) , x = m± β+(t) .

Thus the curves (m± β+(t), t)t≥t0 are contained in the stopping region which

proves the result. 2

As a consequence, we obtain the asymptotics of β∗ which determines the

boundary of the continuation region, since β−(t) ≤ β∗(t) ≤ β+(t) for large t.

Recall B = limt→∞ ψ(c′(t)).

4.1.10 Corollary: If the conditions of Theorem 4.1.9 hold, the boundary of

the continuation region is asymptotically equivalent to its inner approximation,

i.e.

1 =

 limt→∞
B−β∗(t)
B−β−(t)

,if B <∞
limt→∞

β∗(t)
β−(t)

,if B =∞
. (4.22)

So far, we have proved that the continuation region is the region between the

curves m ± β∗(t) and we have determined its asymptotic growth. It remains

to examine the assumptions we have used, in particular (cc4)-(cc6). In the

following we will see that these assumptions hold in various circumstances.
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4.2 Applications

We want to apply the forgoing results to the three basic examples that ac-

company this thesis. We will determine the asymptotic growth rate of the

continuation region for various reward and cost functions.

4.2.1 Brownian motion

We consider Brownian motion where the generator is A = 1
2
∂2
x, and u(x) = x2

solves Au = 1 . At first we will consider concave reward functions and state

the following theorem corresponding to 3.3.2.

4.2.2 Theorem: Let g(x) = G(|x|) be a reward with strictly increasing con-

cave C2-function G satisfying

lim
y→∞

G′(y)yγ = q for some q > 0, 0 ≤ γ < 1.

Let c be a cost function with limt→∞ c
′(t) = 0, strictly increasing, twice con-

tinuously differentiable and concave. Furthermore we assume

lim
t→∞

c(t)

tα
= r

for some r ∈ (0,∞] and α > (1 − γ)/2, and we suppose the existence of an

increasing function h ≥ 0 such that

lim
x→0

h(x) = 0, lim
x→0

xh′(x) = 0, lim
t→∞

c′′(t)

c′(t)1+ 2
1+γ h(c′(t))

= 0 . (4.23)

Then the continuation region is the set enscribed between the curves ±β∗(t),

i.e.

C = {(x, t) : |x| < β∗(t)} ,

and

β∗(t) = ψ(c′(t))(1 + o(1)) = (
2

q
c′(t))−

1
1+γ (1 + o(1)) .

Proof: We have to examine the conditions (cc1)-(cc6) and (R1)-(R3). Then

we can apply Theorem 4.1.7 and Corollary 4.1.10 to obtain the assertion.

Proposition 4.1.3 provides (R1)-(R3) for the reward function g. Since c grows
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faster than tα with α > 1−γ
2

, condition (cc3) is valid. From the linear case, see

Theorem 3.2.3 , we get the inner and outer approximation

β−(t) = ψ(c′(t)) , β+(t) = ψ(c′(t)(1− h(c′(t))) ,

which fulfill

β−(t) = (
2

q
c′(t))−

1
1+γ (1 + o(1)) ,

β+(t) =
(

2

q
c′(t)(1− h(c′(t))

)− 1
1+γ

(1 + o(1)) ,

compare to (3.24). Hence they are asymptotically equivalent and (cc5) is true.

Finally condition (cc6) follows, since u(β+(t)) = O(c′(t)−
2

1+γ ) . 2

We want to apply the above result to some reward and cost functions.

1. g(x) = |x|:
This reward is strongly related to locally best tests, see 2.3.1. The inverse

function of G′/U ′ is given by ψ(z) = 1/(2z) for all z ∈ (0,∞). Thus the

inner approximation satisfies

β−(t) =
1

2c′(t)
for all t > 0.

We consider some cost functions

1.1 c(t) = tα with 1
2
< α < 1:

Then the assumptions of the preceding theorem are fulfilled, if we

can find a function h ≥ 0 satisfying (4.23). We define h(x) = xδ

with 0 < δ < 2α−1
1−α . Then the first two properties hold. The last

one follows since

lim
t→∞

tα−2

t3(α−1)t(α−1)δ
= lim

t→∞
t−α(2+δ)+δ+1 = 0 ,

the exponent being less than zero. Hence we obtain

C = {(x, t) : |x| < β∗(t)} ,

and

β∗(t) =
1

2c′(t)
(1 + o(1)) =

1

2α
t−(α−1)(1 + o(1)) . (4.24)
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1.2 c(t) = t+ log(1 + t):

Then c′(t) = 1 + 1/(1 + t) decreases to one and c′′(t) = −1/(1 + t)2.

Thus the continuation region remains bounded in space with limit

B = lim
t→∞

ψ(c′(t)) =
1

2
.

The inner approximation is given by

β−(t) =
1

2c′(t)
=

1 + t

2(2 + t)
=

1

2
− 1

2(2 + t)
.

We define h(x) = (x− 1)δ for all x > 1 with 1 < δ < 2.

Then the outer approximation is defined by

β+(t) =
1

2c′(t)(1− h(c′(t)))
=

1

2
−(2 + t)((1 + t)δ − 1)− (1 + t)δ+1

2(2 + t)((1 + t)δ − 1)
.

We obtain that
1

2
− β−(t) =

1

2(2 + t)

and
1

2
− β+(t) =

1

2(2 + t)

(1 + t)δ − 1− (1 + t)

(1 + t)δ − 1

are asymptotically equivalent due to δ > 1. Furthermore the con-

tinuation region is determined by

C = {(x, t) : |x| < β∗(t)}

with

1

2
− β∗(t) = (

1

2
− β−(t))(1 + o(1)) =

1

2(2 + t)
(1 + o(1)) (4.25)

since

c′′(t)

c′(t)h(c′(t))
=

−1/(1 + t)2

(1 + 1/(1 + t))(1/(1 + t))δ
→ 0 .

2. g(x) = |x|ν with 0 < ν < 1:

Then F (y) = G′(y)/U ′(y) = ν
2
yν−2 has the inverse function

ψ(z) = (
2z

ν
)

1
ν−2 for all z ∈ (0,∞).

We consider the following cost functions



52 CHAPTER 4. CONCAVE COSTS OF OBSERVATIONS

2.1 c(t) = tα with ν
2
< α < 1:

We apply Theorem 4.2.2 with γ = 1 − ν and set h(x) = xδ with

0 < δ < 1
1−α −

2
2−ν . Then

lim
t→∞

c′′(t)

c′(t)1+ 2
1+γ h(c′(t))

= 0 ,

since
tα−2

t(α−1)(1+ 2
1+γ

)tδ(α−1)
= tα−2+(1−α)(1+ 2

2−ν+δ) → 0 ,

the exponent being less than zero. The continuation region therefore

satisfies

C = {(x, t) : |x| < β∗(t)}

with

β∗(t) = (
2

ν
c′(t))

1
ν−2 (1 + o(1)) = (

2α

ν
)

1
ν−2 t

1−α
2−ν (1 + o(1)) . (4.26)

2.2 c(t) = t+ log(1 + t):

The upper bound B for the continuation region fulfills

B = lim
t→∞

ψ(c′(t)) = (
2

ν
)

1
ν−2 .

The inner aproximation is given by

β−(t) = ψ(c′(t)) = (
2

ν
(1 +

1

1 + t
))

1
ν−2 .

As before we set h(x) = (x− 1)δ for all x > 1 with 0 < δ < 1. Then

the outer approximation satisfies

β+(t) = ψ(c′(t)(1− h(c′(t))) .

With

η(t) = 1− h(c′(t)) , f(t) = c′(t)η(t)

we can verify the condition (cc5), since

lim
t→∞

B − β−(t)

B − β+(t)
= lim

t→∞

ψ′(c′(t))c′′(t)

ψ′(f(t))f ′(t)
= 1 .

The last equation follows from limt→∞
c′′(t)
f ′(t)

= 1. (cc6) is valid with

the same argument as for the previous discussed reward. Hence we

obtain, the continuation region is a set

C = {(x, t) : |x| < β∗(t)}
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with

B − β∗(t) =
(
(
2

ν
)

1
ν−2 − (

2

ν
(1 +

1

1 + t
))

1
ν−2

)
(1 + o(1)) .

3. g(x) = |x|ν with 1 < ν < 2:

This is an example of a convex reward function, and we have to ap-

ply Theorem 4.1.7, Corollary 4.1.10 directly. The function F (y) =

G′(y)/U ′(y) = ν
2
yν−2 for all y ∈ (0,∞) is strictly decreasing from in-

finity to zero and has as its inverse

ψ(z) = (
2

ν
z)

1
ν−2 , z ∈ (0,∞) .

Furthermore Ag(x) = 1
2
ν(ν − 1)xν−2 is decreasing on (0,∞). Hence the

conditions (R1)-(R3) are valid. For cost functions c we have to verify

the conditions (cc1)-(cc6).

3.1 c(t) = tα with ν
2
< α < 1:

Then (cc1)-(cc3) are of course true. We choose h(x) = xδ with

0 < δ < 1
1−α −

2
2−ν , and the same arguments as in 2.1 provide the

conditions (cc4)-(cc6). Hence the continuation region is determined

by

C = {(x, t) : |x| < β∗(t)}

and

β∗(t) = (
2α

ν
)

1
ν−2 t

1−α
2−ν (1 + o(1)) . (4.27)

3.2 c(t) = t+ log(1 + t):

Then the same conclusions can be drawn as in the preceding exam-

ple. We obtain

C = {(x, t) : |x| < β∗(t)}

with

B − β∗(t) =
(
(
2

ν
)

1
ν−2 − (

2

ν
(1 +

1

1 + t
))

1
ν−2

)
(1 + o(1)) .

4. g(x) = log(1 + |x|) :

This is an example for a concave reward function where Theorem 4.2.2 is
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not applicable, but where we can verify the assumptions (R1)-(R3),(cc1)-

(cc6) directly. Due to concavity, (R1)-(R3) are true, and the inverse ψ

of G′/U ′ is given by

ψ(z) = −1

2
+

√
1

4
+

1

2z
.

For a cost function c, the inner approximation is defined by

β−(t) = −1

2
+

√
1

4
+

1

2c′(t)
=

√
1

2c′(t)
(1 + o(1)).

We consider c(t) = tα with 0 < α < 1 as cost function. Then (cc1)-(cc3)

are valid and we choose h(x) = xδ with 0 < δ < α
1−α . Obviously, (cc4) is

satisfied, and the outer approximation fulfills

β+(t) = −1

2
+

√
1

4
+

1

2c′(t)(1− h(c′(t)))

which is asymptotically equivalent to β−(t). Hence it remais to prove

(cc6). Due to u(β+(t)) � ψ(c′(t))2 � 1
2c′(t))

, this holds since

c′′(t)

c′(t)2h(c′(t))
= O(tα−2−(2+δ)(α−1)) ,

and the exponent is less than zero as 0 < δ < α
1−α . Note that f(t) � g(t)

means limt→∞
f(t)
g(t)

= 1. Hence we obtain for the continuation region

C = {(x, t) : |x| < β∗(t)}

with

β∗(t) = β−(t)(1 + o(1)) =

√
1

2c′(t)
(1 + o(1))

=

√
1

2α
t1−α(1 + o(1)) . (4.28)

4.2.3 Process of posterior probabilities

We continue the considerations of the example introduced in 2.2.2. We recall

that the process of posterior probabilities is a diffusion with generator

A =
1

2
x2(1− x)2∂2

x
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on E = (0, 1). A symmetric solution w.r.t. m = 1
2

of Au = 1 is given by

u(x) = 2(2x− 1) log(x/(1− x)) for all x ∈ (0, 1). Thus

U(y) = 4y log
1/2 + y

1/2− y
, U ′(y) = 4 log

1/2 + y

1/2− y
+

4y

(1/2 + y)(1/2− y)
.

At first we consider concave reward functions and want to obtain an analogous

result to Theorem 3.3.4.

4.2.4 Theorem: Let g(x) = G(|x− 1
2
|) , x ∈ (0, 1), be a reward function with

strictly increasing concave C2-function G satisfying

lim
y→ 1

2

G′(y)(
1

2
− y)−γ = q

for some q > 0, γ ≥ 0. Let c be a cost function, strictly increasing, twice

continuously differentiable and concave. Furthermore we assume, c′(t) tends

to zero, and the existence of an increasing function h ≥ 0 with

lim
x→0

h(x) = 0, lim
x→0

xh′(x) = 0, lim
t→∞

c′′(t) log 1
2c′(t)

c′(t)h(c′(t))
= 0 . (4.29)

Then the continuation region is the set enscribed between the curves 1
2
±β∗(t),

i.e.

C = {(x, t) : |1
2
− x| < β∗(t)} ,

and

1

2
− β∗(t) = (

2c′(t)

q
)

1
1+γ (1 + o(1)) . (4.30)

Proof: We have to examine the conditions (R1)-(R3) and (cc1)-(cc6). Then

we can apply Theorem 4.1.7 and Corollary 4.1.10 to obtain the assertion. From

the linear case we know that (R1)-(R3) hold. Furthermore the inverse function

ψ of G′/U ′ fulfills

1

2
− ψ(z) = (

2z

q
)

1
1+γ (1 + o(1)) for z → 0, (4.31)

see (3.31). Since E is bounded, concavity implies (cc1)-(cc3) . An inner and

outer approximation is given by

β−(t) = ψ(c′(t)) , β+(t) = ψ(c′(t)(1− h(c′(t))).
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From (4.31) we obtain

1

2
− β−(t) = (

1

2
− β+(t))(1 + o(1)) = (

2c′(t)

q
)

1
1+γ (1 + o(1)).

Furthermore due to

U(y) = 2 log(
1

1
2
− y

)(1 + o(1)) for y → 1

2
,

we have

1
1+γ

log( 1
2c′(t)/q

)

U(β+(t))
=

log
(

1
2
−β+(t)

(2c′(t)/q)
1

1+γ

)
+ log( 1

1
2
−β+(t)

)

U(β+(t))
→ 1

2
.

Hence condition (cc6) is fulfilled if

lim
t→∞

c′′(t) log 1
2c′(t)

c′(t)h(c′(t))
= 0 (4.32)

and the result is proved. 2

We want to apply this to some reward and cost functions.

1. g(x) = G(|x− 1
2
|) with G(y) = y:

This continues our analysis of the stopping problem introduced in 2.3.2.

For cost functions c with limt→∞ c
′(t) = 0

1

2
− β−(t) =

1

2
− ψ(c′(t)) = 2c′(t)(1 + o(1))

compare to (3.33). We consider two cost functions:

1.1 c(t) = tα with 0 < α < 1:

Then we choose h(x) = xδ with 0 < δ < 1
1−α . (4.29) is satisfied

since

tα−2+(1−α)(1+δ) log(t1−α)→ 0 .

Thus Theorem 4.2.4 shows

C = {(x, t) : |x− 1

2
| < β∗(t)}

with

1

2
− β∗(t) = 2c′(t)(1 + o(1)) = 2αtα−1(1 + o(1)) . (4.33)
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1.2 c(t) = log(1 + t) :

Then we choose h(x) = xδ with 0 < δ < 1 and have

c′′(t) log( 1
2c′(t)

)

c′(t)h(c′(t))
= −(

1

1 + t
)1−δ log(

1

2
(1 + t))→ 0 .

Thus the continuation region has the above form with

1

2
− β∗(t) =

2

1 + t
(1 + o(1)) . (4.34)

2. g(x) = G(|x− 1
2
|) with G(y) = −(1

2
− y)ν for ν ≥ 1:

Then the assumptions of the preceding theorem are fulfilled for the cost

functions c(t) = tα with 0 < α < 1 and c(t) = log(1 + t), which can be

verified as before. We obtain for the continuation region

C = {(x, t) : |x− 1

2
| < β∗(t)}

with

1

2
− β∗(t) = (

2c′(t)

ν
)

1
ν (1 + o(1)) = (

2α

ν
)

1
ν t

α−1
ν (1 + o(1)) (4.35)

in the first case, and

1

2
− β∗(t) = (

2

ν(1 + t)
)

1
ν (1 + o(1)) (4.36)

in the latter.

4.2.5 Portfolio optimization

As introduced in 2.2.3 a consideration of portfolio strategies without tansaction

costs is related to a diffusion on E = (0, 1) with generator

A =
1

2
x2(1− x)2∂2

x + x(1− x)(
1

2
− x)∂x .

The even solution w.r.t. m = 1
2

of Au = 1 is given by u(x) = (log(x/(1− x))2.

Thus U(y) = u(1
2

+ y) fulfills

U(y) = (log
1
2

+ y
1
2
− y

)2 , U ′(y) = 2
log 1/2+y

1/2−y

(1/2 + y)(1/2− y)

for all y ∈ (0, 1
2
).

We consider in the following some examples of reward functions and have

to verify the conditions (R1)-(R3) , (cc1)-(cc6) .
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1. g(x) = | log(x/(1− x))|:
Then G(y) = g(1

2
+ y) , y ∈ (0, 1

2
), satisfies

G(y) = log
1/2 + y

1/2− y
, G′(y) =

1

(1/2 + y)(1/2− y)
.

Hence F = G′/U ′ fulfills

F (y) =
1

2
(log

1/2 + y

1/2− y
)−1 , y ∈ (0,

1

2
) ,

and its inverse ψ is defined by

ψ(z) =
1

2

exp( 1
2z

)− 1

exp( 1
2z

) + 1
, z ∈ (0,∞) . (4.37)

Thus (R1) and (R2) are valid. Condition (R3) holds, due to Ag(x) = 0

for all x ∈ (1
2
, 1).

For a cost function c, the inner and outer approximation are defined by

β−(t) = ψ(c′(t)) , β+(t) = ψ(c′(t)(1− h(c′(t)))

where the function h must be chosen, such that the conditions (cc4)-(cc6)

are fulfilled.

To examine the condition (cc5) we note

1

2
− ψ(z) = exp(− 1

2z
)(1 + o(1)) .

Then, with η(t) = 1− h(c′(t)), we get

lim
t→∞

1
2
− β+(t)

1
2
− β−(t)

= lim
t→∞

exp(
1

2
(

1

c′(t)
− 1

c′(t)η(t)
)) .

The exponent

1

c′(t)
− 1

c′(t)η(t)
= − h(c′(t)

c′(t)(1− h(c′(t))

converges to zero, if

lim
x→0

h(x)

x
= 0 . (4.38)
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Hence we have proved that, for h with the above additional property

(4.38), 1
2
− β+(t) , 1

2
− β−(t) are asymptotically equivalent.

Secondly, we want to examine which condition on h leads to (cc6). Due

to U(ψ(z)) = ( 1
2z

)2, it holds

U(β+(t)) � (
1

2c′(t)
)2 .

Hence h must satisfy

lim
t→∞

c′′(t)

h(c′(t))c′(t)3
= 0 , (4.39)

which is the same condition as in the Brownian motion case, see the first

example of 4.2.1. So we may use the cost functions c here as well, if

(4.38) is additionally fulfilled.

We consider c(t) = tα with 2
3
< α < 1 :

Then (2α − 1)/(1 − α) > 1, and we can choose h(x) = xδ with 1 <

δ < (2α− 1)/(1− α) . As was seen for Brownian motion, the conditions

(cc6),(cc4) hold. Furthermore (cc5) is valid, since the additional property

(4.38) is fulfilled. We obtain for the continuation region.

C = {(x, t) : |x− 1

2
| < β∗(t)}

and

1

2
− β∗(t) =

(
1

2
− ψ(c′(t))

)
(1 + o(1))

= exp(− 1

2α
t1−α)(1 + o(1)) .

2. g(x) =

{
log 1

1−x ,if x > 1
2

log 1
x

,if x ≤ 1
2

:

Then

G(y) = − log(
1

2
− y) , G′(y) =

1

1/2− y

and F = G′/U ′ fulfills

F (y) = (
1

2
+ y)

1

2 log(1/2+y
1/2−y )

(4.40)



60 CHAPTER 4. CONCAVE COSTS OF OBSERVATIONS

which is decreasing on (0, 1
2
) with limy→0 F (y) = ∞, limy→1/2 F (y) = 0.

Hence (R1),(R2) are valid. Due to Ag(x) = 1
2
x(1 − x), the condition

(R3) follows.

As in the preceding example, the asymptotic equivalence of the inner

and outer approximation has to be examined carefully. We define

F1(y) = − 1

2 log(1
2
− y)

, y ∈ (0,
1

2
) , (4.41)

and note

lim
y→ 1

2

F (y)

F1(y)
= 1 . (4.42)

The inverse function of F1, denoted by ψ1, is given by

ψ1(z) =
1

2
− exp(− 1

2z
) , ψ′1(z) = −1

2

1

z2
exp(− 1

2z
), (4.43)

z ∈ (0,∞). It is easy to see

lim
y→ 1

2

ψ′1(F (y))F ′(y) = 1 ,

which implies

lim
z→0

1/2− ψ1(z)

1/2− ψ(z)
= 1 , (4.44)

since

lim
z→0

1/2− ψ1(z)

1/2− ψ(z)
= lim

z→0

ψ′1(z)

ψ′(z)
= lim

y→ 1
2

ψ′1(F (y))

ψ′(F (y))
= lim

y→ 1
2

ψ′1(F (y))F ′(y) .

With η(t) = 1− h(c′(t)) we obtain

lim
t→∞

1
2
− β−(t)

1
2
− β+(t)

= lim
t→∞

1/2− ψ(c′(t))

1/2− ψ(c′(t)η(t))

= lim
t→∞

1/2− ψ1(c′(t))

1/2− ψ1(c′(t)η(t))

= lim
t→∞

exp(−1

2
(

1

c′(t)
− 1

c′(t)η(t)
)) = 1 ,

if limx→0
h(x)
x

= 0.
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Secondly we have to investigate condition (cc6). Due to (4.41) and (4.42)

c′(t) = F (β−(t)) � − 1

2 log(1
2
− β−(t))

,

and

c′(t)(1− h(c′(t))) = F (β+(t)) � − 1

2 log(1
2
− β+(t))

.

Hence

log(
1

2
− β−(t)) � log(

1

2
− β+(t)) , (4.45)

and from U(y) �
(
log(1

2
− y)

)2
for y → 1

2
we obtain

U(β+(t)) � U(β−(t)) .

Furthermore, (4.44) shows

U(β−(t)) =
(
log(

1

2
− ψ1(c′(t)))

)2
+ o(1) = (

1

2c′(t))
)2 + o(1) .

Thus condition (cc6) holds, if h fulfills

lim
t→∞

c′′(t)

c′(t)3h(c′(t))
= 0 . (4.46)

Hence, for c(t) = tα with 2
3
< α < 1 we can choose h(x) = xδ with

1 < δ < 2α−1
1−α . Then the continuation region is given as

C = {(x, t) : |x− 1

2
| < β∗(t)} ,

with

1

2
− β∗(t) = (

1

2
− ψ(c′(t)))(1 + o(1))

= (
1

2
− ψ1(c′(t)))(1 + o(1))

= exp(− 1

2c′(t)
)(1 + o(1))

= exp(−t
1−α

2α
)(1 + o(1)) .

Note that the boundaries of the continuation region in both examples

have the same asymptotical shape.
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Chapter 5

Convex costs

5.1 Asymptotics of the continuation region

As before we consider a one-dimensional symmetric A-diffusion on an open

interval E = (m− l,m+ l). For a symmetric reward function g and a convex

cost function c, the optimal stopping problem corresponding to the payoff

(x, t)→ g(x)− c(t)

will be treated in this chapter. The case of convex growth of costs for obser-

vations leads to a different behaviour of the continuation region than in the

concave case. Since the cost rate increases, one expects that the continuation

region shrinks and is contained in the set

Cout = {(x, t) : |x−m| < ψ(c′(t))} .

Thus, different to the concave case, an outer approximation should be easily

obtainable by applying the results of the linear case to the increasing cost rate

function.

It will be more difficult to construct an inner approximation. The main

idea is to find an appropriate subharmonic function. This will be explained

in the following. But let us first state the conditions which the cost function

c : [0,∞)→ [0,∞) should fulfill.

(cv1) c is strictly increasing with c(0) ≥ 0.

(cv2) c is twice continuously differentiable and convex .

63
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(cv3) For all k > 0 and all x ∈ E

Ex sup
t≥0

(g(Xt)− kt) <∞.

Due to convexity, (cv3) implies

Ex sup
t≥0

(g(Xt)− c(t0 + t)) <∞

for all x ∈ E, t0 ≥ 0. Furthermore, as in the linear case

lim
t→∞

g(Xt)− c(t0 + t) = −∞ Px − a.s.

for all x ∈ E. Thus we can apply the usual theory of optimal stopping and

obtain that the continuation region C is an open set, and that the first exit

time from C is an optimal stopping time, see Theorem 4.1.1. If additionally

the coefficients of A are locally Hölder continuous, the optimal value function

v fulfills the partial differential equation

(∂t + A)v = 0 on C .

Introducing the difference d(x, t) = v(x, t)−(g(x)−c(t)), we get the analogous

result as in the concave case.

5.1.1 Lemma: If (cv1)-(cv3) are fulfilled with a symmetric continuous reward

function g, then

(i) v(x, ·) is decreasing for all x ∈ E,

(ii) d(x, ·) is decreasing for all x ∈ E,

(iii) v(·, t) is even w.r.t. m for all t ≥ 0, and the continuation region is

symmetric w.r.t. m, i.e.

(m+ y, t) ∈ C ⇐⇒ (m− y, t) ∈ C for all y ∈ (0, l), t ≥ 0 .

Proof: We may argue as in the proof of Lemma 4.1.2 by using convexity in-

stead of concavity. 2

For the further analysis of the stopping problem we assume the conditions

(R1)-(R3) to hold for the symmetric continuous reward function g. Then, as
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in the preceding chapter, we can apply the results for linear cost functions for

all cost rates k > 0. Here, in the case of convex costs, this leads to an outer

approximation of the continuation region. We introduce the function ζ+ by

ζ+(t) = ψ(c′(t)) for all t ≥ 0 (5.1)

and recall that m± ζ+(t) are the unique solutions of

g′(x) = c′(t)u(x) (5.2)

in E, compare to Chapter 3. The function ψ, implicitly defined by (5.2),

is the inverse of the strictly decreasing function G′/U ′ and therefore strictly

decreasing itsself. Together with the convexity of c, this shows that ζ+ is a

strictly decreasing function. Furthermore we can state

5.1.2 Lemma: If g fulfills (R1)-(R3) and c satisfies (cv1)-(cv3), then the

continuation region C is contained in

Cout = {(x, t) : |x−m| < ζ+(t)} .

Proof: We follow the concave case and replace the convex cost function by its

linear tangent at each t0 > 0. Convexity implies

c(t0 + t) ≥ c′(t0)t+ c(t0) for all t > 0.

If a point (x, t0) ∈ C is contained in the continuation region we find a stopping

time τ such that

g(x)− c(t0) < Ex (g(Xτ )− c(t0 + τ))

≤ Ex(g(Xτ )− c′(t0)τ)− c(t0) .

Thus x lies in the continuation region for linear costs with cost rate c′(t0), and

we obtain

|x−m| < ψ(c′(t0)) = ζ+(t0) .

Hence the assertion is valid. 2

To establish that the continuation region is a set enscribed between bound-

ary curves (m± β∗(t))t≥0 becomes more difficult in the convex case . Helpful
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is a first inner approximation which can easily be obtained. For this purpose

we consider the equation

Ag(x) = c′(t) . (5.3)

If, for t > 0, the above equation is solvable in x, (R3) implies that it has

exactly two symmetric solutions, denoted by m± δ(t). If no solution exists we

put δ(t) = 0. Since Ag is decreasing on (m,m+ l) and c′ is increasing in t we

have thus defined a continuous decreasing curve δ, such that

Ag(x) > c′(t) for all 0 < |x−m| < δ(t) . (5.4)

This states that (x, t)→ g(x)− c(t) is subharmonic in the region {(x, t) : m <

x < m + δ(t)} ∪ {(x, t) : m− δ(t) < x < m}, and it is not surprising that the

assertion of the following lemma holds

5.1.3 Lemma: Let c satisfy (cv1)-(cv3), and let g fulfill (R1)-(R3) . Then

{(x, t) : 0 < |m− x| < δ(t)}

is contained in the continuation region.

Proof: This follows easily from the above inequality (5.4). For a point (x0, t0)

with m < x0 < m + δ(t0) we may choose a neighbourhood Γ = {(x, t) :

|x− x0| < ε, |t− t0| < ε} such that

(∂t + A)ĝ(x, t) > 0 on Γ

with ĝ denoting the payoff function ĝ(x, t) = g(x) − c(t). On Γ, ĝ is subhar-

monic, and therefore the first exit time from Γ should bring an improvement

compared to immediate stopping. We put

τ = inf{t ≥ 0 : (Xt, t0 + t) /∈ Γ} .

Then

Ex0 (g(Xτ )− c(t0 + τ)) = Ex0 ĝ(Xτ , t0 + τ)

= ĝ(x0, t0) + Ex0

∫ τ

0
(∂t + A)ĝ(Xt, t0 + t)dt

> ĝ(x0, t0) = g(x0)− c(t0)
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and therefore (x0, t0) is contained in the continuation region. 2

Note, that we give no statement about the midpoint line {(m, t) : t ≥
0} since g might not be differentiable in m. Furthermore, the above inner

approximation is not very accurate. In the case Ag ≤ 0 it even collapses

to the empty set since δ(t) = 0 for all t. But still it provides additional

information that can be used to derive the shape of the continuation region.

As will be explained later different arguments are necessary to decide whether

the midpoint line belongs to the continuation region.

5.1.4 Theorem: Let g fulfill (R1)-(R3), and let c satisfy (cv1)-(cv3). Then

there exists a decreasing function β∗ : [0,∞)→ (0,∞) such that the continua-

tion region fulfills

C \ {(m, t) : t ≥ 0} = {(x, t) : 0 < |x−m| < β∗(t)} .

Proof: We define

β∗(t) = inf{y > 0 : (m+ y, t) /∈ C} = inf{y > 0 : d(m+ y, t) = 0} (5.5)

with the convention inf ∅ = 0. Then β∗ is decreasing since d(x, ·) is decreasing

for all x ∈ E, and by definition {(x, t) : 0 < |x − m| < β∗(t)} ⊂ C. From

Lemma 5.1.3, δ(t) ≤ β∗(t) for all t > 0. It remains to prove

{(x, t) : |x−m| > β∗(t)} ⊂ E

with E denoting the stopping region. If |x − m| ≥ ζ+(t), this is true due to

the outer approximation, and it remains to consider x such that |m− β∗(t)| <
x < |m− ζ+(t)|. We first assume m+β∗(t) < x < m+ ζ+(t) and have to show

that immediate stopping is optimal. The first exit time τ ∗ from C is optimal,

hence

v(x, t) = Ex(g(Xτ∗)− c(t+ τ ∗)) .

We introduce the first time σ that the diffusion hits one of the moving bound-

aries (m+ β∗(t+ s))s≥0, (m+ ζ+(t+ s))s≥0 by

σ = inf{s ≥ 0 : Xs = m+ β∗(t+ s) or Xs = m+ ζ+(t+ s)}

Then, since m + β∗(t) < x < m + ζ+(t), the diffusion will first exit from C
before it can reach one of the moving boundaries, i.e. τ ∗ ≤ σ. Contrary to
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the previous chapters we will use a localization argument at m and not at the

boundary of E. This is necessary since g might not be differentiable at m.

Therefore we introduce the sequence of stopping times σn defined by

σn = inf{s ≥ 0 : Xs ≤ m+
1

n
} (5.6)

Then dominated convergence implies

Ex(g(Xτ∗)− c(t+ τ ∗)) = lim
n→∞

Ex (g(Xτ∗∧σn)− c(t+ τ ∗ ∧ σn)) . (5.7)

Note that δ(t+ s) ≤ ζ+(t+ s) implying Ag(Xs) ≤ c′(t+ s) for all s ≤ τ ∗ ∧ σn.

Due to Xs ∈ [m+ 1/n,m+ ζ+(t)] for s ≤ τ ∗ ∧ σn this yields with Prop. 2.1.2

Exg(Xτ∗∧σn) = g(x) + Ex

∫ τ∗∧σn

0
Ag(Xs)ds

≤ g(x) + Ex

∫ τ∗∧σn

0
c′(t+ s)ds

= g(x) + Ex c(t+ τ ∗ ∧ σn)− c(t) (5.8)

Thus, by inserting into (5.7)

v(x, t) = Ex g(Xτ∗)− c(t+ τ ∗) ≤ g(x)− c(t) .

The case m− ζ+(t) < x < m− β∗(t) follows by symmetry and the assertion is

proved. 2

Note that the arguments in the preceding proof do not work when starting

from the midpoint m. The reason is that g need not be differentiable in m. It

is only a C2-function on (m,m+ l) respectively (m− l,m). Thus the procedure

in (5.8) is only correct if the diffusion remains in one of the sets (m − l,m)

or (m,m+ l) until stopping. Later we will see with other arguments that the

midpoint line belongs to the continuation region.

To improve the inner approximation requires the following additional as-

sumptions. Recall that ψ : (0,∞) → (0, l) denotes the inverse function of

G′/U ′ and that both functions are decreasing. Furthermore, as in the concave

case, we define c′(∞) = limt→∞ c
′(t), B = limt→∞ ψ(c′(t)) It will turn out that

the real number B ∈ [0,∞) provides a lower bound for the continuation region,

i.e. (m−B,m+B)× [0,∞) ⊂ C.
We demand the following properties for a decreasing differentiable function

h ≥ 0.
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(cv4) limx↑c′(∞) h(x) = 0 , limx↑c′(∞) xh
′(x) = 0 ,

(cv5) the curve ζ− defined by ζ−(t) = ψ(c′(t)(1 + h(c′(t)))) for all t ≥ 0 is

asymptotically equivalent to ζ+ , i.e.

lim
t→∞

ζ−(t)−B
ζ+(t)−B

= 1 ,

(cv6)

lim
t→∞

c′′(t)U(ζ+(t))

h(c′(t))c′(t)
= 0 .

Since ψ decreases, ζ−(t) ≤ ζ+(t) for all t ≥ 0. The aim is to show ζ−(t) ≤
β∗(t) ≤ ζ+(t) for large t. In a first step we will contruct a majorant of the

payoff function, subharmonic for large t.

5.1.5 Lemma: Let the reward g fulfill (R1)-(R3), and let the cost function c

satisfy (cv1)-(cv6). Then there exists a function

φ : E × (0,∞)→ IR

and some t0 > 0 such that the following properties hold:

(i) (∂t + A)φ(x, t) ≥ 0 for all x ∈ E, t ≥ t0.

(ii) φ is even w.r.t. the midpoint m.

(iii) φ(x, t) ≥ g(x)− c(t) for all x ∈ E , t > 0.

(iv) φ(m± ζ−(t), t) = g(m± ζ−(t))− c(t) for all t > 0.

(v) φ is bounded from above on {(x, t) : t ≥ t0, |m− x| ≤ ζ−(t)}.

Proof: Recall that u denotes the symmetric solution of Au = 1, vanishing at

m, and that u is non-negative. Furthermore we define

η(t) = 1 + h(c′(t)) , f(t) = η(t)c′(t) , t > 0, (5.9)

and

φ1(x, t) = η(t)c′(t)u(x)− c(t) , t > 0, x ∈ E . (5.10)
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Then

f ′(t) = η′(t)c′(t) + η(t)c′′(t) = c′′(t)
(
1 + h(c′(t)) + c′(t)h′(c′(t))

)
together with (cv4) shows the existence of t0 such that f ′(t) ≥ 0 for t ≥ t0.

This implies that φ1 is subharmonic for t ≥ t0, since

(∂t + A)φ1(x, t) = f ′(t)u(x) + c′(t)(η(t)− 1)

= f ′(t)u(x) + c′(t)h(c′(t)) . (5.11)

We lift φ1 in such a way that it exceeds (x, t)→ g(x)− c(t) and touches it

at m± ζ−(t). Therefore we define

φ(x, t) = φ1(x, t) + γ(t)

with γ(t) = g(m+ ζ−(t))− c′(t)η(t)u(m+ ζ−(t)). Then φ fulfills the properties

(ii)-(iv) since x→ g(x)− c′(t)η(t)u(x) has its maximal points at m± ζ−(t).

To prove (i) we verify, as in the concave case, that

γ′(t) = −f ′(t)u(m+ ζ−(t))

and

(∂t + A)φ(x, t) = f ′(t)u(x) + c′(t)h(c′(t))− f ′(t)u(m+ ζ−(t)) .

Since f ′(t) ≥ 0 for large t we have to verify that f ′(t)u(m+ ζ−(t)) tends faster

to zero than c′(t)h(c′(t)). But this follows from f ′(t) = c′′(t)(1 + o(1)) and

condition (cv6).

To show the boundedness condition (v) we note that

∂tφ(x, t) = f ′(t)u(x)− c′(t) + γ′(t)

= f ′(t)(u(x)− u(m+ ζ−(t)))− c′(t) . (5.12)

Thus, if |m− x| < ζ−(t), then

∂sφ(x, s) ≤ 0 for all s ∈ (t0, t)

and

φ(x, t) ≤ φ(x, t0) ≤ φ(m+ ζ−(t0), t0)

for all t > t0, |m− x| < ζ−(t). 2
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With the help of this lemma a suitable inner approximation of the con-

tinuation region can be derived. We recall that ζ−(t) is the unique solution

of

G′(y) = c′(t)(1 + h(c′(t))U ′(y)

for y on (0, l).

5.1.6 Theorem: Let the reward g fulfill (R1)-(R3), and let the cost function

c satisfy (cv1)-(cv6).Then there exists some t0 > 0 such that

Cin = {(x, t) : 0 ≤ |x−m| < ζ−(t), t ≥ t0}

is contained in the continuation region C.

Proof: From Lemma 5.1.5 there exists a function φ : E × (0,∞) → (0,∞)

and some t0 > 0 such that the properties (i)-(v) are fulfilled.

For t ≥ t0 and |x − m| < ζ−(t) we want to verify that (x, t) lies in the

continuation region. We define the first hitting time of the moving boundaries

m± ζ−(t+ ·) by

τ = inf{s ≥ 0 : |Xs −m| = ζ−(t+ s)}
= inf{s ≥ 0 : φ(Xs, t+ s) = g(Xs)− c(t+ s)} . (5.13)

Then

v(x, t) ≥ Ex (g(Xτ )− c(t+ τ)) = Ex φ(Xτ , t+ τ) . (5.14)

Furthermore, for each fixed T > 0, φ(Xτ∧T , t + τ ∧ T )T≥0 is bounded from

above due to property (v). Hence Fatou’s lemma yields

Ex φ(Xτ , t+ τ) ≥ lim sup
T→∞

Ex φ(Xτ∧T , t+ τ ∧ T ) , (5.15)

and optional sampling provides, due to (Xs, t+ s) ∈ (m− ζ−(t),m+ ζ−(t))×
(t, t+ T ) for all s ≤ T ∧ τ ,

Ex φ(Xτ∧T , t+ τ ∧ T ) = φ(x, t) + Ex

∫ τ∧T

0
(∂t + A)φ(Xs, t+ s)ds

≥ φ(x, t) > g(x)− c(t) .

Together with (5.14) this shows that (x, t) is contained in the continuation

region, and the inner approximation is obtained. 2
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In extension of Theorem 5.1.4, our additional assumptions (cv4)-(cv6) pro-

vide that {(m, t) : t ≥ t0} is contained in the continuation region. Since the dif-

ference v(x, t)−(g(x)−c(t)) is decreasing in time, the whole line {(m, t) : t ≥ 0}
belongs to C. In view of Theorem 5.1.4 we get an improved version.

5.1.7 Corollary: Under the assumptions of the preceding theorem there exists

a decreasing function β∗ : [0,∞) → (0, l] such that the continuation region C
fulfills

C = {(x, t) : 0 ≤ |x−m| < β∗(t)} .

Furthermore β∗ is continuous from the right and fulfills

0 < β∗(t) ≤ ζ+(t)

for all t ≥ 0 .

Proof: It remains to show continuity from the right. For this let (tn) be a

sequence decreasing to t. Then β∗(tn) is increasing and tends to β∗(t+) where

β∗(t+) ≤ β∗(t). Since the stopping region E is closed, (m + β∗(t+), t) is con-

tained in E as limit of (β∗(tn), tn) in E . Hence β∗(t) ≤ β∗(t+) giving equality.

The function β∗ is strictly positive since it exceeds ζ− for large t due to the

inner approximation. 2

We have thus shown that, as in the concave case, the continuation set is the

region between two curves m± β∗(t), and we have determined its asymptotic

shape. Recall B = limt→∞ ψ(c′(t)).

5.1.8 Corollary: If c fulfills (cv1)-(cv6) and g satisfies (R1)-(R3), then the

boundary of the continuation region is asymtotically equivalent to its inner and

outer approximation, i.e.

lim
t→∞

ζ+(t)−B
β∗(t)−B

= lim
t→∞

ζ−(t)−B
β∗(t)−B

= 1 .

Proof: The proof is immediate due to the inner and outer approximation and

the fact that ζ− and ζ+ are asymptotically equivalent. 2
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5.2 Applications

We investigate our three examples from the previous chapters.

5.2.1 Brownian motion

The differential generator is A = 1
2
∂2
x, and u(x) = x2 is the even solution of

Au = 1, vanishing at zero.

At first we treat concave reward functions. Our aim is to derive an analo-

gous result to Theorem 4.2.2

5.2.2 Theorem: Let g(x) = G(|x|) be a reward with strictly increasing con-

cave C2-function G satisfying

lim
y→0

G′(y)yγ = q for some q > 0, γ ≥ 0.

Let c be a cost function with limt→∞ c
′(t) =∞ that is strictly increasing, twice

continuously differentiable and convex. Furthermore we assume the existence

of a decreasing function h ≥ 0 such that

lim
x→∞

h(x) = 0, lim
x→∞

xh′(x) = 0, lim
t→∞

c′′(t)c′(t)−
2

1+γ

c′(t)h(c′(t))
= 0. (5.16)

Then the continuation region is a set enscribed between two curves ±β∗(t) ,

i.e.

C = {(x, t) : |x| < β∗(t)}

with

β∗(t) = ψ(c′(t))(1 + o(1)) = (
2

q
c′(t))−

1
1+γ (1 + o(1)) . (5.17)

Proof: We have to examine the conditions (R1)-(R3) and (cv1)-(cv6).

Then Corollary 5.1.7 , 5.1.8 will provide the assertion.

Since G is concave and U is convex, the conditions (R1)-(R3) hold as was seen

in Proposition 4.1.3. Furthermore, condition (cv3) is valid, and the results for

linear cost functions are applicable. The function F = G′/U ′ has a decreasing

inverse function ψ satisfying limz→0 ψ(z) = +∞, limz→∞ ψ(z) = 0. The inner

and outer approximations

ζ+(t) = ψ(c′(t)) , ζ−(t) = ψ(c′(t)(1 + h(c′(t)))
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fulfill, due to (3.25),

ζ+(t) = (
2

q
c′(t))−

1
1+γ (1 + o(1))

ζ−(t) = (
2

q
c′(t)(1 + h(c′(t))))−

1
1+γ (1 + o(1)) . (5.18)

Thus they are asymptotically equivalent, and (cv5) is fulfilled. Finally we note

that (5.16) implies (cv6), since u(ζ+(t)) = O(c′(t)−
2

1+γ ). 2

We want to apply this to some reward and cost functions to see how the

continuation region shrinks.

1. g(x) = |x|:
Then ψ(z) = 1

2z
for z > 0, and the outer approximation satisfies

ζ+(t) =
1

2c′(t)
for all t > 0 .

We now consider several different cost functions:

1.1 c(t) = tα with α > 1 :

We have to determine a function h that satisfies (5.16). For this let

h(x) = x−δ with 0 < δ < 2α−1
α−1

. Then the first and second equation

of (5.16) hold. The third follows from γ = 0 and

tα−2t−2(α−1)

tα−1t−δ(α−1)
= tα−2−(α−1)(3−δ) → 0 ,

since the exponent is less than zero . Hence the continuation region

satisfies

C = {(x, t) : |x| < β∗(t)}

with

β∗(t) =
1

2c′(t)
(1 + o(1)) =

1

2α
t−(α−1)(1 + o(1)) . (5.19)

1.2 c(t) = tα log(1 + t):

Then we choose h(x) = x−δ with 0 < δ ≤ 2α−1
α−1

and, as in the

previous example, we obtain a continuation region with boundary

fulfilling

β∗(t) =
1

2α

t1−α

log(1 + t)
(1 + o(1)) .
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1.3 c(t) = eλt with λ > 0:

Again we use h(x) = x−δ with 0 < δ < 2 . Then

c′′(t)

c′(t)3h(c′(t))
= λδ−1 exp(tλ(1 + δ − 3))→ 0 .

Hence Theorem 5.2.2 provides

C = {(x, t) : |x| < β∗(t)}

with

β∗(t) =
1

2λ
e−λt(1 + o(1)) . (5.20)

1.4 c(t) = t− log(1 + t):

Then c′(t) = 1 − 1
1+t

increases to one and c′′(t) = 1
(1+t)2

. Theorem

5.2.2 is not directly applicable since the cost rate does not tend to

infinity. But the inner and outer approximation can be determined

explicitly, and we can verify whether Corollary 5.1.7 , 5.1.8 are

applicable. The outer approximation fulfills

ζ+(t) =
1

2c′(t)
=

1

2
+

1

2t
.

We let h(x) = (1− x)δ for all 0 < x < 1 with 1 < δ < 2 and obtain

the inner approximation

ζ−(t) =
1

2c′(t)(1 + h(c′(t)))
=

1

2
+

(1 + t)δ − t
2t((1 + t)δ + 1))

. (5.21)

δ > 1 implies

lim
t→∞

ζ+(t)− 1
2

ζ−(t)− 1
2

= 1 . (5.22)

It remains to examine condition (cv6). But this can be done as in

the concave case. Hence we obtain the continuation region

C = {(x, t) : |x| < β∗(t)}

with

β∗(t) =
1

2
+

1

2t
(1 + o(1)) . (5.23)
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2. g(x) = xν with 0 < ν < 2:

Then F (y) = G′(y)/U ′(y) = ν
2
yν−2 has the decreasing inverse

ψ(z) = (
2

ν
z)

1
ν−2 , z ∈ (0,∞).

For a convex cost function c, the inner and outer approximation are given

by

ζ+(t) = ψ(c′(t)) = (
2

ν
c′(t))

1
ν−2 ,

ζ−(t) = (
2

ν
c′(t)(1 + h(c′(t))))

1
ν−2 .

We consider

2.1 c(t) = tα with α > 1:

Then we choose h(x) = x−δ with 0 < δ < 1
α−1

+ 2
2−ν and note that

c′′(t)U(ζ+(t))

c′(t)h(c′(t))
= O(tα−2+(α−1)( 2

ν−2
−1)+δ)) .

Since the exponent is less than zero condition (cv6) is fulfilled. We

obtain that the continuation region shrinks as

β∗(t) = (
2

ν
c′(t))

1
ν−2 (1 + o(1)) = (

2α

ν
)

1
ν−2 t

α−1
ν−2 (1 + o(1)) . (5.24)

2.2 c(t) = e−λt with λ > 0:

Again we use h(x) = x−δ with 0 < δ < 2
2−ν where

c′′(t)U(ζ+(t))

c′(t)h(c′(t))
= O(exp(t(

2λ

ν − 2
+ λδ))

and the exponent is less than zero. We obtain that the continuation

region can be enscribed between the curves ±β∗(t) and

β∗(t) = (
2

ν
c′(t))

1
ν−2 (1 + o(1))

= (
2

ν
)

1
ν−2 exp(− λ

2− ν
t)(1 + o(1)) . (5.25)
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5.2.3 Process of posterior probabilities

Continuing the example introduced in Chapter 2.2.2, we consider a symmetric

diffusion on E = (0, 1) with generator

A =
1

2
x2(1− x)2∂2

x .

We recall that the symmetric solution of Au = 1 vanishing at m = 1
2

is given

by u(x) = 2(2x− 1) log(x/(1− x)) and U(y) = u(1
2

+ y) satisfies

U(y) = 4y log
1/2 + y

1/2− y
, U ′(y) = 4 log

1/2 + y

1/2− y
+

4y

(1/2 + y)(1/2− y)
.

For concave reward functions we can state an analogous result to Theorem

4.2.4.

5.2.4 Theorem: Let g(x) = G(|x − 1/2|) for all x ∈ (0, 1) be a reward with

strictly increasing concave C2-function G satisfying

lim
y→0

G′(y)yγ = q for some q > 0, γ ≥ 0 . (5.26)

Let c be a cost function with limt→∞ c
′(t) = ∞, strictly increasing, twice con-

tinuously differentiable and convex. Furthermore we assume that there exists

a decreasing function h ≥ 0 such that

lim
x→∞

h(x) = 0 , lim
x→∞

xh′(x) = 0

and

sup
t≥t0

∣∣∣∣∣∣c
′′(t)c′(t)−

1
1+γ

c′(t)h(c′(t))

∣∣∣∣∣∣ <∞ for some t0 > 0.

Then the continuation region is given by

C = {(x, t) : |x| < β∗(t)}

with

β∗(t) = (
32c′(t)

q
)−

1
1+γ (1 + o(1)) . (5.27)

Proof: As in the Brownian motion case we have to examine (R1)-(R3) and

(cv1)-(cv6). Then we can apply Corollary (5.1.7), (5.1.8) which provide the

assertion.
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From the linear case we know that (R1)-(R3) hold; see Proposition 4.1.3.

Furthermore the inverse function ψ of G′/U ′ fulfills

ψ(z) = (
32z

q
)−

1
1+γ (1 + o(1)) for z →∞, (5.28)

see Theorem 3.3.4. Since E is bounded and G is concave the conditions (cv1)-

(cv3) are obviously fulfilled. We define the inner and outer approximation

by

ζ+(t) = ψ(c′(t)) , ζ−(t) = ψ(c′(t)(1 + h(c′(t))) .

Then (5.28) and c′(∞) =∞ imply

ζ+(t) = (
32c′(t)

q
)−

1
1+γ (1 + o(1)) ,

ζ−(t) = (
1

q
32c′(t)(1 + h(c′(t)))−

1
1+γ (1 + o(1)). (5.29)

Thus both are asymptotically equivalent and it remains to examine condition

(cv6) in this situation. Due to

lim
y→0

U(y)

y
= 0

condition (cv6) is fulfilled if
c′′(t)ζ+(t)

c′(t)h(c′(t))

remains bounded in t, and this holds if

c′′(t)c′(t)−
1

1+γ

c′(t)h(c′(t))

is bounded for large t; see (5.28). 2

We want to use the above result for some special reward functions.

1. g(x) = |x− 1
2
|:

Then G(y) = y, γ = 0, q = 1, and the preceding theorem can be applied

if we can find h(x) = x−δ with δ > 0 such that

sup
t≥t0

∣∣∣∣∣c′′(t)c′(t)−2

h(c′(t))

∣∣∣∣∣ = sup
t≥t0

∣∣∣c′′(t)c′(t)δ−2
∣∣∣ <∞ . (5.30)
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For the following cost functions we obtain a continuation region of the

form

C = {(x, t) : |x− 1

2
| < β∗(t)}

and we can determine the asymptotics of β∗.

1.1 c(t) = tα with α > 1 :

Then we choose δ with 0 < δ < α
α−1

and obtain that

c′′(t)c′(t)δ−2 = O(tα−2+(α−1)(δ−2))

remains bounded in t since the exponent is less than zero. Hence

β∗(t) = (
1

32c′(t)
)(1 + o(1)) =

1

32α
t−(α−1)(1 + o(1)) . (5.31)

1.2 c(t) = eλt with λ > 0:

Then we may use any δ with 0 < δ < 1, noting that

c′′(t)c′(t)δ−2 = O(eλt(δ−1))

for t→∞. Thus

β∗(t) =
1

32λ
e−λt(1 + o(1)) . (5.32)

2. g(x) = G(|x− 1
2
|) with G(y) = −(1

2
− y)ν for ν ≥ 1:

Then G′(y) = ν(1
2
− y)ν−1 tends to q = ν(1

2
)ν−1. Thus, with γ = 0, we

can apply Theorem 5.2.4 for the cost functions c(t) = tα and c(t) = e−λt

as in the preceding example. We obtain

β∗(t) =
1

32αq
t−(α−1)(1 + o(1)) (5.33)

in the first case and

β∗(t) =
1

32λq
e−λt(1 + o(1)) (5.34)

in the second case.
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5.2.5 Portfolio optimization

As was mentioned in the earlier chapters, see 2.2.3 or 2.3.3, a treatment of

portfolio strategies without transaction costs leads to a diffusion with state

space E = (0, 1) and generator

A =
1

2
x2(1− x)2∂2

x + x(1− x)(
1

2
− x)∂x .

This is a mean reverting diffusion process symmetric w.r.t. m = 1
2
. The even

solution of Au = 1, vanishing at 1
2
, is given by u(x) = (log(x/(1− x))2. Thus

U(y) = u(1/2 + y) fulfills

U(y) = (log
1/2 + y

1/2− y
)2 , U ′(y) = 2

log 1/2+y
1/2−y

(1/2 + y)(1/2− y)

for all y ∈ (0, 1/2).

We consider the same reward functions as in the concave case. We will

determine how the continuation region shrinks.

1. g(x) = | log( x
1−x)|:

As was seen in Chapter 4.2.5, F = G′/U ′ fulfills

F (y) =
1

2
(log

1/2 + y

1/2− y
)−1 , y ∈ (0,

1

2
),

and has the inverse

ψ(z) =
1

2

exp( 1
2z

)− 1

exp( 1
2z

) + 1
=

1

4

1

2z
(1 + o(1)) for z →∞. (5.35)

For a convex cost function c, we consider the inner and outer approxi-

mations

ζ+(t) = ψ(c′(t)) , ζ−(t) = ψ(c′(t)(1 + h(c′(t))) .

Due to (5.35), they are asymptotically equivalent.

To examine condition (cv6) we recall that U(ψ(z)) = ( 1
2z

)2. Hence h

must satisfy

lim
t→∞

c′′(t)

h(c′(t))c′(t)3
= 0

which we met before in the Brownian motion case . Thus all examples

for cost functions there may be carried over to this situation.
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1.1 c(t) = tα with α > 1:

Then we choose h(x) = x−δ with 0 < δ < 2α−1
α−1

and obtain

C = {(x, t) : |x− 1

2
| < β∗(t)}

with

β∗(t) = ψ(c′(t))(1 + o(1)) =
1

8c′(t)
(1 + o(1))

=
1

8α
t1−α(1 + o(1)) . (5.36)

1.2 c(t) = eλt with λ > 0:

We choose h(x) = x−δ with 0 < δ < 2 and obtain that the boundary

of the continuation region satisfies

β∗(t) =
1

8λ
e−λt(1 + o(1)) . (5.37)

2. g(x) =

{
log(1/(1− x)) ,if x > 1/2

log(1/x) ,if x ≤ 1/2
:

Then F = G′/U ′ fulfills

F (y) = (
1

2
+ y)

1

2 log(1/2+y
1/2−y )

(5.38)

which is strictly decreasing from infinity to zero. We denote by ψ its

inverse which cannot be explicitly determined. We will show in the

following that the inner and outer approximation

ζ+(t) = ψ(c′(t)) , ζ−(t) = ψ(c′(t)(1 + h(c′(t)))

are asymptotically equivalent. Since F (y) � (4 log 1/2+y
1/2−y )−1 for y → 0

and c′(t) = F (ζ+(t)), c′(t)(1 + h(c′(t)) = F (ζ−(t)) we have

lim
t→∞

log(
1
2

+ζ+(t)
1
2
−ζ+(t)

)

log(
1
2

+ζ−(t)
1
2
−ζ−(t)

)
= 1 . (5.39)

Furthermore

F ′(y) � −(log
1
2

+ y
1
2
− y

)−2 for y → 0,
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and therefore with η(t) = 1 + h(c′(t)), f(t) = c′(t)η(t)

lim
t→∞

ζ+(t)

ζ−(t)
= lim

t→∞

ψ′(c′(t))c′′(t)

ψ′(c′(t)η(t))f ′(t)

= lim
t→∞

F ′(ψ(c′(t)η(t))

F ′(ψ(c′(t)))

= lim
t→∞

F ′(ζ−(t))

F ′(ζ+(t))

= lim
t→∞

log(
1
2

+ζ+(t)
1
2
−ζ+(t)

)

log(
1
2

+ζ−(t)
1
2
−ζ−(t)

)
.

To examine (cv6) we use U(y) � 1
16F (y)2

for y → 0 and obtain that h

satisfies (cv6) if
c′′(t)

c′(t)3h(c′(t))
−→ 0

is fulfilled. Hence the cost functions of the previous example may be

used here too.



Chapter 6

Further extensions

So far we have formulated sufficient conditions that lead to continuation regions

of the form

C = {(x, t) : |x−m| < β∗(t)}

with a boundary function β∗ which is increasing for concave costs of observa-

tions and decreasing in the convex case. We want to weaken our assumptions

with the aim to apply the methods of the preceding chapters to a wider class

of reward and cost functions.

6.1 The concave case

In the preceding chapters we obtained results concerning the asymptotic be-

haviour of the continuation region by supposing condition which partly had a

non asymptotic structure, and thus can be improved.

Let us first consider the reward function g(x) = G(|x−m|) for all x ∈ E.

Since for concave observations the linear case has to be applied for small cost

rates we replace (R1)-(R3) by the following conditions

(Rcc1) G is twice continuously differentiable and strictly increasing.

(Rcc2) G′

U ′
is strictly decreasing with

lim
y→0

G′(y)

U ′(y)
= c0 , lim

y→l

G′(y)

U ′(y)
= 0 .

(Rcc3) Ag is decreasing on (m + l − ε,m + l) or Ag ≤ 0 on (m + l − ε,m + l)

for some ε > 0.

83
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Due to (Rcc2), the function F (y) = G′(y)/U ′(y) for all y ∈ (0, l) has an

inverse

ψ : (0, c0)→ (0, l) .

From (Rcc3), the results for the linear case can be applied for all cost rates

c ≤ c0 such that ψ(c) ≥ l − ε, hence on (0, c1) with c1 = F (l − ε).
Furthermore we examine for a cost function c how the conditions (cc1)-

(cc6) can be modified to obtain an asymptotic result for the continuation

region. The first three assumptions can be replaced in the following way since

we only need concavity for large t.

There exists some t0 ≥ 0 such that

(Acc1) c is strictly increasing on (t0,∞) with limt→∞ c(t) =∞ ,

(Acc2) c is twice continuously differentiable and concave on (t0,∞) with

limt→∞ c
′(t) = 0,

(Acc3) For each x ∈ E there exists an α ∈ (0, 1) such that

Ex sup
t≥0

(g(Xt)− αc(t)) <∞ .

Then there exists some t1 > t0 such that c′(t) < c1 for all t > t1 and an inner

approximation can be defined by

β−(t) = ψ(c′(t)) for all t > t1 .

Since the conditions (cc1)-(cc3) are from an asymptotical nature we do not

need to modify them but we have to keep in mind that the outer approximation

is only defined by

β+(t) = ψ(c′(t)(1− h(c′(t))) for all t > t1.

Then the same methods as in Chapter 4 work and we obtain the following

result:

6.1.1 Theorem: Let the reward and cost function have the properties (Rcc1)-

(Rcc3), (Acc1)-(Acc3), (cc4)-(cc6). Then, with t1 > 0 as above, the continua-

tion region C has the form

C ∩ (E × (t1,∞)) = {(x, t) : t > t1, |x−m| < β∗(t)}
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with an increasing left continuous boundary function β∗. Furthermore

1 =

 limt→∞
l−β∗(t)
l−β−(t)

,if l <∞
limt→∞

β∗(t)
β−(t)

,if l =∞
(6.1)

6.2 The convex case

An analogous argumentation as in the preceding section works for convex costs

too. Here we keep in mind that the cost rate tends to infinity and the con-

tinuation region shrinks. Thus the function F = G′/U ′ must tend to infinity

for y tending to zero and the appropriate behaviour for Ag near m must be

supposed. To be precise we formulate the following conditions.

(Rcv1) G is twice continuously differentiable and strictly increasing.

(Rcv2) G′

U ′
is strictly decreasing with

lim
y→0

G′(y)

U ′(y)
=∞ , lim

y→l

G′(y)

U ′(y)
= c0 .

(Rcv3) Ag ≤ 0 or there exists some ε > 0 such that Ag is decreasing on (m,m+ε)

and Ag(x) ≤ Ag(m+ ε) for all x > m+ ε.

Due to (Rcv2), the function F has an inverse

ψ : (c0,∞)→ (0, l) .

From (Rcv3), the linear case can be applied for all cost rates c ≥ c0 such that

ψ(c) ≤ ε, hence for all c ≥ c1 = F (ε).

As before the cost function needs to be convex only for large t. Thus we

suppose that there exists some t0 > 0 such that

(Acv1) c is strictly increasing on (t0,∞) with limt→∞ c(t) =∞,

(Acv2) c is twice continuously differentiable and convex on (t0,∞) with

limt→∞ c
′(t) =∞,

(Acv3) For all k > c1 and all x ∈ E

Ex sup
t≥0

(g(Xt)− kt) <∞ .
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Then for some t1 > t0 such that c′(t1) ≥ c1 we can define the outer ap-

proximation β+(t) = ψ(c′(t)). By using the properties (cv4)-(cv6) and keep-

ing in mind that the inner approximation is defined for all t > t1 through

β−(t) = ψ(c′(t)(1 + h(c′(t))) , we obtain the following result.

6.2.1 Theorem: Let the reward and cost function have the properties (Rcv1)-

(Rcv3), (Acv1)-(Acv3), (cv4)-(cv6). Then, with the precedingly defined t1, the

continuation region satisfies

C ∩ (E × (t1,∞)) = {(x, t) : t > t1, |x−m| < β∗(t)}

with a decreasing right continuous boundary function β∗. Furthermore

lim
t→∞

β∗(t)

β+(t)
= 1 . (6.2)

6.3 Applications

As in Chapter 4.2.5, we consider the A-diffusion on E = (0, 1) with generator

A =
1

2
x2(1− x)2∂2

x + x(1− x)(
1

2
− x)∂x ,

and we want to solve the optimal stopping problem for the reward function

(x, t)→ log
1

1− x
− c(t)

for concave c. This problem with linear costs is investigated by Morton and

Pliska [47] and has applications for portfolio optimization. Two problems arise.

The first one is that g(x) = log 1
1−x is not even w.r.t. 1/2. Hence all results, so

far obtained, cannot be applied. We can circumvent this by a symmetrization

argument, introducing the reward function

g1(x) =
1

2
(log

1

1− x
+ log

1

x
) .

For this reward the condition (R2) no longer holds, whereas the improved

conditions of Theorem 6.1.1 can be examined. To be precise we first state the

following reduction.

6.3.1 Proposition The continuation regions for the reward functions g(x) =

log 1
1−x and g1(x) = 1

2
(log 1

1−x + log 1
x
) coincide.
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Proof: This follows from the fact that

g(x) = g1(x) +
1

2
s(x) for all x ∈ (0, 1)

with s(x) = log x
1−x denoting the scale function of the diffusion. Since s(Xt)

behaves like a Wiener process with starting point s(x) w.r.t Px , see Prop.

2.2.4,

Ex(s(Xτ )) = s(x)

for each stopping time τ with Exτ <∞. Therefore

Ex(g(Xτ )− c(τ)) = Ex(g1(Xτ )− c(τ)) +
1

2
s(x) .

Thus the optimization problems w.r.t. the reward functions g and g1 are equiv-

alent and the assertion is shown. 2

Hence we analyse the stopping problem w.r.t. the symmetric reward func-

tion g1 and have to examine the conditions (Rcc1)-(Rcc3), (Acc1)-(Acc3),

(cc4)-(cc6) for a concave cost function c. We introduce

G1(y) = g1(
1

2
+ y) = −1

2
log((

1

2
− y)(

1

2
+ y))

for all y ∈ (0, 1
2
) and recall

U(y) = u(
1

2
+ y) = (log

1
2

+ y
1
2
− y

)2 , U ′(y) = 2
log

1
2

+y
1
2
−y

(1
2

+ y)(1
2
− y)

.

Hence F = G′1/U
′ fulfills

F (y) =
1

2

y

log
1
2

+y
1
2
−y

for all y ∈ (0,
1

2
).

Now Ag1(x) = 1
2
x(1 − x) is decreasing on (1

2
, 1). Furthermore, F is strictly

decreasing on (0, 1/2) with limy→0 F (y) = 1
8

, limy→1/2 F (y) = 0. Thus the

conditions (Rcc1)-(Rcc3) are valid whereas (R2) does not hold.

To obtain the asymptotics w.r.t. a concave cost function the same argu-

ments as in 4.2.5 do work here. Let ψ denote the inverse of F which cannot

be calculated explicitly. Therefore we introduce

F2(y) = − 1

4 log(1
2
− y)

for all y ∈ (0,
1

2
)
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and note that

lim
y→ 1

2

F (y)

F2(y)
= 1 .

The inverse of F2, denoted by ψ2, satisfies

ψ2(z) =
1

2
− exp(− 1

4z
) , ψ′2(z) = −1

4

1

z2
exp(− 1

4z
)

for all z ∈ (0,∞). We follow the procedure of the second example of 4.2.5 and

note that it is easy to show

lim
y→ 1

2

ψ′2(F (y))F ′(y) = 1 .

This implies

lim
z→0

1
2
− ψ2(z)

1
2
− ψ(z)

= 1 .

From this the asymptotic equivalence of the inner and outer approximation

follows as in 4.2.5. Furthermore, condition (cc6) is valid if for a given c a

function h can be choosen such that the condition

lim
t→∞

c′′(t)

c′(t)3h(c′(t))
= 0

is satisfied.

For example take c(t) = tα with 2
3
< α < 1. We may choose h(x) = xδ

with 1 < x < 2α−1
1−α to obtain the following result for the continuation region C:

Setting t1 = (2α)
1

1−α , c′(t) < 1
2

for all t > t1 and

C ∩ (E × (t1,∞)) = {(x, t) : t > t1, |x−
1

2
| < β∗(t)}

with an increasing function β∗ satisfying

1

2
− β∗(t) = (

1

2
− ψ(c′(t)))(1 + o(1))

= (
1

2
− ψ2(c′(t)))(1 + o(1)

= exp(− 1

4c′(t)
)(1 + o(1)) . (6.3)
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