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Abstract 

To study the limiting behaviour of the random running-time of the FIND algorithm, 
the so-called FIND process was introduced by Grubel and Rosler [1]. In this paper an 
approach for determining the nth moment function is presented. Applied to the second 
moment this provides an explicit expression for the variance. 

STOCHASTIC ALGORITHMS; FIXED-POINT METHOD 

AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 60E99 

SECONDARY 60K99; 68P10 

1. Introduction 

The FIND algorithm, introduced by Hoare [3], is widely used to determine the kth 
smallest element of a set of n numbers. The asymptotic behaviour of the distribution of 
the number of comparisons needed by the algorithm was investigated by Grubel and 
Rosler [1], [2]. They introduced the limiting process (Z, )t [0,1], the so-called FIND process. 
The marginal distributions of Z are uniquely defined by the following fixed-point 
equation: 

(1.-) Zt - 1 + UZtutl{u>t}-+?(1--U)2t-U)/(l-U)l{u<t}- 

Here, Z, 2 are independent processes with the same marginal distributions and U is 
uniformly distributed independent of them. 

Equation (1.1) is the key for the proof of various properties of the FIND process 
Z. For example, Gribel and Rosler [1], [2] calculated from (1.1) the expectation 
(EZ,t)ot<l . 

In this paper we not only give an explicit formula for the second moment but also a 
procedure that provides the nth moment for n E NJ. Two main steps arise. In Section 2 
we determine the fixed-point equation for the nth moment of Z,. Proceeding from this 
we find a differential equation satisfied by a derivative of the nth moment function in 
Section 3. Finally, in Section 4 we apply the approach to the first and second moment 
and obtain explicit formulas for them. 
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2. Fixed-point equation for the nth moment function 

Let 

mn(t)=EZt for all tE [0, 1] 

denote the n th moment function of the FIND process. Due to the fact that the distribution 
of each Zt is majorized by a probability measure v on the real line according to stochastic 

ordering, mn is uniformly bounded by the nth moment of v; see Griibel and Rosler [2]. 
We want to give a characterization of mn as the unique fixed-point of some contraction. 

Let ,b be the space of bounded measurable functions on the unit interval. With the supre- 
mum norm Fb is a Banach space. For n E N, operators Kn,: Ab -+ are defined by 

l ( \ t-u\ 
(2.1) K,(f)(t) = u"f du + (1 -u)nf u du +bn(t), 

4ut \ 0 (::) 

where 

(2.2) b(t) =Z(1)i 1 m (t) 

Then the following holds. 

Theorem 2.1. Kn is a strict contraction in the supremum norm and mn is the unique 
fixed-point of Kn for each n E N. (Kk(f))k EN converges exponentially fast to m, in the 

supremum norm for each f E,b. 

Proof. For f, gE b 

IlKnf-K,,gll 

-SU?P] Jt (f (t) 
(:)) 

(1)n(f 
( 

Ud)g u(: U))du 

< sup undu + (1-u)ndu (lf-gllo 
t [,i]0 /0 

1 
=-( n + 1 (2- /) f-gil. 

Thus K, is a contraction in the supremum norm and the fixed-point theorem of Banach 

provides exponentially fast convergence of (Kn(f))kE to the unique fixed-point of Kn 
for each starting point f. 

It remains to show the fixed-point property of mn, i.e. 

(2.3) K,,(m,)=m,, for all n e N. 
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(2.4) E(Z,-1)= U mn ()du + ( -u) m"n, - u . 
ot \o 

Hence (2.3) follows from 

E(Z,- 1)" =mn(t) + . (- 1)im_(t). 

The contraction Kn, defined in (2.1), is an affine operator, which can be written as 
Kn =An + b with 

(2.5) Anf(t)= unf du + (1 -U)nf ( )du for all f .b 
It t) 0 

In terms of the linear part An we obtain the following representation of the nth moment 
function mn. 

Corollary 2.2. mn = ko=0 Ak b. 

Proof. Starting with the function bn, Theorem 2.1 implies mn=limkoo Knk(bn). By 
induction we obtain Kk(b,) = Ejk=o Aj bn, from which the assertion follows. 

3. Differential equation for the nth moment function 

After substitution the fixed-point property (2.3) of mn can be written in the form 

(3.1) mn(t) = tn 
n+2 ds t + ' ( n2 ds + bn(t). 

@ t J1-t 

Thus it is rather obvious that mn is an infinitely often differentiable function. To calculate 
the derivatives let us define the operator n, by 

41 f(s) 
(3.2) On(f )(t) =tn - (s ds for all f6 C([0, 1]). 

1 t 

Using the Leibnitz formula for differentiation of products and taking into account 

1 n-k+1 +l Dktn= Dkt + 0 < k < n 
t n+1 ' - - 

it is easy to see that 

(3.3) D n+ (f )(t) = -- D f(t). 

Here D denotes the derivative operator. 
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An analogous treatment of the second integral in (3.1) leads to 

(3.4) D+m(t) = - - D m()+D2bn(t). 

Equation (3.4) implies that the (n + l)th derivative of the nth moment function is a 
solution to an ordinary linear differential equation, which can easily be solved. Thus 
we have a procedure to determine recursively the nth moment function. 

4. Explicit solution for the variance 

In the case n = 1 the differential equation (3.4) immediately leads to the known formula 
of the expectation 

(4.1) ml(t) = 2 - 2t In t - 2(1l-t) ln(l-t) for all tE [0, 1]. 

Proceeding from this we obtain the third derivative of the second moment function by 
solving the differential equation 

(' 
- 

--t I- - 8 
t3 (I_t)3 y()=0 

Integration and insertion into the fixed-point equation (3.1) finally leads to 

m2(t) = + 5t(1 -t)- 12(t In t+(1 - t)ln(1 -t)) 

(4.2) + 2(t2 In2 t+ (1 -t)2 ln2(l - t)) 

+ 4(t2(dilog( - t) - 7r2) + (1 - t)2(dilog(t) - r2)), 

with dilog(t) =J (n y)/(1 -y)dy for all t > 0. 
From the above formulas for the expectation and second moment we can immediately 

obtain the following expression for the variance: 

Var(Zt) = +?5t(1 -t)-4(t ln t+( -t)ln( -t))-2(t2 In2 t+(1 -)2n2(1 -t)) 

-8t(1 - t) ln(t) ln(1 - t) + 4(t2(dilog(1 - t) - 2) + (1 -t)2(dilog(t)- 7r2)). 
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