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THE MOMENTS OF FIND

VOLKERT PAULSEN,* Universitdit Kiel

Abstract

To study the limiting behaviour of the random running-time of the FIND algorithm,
the so-called FIND process was introduced by Griibel and Résler [1]. In this paper an
approach for determining the nth moment function is presented. Applied to the second
moment this provides an explicit expression for the variance.
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1. Introduction

The FIND algorithm, introduced by Hoare [3], is widely used to determine the kth
smallest element of a set of » numbers. The asymptotic behaviour of the distribution of
the number of comparisons needed by the algorithm was investigated by Griibel and
Rosler [1], [2]. They introduced the limiting process (Z, ), eo.1;, the so-called FIND process.
The marginal distributions of Z are uniquely defined by the following fixed-point
equation:

distr

(1.n Z, =1+UZpyly,y+(1— U)Z(I—U)I(I—U)I(Ugt} .

Here, Z, Z are independent processes with the same marginal distributions and U is
uniformly distributed independent of them.

Equation (1.1) is the key for the proof of various properties of the FIND process
Z. For example, Griibel and Résler [1], [2] calculated from (1.1) the expectation
(EZI )Ogtgl .

In this paper we not only give an explicit formula for the second moment but also a
procedure that provides the nth moment for n € N. Two main steps arise. In Section 2
we determine the fixed-point equation for the nth moment of Z,. Proceeding from this
we find a differential equation satisfied by a derivative of the nth moment function in
Section 3. Finally, in Section 4 we apply the approach to the first and second moment
and obtain explicit formulas for them.
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2. Fixed-point equation for the nth moment function

Let
m()=EZ; for all t€[0, 1]

denote the nth moment function of the FIND process. Due to the fact that the distribution
of each Z, is majorized by a probability measure v on the real line according to stochastic
ordering, m, is uniformly bounded by the nth moment of v; see Griibel and Rosler [2].
We want to give a characterization of m, as the unique fixed-point of some contraction.
Let %, be the space of bounded measurable functions on the unit interval. With the supre-
mum norm &, is a Banach space. For n € N, operators K, : #, - %, are defined by

2.1 K(f))= J u'f (é) du + J (1 —u)f (g) du +b,(1),
where
2.2) b,(t) = il (=1)! (':) m,_i(1).

Then the following holds.

Theorem 2.1. K, is a strict contraction in the supremum norm and m, is the unique
fixed-point of K, for each n € N. (K¥(f))en converges exponentially fast to m, in the
supremum norm for each f € .

Proof. For f,gE€ Z,

1Ko f— K8l
ool e [amorlo 5] ol
< sup (Jl u"du + J‘I ¢ —u)"du) If—g&llw

1 1\n
ém C=-GMNSf—glw-

= sup
t€[0,1}

Thus K, is a contraction in the supremum norm and the fixed-point theorem of Banach
provides exponentially fast convergence of (K}(f))en to the unique fixed-point of K,
for each starting point f.

It remains to show the fixed-point property of m,, i.e.

2.3) K,(m)=m, for all nE€N.

From (1.1) we obtain
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1 t ! t—u
2.4) EZ-1) =£ u'm, (;) du+£ (1 =uym, (1_—u> .

Hence (2.3) follows from
" (n .
E(Z,—1)=m,1) + Zl (l.)(— 1Ym,_i(0).

The contraction K,, defined in (2.1), is an affine operator, which can be written as
K,=A,+b, with

2.5) 4, f(t)=-[ u'f (é) du + f (—u)yf (;%’;) du forall fE F,
t 0

In terms of the linear part 4, we obtain the following representation of the nth moment
function m,.

Corollary 2.2. m,=XL, A%b,.

Proof. Starting with the function b,, Theorem 2.1 implies m,=lim,_,., K*(b,). By
induction we obtain K}(b,)=X%_, A4;b,, from which the assertion follows.
3. Differential equation for the »th moment function

After substitution the fixed-point property (2.3) of m, can be written in the form

1 1
G.1) m(f)=1"" J ’::g)ds+(l—t)”“ j m"§:+:s)ds+b,,(t).

11—t

Thus it is rather obvious that m, is an infinitely often differentiable function. To calculate
the derivatives let us define the operator ¥, by

(3.2) U f)O)=1" {(f), ds  for all f€ C([0, 1]).

t

Using the Leibnitz formula for differentiation of products and taking into account

pir= TR e <k <n
t n+l
it is easy to see that
1
(3.3) D" Y ()B) = — L D).

Here D denotes the derivative operator.
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An analogous treatment of the second integral in (3.1) leads to

3.4 D"m,(f) = (i — %) D™*'m,(£)+ D" *?b,(1).

Equation (3.4) implies that the (n+ 1)th derivative of the nth moment function is a
solution to an ordinary linear differential equation, which can easily be solved. Thus
we have a procedure to determine recursively the nth moment function.

4. Explicit solution for the variance

In the case n=1 the differential equation (3.4) immediately leads to the known formula
of the expectation

@.1) m(=2-2tlnt—2(1—f)In(1—¢) for all t€[0, 1].

Proceeding from this we obtain the third derivative of the second moment function by
solving the differential equation

, 1 1 1 1 |
y =(—;+E>y—8(?+m), ¥(3)=0.
Integration and insertion into the fixed-point equation (3.1) finally leads to
myt) =2 +5t(1—6)—12(¢ In t+ (1 —£) In(1 — #))
4.2) +2(¢* In? t+(1—£)? In¥(1 —1))
+4(t*(dilog(1 — 1) — i 7*) + (1 — 1)X(dilog(r) — i 7)),

with dilog(t)=], (In y)/(1 —y)dy for all t> 0.
From the above formulas for the expectation and second moment we can immediately
obtain the following expression for the variance:

Var(Z,) =3+ 511 —0)—4(t In t+(1 =) In(1 — ) — 2(¢* In® t + (1 — £)*In*(1 — 1))
—8:(1 —1)In(®)In(1 — ) +4(¢*(dilog(1 — ) — %nz) + (1 —)X(dilog(s) — %nz)).
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