

The Moments of FIND Author(s): Volkert Paulsen

Source: Journal of Applied Probability, Vol. 34, No. 4 (Dec., 1997), pp. 1079-1082

Published by: Applied Probability Trust Stable URL: http://www.jstor.org/stable/3215021

Accessed: 05/10/2009 10:24

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=apt.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Applied Probability Trust is collaborating with JSTOR to digitize, preserve and extend access to Journal of Applied Probability.

THE MOMENTS OF FIND

VOLKERT PAULSEN,* Universität Kiel

Abstract

To study the limiting behaviour of the random running-time of the FIND algorithm, the so-called FIND process was introduced by Grübel and Rösler [1]. In this paper an approach for determining the *n*th moment function is presented. Applied to the second moment this provides an explicit expression for the variance.

STOCHASTIC ALGORITHMS; FIXED-POINT METHOD

AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 60E99

SECONDARY 60K99; 68P10

1. Introduction

The FIND algorithm, introduced by Hoare [3], is widely used to determine the kth smallest element of a set of n numbers. The asymptotic behaviour of the distribution of the number of comparisons needed by the algorithm was investigated by Grübel and Rösler [1], [2]. They introduced the limiting process $(Z_t)_{t \in [0,1]}$, the so-called FIND process. The marginal distributions of Z are uniquely defined by the following fixed-point equation:

(1.1)
$$Z_{t} \stackrel{\text{distr}}{=} 1 + UZ_{t/U} \mathbf{1}_{\{U>t\}} + (1-U)\bar{Z}_{(t-U)/(1-U)} \mathbf{1}_{\{U\leq t\}}.$$

Here, Z, \bar{Z} are independent processes with the same marginal distributions and U is uniformly distributed independent of them.

Equation (1.1) is the key for the proof of various properties of the FIND process Z. For example, Grübel and Rösler [1], [2] calculated from (1.1) the expectation $(EZ_t)_{0 \le t \le 1}$.

In this paper we not only give an explicit formula for the second moment but also a procedure that provides the nth moment for $n \in \mathbb{N}$. Two main steps arise. In Section 2 we determine the fixed-point equation for the nth moment of Z_t . Proceeding from this we find a differential equation satisfied by a derivative of the nth moment function in Section 3. Finally, in Section 4 we apply the approach to the first and second moment and obtain explicit formulas for them.

Received 12 April 1996; revision received 13 January 1997.

^{*} Postal address: Mathematisches Seminar, Universität Kiel, D-24098 Kiel, Germany.

1080 VOLKERT PAULSEN

2. Fixed-point equation for the nth moment function

Let

$$m_n(t) = EZ_t^n$$
 for all $t \in [0, 1]$

denote the *n*th moment function of the FIND process. Due to the fact that the distribution of each Z_t is majorized by a probability measure v on the real line according to stochastic ordering, m_n is uniformly bounded by the *n*th moment of v; see Grübel and Rösler [2].

We want to give a characterization of m_n as the unique fixed-point of some contraction. Let \mathcal{F}_b be the space of bounded measurable functions on the unit interval. With the supremum norm \mathcal{F}_b is a Banach space. For $n \in \mathbb{N}$, operators $K_n : \mathcal{F}_b \to \mathcal{F}_b$ are defined by

(2.1)
$$K_{n}(f)(t) = \int_{t}^{1} u^{n} f\left(\frac{t}{u}\right) du + \int_{0}^{t} (1-u)^{n} f\left(\frac{t-u}{1-u}\right) du + b_{n}(t),$$

where

(2.2)
$$b_n(t) = \sum_{i=1}^n (-1)^{i-1} \binom{n}{i} m_{n-i}(t).$$

Then the following holds.

Theorem 2.1. K_n is a strict contraction in the supremum norm and m_n is the unique fixed-point of K_n for each $n \in \mathbb{N}$. $(K_n^k(f))_{k \in \mathbb{N}}$ converges exponentially fast to m_n in the supremum norm for each $f \in \mathcal{F}_b$.

Proof. For
$$f, g \in \mathcal{F}_b$$

$$\begin{aligned} &\|K_{n}f - K_{n}g\|_{\infty} \\ &= \sup_{t \in [0,1]} \left| \int_{t}^{1} u^{n} \left(f\left(\frac{t}{u}\right) - g\left(\frac{t}{u}\right) \right) du + \int_{0}^{t} (1-u)^{n} \left(f\left(\frac{t-u}{1-u}\right) - g\left(\frac{t-u}{1-u}\right) \right) du \right| \\ &\leq \sup_{t \in [0,1]} \left(\int_{t}^{1} u^{n} du + \int_{0}^{t} (1-u)^{n} du \right) \|f - g\|_{\infty} \\ &\leq \frac{1}{n+1} \left(2 - \left(\frac{1}{2}\right)^{n} \right) \|f - g\|_{\infty}. \end{aligned}$$

Thus K_n is a contraction in the supremum norm and the fixed-point theorem of Banach provides exponentially fast convergence of $(K_n^n(f))_{k \in \mathbb{N}}$ to the unique fixed-point of K_n for each starting point f.

It remains to show the fixed-point property of m_n , i.e.

$$(2.3) K_n(m_n) = m_n \text{for all } n \in \mathbb{N}.$$

From (1.1) we obtain

The moments of FIND 1081

(2.4)
$$E(Z_t - 1)^n = \int_t^1 u^n m_n \left(\frac{t}{u}\right) du + \int_0^t (1 - u)^n m_n \left(\frac{t - u}{1 - u}\right) du.$$

Hence (2.3) follows from

$$E(Z_t-1)^n = m_n(t) + \sum_{i=1}^n \binom{n}{i} (-1)^i m_{n-i}(t).$$

The contraction K_n , defined in (2.1), is an affine operator, which can be written as $K_n = A_n + b_n$ with

(2.5)
$$A_n f(t) = \int_t^1 u^n f\left(\frac{t}{u}\right) du + \int_0^t (1-u)^n f\left(\frac{t-u}{1-u}\right) du \quad \text{for all } f \in \mathscr{F}_b.$$

In terms of the linear part A_n we obtain the following representation of the *n*th moment function m_n .

Corollary 2.2.
$$m_n = \sum_{k=0}^{\infty} A_n^k b_n$$
.

Proof. Starting with the function b_n , Theorem 2.1 implies $m_n = \lim_{k \to \infty} K_n^k(b_n)$. By induction we obtain $K_n^k(b_n) = \sum_{j=0}^k A_n^j b_n$, from which the assertion follows.

3. Differential equation for the nth moment function

After substitution the fixed-point property (2.3) of m_n can be written in the form

(3.1)
$$m_n(t) = t^{n+1} \int_t^1 \frac{m_n(s)}{s^{n+2}} ds + (1-t)^{n+1} \int_{1-t}^1 \frac{m_n(1-s)}{s^{n+2}} ds + b_n(t).$$

Thus it is rather obvious that m_n is an infinitely often differentiable function. To calculate the derivatives let us define the operator ψ_n by

(3.2)
$$\psi_n(f)(t) = t^n \int_t^1 \frac{f(s)}{s^{n+1}} ds \quad \text{for all } f \in C([0, 1]).$$

Using the Leibnitz formula for differentiation of products and taking into account

$$D^{k}t^{n} = \frac{1}{t} \frac{n-k+1}{n+1} D^{k}t^{n+1}, \qquad 0 \le k \le n$$

it is easy to see that

(3.3)
$$D^{n+1}\psi_n(f)(t) = -\frac{1}{t}D^n f(t).$$

Here D denotes the derivative operator.

1082 VOLKERT PAULSEN

An analogous treatment of the second integral in (3.1) leads to

(3.4)
$$D^{n+2}m_n(t) = \left(\frac{1}{1-t} - \frac{1}{t}\right)D^{n+1}m_n(t) + D^{n+2}b_n(t).$$

Equation (3.4) implies that the (n+1)th derivative of the nth moment function is a solution to an ordinary linear differential equation, which can easily be solved. Thus we have a procedure to determine recursively the nth moment function.

4. Explicit solution for the variance

In the case n = 1 the differential equation (3.4) immediately leads to the known formula of the expectation

(4.1)
$$m_1(t) = 2 - 2t \ln t - 2(1-t) \ln(1-t)$$
 for all $t \in [0, 1]$.

Proceeding from this we obtain the third derivative of the second moment function by solving the differential equation

$$y' = \left(-\frac{1}{t} + \frac{1}{1-t}\right)y - 8\left(\frac{1}{t^3} + \frac{1}{(1-t)^3}\right), \quad y(\frac{1}{2}) = 0.$$

Integration and insertion into the fixed-point equation (3.1) finally leads to

$$m_2(t) = \frac{9}{2} + 5t(1 - t) - 12(t \ln t + (1 - t)\ln(1 - t))$$

$$+ 2(t^2 \ln^2 t + (1 - t)^2 \ln^2(1 - t))$$

$$+ 4(t^2(\operatorname{dilog}(1 - t) - \frac{1}{6}\pi^2) + (1 - t)^2(\operatorname{dilog}(t) - \frac{1}{6}\pi^2)),$$

with dilog(t) = $\int_1^t (\ln y)/(1-y)dy$ for all t > 0.

From the above formulas for the expectation and second moment we can immediately obtain the following expression for the variance:

$$Var(Z_t) = \frac{1}{2} + 5t(1-t) - 4(t \ln t + (1-t)\ln(1-t)) - 2(t^2 \ln^2 t + (1-t)^2 \ln^2(1-t))$$
$$-8t(1-t)\ln(t)\ln(1-t) + 4(t^2(\operatorname{dilog}(1-t) - \frac{1}{6}\pi^2) + (1-t)^2(\operatorname{dilog}(t) - \frac{1}{6}\pi^2)).$$

Acknowledgement

The author wishes to thank the referee for his helpful comments.

References

- [1] GRUBEL, R. AND RÖSLER, U. (1996) Asymptotic distribution theory for Hoare's selection algorithm. Adv. Appl. Prob. 28, 252–269.
 - [2] GRÜBEL, R. AND RÖSLER, U. (1995) The backward view on the algorithm FIND. Preprint.
- [3] HOARE, C. A. R. (1961) Algorithm 63, Partition; Algorithm 64, Quicksort; Algorithm 65, Find. Commun. ACM 4, 321-322.