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The thesis at hand is concerned with the study of random vectors Y ∈ Rd, satisfying multivariate

stochastic fixed point equations

Y
d
=

N∑
i=1

TiYi +Q

(
d
=:same distribution). Here N ≥ 1 fixed, Yi are independent identically distributed (i.i.d.) copies

of Y and independent of the random d × d matrices (Ti)
N
i=1 (which can w.l.o.g. assumed to be

identically distributed) and the random vector Q. The main interest is in the existence of fixed

points (FPs) and in the asymptotic shape of their distribution, namely heavy tail behaviour. Both

are encoded in a function m which is defined in terms of the distribution of T1. It is strictly log-

convex with m(0) = N , hence there are at most two values where m equals 1, α and β, say.

It will be shown (in the setting of the multivariate smoothing transformation, N ≥ 2, nonnega-

tive matrices) that in addition to the known FPs with a finite moment of order α, there are also

α-elementary FPs, i.e. FPs with tail index α. A full characterization of the set of α-elementary

FPs is obtained and a one-to-one correspondence between FPs of the homogeneous (Q ≡ 0) and

inhomogeneous equation similar to linear equations is proved, using the Markov renewal theory and

a Choquet-Deny lemma in the setting of Kesten’s renewal theorem. This is Part A of the thesis.

Part B studies the case N = 1, Q �= 0, well-known as the random difference equation. Here α = 0
and a unique FP exists whose tails are then governed by β. In the situation where T1 ∈ GL(d,R)
with spread-out distribution, this result is proved using regeneration techniques from the theory

of Harris recurrent Markov chains. The question whether β is the precise tail index has been quite

involved in previous studies, the regenerative structure now allows for a comparatively simple proof.

Therefore, a bivariate minorzation condition which may be interesting in its own right is introduced

and studied.

m(s)

1
N

0 α β

Figure 1.: A typical shape of m





The Road goes ever on and on

Down from the door where it began.

Now far ahead the Road has gone,

And I must follow, if I can,

Pursuing it with eager feet,

Until it joins some larger way

Where many paths and errands meet.

And whither then? I cannot say.

(John Ronald Reuel Tolkien [91])
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Let N ≥ 2 be a fixed integer, (Ti)
N
i=1 a random vector of d× d matrices with nonnegative entries.

Consider the (homogeneous) multivariate smoothing transform S on the set P(Rd
≥) of probability

measures on Rd
≥ = [0,∞)d, defined by

S : ν �→ L
(

N∑
i=1

TiYi

)
, (ST)

where (Yi)
N
i=1 are i.i.d. with distribution L(Y1) = ν and independent of T = (Ti)

N
i=1.

This part of the thesis is concerned with the study of fixed points of S , i.e. distributions η ∈ P(Rd)
satisfying Sη = η. In terms of random variables, if L (Y ) = η, then Y satisfies the stochastic fixed

point equation

Y
d
=

N∑
i=1

TiYi

with (Yi)
N
i=1 being i.i.d. copies of Y , and independent of T and where

d
= means that both sides have

the same distribution

A prominent example where stochastic fixed point equations of such a branching type appear is

the study of stochastic processes on trees, see the review [1]. Multivariate equations appear e.g. if

multiple types are considered. A survey of applications of the multivariate smoothing transform to

the analysis of algorithms can be found in [77]. Moreover, multivariate equations with d = 3 arise

very naturally when describing equilibrium distributions of particle speed in Maxwell gases, see

[18]. There is also a close connection with multivariate α-stable distributions, which are the fixed

points when T1 = . . . = TN = N− 1
α Id, where Id is the d × d identity matrix and α ∈ (0, 1].

Hence fixed points of S can be considered as generalizations of multivariate stable laws. Indeed, a

very elegant characterization of the fixed points in terms of stable laws will be obtained.

���� ������	
����

It is known that the structure of the set F of FPs η of S is governed by the function m̂(s) :=
E
∑N

i=1 T
s
i in dimension d = 1. Considering only nontrivial solutions (i.e. η �= δ0), there is a

classical result of Durrett and Ligget for d = 1: There are

1



A. On Fixed Points of Multivariate Smoothing Transforms

(I) no FPs if m̂(s) > 1 for all s ≤ 1,

(II) FPs with finite expectation if m̂(1) = 1 and m̂′(1) < 0 ,

(III) FPs with infinite expectation if m̂(1) = 1 and m̂′(1) = 0 and

(IV) FPs with α-regularly varying tail if m̂(α) = 1 and m̂′(α) < 0 for some 0 < α < 1.

The multivariate extension of (II) was recently given by Buraczweski, Damek and Guivarc’h in

[29]. Motivated by their results, the extension of the cases (III) and (IV) will be given in this thesis.

The first step is to prove existence of nontrivial fixed points, which is more involved than in the

one-dimensional case. The second step is to characterize the set of the fixed points of type (IV), the

so-called α-elementary fixed points (see Iksanov [55]). A full description of this set in dimension

d ≥ 2 will be obtained.

Particular fixed points of the multivariate inhomogeneous smoothing transform

SQ : ν �→ L
(

N∑
i=1

TiYi +Q

)
,

where (Yi)
N
i=1 i.i.d. with distribution ν and independent of the random element ((Ti)

N
i=1, Q) ∈

M(d× d,R≥)×Rd
≥, have been studied by Mirek [75]. In this thesis, it will be shown that there are

more fixed points, namely α-elementary ones, and that these fixed points are of the form “fixed point

of the homogeneous smoothing transform + particular fixed point of the inhomogeneous smoothing

transform”, as it has been shown recently in the univariate setting by Alsmeyer and Meiners [6].

Two of the main results are stated at the end of this section, after some notation is introduced.

���� � ������ 	
�������� � �

Most definitions and notations will be given adhoc when they occur for the first time, in order to

make them present for the reader. The loss of quick reference is hopefully compensated by giving

a list of symbols and abbreviations at the very end of this thesis. Nevertheless, there are some

observations and definitions that are very basic or needed for the statement of the results, so it is

convenient to give them now. This will make the rest of the presentation much more readable.

Unless otherwise noted, it is stipulated that all occuring random variables are defined on a common

probability space with probability measure P and expectation symbol E. The Laplace transform

(LT) of a distribution η on Rd
≥ or a random variable Z (here with L (Z) = η) is defined by

φZ = φη : Rd
≥ → R>, x �→ E exp (−〈x, Z〉) =

∫
Rd

e−〈x,z〉η(dz).

Write L for the associated mapping η �→ φη. Consequently, S will be considered as a mapping on

LTs by the natural definition Sφη = φSη. Details will be given in Section 2. Abusing notation,

a random variable Y is called fixed point of S if SL (Y ) = L (Y ). Uniqueness of fixed points is

then always to be understood in terms of distributions. If it is not clear from the context whether the

inhomogeneous or homogeneous case is adressed, the notation S0 will be used for the homogeneous

smoothing transform as defined in (ST).

2



1. Introduction and Basics

Write N0 for the natural numbers {0, 1, . . . } and N for the positive integers {1, 2, . . . }. The non-

negative reals are denoted by R≥, and the positive half-line by R>. The set of d× d-matrices with

entries from a given set E is denoted by M(d × d,E). Abbreviate M+ = M(d × d,R≥) and

M̆+ = M(d × d,R>) for the set of matrices with positive entries. Write 〈·, ·〉 for the euclidean

scalar product 〈x, y〉 = ∑N
i=1 xiyi on Rd, and |·| for the corresponding euclidean norm on Rd, as

well as for the absolute value on R. Open balls of radius ε around x are denoted by Bε(x) . The

unit sphere in Rd is

S := {x ∈ Rd : |x| = 1}
and its intersection with the nonnegative cone is

S≥ = S ∩ Rd
≥.

The projection of a vector on the unit sphere is abbreviated by x := x
|x| and if A is a matrix, write

A · x := Ax =
Ax

|Ax|

for its action on the sphere. Denote by ‖·‖ the operator norm: For a mapping A between the normed

spaces E and F with respective norms |·|E and |·|F , then

‖A‖ = sup
|x|E=1

|Ax|F .

For a matrix A ∈ M+, define a corresponding lower bound by

ι(A) := inf
x∈S≥

|Ax| .

For a metric space E, the set of continuous mappings f : E → R is denoted by C (E). If E is

compact, C (E) is equipped with the maximum norm |·|∞,

|f |∞ := sup
x∈E

|f(x)| ,

which yields the topology of uniform convergence. If E is locally compact, C (E) is equipped with

the topology of uniform convergence on compact sets. The set of compactly supported continuous

functions is denoted by Cc (E), bounded continuous functions by Cb (E) and continuous functions

vanishing at infinity (i.e. ∀ε > 0 ∃C ⊂ E compact with |f(x)| < ε for all x /∈ C) by C0 (E). The

set of m-times continuously (Fréchet) differentiable mappings is denoted by Cm (E).

���� � � � ��� ��	
������	

Note the important observation that since N is fixed, it may w.l.o.g be assumed that (Ti)
N
i=1 are de-

pendent, but identically distributed (see e.g. [31, A.1]). Hence the following standing assumption
holds:

The weights (Ti)
N
i=1 are dependent, but identically distributed with distribution μ.

3



A. On Fixed Points of Multivariate Smoothing Transforms

Denote μ∗ = L
(
T	

1

)
and write (Mn)n∈N for a sequence of i.i.d. random matrices with distribution

μ∗.

Next is the multivariate analogue of the function m̂. At this point, only its definition and some

important properties are given. A motivation of this formula will be given in Subsections 4.1 and

7.2. Let (T(n))n∈N be a sequence of i.i.d. random variables (r.v.s) with distribution μ. Set

κ(s) := lim
n→∞

(
E
∥∥T(1) · · ·T(n)

∥∥s) 1
n = lim

n→∞ (E ‖M1 · · ·Mn‖s)
1
n , (1.1)

m(s) :=Nκ(s). (1.2)

The function m(s) will be called the spectral function, for it will be seen (in Subsection 7.2) that it

gives the spectral radius of a certain operator. Moreover, m(s) is a strictly convex function, which

is well defined on

Iμ := {s ≥ 0 : E ‖T1‖s < ∞}
(this follows from the Hölder inequality resp. subadditivity of ‖·‖.) Write s∞ = sup Iμ. Since

m(0) = N , there are at most two values

0 < α < β < s∞

with

m(α) = m(β) = 1.

If both exists and if they are in the interior Ĭμ, then

m′(α) < 0, m′(β) > 0

by the strict convexity (which also implies the differentiability of m on Ĭμ.)

���� �������	� 
� �����

One final piece, namely the main condition to be imposed on the distribution of the weight matrices,

is needed before a first version of the main results can be stated.

Definition 1.1. A subsemigroup Γ ⊂ M+ is said to satisfy condition (C), if

1. no subspace W ⊂ Rd with W ∩ Rd
≥ �= {0} satisfies ΓW ⊂ W and

2. Γ ∩ M̆+ �= ∅.

Denote by [suppμ] the smallest closed semigroup which contains suppμ, where as usual, the sup-

port is defined by

suppμ := {x ∈ M+ : μ(O) > 0 ∀ open O with x ∈ O}.

With the notation introduced above, a simplified version of the existence theorem for α-elementary

fixed points of S0 can be stated as follows. See Subsection 9.3 for a more detailed statement and

discussion.

4



1. Introduction and Basics

Theorem 1.2 (Existence of Fixed Points). Assume that the semigroup [supp μ] satisfies condition
(C),

E(1 + ‖M1‖) (1 + |log ‖M1‖|+ |log ι(M1)|) < ∞, (M logM)

and that the spectral radius of ET1 is less than N−1. Then there is α ∈ (0, 1) with

m(α) = 1, m′(α) < 0.

For all K > 0, S possesses a nontrivial fixed point YK , and there is a continuous function e : S≥ →
R>, such that for all u ∈ S≥,

lim
t→∞ tαP (〈u, YK〉 > t) = Ke(u) > 0.

Concerning the characterisation of α-elementary fixed points of SQ, the main result 12.8 can be

rephrased (in the spirit of [6, remark after Theorem 8.1] ) as follows (where some technical details

have been omitted):

Theorem 1.3 (Characterization Theorem). Let (Ti)
N
i=1 be i.i.d., let [suppμ] satisfy (C) and let

some natural moment assumptions hold. Assume there is α ∈ (0, 1) with m(α) = 1, m′(α) < 0.
Then SQ possesses a one-parameter family of α-elementary fixed points (YK)K>0, and their one-
dimensional marginals satisfy

〈u, YK〉 d
= 〈u,W ∗〉+KW (u)1/αZ,

where W ∗ ∈ Rd
≥, W (u) ∈ R≥ are random variables which will be explicitly defined and inde-

pendent of Z, which has a one-sided stable distribution with index α, i.e. with Laplace transform
Ee−tZ = e−tα .

The extra assumption that the Ti are independent is only needed for the existence of W ∗ which is

not proved in this thesis, but cited from [75]. It is not necessary for the characterization itself as

soon as W ∗ is given.

���� �����	� 
���������

The further organization is as follows: At first, in Section 2 the weighted branching process (WBP)

is introduced, which allows to study S in terms of random variables and Laplace transforms. Next

is a section about different metrics and topologies on the set of probability measures which are used

in Section 4 to derive some known results about existence of fixed points with a finite moment of

order α, which are intended to explain the motivation of this work as well as the definition of m.

The methods which will be used subsequently in order to prove existence and characterization of

α-elementary fixed points are inspired by Durrett and Liggett [41]: They analyze the action of S
on LTs by means of an associated random walk and renewal theory, inter alia. The subsequent

sections 5 - 8 introduce these tools in the multivariate setting, starting with a detailed review of

LTs of multivariate stable distributions. Then a Markov random walk associated with the action

of random matrices on Rd
≥ will be defined, corresponding transfer operators will be studied and a

simple Markov renewal theorem, that complements Kesten’s renewal theorem [60], will be proved.
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A. On Fixed Points of Multivariate Smoothing Transforms

Having all these tools at hand, the existence of nontrivial fixed points in the multivariate version

of case (IV) will be proved and the definition of the Biggins martingale in the multivariate setting

will be given in Section 9. Next, existence results in the boundary case (III) will be derived in

Section 10. In order to describe the set Fα of α-elementary fixed points, the question of uniqueness

and the question whether the existence of an α-elementary fixed point readily implies m(α) = 1,
m′(α) < 0 will be adressed. Using Krein-Milman theorem and a Choquet-Deny lemma due to

Kesten [60], a positive answer will be given in Section 11. Finally, these results will be applied to

fully characterize the set of α-elementary fixed points of S and SQ in Section 12.

���� � ����	 
����� ����

An additional intention of this thesis is to give a comprehensive account to the theory needed for

the study of multivariate stochastic fixed point equations, in particular to multivariate Laplace trans-

forms of stable distributions, which are often neglected in the literature. Therefore, the introductory

part of the thesis may seem unusually long. Though the full pleasure is only obtained by reading ev-

erything properly, these are the minimal prerequisites needed to understand the proofs of the main

results in Sections 9 - 12: The reader should believe that the theory of one-dimensional Laplace

transforms carries over to the multivariate case and that Laplace and Fourier transforms of stable

distributions look quite similar. Additionally, read the short Section 2 and subsequently Propositions

4.3 & 4.4, Theorems 4.9 and 7.3, Subsection 8.1 and Proposition 8.9.

�� ��� ����	
��� ��
���� ����	�
�� ���	��� �� 
�� ����
	��
���

In this section, a stochastic model associated with S is introduced which is suitable to describe iter-

ations of the smoothing transform in terms of random variables. Additionally, it is used to describe

the action of S on Laplace transforms. The exposition here is similar to the ones given in [4, Section

5.1] and [31, Section 3.2].

���� ��� ������� ��������� �������

Define the N -ary Ulam-Harris tree by

T :=
∞⋃
n=0

{1, . . . , N}n, (2.1)

with the convention {1, . . . , N}0 = ∅, the root. For a node v = (i1, . . . , ik) ∈ T, denote its

level by |v| = k, its ancestor in the l-th level, l ≤ k, by v|l = (i1, . . . , il) and its i-th child by

vi = (i1, . . . , ik, i).

Assign to each node v an independent copy

T (v) := (T1(v), . . . ,TN (v), Q(v)) (2.2)

of T = (T1, . . . ,TN , Q). Thus T := (T (v))v∈T is a sequence of i.i.d. copies of T . The r.v. Ti(v)

6



2. The Associated Weighted Branching Process and its Applications

can be understood as the weight of the vertex between v and vi. The product of the weights along

the unique shortest path between the root ∅ and a node v is defined recursively by

L(∅) = Id, L(vi) := L(v)Ti(v), (2.3)

where v ∈ T, 1 ≤ i ≤ N and Id denotes the identity matrix. A natural filtration of the weight

sequence is given by

Tn := σ
(
(T (v))|v|≤n

)
.

When a random variable Y is given, assign to each node a copy Y (v) of Y , such that again the

sequence Y := (Y (v))v∈T is i.i.d.and independent of T .

Definition 2.1. The sequence

Yn :=
∑
|v|=n

L(v)Y (v) +
∑
|w|<n

L(w)Q(w), (2.4)

n ∈ N0, is called the weighted branching process associated with Y ⊗ T .

Lemma 2.2. If T1, . . . ,TN are identically distributed (which is the standing assumption), then for
fixed n ∈ N, the cumulative weights (L(v))|v|=n, are dependent, but identically distributed, and
L(v)	 d

= Πn.

The simple proof is omitted.

Furthermore, introduce the shift operator [·]v: If F is any function of Y ⊗ T and v ∈ T, set

[F (Y ⊗ T )]v := F ((Y (vw), T (vw))w∈T).

The family [Y ⊗ T ]v corresponds to the subtree [T]v, rooted in v ∈ T and has the same distribution

as the unshifted family Y ⊗ T and is independent of (Y (w), T (w))|w|<|v| as well as of all other

subfamilies rooted at the same level. With this definition, it follows in particular

L(vw) = L(v) [L(w)]v

for any v, w ∈ T. This allows inter alia to prove the following Lemma (see e.g. [4, Lemma 5.2]):

Lemma 2.3. Let L (Y ) = η. Then the WBP (Yn)n∈N0 associated with Y ⊗ T satisfies

L (Yn) = Sn(η). (2.5)

���� ��� ���	
� 
� S 
� ������ ������
���

The smoothing transform S acts on LTs of distributions on Rd
≥ by the canonical definition

Sφη(x) = φSη(x) (2.6)

for all x ∈ Rd
≥.
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A. On Fixed Points of Multivariate Smoothing Transforms

The following lemma corresponds to and is a consequence of Lemma 2.3.

Lemma 2.4. Let φη be the LT of a distribution η on Rd
≥. Then for all n ∈ N, x ∈ Rd

≥

Snφη(x) = E

⎛⎝exp

⎛⎝−〈x,
∑
|w|<n

L(w)Q(w)〉

⎞⎠ ∏
|v|=n

φη(L(v)
	x)

⎞⎠ . (2.7)

Proof. LetY = (Y (v))w∈T and T = (T (w))w∈T be i.i.d. random variables with distribution η resp.

L (T ) and such that Y and T are independent. Write t = (t(v))v∈T for a deterministic sequence of

weight matrices, and l(v) for the corresponding products along the paths. Referring to Lemma 2.3,

SnY = L (Yn), where Yn is the WBP associated with Y ⊗ T . Considering (2.6),

Snφη(x) = φYn(x) = E

⎛⎝exp

⎛⎝−〈x,
∑
|v|=n

L(v)Y (v) +
∑
|w|<n

L(w)Q(w)〉

⎞⎠⎞⎠
= E

⎛⎝exp

⎛⎝−〈x,
∑
|w|<n

L(w)Q(w)〉

⎞⎠E

⎡⎣ ∏
|v|=n

exp
(
−〈L(v)	x, Y (v)〉

)∣∣∣∣∣∣ T
⎤⎦⎞⎠

∗
=

∫
exp

⎛⎝−〈x,
∑
|w|<n

l(w)q(w)〉

⎞⎠E

⎛⎝ ∏
|v|=n

exp
(
−〈l(v)	x, Y (v)〉

)⎞⎠P (T ∈ dt)

=

∫
exp

⎛⎝−〈x,
∑
|w|<n

l(w)q(w)〉

⎞⎠ ∏
|v|=n

(
E exp

(
−〈l(v)	x, Y (v)〉

))
P (T ∈ dt)

=

∫
exp

⎛⎝−〈x,
∑
|w|<n

l(w)q(w)〉

⎞⎠ ∏
|v|=n

φY (l(v)
	x)P (T ∈ dt)

= E

⎛⎝exp

⎛⎝−〈x,
∑
|w|<n

L(w)Q(w)〉

⎞⎠ ∏
|v|=n

φY (L(v)
	x)

⎞⎠ .

The independence of T and Y allows to use the plug-in rule [28, Corollary 4.38] in *.

Denote by B1
(
Rd
≥
)

the set of bounded (Borel-) measurable functions from Rd
≥ to R, uniformly

bounded by 1. The smoothing transform induces a self-map of B1
(
Rd
≥
)

by extension of equation

(2.7), i.e.

Sf(x) := E

(
N∏
i=1

f(T	
i x)

)
(2.8)

for f ∈ B1
(
Rd
≥
)

. Then by a simple application of the theorem of bounded convergence, the

following lemma results:

Lemma 2.5. With the above definition, S : B1
(
Rd
≥
)
→ B1

(
Rd
≥
)

is a continuous mapping with
respect to the pointwise convergence of functions.
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3. Convergence in Probability Spaces

�� ������	��
� �� ��������� ���
��

Convergence of probability measures plays an important role in this thesis. In this section, several

topologies and metrics on P(E) or its subspaces of P(E) will be introduced, where (E, d) is a

priori any locally compact separable metric space equipped with the Borel σ-field E, in applications

E ∈ {Rd,Rd
≥, S, S≥,R}. Some concepts are possibly well known, nevertheless it is convenient to

mention them briefly (without proofs) to have all results at hand.

���� ���� ��	 
���� ����������

Information about weak and vague convergence on locally compact spaces can be found e.g. in [19,

Chapter 2.4], the most important properties (for the present situation) are collected below. Write

M1 (E) for the set of measures on E with total mass less or equal to 1.

Definition and Proposition 3.1. A sequence (νn)n∈N ⊂ M1 (E) is said to converge vaguely to
ν ∈ M1 (E), νn

v→ ν, if for all f ∈ Cc (E) or equivalently for all f ∈ C0 (E),

lim
n→∞

∫
fdνn =

∫
fdν. (3.1)

Another equivalent condition is that

lim
n→∞ νn(B) = ν(B) (3.2)

for all relatively compact sets B ⊂ E such that ν(∂B) = 0. Equipped with the topology of vague
convergence, the set M1 (E) is compact.

Here ∂B denotes the topological boundary of B. Vague convergence commutes with the formation

of product measures:

Lemma 3.2 ([19, Exercise 4.14]). Let E,F be locally compact metric spaces. The mapping G :
M1 (E)×M1 (F ) → M1 (E × F ),

G(ν, η) = ν ⊗ η (3.3)

is continuous w.r.t to the topology of vague convergence.

Definition and Proposition 3.3. A sequence (νn)n∈N ⊂ M1 (E) is said to converge weakly, νn
d→

ν, if (3.1) holds for all f ∈ Cb (E). Weak convergence νn
d→ ν holds if and only if νn

v→ ν and
limn→∞ νn(E) = ν(E).

Weak convergence will also be denoted by d−lim
n→∞

νn = ν. A weakly convergent sequence of prob-

ability measures converges towards a probability measure. Therefore, say that a sequence (Yn)n∈N
converges in distribution, Yn

d→ Y , iff L (Yn)
d→ L (Y ). This convergence is the most important

and will be implied by all of the subsequent types of convergence. Moreover, distributional conver-

gence of random variables in Rd
≥ is equivalent to the convergence of their Laplace transforms (see

below.)

9



A. On Fixed Points of Multivariate Smoothing Transforms

���� ��� ��	�	�	
 �����

The topology of weak convergence on P(E) is metrizable via the Prohorov metric. For A ∈ E and

ε > 0 define

Aε := {x ∈ E : d(x,A) < ε}.

Definition and Proposition 3.4. Let ν, η ∈ P(E). The Prohorov distance �(ν, η) is defined by

�(ν, η) := inf {ε > 0 : ∀A ∈ E, ν(A) ≤ η(Aε) + ε} (3.4)

= inf {ε > 0 : ∀A ∈ E, η(A) ≤ ν(Aε) + ε} .

This defines a metric on P(E) and for ν, (νn)n∈N ∈ P(E),

νn
d→ ν ⇔ lim

n→∞ �(νn, ν) = 0.

More information can be found in [22, Section 6]. Note the following simple application of the

above definiton:

Corollary 3.5. Let Z, (Zn)n∈N be r.v.s in R with Zn
d→ Z. Then for all ε > 0 there is n0 ∈ N such

that for all t ∈ R, n ≥ n0

P (Zn > t) ≤ P (Z > t− ε) + ε and P (Z > t) ≤ P (Zn > t− ε) + ε. (3.5)

���� �	��� �����	�

The strongest topology that will be introduced on P(E) is the topology of total variation. The total

variation norm tv [·] is defined on the vector space M± (E) ⊃ P(E) of regular bounded signed

measures on E.

Definition and Proposition 3.6. For a measure ν ∈ M± (E), its total variation norm is defined
by

tv [ν] := sup{
∫
E
fdν : f ∈ B1 (E)}.

If ν, (νn)n∈N ∈ P(E), then

lim
n→∞ tv [νn − ν] = 0 ⇒ νn

d→ ν.

This can be found e.g. in [73, pp. 310 & 516].

���� ����� Ls������

The next two subsections consider metrics whose natural domain of definition are subspaces like

Ps(E) := {ν ∈ P(E) :

∫
|x|s ν(dx) < ∞},

10



3. Convergence in Probability Spaces

the set of probability measures on E with a finite moment of order s, or even subspaces of measures

with a fixed first or second moment. On these subspaces, the metrics are complete and convergence

in these metrics implies weak convergence.

This subsection considers the minimal Ls-distance ls, which is a special case of the general concept

of Wasserstein distances.

Definition and Proposition 3.7. Let s ∈ (0, 1]. For ν, η ∈ P(E), set

ls(ν, η) = inf{E |Y − Z|s : L (Y ) = ν, L (Z) = η}.

This defines a metric on P(E).

A proof can be found in [83, Lemma 41]. For η ∈ P(E), define the subspace

Ps(η) := {ν ∈ P(E) : ls(ν, η) < ∞}.

Observe that the measure η may have infinite moment of order s, as well as ν ∈ Ps(η). Nevertheless,

their ls distance is well defined, this will turn out to be a important feature of the ls-metric.

Proposition 3.8. Let s ∈ (0, 1]. For any η ∈ P(E), (Ps(η), ls) is a complete metric space. If
ν, (νn)n∈N ∈ Ps(η), then

lim
n→∞ ls(νn, ν) = 0 ⇒ νn

d→ ν.

This results from [38, Theorem 2].

���� ��� ��	�
��� ��
���

Last but not least, the Zolotarev metric ζs is introduced. It is particularly suitable for the study of

(contraction properties of) the smoothing transform, as discussed in [87].

It was introduced in [96]. This subsection follows the recent exposition for probability measures

on Hilbert spaces given in [39], where proofs can be found. Since it will be the only application,

subsequently E = Rd.

Denote by Dkf the k-th Fréchet derivative of f ∈ Ck
(
Rd

)
(see [37, Chapter VIII] for definitions).

Remember that Df corresponds to the Jacobian matrix, while D2f corresponds to the Hessian

matrix.

For s > 0 and k := �s� − 1, define

Ds :=
{
f ∈ Ck

(
Rd

)
: ∀x,y∈Rd

∥∥∥Dkf(x)−Dkf(y)
∥∥∥ ≤ |x− y|s−k

}
(3.6)

If s ≤ 1, this is the set of s-Hölder functions on Rd with Hölder constant less or equal 1.

Definition 3.9. For s > 0, the Zolotarev distance ζs between r.v.s Y, Z ∈ Rd is defined by

ζs(Y, Z) := sup
f∈Ds

|E (f(Y )− f(Z))| . (3.7)

11



A. On Fixed Points of Multivariate Smoothing Transforms

Given y ∈ Rd and a symmetric positive definite matrix Σ ∈ M(d× d,R), define the subspaces

Ps(R
d) = {η ∈ P(Rd) :

∫
|x|s η(dx) < ∞} s ∈ (0, 1]

Ps,y(R
d) = {η ∈ P(Rd) :

∫
|x|s η(dx) < ∞,

∫
x η(dx) = y} s ∈ (1, 2]

Ps,y,Σ(R
d) = {η ∈ P(Rd) :

∫
|x|s η(dx) < ∞,

∫
x η(dx) = y,K(η) = Σ} s ∈ (2, 3],

where K(η) denotes the covariance matrix of a generic random vector Z with L (Z) = η. For

brevity, when writing Ps,∗(Rd) the case distinction above as well as a particular choice of y and Σ,

if necessary, will be stipulated.

A probability metric is called simple, if the distance between two random variables Y, Z depends

only on their marginal distributions ν, η, say, and not on the particular coupling. This holds for

the Zolotarev metric on particular subspaces of P(Rd). Hence on these subspaces, ζs(ν, η) is well

defined.

Proposition 3.10. Let s ∈ (0, 3]. The Zolotarev metric ζs is simple on Ps,∗ and (Ps,∗(Rd), ζs) is a
complete metric space. If ν, (νn)n∈N ∈ Ps,∗(Rd), then

lim
n→∞ ζs(νn, ν) = 0 ⇒ νn

d→ ν.

This is [39, Theorem 5.1].

�� ����� �	�
�� 	 S ���� ��
��� α��	��
�

In this section, it will be shown that S is a contraction with respect to (w.r.t.) ζs resp. ls as soon as

m(s) < 1. This motivates the definition of m. Considering Propositions 3.8 and 3.10, the usually

approach via the Banach fixed point theorem yields existence and uniqueness of fixed points within

particular subspaces of P(Rd). Corresponding results will be given. Additionally, there are some

very recent results about almost sure convergence towards these fixed points which will be cited.

It is remarkable that all fixed points obtained this way have a finite moment of order α which is

due to the condition m(s) < 1 and the definition of Ps,∗(Rd). This leads to the question, whether

there are also fixed points with an infinite moment of order α. Answering this question was a main

motivation for this work and as it will turn out, indeed there are more fixed points.

���� �����	
���� ��������� �� S ����� ζs

The next Proposition, whose proof can be found in [76, Lemma 3.1], shows that S is Lipschitz on

(Ps,∗(Rd), ζs) for s ∈ (0, 3].
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4. Fixed Points of S with Finite α-Moment

Proposition 4.1. Let s ∈ (0, 3] and ν, η ∈ Ps,∗(Rd). Then for any n ∈ N,

ζs(Snν,Snη) ≤

⎛⎝E
∑
|v|=n

‖L(v)‖s
⎞⎠ ζs(ν, η) = NnE ‖Πn‖s ζs(ν, η). (4.1)

This leads naturally to the definition of

m(s) = N · lim
n→∞ (E ‖Πn‖s)1/n , (4.2)

for the Lipschitz factor in (4.1) is eventually smaller than 1 if and only if m(s) < 1.

Considering Proposition 3.10, conditions are needed that guarantee that S is a self-map of these

spaces. They are given in the following Proposition.

Proposition 4.2. Let s ∈ (0, 3] and

E (‖T1‖s + |Q|s) < ∞. (s-moments)

• Case s ∈ (0, 1]: Then S is a self-map of Ps(R
d).

• Case s ∈ (1, 2]: Assume in addition, that

y = NET1y + EQ (eigenvector)

holds. Then S is a self-map of Ps,y(R
d).

• Case s ∈ (2, 3]: Assume in addition, that Q ≡ 0 and the positiv definite matrix Σ satisfies

Σ =

N∑
i=1

E
(
TiΣT

	
i

)
= NE

(
TΣT	

)
. (variance)

Then S is a self-map of Ps,0,Σ(R
d).

The naming (eigenvector) comes of course from the homogeneous situation Q ≡ 0, where y has to

be an eigenvector of ET1 with eigenvalue N−1.

Proof. The eigenvalue condition follows by taking expectations in the fixed point equation Y
d
=∑N

i=1TiYi+Q. The variance condition follows from a recursion formula for the covariance matrix

of SnZ given in [77, Lemma 4.5].

With the help of [77, Lemma 4.5], it is also possible to formulate (variance) in the case whereQ �= 0,
but that formula is quite complicated and most applications are concerned with the centered case,

e.g. [18]. This is why the inhomogeneous equation for s ∈ (2, 3] is not studied here.
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A. On Fixed Points of Multivariate Smoothing Transforms

���� �����	
�	 �
 �
���	
	�� �� ���	 ���
�� ���� � ��
��	 α����	
�

For a square matrix A, denote by Eig(A, λ) the set of eigenvectors of A with eigenvalue λ, and

Eig0(A, λ) = Eig(A, λ) ∪ {0}.

Denote by N(0,Σ) the multivariate Normal distribution with expectation 0 and covariance matrix

Σ. Applying the Banach fixed point theorem, the following results (originally due to [84, 85])

concerning the subset

Fs := {η : Sη = η,

∫
|x|s η(dx) < ∞}

of fixed points with finite moment of order s can be obtained:

Proposition 4.3 (homogeneous case). Let T = (T1, . . . ,TN ) be a random element of M(d ×
d,R)N , and S0 the homogeneous multivariate smoothing transform associated with T . Assume that
there is Iμ � s > α with m(s) < 1 and let (s-moments) hold.

1. Case α < 1: Then Fs = {δ0}.
2. Case α ∈ [1, 2): The following mapping is bijective:

Eig0(ET1, N
−1) → Fs

y �→ d−lim
n→∞

Sn
0 δy

3. Case α = 2. For every symmetric and positive definite matrix Σ satisfying (variance), there
is a unique fixed point η ∈ Ps,0,Σ(R

d) and

η = d−lim
n→∞

Sn
0N(0,Σ).

Proposition 4.4 (inhomogeneous case). Let T = (T1, . . . ,TN , Q) be a random element of M(d×
d,R)N × Rd and SQ the inhomogeneous multivariate smoothing transform associated with T . As-
sume there is Iμ � s > α with m(s) < 1 and let (s-moments) hold.

1. Case α < 1: Then #Fs = 1. If P (Q �= 0) > 0, then δ0 /∈ F, i.e. the fixed point is nontrivial.

2. Case 1 ≤ α < 2, EQ = 0: The mapping

Eig0(ET1, N
−1) → Fs

y �→ d−lim
n→∞

Sn
Qδy

is bijective.

3. Case 1 ≤ α < 2, EQ �= 0: Denote O := {y ∈ Rd : y = NET1y+EQ}. Then the mapping

O → Fs

y �→ d−lim
n→∞

Sn
Qδy

is bijective. If O �= ∅, then O � Eig0(ET1, N
−1).
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4. Fixed Points of S with Finite α-Moment

The last assertion is well known from the basic linear algebra. It is stated here to point out the

relations between the homogeneous and inhomogeneous equation, which are very close to those of

linear equations. These connection will be studied in more detail below in Subsection 4.4.

Remark 4.5. The restriction to the case α ≤ 2 should not be surprising, instead there are good

reasons: In dimension d = 1, if m̂(s) < 1 for some s ∈ (2, 3] and Y is a fixed point of the

homogeneous smoothing transform S , then condition (variance) states that

V ar(Y ) = V ar(Y )NET 2
1 ,

hence Y ≡ c for some c ∈ R or m(2) = 1. In fact, it can be shown that if the one-dimensional

smoothing transform with real-valued weights (homogeneous as well as inhomogeneous) has a non-

constant fixed point Y with a finite moment of order s > α, then necessarily α ≤ 2; see [5] for a

detailed discussion.

Nevertheless, this is not true in dimension d ≥ 2 without further assumptions, as it is shown by the

following, even deterministic example (cf. [31]): Let

T1 = · · · = TN =

(
N−1/3 0

0 N−1/2

)
. (4.3)

Then m(s) = N ‖T1‖s = N(N−1/3)s = N1−s/3, thus α = 3. But if Y2 has a standard normal

distribution, the random vector (0, Y2)
	 is obviously a fixed point of the smoothing transform asso-

ciated with (4.3). The point is that m is only concerned with the largest eigenvalue of T1, but there

may be solutions concentrated on subspaces.

���� �����	 
�� ��������

Observe that all results above only yield convergence in distribution. Nevertheless, there are recent

results for the multivariate smoothing transform that give almost sure convergence.

Buraczweski, Damek and Guivarch [29] proved the following result about fixed points of S0 for

α = 1: They show [29, Lemma 3.5] that if [suppμ] satisfies (C) and m(1) = 1, then ET1 has a

unique eigenvector y ∈ S≥ with eigenvalue N−1.

Let Wn denote the WBP associated with w and T = (Ti)
N
i=1, i.e.

Wn =
∑
|v|=n

L(v)y.

It is shown [29, p.2] that if m(1) = 1, then Wn is a nonnegative martingale w.r.t. to Tn (the Biggins

martingale), hence it converges almost surely (a.s.) to a limit W . Since

Wn =

N∑
i=1

Ti(∅) [Wn−1]i ,

with ([Wn−1]i)
N
i=1 i.i.d. with the same distribution as Wn−1 and independent of T , the limit W

constitutes a fixed point of S0 – nevertheless, it may be trivial.

15



A. On Fixed Points of Multivariate Smoothing Transforms

Theorem 4.6 (part of [29, Theorem 2.2]). Let (Ti)
N
i=1 be i.i.d. random matrices in M(d × d,R).

Assume that [suppμ] satisfies (C), that E ‖T1‖ < ∞, m(1) = 1. Let y ∈ S≥ be the unique
normalized eigenvector of ET1 with eigenvalue N−1. Then the following are equivalent:

1. There is a fixed point Y of S0 with E |Y | < ∞ and EY �= 0.

2. EW = y, in particular, W is nontrivial.

3. m′(1−) < 0.

Here and subsequently, m′(s−) denotes the left derivative of m in s.

In other words, for α = 1 and m′(α−) < 0, Wn converges almost surely to the nontrivial fixed

point of S with finite expectation y, described in Proposition 4.3.

For the inhomogeneous equation, Mirek [75] obtained the following a.s. convergence result:

Theorem 4.7 ([75, Theorem 1.7]). Let (Ti)
N
i=1 be i.i.d. random matrices in M(d× d,R≥) and Q

a random vector in Rd
≥ with P (Q �= 0) > 0. Let [suppμ] satisfy condition (C). Assume that there

are s1 ∈ (0, 1/2], s2 > s1 such that E ‖T1‖s1 ≤ 1
N , E ‖T1‖s2 ≤ 1

N and E |Q|s2 < ∞. Then

W ∗
n :=

n−1∑
k=0

∑
|v|=k

L(v)Q(v)

converges almost surely to a r.v. W ∗ which is a fixed point of SQ.

Since m(s) ≤ NE ‖T1‖s, in this situation α ≤ s1 ≤ 1
2 . This restriction on α is due to technical

reasons (see [75, proof of Lemma 3.12]). With some additional assumptions, the theorem gives

the almost sure convergence of W ∗
n to the unique fixed point with a finite moment of order α. It

seems that if N is considered fixed (as in the present situation), then the assumption of independent

weights is not necessary for the proofs in [29, 75].

���� � �����	�	�� 
	����	������ ������� ����� �	���� 	� S0 ��� SQ

In this subsection, the focus will be on the case α < 1 with m(s) < 1 for some s ∈ (α, 1).
Using the ls-metric, a one-to-one correspondence between fixed points of the homogeneous and

inhomogeneous smoothing transform will be derived. This approach is due to Rüschendorf [87,

Section 3].

The first step is the following contraction lemma.

Lemma 4.8. Let s ≤ 1, let (s-moments) hold and let η ∈ P(Rd) satisfy

ls(η,Sη) < ∞. (4.4)

Then S is a Lipschitz self map of Ps(η) and for n ∈ N

ls(Snη,Snν) ≤ NnE ‖Πn‖s ls(ν, η).
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4. Fixed Points of S with Finite α-Moment

This once more motivates the importance of the spectral function m(s) – obviously, S is a contrac-

tion w.r.t. to ls as soon as m(s) < 1. The proof of the univariate version, [87, Lemma 2.1] extends

without efforts to the multivariate situation and is therefore omitted.

Using the Zolotarev metric, in Proposition 4.4 a numerical correspondence between fixed points

of S0 and SQ with a finite moment of order s > α was established. The use of the ls-metric now

gives the same result for general fixed points (with a possibly infinite moment of order α) in the case

α < 1. This result is due to Rüschendorf [87, Theorem 3.1].

Theorem 4.9. Let m(s) < 1 for some s ∈ (0, 1] and let (s-moments) hold. Then

1. For any fixed point η0 of S0, there exists exactly one fixed point ηQ of SQ, such that ηQ ∈
Ps(η0). It holds that

d−lim
n→∞

Sn
Qη0 = ηQ.

2. For any fixed point ηQ of SQ, there exists exactly one fixed point η0 of S0, such that η0 ∈
Ps(ηQ). It holds that

d−lim
n→∞

Sn
0 ηQ = η0.

Proof. Part 1 : By Lemma 4.8 and the Banach fixed point theorem, there is a unique fixed point of

SQ in Ps(η0), as soon as

ls(η0,SQη0) < ∞.

Let (Yi)
N
i=1 be i.i.d. copies of η0, then, since η0 is a fixed point of S0,

L
(

N∑
i=1

TiYi

)
= η0

and thus
(∑N

i=1TiYi,
∑N

i=1TiYi +Q
)

is a coupling of η0,SQη0. Then

ls(η0,SQη0) ≤ E

∣∣∣∣∣
N∑
i=1

TiYi − (

N∑
i=1

TiYi +Q)

∣∣∣∣∣
s

= E |Q|s < ∞

by (s-moments). Considering the Banach fixed point theorem, the convergence assertion in the ls-
metric can be obtained and by Proposition 3.8, this implies already the weak convergence of the

measures.

The proof of part 2 is completely analogue.

���� �����	

This admittedly quite long review is primarly intended to motivate the upcoming results.

The reader should have observed that the existence of fixed points and the finiteness of their moments

is closely connected with the spectral functionm(s) and that the fixed points (for α ∈ [1, 2)) may be

characterized by eigenvectors of ET1. Moreover, only existence of fixed point with a finite moment

of order α can be shown by the methods above. As said before, a main contribution of this thesis is

17



A. On Fixed Points of Multivariate Smoothing Transforms

the characterisation of fixed points with infinite moment of order α, more precisely, α-elementary

fixed points. Their description will be in terms of eigenfunctions of an operator given by the action

of T1 on S≥, see Theorem 12.6.

The convergence and nontriviality of the Biggins martingale under the condition α = 1, m′(α−) <
0was mentioned. Subsequently, the definition of the Biggins martingale in the case α < 1 as well as

the proof that its limit is nontrivial will be given. In the last subsection, a one-to-one correspondence

between fixed points of S0 and SQ was derived. It will be used to prove the characterization of α-

elementary fixed points of SQ.

�� �� ����	
��	�� ������ ����������

Most textbooks in probability theory only consider the one-dimensional LT on the positive half-line

R>. Multivariate results are nevertheless known, but scattered around in literature. This is why

a comprehensive account is given here including proofs or at least references where to find them.

Moreover, the final part about the Hölder continuity seems to be new.

���� ����� 	��
� ���
 ������� ���������� �� Rd
≥

This subsection contains the uniqueness and continuity theorem for multivariate LTs and a conver-

gence result that will be useful later.

Theorem 5.1 (Uniqueness Theorem for Laplace Transforms). Let ν, η ∈ P(Rd
≥). If φν(x) = φη(x)

for all x ∈ Rd
>, then ν = η.

Theorem 5.2 (Continuity theorem for multivariate Laplace transforms). Let (νn)n∈N be a sequence
of probability measures on Rd

≥ with LTs (φn)n∈N.

1. If νn
v→ ν ∈ M1

(
Rd
≥
)

with LT φ, then φn(x) → φ(x) for all x ∈ Rd
>.

2. If φ(x) := limn→∞ φn(x) exists for all x ∈ Rd
>, then φ can be continuously extended on

Rd
≥, and then is the LT of a measure ν ∈ M1

(
Rd
≥
)
, and νn

v→ ν. If limn→∞ φn(0) =

limx→0 φ(x), then ν is a probability measure, and νn
d→ ν.

Using the results about weak and vague convergence of measures in P(Rd) from Subsection 3.1,

the proofs from the one-dimensional case carry over with the obvious modifactions. A slightly less

detailed statement of these results can also be found in [89, Lemma 3].

At one point, a sequence of LTs will be considered which are evaluated at a convergent sequence of

points. There the following Corollary of Lemma 3.2 will be helpful.

Corollary 5.3. Let φ, (φn)n∈N be Laplace transforms of measures η, (ηn)n∈N with ηn
v→ η. Let

(an)n∈N ⊂ R> be a convergent sequence with the limit a ∈ R>. Then for all x ∈ Rd
>,

lim
n→∞φn(anx) = φ(ax).
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5. On Multivariate Laplace Transforms

This result is well known if the measures converge weakly, since then the Laplace transforms con-

verge uniformly on compact sets.

Proof. Consider the sequence of measures (δan)n∈N, which converges weakly (thus also vaguely)

to δa. Regarding Lemma 3.2, ηn ⊗ δan also converges vaguely to η ⊗ δa. For all x ∈ Rd
>, the

function fx(y, t) = exp(−〈tx, y〉) is in C0
(
Rd
≥ × R≥

)
. Use Lemma 3.1 to conclude

lim
n→∞φn(anx) = lim

n→∞

∫
Rd
≥×R≥

fx(y, t) η ⊗ δa(dy, dt)) = φ(ax).

���� �����	
��
�� �
��� ������������� 
�� ����� �
��
�� ��
�������

In this subsection, multivariate stable distributions are introduced, their main properties are stated

and then used to derive a formula for their Laplace transforms.

Definition 5.4. A r.v. Z in Rd is said to have a stable distribution if for all n ≥ 2, there exists

an ∈ R> and bn ∈ Rd such that
n∑

i=1

Zi
d
= anZ + bn, (5.1)

where (Zi)
N
i=1 are i.i.d. copies of Z.

It turns out (see e.g. [88, Theorem 2.1.2]) that necessarily an = n1/α for some α ∈ (0, 2]. For

α = 2, the stable property uniquely identifies the Normal distributions. For α < 2, Z is then said

to be α-stable and Z is strictly α-stable if bn = 0.

The characterisation of multivariate stable distributions via their Fourier transform (FT) is well

known. Now the corresponding formula for Laplace transforms will be derived. The approach

sketched here follows closely [97, I.6] and [78, Proposition 6.13] while properties of stable distri-

butions are taken from [88].

Start with the classic representation theorem for one-dimensional stable distributions.

Proposition 5.5 ([88, Definition 1.1.6]). A random variable Z is stable if and only if there are
parameters α ∈ (0, 2], σ ∈ R≥, λ ∈ [−1, 1] and b ∈ R such that its FT has the following form:

EeitZ =

{
exp

(
−σα |t|α

[
1− iλ(sign t) tan πα

2

]
+ ibt

)
if α �= 1,

exp
(
−σ |t|

[
1 + iλ 2

π (sign t) ln |t|
]
+ ibt

)
if α = 1,

(5.2)

with the convention sign(0) = 0.

Definition 5.6. If the FT of Z is the same as above, write Z
d
= Sα(σ, λ, b).

The roles of the parameters are as follows (c.f. [88, Properties 1.2.2. & 1.2.3.]). Let as above

Z
d
= Sα(σ, λ, b).

• b is the shift parameter: Let a ∈ R, then Z + a
d
= Sα(σ, λ, b+ α).
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A. On Fixed Points of Multivariate Smoothing Transforms

• σ is the scale parameter: Let a ∈ R \ {0}, then aZ
d
= Sα(|a|σ, sign(a)λ, ab) for α �= 1, and

aZ
d
= Sα(|a|σ, sign(a)λ, ab− 2

πa(ln |a|)σλ) for α = 1.

• λ is the skewness parameter, it governs the ratio between left and right tails of Z, see [88,

Property 1.2.15]. Moreover, if α ∈ (0, 1), λ = 1 even implies that Z is supported on a

half-line, as the following Proposition shows:

Proposition 5.7 ([88, Proposition 1.2.11]). Let α ∈ (0, 1), Z d
= Sα(σ, 1, b). Then Z ≥ b P-a.s.,

for it can be written as a shifted limit of a random sum of Poisson random variables. The Laplace
transform of Z exists and equals

Ee−tZ = exp

(
−

(
cos

πα

2

)−1
(σt)α − bt

)
. (5.3)

The next theorem, known as Lévy spectral representation theorem, gives the FT of multivariate

stable distributions:

Theorem 5.8 ([88, Theorem 2.3.1]). Let α ∈ (0, 1) and Z a r.v. in Rd. Then Z is α-stable if and
only if there exists a probability measure ν on S, K ∈ R≥ and a vector b ∈ Rd such that

Eei〈x,Z〉 = exp

(
−K

∫
Sd

|〈x, y〉|α (1− i sign(〈x, y〉) tan πα

2
)ν(dy) + i〈x, b〉

)
(5.4)

for all x ∈ Rd. The tupel (K, ν, b) is unique, hence write L (Z) = Sα(Kν, b).

Samorodnitsky and Taqqu use the notation Sα(Γ, b), where Γ = Kν is a finite measure on the unit

sphere. The “decomposition” into K and a probability measure ν is used here, because it makes it

more obvious that K is a scaling factor. The measure Γ resp. ν is called spectral measure.

One observes that all marginal distributions 〈u, Z〉, u ∈ S are one-dimensional α-stable (maybe

degenerated), see [88, Theorem 2.1.2]. More precisely, 〈u, Z〉 d
= Sα(σu, λu, bu), with (see [88,

Example 2.3.4]):

σu =

(
K

∫
S
|〈u, y〉|α ν(dy)

)1/α

, (5.5)

λu =

∫
S sign〈u, y〉 |〈u, y〉|

α ν(dy)∫
S |〈u, y〉|

α ν(dy)
, (5.6)

bu = 〈u, b〉 (5.7)

These identification now allows to derive the Laplace transform analogue of the spectral represen-

tation theorem. The proof of this final proposition is taken from [78].

Proposition 5.9 ([78, Proposition 6.13]). Let Z d
= Sα(Kν, 0), α ∈ (0, 1). If the spectral measure

ν is supported on S≥, then supp Z ⊂ Rd
≥ and the LT φZ of Z exists on Rd

≥. It holds that

φZ(x) = exp

(
−K

(
cos

πα

2

)−1
∫
S≥

〈x, y〉αν(dy)
)
, x ∈ Rd

≥. (5.8)
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5. On Multivariate Laplace Transforms

Proof. If ν is supported on S≥, then by (5.6) λu = 1 for all u ∈ S≥. Referring to Proposition 5.7,

the support of 〈u, Z〉 is contained in R≥. Since this holds for any vector u ∈ S≥, it follows that Z
itself is supported in Rd

≥. This readily gives the existence of the Laplace transform on Rd
≥.

To verify the formula, write x = ut, u ∈ S≥, t ∈ R≥ and note that L (〈x, Z〉) = Sα(σu, 1, 0).
Then by Proposition 5.7,

Ee−t〈u,Z〉 = exp

(
−

(
cos

πα

2

)−1
tαK

∫
S
|〈u, y〉|α ν(dy)

)
,

which gives the desired formula when taking into account that the domain of intergration is in fact

supp ν = S+.

Remark 5.10. • For easing the presentation, it is convenient to get rid of the additional factor

(cosπα/2)−1: Write Z
d
= S̃α(Kν, 0), if its LT φZ satisfies

φZ(x) = exp

(
−K

∫
S≥

〈x, y〉αν(dy)
)
, x ∈ Rd

≥. (5.9)

• The formula (5.9) makes sense in the case α = 1, too. Then φZ is the Laplace transform of

the point mass at v∗ := K
∫
S≥

y ν(dy). In other words, Z ≡ v∗. This obviously is a 1-stable

random variable.

• The existence of multivariate α-stable distributions, α ∈ (0, 1) and the formula for their

Laplace transforms can also be shown by means of a multivariate version of the Bernstein

theorem, which states that completely monotone functions define LTs of distributions. This

approach does not make use of the Lévy spectral representation theorem and is very similar

to the classical one-dimensional approach in Feller [45, XIII]. A multivariate version of the

Bernstein theorem is stated in [19, Exercise 6.27], but dates at least back to Bochner [24,

Theorem 4.2.1]. A proof of the multivariate Bernstein theorem can be found in [95].

���� ���� �	
�����

A special emphasis in this work will be put on heavy tail properties of distributions. Similar to

the classical Tauberian theorem for Laplace transforms, the asymptotics at zero of 1− φ are in the

multivariate case linked with the property of multivariate regular variation. This will be explained

in this subsection.

As a first step, recall the classical Tauberian theorem. Write limt↓0 for the right sided limit at zero.

Proposition 5.11 ([45, XIII.5, (5.22)]). Let Z be a r.v. in R≥ with LT φ. Then each of the relations

lim
t→∞L(t)tαP (X > t) =

c

Γ(1− α)
and

lim
t↓0

L(1/t)
1− φ(t)

tα
= c

implies the other. Here α ∈ (0, 1), c > 0 and L is slowly varying at infinity.
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A. On Fixed Points of Multivariate Smoothing Transforms

Denote by Cc
(
Rd
≥ \ {0}

)
the set of functions f ∈ Cb

(
Rd
≥
)

with the additional property that

f(x) = 0 ∀x ∈ Bδ(0) ∩ Rd
≥ for some δ > 0,

i.e. f is supported away from the origin. Write λα for the α-homogeneous measure on the multi-

plicative group R>, i.e. λα(ds) = 1
s1+αds.

Proposition 5.12. Let Z be a r.v. in Rd
≥ with Laplace transform φ and let α ∈ (0, 1). Then the

following properties are equivalent:

lim
t→∞L(t)tαP (〈u, Z〉 > t) = e(u) ∀ u ∈ S≥ (5.10)

lim
t↓0

L(1/t)
1− φ(ut)

tα
= Γ(1− α)e(u) ∀ u ∈ S≥ (5.11)

d−lim
t→∞

P (|Z| > ts, Z/ |Z| ∈ ·)
P (|Z| > t)

= s−α� ∀ s ∈ R> (5.12)

lim
t→∞ tαL′(t)E

(
f(t−1Z)

)
=

∫ ∞

0

∫
S≥

f(sw) �(dw)λα(ds)

∀f ∈ Cc
(
Rd
≥ \ {0}

)
. (5.13)

Here e : S≥ → (0,∞) is a continuous function and � a probability measure on S≥. The functions
L,L′ are slowly varying at infinity and can be chosen as

L(t) = L′(t) = (tαP (|Z| > t))−1 .

With this choice, e and � are uniquely determined and satisfy the following relation:

e(u) =
1

α

∫
S≥

〈u,w〉α�(dw). (5.14)

In this case, equivalence has to be understood in the following way. For instance, if (5.10) holds

with a slowly varying function L and a continuous function e, then (5.11) holds with the same L
and e; and there exist L′ and a uniquely defined probability measure �, such that (5.12) and (5.13)

hold. Property (5.13) is called multivariate regular variation.

Proof. Step 1: The equivalence of properties (5.10) and (5.11) results from the classical Tauberian

theorem above, while the equivalence of (5.10) and (5.12) was shown by Basrak, Davis and Mikosch

[15, Theorem 1.1], see also Boman and Lindskog [25, Corollary 2]. Properties (5.12) and (5.13)

are equivalent by function extension arguments (see [14, Theorem 2.1.4], also [25, Corollary 2]),

when setting

L′(t) = (tαP (|Z| > t))−1 .

With this definition, L′ is a slowly varying function by (5.12):

lim
t→∞

L(t)

L(ts)
= lim

t→∞
sαtαP (|Z| > ts)

tαP (|Z| > t)
= �(S≥) = 1.
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5. On Multivariate Laplace Transforms

Step 2, proving (5.14): Observe that (5.13) implies the vague convergence

tαL′(t)P
(
t−1Z ∈ ·

) v→ �⊗ λα.

Fix u ∈ S≥. The set B = {x : 〈u, x〉 > 1} is compact in Rd
≥ \ {0} with � ⊗ λα(B) = 0.

Considering Proposition 3.1, it follows

lim
t→∞ tαL′(t)P (〈u, Z〉 > t) =

∫
S≥

∫ ∞

0
1{s〈u,w〉>1}λα(ds) �(dw)

=

∫
S≥

∫ ∞

〈u,w〉−1

1

s1+α
ds �(dw)

=

∫
S≥

1

α
〈u,w〉α�(dw).

This gives that there is a constant C > 0 such that for all u ∈ S≥:

α−1
∫
S≥

〈u,w〉α�(dw)
e(u)

= C = lim
t→∞

L′(t)
L(t)

. (5.15)

W.l.o.g. C = 1 by renorming e → Ce,L → CL. Then the asymptotics in (5.10) remain unchanged,

when replacing L by L′. Thus, upon choosing L = L′, (5.15) yields

e(u) =
1

α

∫
S≥

〈u,w〉α�(dw).

Remark 5.13. • It is a classical result that if limt→∞
1−φ(tu)

t converges or E〈u, Z〉 < ∞, then

lim
t→∞

1− φ(ut)

t
= E〈u, Z〉.

• It is easy to derive property (5.11) with L(t) ≡ 1 from the formula for the Laplace transform

of Sα(Kν, 0) with

Γ(2− α)

1− α
e(u) = Γ(1− α)e(u) = K(cosπα/2)−1

∫
S≥

〈u, y〉αν(dy).

The limit obtained in (5.10) is then consistent with the result in [88, Property 1.2.15].

• If Z
d
= S̃α(Kν, 0), it would be convenient to conclude that � = ν, but the identity (5.14) is

in general not sufficient to determine �; the proof in [15] relies heavily on the convergence

properties (5.10) resp. (5.12). Nevertheless, the following Proposition is a general result for

multivariate α-stable laws that allows the conclusion � = ν.

Proposition 5.14 ([8, Corollary 3.6.20]). Let L (Z) = Sα(Kν, μ), K > 0. Then

1. The function tαP (|Z| > t) is slowly varying.
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A. On Fixed Points of Multivariate Smoothing Transforms

2. The following weak convergence of measures on S≥ holds:

d−lim
t→∞

P (|Z| > t, Z/ |Z| ∈ ·)
P (|Z| > t)

= ν.

Corollary 5.15. Let φ be the LT of a r.v. Z in Rd
≥. If for a probability measure ν on S≥ and some

α ∈ (0, 1)

lim
s↓0

1− φ(su)

sα
= K

∫
S≥

〈u, y〉αν(dy) ∀u ∈ S≥, (5.16)

then Z is multivariate regular varying with index α. In particular,

tαP
(
t−1Z ∈ ·

) v→ Cν ⊗ λα.

Proof. Consider the r.v. Zα
d
= Sα(K, ν, 0). Its LT φα satisfies (5.16) with L ≡ 1. Thus by

Proposition 5.12 also (5.12) holds and Proposition 5.14 yields η = ν. But this conclusion is then

true for any r.v. Z with LTφ satisfying (5.16), since the η in Proposition 5.12 is uniquely determined.

Then from (5.13), the assertion results with

C = lim
t→∞

L′(t)
L(t)

= lim
t→∞L′(t) = lim

t→∞
1

tαP (|Zα| > t)
.

It has been shown in the proof of Proposition 5.12, that limt→∞ L′(t)/L(t) exists and thus, since

L ≡ 1, also the limit limt→∞ L′(t) exists.

���� �����	 
�������

In this section a feature is shown, which only appears in the multivariate setting: Assuming that a

r.v. in Rd
≥ is multivariate regular varying with index γ, the radial part of its LT φ is γ-Hölder if

properly normalized.

Recall the definition of Hölder continuity:

Definition 5.16. Let (E, d) a metric space and γ ∈ (0, 1]. A function f : E → R is called γ-Hölder

(continuous) with constant L, if

L := sup
x,y∈E

|f(x)− f(y)|
d(x, y)γ

< ∞. (5.17)

Hölder continuity obviously implies continuity. A function is Lipschitz if and only if it is 1-Hölder.

Denote by Hγ(E) ⊂ C (E) the set of γ-Hölder functions.

Abbreviate a ∧ b = min{a, b} and a ∨ b = max{a, b} for a, b ∈ R; and use the same notation for

the componentwise minimum resp. maximum of vectors a, b ∈ Rd, i.e. (a ∧ b)i = min{ai, bi},
i = 1, . . . , d. In the following two standard vectors in Rd

≥ resp. S≥ will appear:

ϑd := (1, . . . , 1)	 ∈ Rd, ϑ1 =
1√
d
ϑd.
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5. On Multivariate Laplace Transforms

The proof of the following lemma makes an extensive use of inequalities for Laplace transforms,

which are collected in the appendix.

Lemma 5.17. Let φ be a Laplace transform of a r.v. Z on Rd
≥. If for some γ ∈ (0, 1] and K ∈ R>,

lim
t↓0

(1− φ(tϑd))

tγ
= K, (5.18)

then there is A > 0 such that for all a ∈ [0, A], all u,w ∈ S≥ and all χ ∈ (0, γ],∣∣∣∣1− φ(au)− (1− φ(aw))

1− φ(aϑd)

∣∣∣∣ ≤ 8(|u− w| ∧ 1)γ ≤ 8(|u− w| ∧ 1)χ (5.19)

and additionally, for all b ≥ 1,∣∣∣∣1− φ(bau)− (1− φ(baw))

1− φ(baϑd)

∣∣∣∣ ≤ b · 8(|u− w| ∧ 1)γ ≤ b · 8(|u− w| ∧ 1)χ. (5.20)

Proof. Step 1: Compute∣∣∣∣1− φ(au)− (1− φ(aw))

1− φ(aϑd)

∣∣∣∣
=

1

1− φ(aϑd)

∣∣∣E (
e−a〈w,Z〉 − e−a〈u,Z〉

)∣∣∣
≤ 1

1− φ(aϑd)

(∣∣∣E (
e−a〈w∧u,Z〉 − e−a〈u,Z〉

)∣∣∣+ ∣∣∣E (
e−a〈w∧u,Z〉 − e−a〈w,Z〉

)∣∣∣)
=

1

1− φ(aϑd)

[
E
(
e−a〈w∧u,Z〉

(
1− e−a〈u−w∧u,Z〉

))
+ E

(
e−a〈w∧u,Z〉

(
1− e−a〈w−w∧u,Z〉

))]
≤ 1

1− φ(aϑd)

(
(1− φ(a(u− w ∧ u))) + (1− φ(a(w − w ∧ u)))

)
. (5.21)

By assumption (5.18), the function t �→ t−γ(1 − φ(tϑd)) is continuous on (0,∞), hence there is

A ∈ (0, 1] such that for all a ∈ [0, A],

1− φ(aϑd)

aγ
∈ [

K

2
, 2K].

For all such a, (1 − φ(aϑd))
−1 ≤ 2K−1a−γ . Considering the nominator, it follows, using (25.9),

that

1− φ(a(u− w ∧ u)) = 1− φ(a |u− (w ∧ u)|u− w ∧ u)

≤ 1− φ(a |u− w ∧ u|ϑd) ≤ 2Kaγ |u− w ∧ u|γ

≤ 2Kaγ(|u− w| ∧ 1)γ .

Consequently,

(1− φ(aϑd))
−1 (1− φ(a(u− w ∧ u))) ≤ 2K−1a−γ2Kaγ(|u− w| ∧ 1)γ = 4(|u− w| ∧ 1)γ .
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A. On Fixed Points of Multivariate Smoothing Transforms

The same calculation is valid for (1− φ(aϑd))
−1 (1− φ(a(w − w ∧ u))) and thus putting both in

(5.21), the first and main inequality in (5.19) is proved. For the second inequality in (5.19) use that

the function s �→ xs = e−|log x|s is decreasing for x ∈ [0, 1], i.e.

(|u− w| ∧ 1)χ ≥ (|u− w| ∧ 1)γ

for χ ≤ γ.

Step 2: In order to prove (5.20), compute∣∣∣∣1− φ(bau)− (1− φ(baw))

1− φ(baϑd)

∣∣∣∣ (25.7)

≤ |1− φ(bau)− (1− φ(baw))|
1− φ(aϑd)

≤ 1

1− φ(aϑd)
((1− φ(ba(u− w ∧ u))) + (1− φ(ba(w − w ∧ u))))

(25.8)

≤ b

1− φ(aϑd)

(
1− φ(a(u− w ∧ u)) + (1− φ(a(w − w ∧ u)))

)
.

From here, proceed as in the first step.

�� ��� ���	
� ����� ������
 ������

Blackwell’s renewal theorem for random walks (RWs) (Vn)n∈N inRwith a positive drift ([45, XI.9],

[11]) gives asymptotics of the renewal measure

U(I + t) := EN(I + t) := E

∞∑
n=0

1I(Vn − t)

of an interval I ⊂ R for t → ∞ as well as for t → −∞, the latter being zero.

The proof of the assertion for t → −∞ is (nowadays) quite simple – hence the result is called simple
renewal theorem. One shows that (N(I + t))t∈R is uniformly integrable ([11, Step 1]), then it is a

direct consequence of the strong law of large numbers (see [11, Remark 2]).

It is interesting to observe that this second part about asymptotics for t → −∞ does not appear

in the statement of the Markov renewal theorem (MRT) neither by Kesten [60], nor by subsequent

authors [2, 12, 63, 80]. This is why it will be given here, in the setting of Kesten [60, Theorem 2].

The basic idea of the subsequent proof is the same as in the classical non-Markov case, but the

question of uniform integrability is more involved. Nevertheless, all necessary tools are already

hidden in [60], the task is now to put them together properly.

���� ��� ����	
� �
 �������	�	���

In this subsection, notation related to Markov renewal theory is introduced and some special sets are

defined for which the uniform integrability will hold. In the whole section, let (S, d) be a separable

metric space equipped with the Borel σ-field.
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6. The Simple Markov Renewal Theorem

Definition 6.1. Let (Xn, Un)n∈N0 be a temporally homogeneous Markov chain (MC) on S × R
such that

P ((Xn+1, Un+1) ∈ A×B | Xn, Un)) =P (Xn, A×B) a.s. (6.1)

for all n ∈ N0 and a transition kernelP . Then the associated sequence (Xn, Vn)n∈N0 with Vn =
Vn−1 + Un for n ∈ N is also a MC and called Markov random walk (MRW) with driving chain

(Xn)n∈N0 .

In this section, the convention Px (X0 = x, V0 = 0) = 1 is used. Denote the Markov renewal

measure associated with the given MRW under Px by Ux =
∑∞

n=0 Px ((Xn, Vn) ∈ ·) .

Define subsets of S by

C0 = ∅, Ck =

{
x ∈ S : Px

(
Vm

m
≥ 1

k
∀m ≥ k

)
≥ 1

2

}
(6.2)

for k ≥ 1.

Investigating, e.g. C1, it becomes obvious that after each visit of (Xn, Vn) to C1 × [a, a + 1],
the MRW leaves this set forever after at most one more step (due to the transience of (Vn)) with

probability at least 1
2 . In other words, the random number of renewals,

N(C1 × [t, t+ 1]) =

∞∑
n=0

1C1×[t,t+1](Xn, Vn)

of visits to C1 × [t, t+ 1] is stochastically bounded by a r.v. N with geometric distribution, thus

U(C1 × [t, t+ 1]) = EN(C1 × [t, t+ 1]) ≤ EN < ∞

and this holds for any a ∈ R. Hence there are at least some special sets with uniformly bounded

Markov renewal measure. To be precise, the following Lemma holds.

Lemma 6.2. Let x ∈ S, t ∈ R, a ∈ R>, k ∈ N. Then the family

(Nt)t∈R := (N(Ck × [t, t+ a]))t∈R (6.3)

is uniformly integrable w.r.t. to Px, and

Ux(Ck × [t, t+ a]) = ExN(C1 × [t, t+ a]) ≤ 2(k + 1 + ka). (6.4)

The proof is based upon the ideas in [60, Lemma 6] and can be found in the appendix, page 126.

Proposition 6.3. Let x ∈ S and assume that there is l > 0 such that

lim
n→∞

Vn

n
= l Px-a.s.. (6.5)

Then for all k ∈ N, a < b ∈ R

lim
t→−∞Ux(Ck × [t+ a, t+ b]) = 0. (6.6)
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A. On Fixed Points of Multivariate Smoothing Transforms

Proof. The convergence (6.5) assures that Vn is bounded from below for a.e. path, thus

lim
t→−∞N(Ck × [t+ a, t+ b]) = lim

t→∞

∞∑
n=0

1Ck×[a,b](Xn, Vn − t) = 0 Px-a.s..

Considering Lemma 6.2, the family (N(Ck × [a + t, b + t])) is uniformly integrable, which gives

convergence of the expectations:

lim
t→−∞Ux(Ck × [t, t+ a]) = lim

t→∞ExN(Ck × [t+ a, t+ b]) = 0.

���� �����	 
���� �	��������	� �� 	�� ������ ������ 
����� �������

This subsection is devoted to the formulation and the proof of the simple MRT.

Definition 6.4. A measurable function g : S×R → R is called strongly directly Riemann integrable

(sdRi) w.r.t. to (Px)x∈S , if

g(u, ·) is Lebesgue-a.e. continuous, and

∞∑
k=0

∑
l∈Z

(k + 1) sup{|g(x, t)| : x ∈ Ck+1 \ Ck, t ∈ [l, l + 1]} < ∞.

The dependence on (P)x∈S is via the sets Ck.

Theorem 6.5 (The Simple Markov Renewal Theorem). Assume that there is l > 0 such that

lim
n→∞

Vn

n
= l Px-a.s. ∀x ∈ S. (6.7)

Then for every function g which is sdRi w.r.t. (Px)x∈S and all x ∈ S,

lim
t→−∞ g ∗ Ux(t) := lim

t→−∞Ex

( ∞∑
n=0

g(Xn, t− Vn)

)
= 0. (6.8)

Proof. Fix x ∈ S. Referring to property (6.7), S = ∪∞
n=0Ck. Thus, it follows that for all (y, s) ∈

S × R

g(y, s) ≤ ĝ(y, s) :=
∞∑
k=0

∑
l∈Z

(
sup

Ck+1\Ck×[l,l+1]
|g|

)
1Ck+1\Ck×[l,l+1](y, s). (6.9)

Consequently, by an application of Lemma 6.2, for all (x, t) ∈ S × R,

Ex

∞∑
n=0

|g(Xn, t− Vn)| ≤ Ex

∞∑
n=0

ĝ(Xn, t− Vn)

=

∞∑
k=0

∑
l∈Z

(
sup

Ck+1\Ck×[l,l+1]
|g|

)
Ex

∞∑
n=0

1Ck+1\Ck×[l,l+1](Xn, t− Vn)
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7. Transfer Operators

≤
∞∑
k=0

∑
l∈Z

(
sup

Ck+1\Ck×[l,l+1]
|g|

)
Ux(Ck+1 × [�t� − l − 2, �t� − l])

(
=:

∑
k,l

ft(k, l)
)

≤
∞∑
k=0

∑
l∈Z

2(k + 2 + 2k)

(
sup

Ck+1\Ck×[l,l+1]
|g|

) (
=:

∑
k,l

f(k, l)
)

≤ 6

∞∑
k=0

∑
l∈Z

(k + 1) sup{|g(x, t)| : x ∈ Ck+1 \ Ck, t ∈ [l, l + 1]} < ∞.

This shows that the bounded convergence theorem may be applied to the sequence of functions

ft(k, l) =

(
sup

Ck+1\Ck×[l,l+1]
|g|

)
Ux(Ck+1 × [�t� − l − 2, �t� − l]),

which converge to 0 pointwise by Proposition 6.3; this allows to conclude

0 ≤ lim sup
t→−∞

∣∣∣∣∣Ex

∞∑
n=0

g(Xn, t− Vn)

∣∣∣∣∣
≤ lim sup

t→−∞
Ex

∞∑
n=0

|g(Xn, t− Vn)|

≤ lim sup
t→−∞

∑
k,l

ft(k, l) = lim
t→−∞

∑
k,l

ft(k, l) =
∑
k,l

lim
t→−∞ ft(k, l)

=

∞∑
k=0

∑
l∈Z

(
sup

Ck+1\Ck×[l,l+1]
|g|

)
lim

t→−∞Ux(Ck+1 × [�t� − l − 2, �t� − l]) = 0.

This gives the asserted convergence.

Corollary 6.6. If g is sdRi w.r.t. (Px)x∈S and S =
⋃∞

k=0Ck, then the family

(|g| ∗ Ux(t))(x,t)∈S×R =

(
Ex

∞∑
n=0

|g(Xn, t− Vn)|
)

(x,t)∈S×R

(6.10)

is uniformly bounded.

�� ������	� 
�	�����

This section considers operators in C (S≥), related to the action of the random matrix T1 on S≥.

Here the spectral function, resp. κ(s) will reappear. The following operators in C (S≥) will be

studied:

P sf(x) :=E (|T1x|s f(T1 · x)) , (7.1)

P s
∗ f(x) :=E

(∣∣∣T	
1 x

∣∣∣s f(T	
1 · x)

)
= E (|M1x|s f(M1 · x)) . (7.2)
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A. On Fixed Points of Multivariate Smoothing Transforms

They are well defined for all s ∈ Iμ and define Markov transititon operators P , P∗ if s = 0.

From the very beginning, properties of these transfer operators played an important role in the study

of multivariate fixed point equations. They first appear in the proof of [59, Theorem 3] (there named

Tκ) and have been intensively studied by Guivarc’h and Le Page in [50, 52]. The results that will be

presented in this section are mainly taken from [29]. The properties rely heavily on condition (C)
and partially also on moment conditions on ‖T1‖ and ι(T1). Before presenting the results, these

assumptions will be discussed.

���� �����	��� (C)

In this subsection the conditions imposed on the distribution μ of the random matrix T1 are dis-

cussed.

This condition that [suppμ] satisfies (C) is far from being restrictive as the following Lemma shows.

It is stated without proof in [51], the idea of proof is due to Guivarc’h (private communication).

Lemma 7.1. The set C of measures μ, such that [suppμ] satisfies condition (C), is dense inP(M+)
with respect to the weak topology.

Proof. The first reduction is that since M+ is separable, the Dirac measures form a dense subset of

P(M+), hence it suffices to show that any Dirac δB measure is a weak limit of measures in C.

Fix any A ∈ M̆+. Choose � > 0 s.t. Bε(A) ⊂ M̆+. Denote by λd2 the Lebesgue measure on

M+, seen as a subset of Rd2 . If W is a proper subspace of Rd, then the orthogonal space W⊥ �= ∅
and if BW ⊂ W for a matrix B, then for all x ∈ W, y ∈ W⊥,

〈Bx, y〉 = 0.

But the set of matrices (resp. matrix coefficients) that satisfy such an equation has the Lebesgue

measure 0. Hence the normalized restriction of λd2 to an open ball, λd2(B�(A))−1 λd2
∣∣∣
B�(A)

is in

C. Moreover, for any B ∈ M+,

δB = lim
ε→0

(1− ε)δB + ελd2(B�(A))−1 λd2
∣∣∣
B�(A)

in total variation, thus also in the weak topology.

The second assumption is on the moments of T1 and in particular that E |log ι(T1)| < ∞. This is

on the one hand a lower bound for |T1x|, on the other hand it guarantees that S̆≥ is invariant under

the action of T1 – note that only M̆+S̆≥ ⊂ S̆≥ holds a priori. The connection with the invariance

of S≥ is stated in the following Lemma:

Lemma 7.2. The following conditions are equivalent for μ ∈ P(M+):

(1) μ{A : A has no zero column } = 1.

(2) μ{A : A	 · S̆≥ ⊂ S̆≥} = μ∗{M : M · S̆≥ ⊂ S̆≥} = 1.

(3) μ{A : ι(A) > 0} = 1
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7. Transfer Operators

A sufficient condition is that E |log ι(T1)| < ∞.

Proof. (1) ⇔ (2): The condition that A has no zero column can be stated as: for each i there is a

j s.t. Aji > 0. Then the sets in (1) and (2) are equivalent by the formula

(A	x)i =
d∑

j=1

Ajixj .

(1) ⇔ (3): Reformulate property (1) again: It is equivalent to a := minj
∑d

i=1Aij > 0. Then the

equivalence of (1) and (3) follows by the inequalities in Subsection 25.2, valid for all x ∈ S≥,

d∑
i=1

d∑
j=1

Aijxj ≥ |Ax| ≥ d−
1
2

d∑
i=1

d∑
j=1

Aijxj ≥ d−
1
2

d∑
j=1

axj ≥ d−
1
2a |x| .

(1) follows by choosing particular x, e.g. the canonical basis of Rd.

Writing the sufficient condition as
∫
|log ι(A)|μ(dA) < ∞, it becomes obvious that it implies

(3).

As additional properties of ι(·) note that ι(A) > 0 for A ∈ M̆+. Also if A ∈ GL(d,R), then

ι(A) ≥
∥∥A−1

∥∥−1
> 0 and equality holds if the infimum is taken over S instead of S≥, since

inf
x∈S

|Ax| = inf
y∈S

∣∣A(A−1 · y)
∣∣ = inf

y∈S
1

|A−1y|
∣∣AA−1y

∣∣ = (
sup
y∈S

∣∣A−1y
∣∣)−1

=
∥∥A−1

∥∥−1
(7.3)

���� ������	
�� �� ������� �����	���

The results of this subsection are taken from [29], which is based upon the fundamental paper [52];

see also [75]. The main properties of P s, P s∗ (when assuming (C)) are contained in the following

Theorem.

Notation will be abused for it will not be distinguished between an operator Q : C (S≥) → C (S≥)
and its adjoint (see [40, Chapter VI]) Q′ : C (S≥)′ → C (S≥)′ in the set C (S≥)′ = M± (S≥) of

regular bounded signed measures on S≥. Recall that Q′ is defined by the identity∫
S≥

f d(Q′ν) =
∫
S≥

(Qf) dν ∀f ∈ C (S≥) , ν ∈ M± (S≥) .

So by writing P sν, in fact the image measure (P s)′ν is meant.

By the Perron-Frobenius theorem, any matrix A ∈ M̆+ has a unique dominant eigenvalue λA and

the corresponding eigenvector (of unit length) uA has strictly positive entries, i.e. uA ∈ S̆≥. Denote

Λ(Γ) = {uA : A ∈ Γ ∩ M̆+}.
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A. On Fixed Points of Multivariate Smoothing Transforms

Theorem 7.3 ([29, Theorem 3.3]). Assume that [suppμ] satisfies condition (C) and let s ∈ Iμ.
Then the following holds:

1. The spectral radius and the dominant eigenvalue of P s are equal to κ(s).

2. There is a unique strictly positive normalized function es (|es|∞ = 1) and a unique probability
measure νs such that

P ses = κ(s)es, P sνs = κ(s)νs. (7.4)

3. The function es is min{s, 1}-Hölder and supp νs = Λ([suppμ]).

4. For all f ∈ C (S≥),

lim
n→∞

∣∣∣∣(P s)nf

κ(s)n
− νs(f)

νs(es)
es
∣∣∣∣
∞

= 0. (7.5)

5. The function s �→ κ(s) is strictly convex on Iμ.

6. In the same way
P s
∗ e

s
∗ = κ(s)es∗, P s

∗ ν
s
∗ = κ(s)νs∗,

for a unique probability measure νs∗ and a unique normalized strictly positive function es∗
which satisfies the identity

es∗(u) =
∫
〈u, y〉sνs(du)∣∣∫ 〈·, y〉sνs(dy)∣∣∞ . (7.6)

Defining cs :=
∣∣∫ 〈·, y〉sνs(dy)∣∣∞, it follows that cse

s∗(u) =
∫
S≥

〈u, y〉sνs(dy) and the quantity cs
measures, how “random” the distribution νs is – cs = 1 for s < 1 if and only if νs is a point mass.

Later, cs will reappear as a norming constant.

Even if it is hard to calculate explicit values of m(s) resp. κ(s) due to the occurence of the limit, it

is easy to give a sufficient condition for the existence of α ∈ (0, 1]. By the convexity of m resp. κ
and the fact that m(0) = N > 1, α exists in (0, 1) if m(1) < 1 resp. κ(1) < 1

N . In order to check

this, the following lemma is very helpful.

Lemma 7.4 ([29, Lemma 3.5]). Assume that [suppμ] satisfies condition (C), E ‖T1‖ < ∞. Let
A = ET1. Then for some n ≥ 1, An ∈ M̆+. If r(A) denotes the spectral radius of A and v∗ the
Perron-Frobenius eigenvector of (A	) of unit length , then it holds that

κ(1) = r(A), e1(x) = 〈v∗, x〉,
∫
S≥

yν1∗(dy) = v∗ (7.7)

Corollary 7.5. Assume that [suppμ] satisfies condition (C), E ‖T1‖ < ∞. If the spectral radius
of ET1 is less than 1

N , as a consequence there exists α ∈ (0, 1) such that

m(α) = 1, m′(α) < 0.

Lemma 7.4 also allows to partly answer the question, whether there are fixed points for α > 1:
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7. Transfer Operators

Proposition 7.6. Assume that [suppμ] satisfies condition (C), E ‖T1‖ < ∞. If there is a fixed
point Y ∈ Rd

≥ of S with finite expectation, then m(1) = 1, in particular, α ≤ 1.

Proof. Let Y be a fixed point of S with finite expectation, say y = EY ∈ Rd
≥ \ {0}, let (Yi)

N
i=1 be

i.i.d. copies of Y , independent of T . Then

Y
d
=

N∑
i=1

TiYi,

and, taking expectations, y = NET1y. I.e., y is an eigenvector ofET1 with eigenvalue 1
N and since

y ∈ Rd
≥ \ {0}, it is the Perron-Frobenius eigenvector of ET1 Referring to Lemma 7.4, κ(1) = 1

N ,

thus m(1) = 1.

���� �����	
��� � κ(s)

Integrating (7.5) with respect to a probability measure η ∈ P(S≥), it follows that for all f ∈ C (S≥)

lim
n→∞

((P s)nη)(f)

κ(s)n
= lim

n→∞
η((P s)nf)

κ(s)n
= νs(f)

η(es)

νs(es)
.

Introducing the operator1 P̃ s : P(S≥) → P(S≥)

P̃ sη :=
P sη

(P sη)(1S≥)
,

consequently

(P̃ s)nη
d→ νs. (7.8)

This property, together with the identity∫
S≥

∫
M+

|Ax|s μ(dA)νs(dx) = (P sνs)(1S≥) = κ(s)νs(1) = κ(s) (7.9)

which results from (7.4), is the basis for several simulation algorithms for κ(s). The first algorithm

was proposed by Basrak and Segers in [16], but it works only in special cases, see [17]. An alterna-

tive algorithm, which works and fits perfectly to the present situation, is introduced in the thesis of

Janßen [56, Chapter 4].

The basic idea in [56, Section 4.4] is composed as follows: The convergence in (7.8) allows to

approximate νs by νn := (P̃ s)nν via the Markov Chain Monte Carlo-methods. The convergence

of νn can be checked by a Kolmogorov-Smirnov test. When a good candidate νn is obtained, draw

samples from νn and μ and use identity (7.9) to compute an estimate for κ(s) via Monte Carlo-

integration.

1In fact, this operator already appears in the proof of Theorem 7.3 in [29].
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A. On Fixed Points of Multivariate Smoothing Transforms

The convergence result (7.8) also positively answers the question raised in [56, middle of p.69]

whether the algorithm converges for any initial distribution.

There are several improvements concerning this algorithm, using different sample techniques and

improving its speed. For 2×2-matrices, a good simulation of κ(s) for 140 values of s, using one of

the improved algorithms, runs in under 2 hours; which is a reasonably finite amount of time. This

is work in progress by Holger Drees and Anja Janßen (private communication).

�� ������ 	�
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�� �� �������

In this section, a MRW (Xn, Vn)n∈N0 is introduced which is given by the action of T1. The results

of Section 7 are used in order to define transformed probability measures for (Xn, Vn)n∈N0 and to

apply the simple MRT to (Xn, Vn)n∈N0 .

���� �����	 
� �	���	

In this subsection, transformed measures Qs
x will be defined under which (Mn)n∈N are no longer

i.i.d..

Let Ω := S≥ ×MN
+ and let (X0, (M)n∈N) be the filtered identity mapping on Ω. For each x ∈ S,

define a probability measure Qx on Ω by

Qx := δx ⊗
∞⊗
n=1

μ∗. (8.1)

I.e. Qx(X0 = x) = 1 and under each Qx, (Mn)n∈N is a sequence of i.i.d. copies of T	
1 . Denote

the associated expectation symbol by Ex.

Write Πn := Mn . . .M1. Defining

Xn := Mn . . .M1 ·X0 = Πn ·X0, Vn := log |Mn . . .M1X0| = log |ΠnX0| ,

it follows that for all n ∈ N

Xn = Mn ·Xn−1, Vn = Vn−1 + Un = Vn−1 + log |MnXn−1| .

Hence (Xn, Vn)n∈N0 is a MRW under each Qx.

Observe that the identity (P s∗ )nes∗ = κ(s)nes∗, n ∈ N, can be written as

es∗(x) =
1

κ(s)n
Ex (|ΠnX0|s es∗(Πn ·X0)) =

1

κ(s)n
Ex

(
esVnes∗(Xn)

)
. (8.2)

Thus for n ∈ N new probability measures nQ
s
x can be defined on S≥ ×Mn

+ by

nQ
s
x((X0,M1, . . . ,Mn) ∈ A) :=

1

es∗(x)κn(s)
Ex

(
esVnes∗(Xn)1A(X0,M1, . . . ,Mn)

)
(8.3)
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8. Markov Random Walks and Change of Measure

for all Borel sets A. Referring to (8.2), the sequence (nQ
s
x)n constitutes a projective system, thus

by the Kolmogorov extension theorem [28, Corollary 2.19] it defines a probability measure Qs
x on

Ω. Denoting the corresponding expectation symbol by Es
x, the following identity holds:

Es
x (f(X0, V0, . . . Xn, Vn)) =

1

es∗(x)κn(s)
Ex

(
esVnes∗(Xn)f(X0, V0, . . . , Xn, Vn)

)
. (8.4)

It is valid for all bounded measurable functions f and all n ∈ N.

Introduce the Markov transition kernel on C (S≥),

Proposition 8.1 (contained in proof of [29, Theorem 3.3]). Under each Qs
x, (Xn)n∈N0 is a Markov

Chain with transition kernel

Qs
∗f(x) :=

1

es∗(x)κ(s)
P s
∗ (e

s
∗f)(x). (8.5)

and a unique stationary distribution πs∗, which is given by

πs
∗(dx) = es∗(x)ν

s
∗(dx). (8.6)

In the case when κ(s) = 1, the function (x, t) �→ es∗(x)est is a harmonic function for the MC

(Xn, Vn) under Qx. Hence the measure Qs
x can also be obtained in terms of a harmonic transform.

This approach is described in detail in [10].

Setting Qs :=
∫
Qs

xπ
s∗(dx), it follows that (Xn)n∈N0 is stationary under Qs. Concerning the drift

of the random walk part (Vn)n∈N0 , the following theorem is useful:

Theorem 8.2 ([29, Theorem 3.7]). Assume that [suppμ] satisfies (C), s ∈ Iμ and

E‖M‖s (|log ‖M‖|+ |log ι(M)|) < ∞. (8.7)

Then, for any x ∈ S≥,

l(s) = lim
n→∞

Vn

n
= lim

n→∞
1

n
log ‖Mn . . .M1‖ Qs

x-a.s., (8.8)

where
l(s) = Es

πs∗V1 =
κ′(s−)
κ(s)

. (8.9)

The number l(0) is called the (upper) Lyapunov exponent associated with μ. See [26, Definition

I.2.1] as well as [26, Section III.5] and Oseledec’s multiplicative ergodic theorem [82] for more

about Lyapunov exponents.

Here the quantity ι(M) reappears. Recall that by Lemma 7.2, the finiteness of E |log ι(M)| implies

that for all x ∈ S≥, M1x �= 0 a.s. and thus also Πnx �= 0 a.s.. This property accounts for the

nondegeneracy of limn→∞ Vn
n for any initial value X0 = x, while the independence of l(s) and X0

is a consequence of condition (C), see [26, Chapter 3] and [52, Theorem 3.10] for details.

Next is a portmanteau moment condition, that will be assumed in all the main results. It incorporates
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A. On Fixed Points of Multivariate Smoothing Transforms

bothE ‖M1‖ < ∞, which gives [0, 1] ∈ Iμ as well as the validity of condition (8.7) for all s ∈ [0, 1]:

E(1 + ‖M1‖) (1 + |log ‖M1‖|+ |log ι(M1)|) < ∞. (M logM)

Corollary 8.3. Assume that [suppμ] satisfies (C) (M logM) holds, and α ∈ (0, 1]. Then for all
x ∈ S≥,

lim
n→∞

Vn

n
< 0 Qα

x -a.s. (8.10)

and (8.4) takes the form

Eα
x (f(X0, V0, . . . Xn, Vn)) =

Nn

eα∗ (x)
Ex

(
eαVneα∗ (Xn)f(X0, V0, . . . , Xn, Vn)

)
. (8.11)

���� ��� ��	
�� ����� ������ ������	 ���������

Now the simple MRT and the property of direct Riemann integrability can be stated in the form that

will be used in the proofs of the main theorems.

As a first step, a sufficient condition for strong direct Riemann integrability with respect to (Qα
x)x∈S≥

can be derived.

Definition 8.4. Say that g ∈ Cb (S≥ × R) is (multivariate) directly Riemann integrable (dRi), if∑
l∈Z

sup {|g(u, t)| : u ∈ S≥, t ∈ [l, l + 1]} < ∞. (8.12)

Lemma 8.5. Assume that [suppμ] satisfies (C), (M logM) holds and that there is α ∈ (0, 1] with
m(α) = 1 and m′(α) < 0. If g ∈ Cb (S≥ × R) is (multivariate) dRi then g̃(y, s) := g(y,−s) is
sdRi w.r.t. to the measures (Qα

x)x∈S .

Proof. Under the assumptions stated above, the MRW(Xn,−Vn)n∈N0 satisfies the requirements of

[29, Lemma 5.6], which yields that direct Riemann integrability of g̃ already implies that g̃ is sdRi

w.r.t. (Qα
x)x∈S≥ . Since obviously, g is dRi iff g̃ is dRi, the assertion follows.

Still, a more handy condition for the direct Riemann integrability can be derived. It stems from

results for (univariate) dRi functions on the real line. See [9, V.4] for the definition of (univariate)

direct Riemann integrability.

For a bounded measurable function g : S≥ × R → R define

ĝ : t �→ sup
u∈S≥

|g(u, t)| .

Lemma 8.6. A function g ∈ Cb (S≥ × R) is multivariate dRi if and only if ĝ is univariate dRi.

Proof. By [9, Proposition 4.1], a necessary and sufficient condition for the (univariate) direct Rie-

mann integrability of ĝ is that
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9. Existence of α-elementary Fixed Points

1. ĝ is bounded and a.e. continuous w.r.t Lebesgue measure on R

2.
∑

l∈Z supt∈[l,l+1] ĝ(t) < ∞
Since g ∈ Cb (S≥ × R) by assumption, (1) is always satisfied, and (2) is just a reformulation of

(8.12).

There are plenty of sufficient conditions for the (univariate) direct Riemann integrabibilty, see e.g.

[9, Proposition 4.1]; here yet another is introduced. It comes from the following lemma:

Lemma 8.7. If f ≥ 0, f ∈ L1 (R) and f(t + ε) ≤ h(ε)f(t) for all ε > 0 and t ∈ R, where
h(ε) → 1 as ε ↓ 0, then f is (univariate) dRi.

Proof. Obviously, f : R → R≥ is (univariate) dRi (in L1 (R)) if and only if f(t) := f(−t) is

(univariate) dRi (in L1 (R)). Then the above is just [47, Lemma 9.1], applied to f .

This gives rise to the following sufficient condition for (multivariate) direct Riemann integrability.

Corollary 8.8. Let g ∈ Cb (S≥ × R). If ĝ ∈ L1 (R) and there is a > 0 such that t �→ e−atĝ(t) is
decreasing, then g is (multivariate) dRi.

Proof. The assumptions of Lemma 8.7 are satisfied, with h(ε) = eaε, f(t) = ĝ(t). The (multivari-

ate) direct Riemann integrability of g then follows by Lemma 8.6.

At the time the reader has finished this section, he is allowed to forget everything from Markov re-

newal theory except for the sufficient condition (Cororllary 8.8) for the direct Riemann integrability

and the following consequence of the simple MRT:

Proposition 8.9. Assume that [suppμ] satisfies (C), (M logM) holds, and there is α ∈ (0, 1] with
m(α) = 1 and m′(α) < 0. Let g ∈ Cb (S≥ × R) be (multivariate) dRi. Then for all x ∈ S≥,

lim
t→∞ g ∗ Uα

x(t) := lim
t→∞Eα

x

( ∞∑
n=0

g(Xn, t− Vn)

)
= 0. (8.13)

Proof. Apply the simple Markov Renewal Theorem 6.5 to the MRW (Xn,−Vn) under Qα
x and the

(by Lemma 8.5) sdRi function g̃(y, s) := g(y,−s), to infer

lim
t→−∞Eα

x

( ∞∑
n=0

g̃(Xn, t+ Vn)

)
= 0.

But this is just a reformulation of the assertion.

�� ������	
� �� α�����	���� ����� ���	��

In this section, the announced existence result, Theorem 1.2, will be shown. It is contained with

other results in subsection 9.3. In due course, the Biggins martingale will be defined in the case
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A. On Fixed Points of Multivariate Smoothing Transforms

α < 1 and its nondegeneracy will be shown under the natural assumption m′(α) < 0. In order to

do so, the simple Markov renewal theorem will be a main tool.

���� � ����	
�	�� 	��	��	 �� ������	 �
�����
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In this subsection, a pointwise increasing sequence of LTs (φn)n≥0 of distributions on Rd
≥ will be

constructed, which converges to the LT of a fixed point of S . Subsequently, write L(F ) for the set

of Laplace transforms of a set of measures F .

The LT φ0 defined in the following Corollary will be the starting point in order to find a convergent

sequence (Snφ0)n∈N.

Corollary 9.1. Assume that [suppμ] satisfies (C) and let m(α) = 1 for some α ∈ (0, 1]∩Iμ. Then
for each K ≥ 0, φ0, given by

φ0(tu) := exp

(
−K

cα

∫
S≥

〈tu, y〉ανα(dy)
)

(9.1)

=exp (−Ktαeα∗ (u)) (9.2)

with u ∈ S≥, t ∈ R≥, is the LT of the multivariate stable distribution S̃α(c
−1
s Kνα, 0) on Rd

≥.

It is often preferable to use formula (9.2). If a distribution has a LT given by (9.2) it will be denoted

by S̃α(Keα∗ , 0).

Proof. Since α ∈ Iμ, Theorem 7.3 yields the existence of να, eα∗ . Referring to Theorem 5.9,

formula (9.1) gives the Laplace transform of a multivariate stable law with index α. The second

identity follows by another appeal to Theorem 7.3.

The most important ingredient to the proof of existence of fixed points is the definition of the Biggins

martingale ([20]) in the multivariate setting, which is given in the following Proposition:

Proposition 9.2. Assume that [suppμ] satisfies (C), let m(α) = 1 for some α ∈ (0, 1] ∩ Iμ. Then
for all u ∈ S , the process

Wn(u) := c−1
α

∑
|v|=n

∫
S≥

〈L(v)	u, y〉ανα(dy)

is a nonnegative martingale w.r.t. to the natural filtration Tn and its limit W (u) satisfies

EW (u) ≤ c−1
α

∫
S≥

〈u, y〉ανα(dy) = eα∗ (u).

Remark 9.3. • If α = 1, then c1 = 1 by Lemma 7.4 and moreover, the formula simplifies to

Wn(u) =
∑
|v|=n

〈L(v)	u,
∫
S≥

yν1(dy)〉 = 〈u,L(v)w〉 = 〈u,Wn〉,
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9. Existence of α-elementary Fixed Points

where Wn is the Biggins martingale in the special case α = 1 as introduced in [29] (see

Theorem 4.6). Thus the definition of the Biggins martingale above contains the previous one

from [29] as a special case.

• It seems that this definition above first appeared in [21] for the study of multitype branching

processes, there also a criterion [21, Theorem 2] for the nondegeneracy of Wn is given. The

case of finite type space S was previously studied in [65]. A similar martingale, namely

Vn(u) = c−1
α Nn

∫
S≥

〈Πnu, y〉ανα(dy)

was studied in [10], where also the change of measure is discussed.

• As the pointwise limit of measurable functions, the mapping (u, ω) �→ Wn(u)(ω) is measur-

able – here ω denotes an element of the underlying probability space.

Proof. Each Wn(u) is nonnegative, thus integrable. Then for all n ∈ N,

E

⎡⎣c−1
α

∑
|v|=n+1

∫
S≥

〈L(v)	u, y〉ανα(dy)

∣∣∣∣∣∣ Tn
⎤⎦

= E

⎡⎣c−1
α

∑
|v|=n

N∑
i=1

∫
S≥

〈Ti(v)
	L(v)	u, y〉ανα(dy)

∣∣∣∣∣∣ Tn
⎤⎦

=
∑
|v|=n

c−1
α

N∑
i=1

E

[∫
S≥

〈L(v)	u,Ti(v)y〉ανα(dy)
∣∣∣∣∣ Tn

]

∗
= c−1

α

∑
|v|=n

N∑
i=1

∫
S≥

E
[
|Ti(v)y|α 〈L(v)	u,Ti(v) · y〉α

∣∣∣ Tn] να(dy)
∗∗
= c−1

α

∑
|v|=n

N

∫
S≥

Pα
(
〈L(v)	u, ·〉α

)
(y)να(dy)

= c−1
α

∑
|v|=n

∫
S≥

〈L(v)	u, y〉α (NPανα) (dy)

∗∗∗
= c−1

α

∑
|v|=n

∫
S≥

〈L(v)	u, y〉ανα(dy) P-a.s.

In *, Fubini’s theorem was used and in ** it was used that for each v with |v| = n, T (v) =
(Ti(v))

N
i=1 are identically distributed and independent of Tn. In ***, Theorem 7.3 was used together

with κ(α) = 1
Nm(α) = 1

N .

As a nonnegative martingale, (Wn(u))n∈N converges almost surely, and its limit W (u) satisfies by

Fatou’s lemma

EW (u) = E lim inf
n→∞ Wn(u) ≤ lim inf

n→∞ EWn(u) = EW0(u) = c−1
α

∫
S≥

〈u, y〉ανα(dy).
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A. On Fixed Points of Multivariate Smoothing Transforms

At the end of this section, it will be shown that the limit W (u) is indeed not degenerated and that

EW (u) = eα∗ (u) for all u ∈ S≥. This is why the norming c−1
α was introduced, this leads to

|EW (u)|∞ = 1. These properties of the limit W (u) will be proved by means of LTs of fixed points

of the smoothing transform, the path will be laid out in the two subsequent propositions.

Proposition 9.4. Assume that [suppμ] satisfies (C), let m(α) = 1 for some α ∈ (0, 1] ∩ Iμ. Let
φ0 be as in Corollary 9.1. Then for all n ∈ N, (u, t) ∈ S≥ × R≥,

Snφ0(tu) = E exp (−KtαWn(u)) , (9.3)

as well as
Sn+1φ0(tu) > Snφ0(tu), (9.4)

with strict inequality holding iff T is not deterministic.

Proof. By Lemma 2.4,

Snφ0(tu) = E

⎛⎝ ∏
|v|=n

φ0(tL(v)
	u)

⎞⎠
= E exp

⎛⎝−K

cα

∑
|v|=n

∫
S≥

〈tL(v)	u, y〉ανα(dy)

⎞⎠
= E exp (−KtαWn(u)) .

As before, write Tn = (T (v))|v|≤n for the weights up to level n in T. Then (9.4) follows by an

application of the conditional Jensen inequality ([28, Problem 4.16 b)]) and Proposition 9.2:

Sn+1φ0(tu) = E (E [ exp (−KtαWn+1(u))| Tn])
≥ E (exp (E [−KtαWn+1(u)| Tn]))
= E (exp (−KtαWn(u))) = Snφ0(tu).

Proposition 9.5. Assume that [suppμ] satisfies (C) and let m(α) = 1 for some α ∈ (0, 1] ∩ Iμ.
The sequence φn := Snφ0 converges pointwise to

ψ(tu) = E exp (−KtαW (u))

for all (u, t) ∈ S× R≥ and ψ is the Laplace transfrom of a distribution on Rd
≥, with

Sψ = ψ.

Proof. The random variables exp (−KtαWn(u)) are uniformly bounded by 1, and converge by

Proposition 9.2 a.s. to exp (−KtαWn(u)), thus referring to the bounded convergence theorem,

lim
n→∞φn = ψ

when taking expectations.
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9. Existence of α-elementary Fixed Points

On the other hand, considering Lemma 2.4, (φn)n∈N is a sequence in L(P(Rd
≥)). By Theorem 5.2,

it converges to a LT ψ, and ψ(0) = E exp(0) = 1. Thus also ψ ∈ L(P(Rd
≥)).

ψ is a fixed point of S , since by Lemma 2.5, for all x ∈ Rd
≥,

Sψ(x) = S( lim
n→∞Snψ)(x) = lim

n→∞Sn+1ψ(x) = ψ(x).

Up to now, it is still possible that ψ ≡ 1, thus being the LT of the trivial fixed point δ0 and this

happens if and only if W (u) ≡ 0 for all u ∈ S≥. In the next subsection, it will be shown that ψ
is nontrivial except for the case K = 0. This will imply that also the martingale limit W (u) is

nontrivial.

Observe that up to now, the property m′(α) < 0 was not used. It first appears in the proof of

nontriviality in the next subsection, for the application of the simple MRT.

���� ��� ��	�
 ���� �� ���������

It follows from formula (9.2), that if K > 0

lim
t↓0

1− φ0(tu)

tα
= Keα∗ (u) > 0 (9.5)

for all u ∈ S≥. It will be shown by an adaption of the arguments in [41, Theorem 2.7], that also

lim inf
t↓0

1− ψ(ut)

tα
≥ Keα∗ (u) > 0.

This will particularly imply, that ψ is not degenerated.

Given a LT φ ∈ L(P(Rd
≥)), and χ ∈ (0, 1] ∩ Iμ, assume that [suppμ] satisfies (C) in order to

define the following functions on S≥ × R:

Dχ,φ(u, t) :=
eχt

eχ∗ (u)
(1− φ(e−tu)) (9.6)

Gχ,φ(u, t) :=
eχt

eχ∗ (u)
E

(
N∏
i=1

φ(e−tT	
i u) +

N∑
i=1

(
1− φ(e−tT	

i u)
)
− 1

)
. (9.7)

Substituting s = e−t and considering (9.2),

lim
t→∞Dα,φ0

(u, t) = lim
s→0

1− φ(su)

eα∗ (u)sα
= K.

The basic idea is to show that Dα,φ0
and Dα,ψ have the same limit for t → ∞. The first Step in

that direction is to link Dα,Sφ and Dα,φ by linearization of the product
∏N

i=1 φ(e
−tT	

i u). The first

ingredient needed therefore is the multivariate extension of [41, Lemma 2.3] given below.
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A. On Fixed Points of Multivariate Smoothing Transforms

Lemma 9.6. Let [suppμ] satisfy (C), χ ∈ (0, 1] ∩ Iμ and φ ∈ L(P(Rd
≥)). It holds that

Dχ,Sφ(u, t) = m(χ)Eχ
uDχ,φ(X1, t− V1)−Gχ,φ(u, t). (9.8)

Proof. Recalling the properties of Eχ
u from (8.4) to compute

Dχ,Sφ(u, t) =
eχt

eχ∗ (u)
E

(
1−

N∏
i= 1

φ(e−tT	
i u)

)

=
eχt

eχ∗ (u)
E

(
N∑

i= 1

[
1− φ(e−tT	

i u)
])

−Gχ,φ(u, t)

=
eχt

eχ∗ (u)

N∑
i= 1

E
(
1− φ(e−telog|T�

i u|T	
i · u)

)
−Gχ,φ(u, t)

=
eχt

eχ∗ (u)
NEu

(
1− φ(e−t+V1X1)

)
−Gχ,φ(u, t)

=
m(χ)

eχ∗ (u)κ(χ)
Eu

(
eχV1eχ∗ (X1)

eχ(t−V1)

eχ∗ (X1)

[
1− φ(e−t+V1X1)

])
−Gχ,φ(u, t)

= m(χ)Eχ
u

(
eχ(t−V1)

eχ∗ (X1)

[
1− φ(e−t+V1X1)

])
−Gχ,φ(u, t)

= m(χ)Eχ
uDχ,φ(X1, t− V1)−Gχ,φ(u, t)

The following Lemma is a straightforward generalization of [41, Lemma 2.4]:

Lemma 9.7. Let [suppμ] satisfy (C). Let φ, ϕ ∈ L(P(Rd
≥)) and χ ∈ (0, 1] ∩ Iμ. Then

1. Gχ,φ(u, t) ≥ 0 for all (u, t) ∈ S≥ × R.

2. For all u ∈ S≥, t �→ e−χtGχ,φ(u, t) is decreasing.

3. If ϕ(tu) ≥ φ(tu), then
Gχ,ϕ(u, t) ≤ Gχ,φ(u, t).

4. The function

t �→ e−χt

(
sup
u∈S≥

Gχ,φ(u, t)

)
(9.9)

is decreasing.

Proof. The short proof, mainly taken from [90, Lemma 2.8] is included for completeness. Consider

the function

h : [0, 1]N → R, (s1, . . . , sN ) →
N∏
i=1

si +

N∑
i=1

(1− si)− 1.
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9. Existence of α-elementary Fixed Points

Then for all 1 ≤ i ≤ N ,
∂

∂sj
h(s1, . . . , sN ) = −1 +

∏
i �=j

si ≤ 0.

Thus if ri ≤ si for all 1 ≤ j ≤ N , then

h(r1, . . . , rN ) ≥ h(s1, . . . , rN ). (9.10)

Now the assertion follows by using that h is bounded, thus integrable and putting the following in

(9.10):

1. ri = φ(e−tT	
i u), si = 1.

2. ri = φ(e−t1T	
i u), si = φ(e−t2T	

i u) for t1 > t2.

3. ri = ϕ(e−tT	
i u), si = φ(e−tT	

i u).

By (2), each of the functions gu(t) := e−χtGχ,φ(u, t) is decreasing in t. The pointwise supremum

of decreasing functions is again decreasing, thus (4) follows.

Abbreviate

Dα,n := Dα,Snφ0
= Dα,φn

, Gα,n = Gα,Snφ0
.

The next proposition gives the crucial identity that links Dα,n with Dα,0:

Proposition 9.8. Assume that [suppμ] satisfies (C). Suppose further that m(α) = 1 for some
α ∈ (0, 1] ∩ Iμ. Let φ0 = L(S̃α(Kνα, 0)). Then for all n ∈ N, (u, t) ∈ S≥ × R,

Dα,n(u, t) ≥ Eα
uDα,0(Xn, t− Vn)− Eα

u

n−1∑
k=0

Gα,0(Xk, t− Vk) (9.11)

as well as
Dα,n(u, t) ≤ Eα

uDα,0(Xn, t− Vn) (9.12)

Proof. Referring to Lemma 9.4, φn ≥ φ0, hence by Lemma 9.7,(3), Gα,φn
≤ Gα,φ0

. Use the

identity from Lemma 9.6 with m(α) = 1 to obtain

Dα,n(u, t) = Dα,Sφn−1
(u, t)

= Eα
uDα,φn−1

(X1, t− V1)−Gα,φn−1
(u, t)

≥ Eα
uDα,φn−1

(X1, t− V1)−Gα,0(u, t).

In other words, introducing the Markov kernel

αPf(u, t) = Eα
uf(X1, t− V1),

it follows that

Dα,n(u, t) ≥ αPDα,n−1(u, t)−Gα,0(u, t)
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and thus by iteration

Dα,n(u, t) ≥ (αP )nDα,0(u, t)−
n−1∑
k=0

(αP )kGα,0(u, t),

which gives the first assertion. The proof of the second assertion goes along the same lines, using

the estimate

Dα,n(u, t) = Eα
uDα,φn−1

(X1, t− V1)−Gα,φn−1
(u, t) ≤ Eα

uDα,φn−1
(X1, t− V1),

which is valid since Gα,φn−1
≥ 0 by Lemma 9.7.

The next Step is to investigate the limit n → ∞ in (9.11). The left-hand side (LHS) and the second

member on the right-hand side (RHS) are easy to evaluate:

Dα,n(u, t) → Dα,ψ(u, t)

by Proposition 9.5 and

Eα
u

n−1∑
k=0

Gα,0(Xk, t− Vk) → Eα
u

∞∑
k=0

Gα,0(Xk, t− Vk) = Gα,0 ∗ Uα
u(t)

by monotone convergence. The simple MRT will be used to get rid of this term, but first consider

the first member of the RHS in (9.11):

Lemma 9.9. Assume that [suppμ] satisfies (C). Suppose further that (M logM) holds and that
there is α ∈ (0, 1] with m(α) = 1 and m′(α) < 0. Then for all (u, t) ∈ S≥ × R,

lim
n→∞Eα

uDα,0(Xn, t− Vn) = K.

Proof. Set C ′ := supu∈S≥ eα∗ (u). Considering the inequality 1− e−r ≥ r− 1
2r

2 from Lemma 25.7

in the appendix and the definition of φ0 in Corollary 9.1, it holds that

Dα,0(Xn, t− Vn) =
eα(t−Vn)

eα∗ (Xn)

(
1− exp(−Keα(Vn−t)eα∗ (Yn))

)
≥ eα(t−Vn)

eα∗ (Xn)

(
Keα(Vn−t)eα∗ (Xn)−

1

2
K2e2α(Vn−t)eα∗ (Xn)

2

)
≥ K − 1

2
K2C ′eα(Vn−t).

Now by Theorem 8.2, limn→∞ Vn = −∞ Qα
u-a.s. Thus,

lim inf
n→∞ Dα,0(Xn, t− Vn) ≥ K Qα

u-a.s.

It will be shown in Corollary 9.13 that Dα,0 is bounded, thus the bounded convergence theorem can
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be applied to infer

lim inf
n→∞ Eα

uDα,0(Xn, t− Vn) ≥ K

for all (u, t) ∈ S≥ ×R. In the same manner, use the inequality 1− e−r ≤ r ≤ e−(1−r) (again from

Lemma 25.7) to obtain

lim sup
n→∞

Eα
uDα,0(Xn, t− Vn) ≤ K.

Together this proves the assertion.

Summarizing what has been proved up to now, the following result holds:

Corollary 9.10. Assume that [suppμ] satisfies (C). Suppose further that (M logM) holds and that
there is α ∈ (0, 1] with m(α) = 1 and m′(α) < 0. Then for all (u, t) ∈ S≥ × R,

K ≥ Dα,ψ(u, t) ≥ K − Eα
u

( ∞∑
n=0

Gα,0(Xn, t− Vn)

)
. (9.13)

The final Step is to show that the second term vanishes as t goes to infinity, this will be done by

an application of the simple Markov Renewal Theorem, hence the task is to show that Gα,0 is dRi,

which will be the result of Proposition 9.14. Beforehand, several estimates will be proved, which

are also useful for later purposes.

Lemma 9.11. Assume that [suppμ] satisfies (C). Let φ ∈ L(P(Rd
≥)) and let χ ∈ (0, 1] ∩ Iμ.

Introduce

h(s) := e−(s∧N) + (s ∧N)− 1, C(T ) :=

N∑
i=1

(‖Ti‖ ∨ 1) .

Then for all u ∈ S≥, t ∈ R,

Gχ,φ(u, t) ≤
eχt

eχ∗ (u)
Eh

(
C(T )(1− φ(e−tϑd))

)
(9.14)

as well as, if E‖T1‖ < ∞
lim
t→∞ sup

u∈S≥

Gχ,φ(u, t)

eχt(1− φ(e−tϑd))
= 0. (9.15)

Proof. The proof is a generalization of the arguments given in Lemma [41, Lemma 2.6] to the

multivariate situation. Properties of h are studied in Lemma 25.7 in the appendix.

Step 1: Compute, using the inequality r ≤ e−(1−r) (see (25.14)) in the second and the inequality

(25.11) in the last line:

Gχ,φ(u, t) =
eχt

eχ∗ (u)
E

(
N∏
i=1

φ(e−tT	
i u) +

N∑
i=1

(
1− φ(e−tT	

i u)
)
− 1

)

≤ eχt

eχ∗ (u)
E

(
N∏
i=1

e−(1−φ(e−tT�
i u)) +

N∑
i=1

(
1− φ(e−tT	

i u)
)
− 1

)
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=
eχt

eχ∗ (u)
E

(
e−

∑N
i=1(1−φ(e−tT�

i u)) +

N∑
i=1

(
1− φ(e−tT	

i u)
)
− 1

)

≤ eχt

eχ∗ (u)
E

(
h
( N∑
i=1

(1− φ(e−tT	
i u))

))

≤ eχt

eχ∗ (u)
E

(
h
( N∑
i=1

(‖Ti‖ ∨ 1)(1− φ(e−tϑd))
))

.

This proves formula (9.14).

Step 2: Use this bound and the substitution r = (1− φ(e−tϑd)) to deduce (9.15):

Gχ,φ(u, t)

eχt(1− φ(e−tϑd))
≤ 1

eχ∗ (u)(1− φ(e−tϑd))
E h

(
C(T )(1− φ(e−tϑd))

)
=

E h(C(T )r)

eχ∗ (u)r
=

1

eχ∗ (u)
E

h(C(T )r)

C(T )r
C(T ).

Then taking the lim t → ∞ corresponds to lim r → 0. The function s−1h(s) is bounded and

lims→0 h(s)/s = 0 by Lemma 25.7. Moreover,

E (C(T )) ≤ NE (1 + ‖T1‖) < ∞

as well as C ′ := supu∈S≥ eχ∗ (u)
−1

< ∞.

Putting everything together and using the bounded convergence theorem, it results that

0 ≤ lim sup
t→∞

Gχ,φ(u, t)

eχt(1− φ(e−tϑd)
≤ lim

r→0
C ′E

h(C(T )r)

C(T )r
C(T ) = 0.

Lemma 9.12. Assume that [suppμ] satisfies (C) and let m(α) = 1 for some α ∈ (0, 1] ∩ Iμ. Let
φ0 = L(S̃α(Keα∗ , 0)) and ψ = limn→∞ Snφ0. Then for all t ∈ R

1− φ0(e
−tϑd) ≤ d

α
2 e−αt, 1− ψ(e−tϑd) ≤ d

α
2 e−αt. (9.16)

Proof. In order to show the first estimate, use the definition of φ0 , the inequality (25.14) and the

convention that |eα∗ |∞ = 1 to infer that

1− φ0(e
−tϑd) = 1− exp

(
−(e−t

√
d)αeα∗ (ϑ1)

)
≤ d

α
2 e−αteα∗ (ϑ1) ≤ d

α
2 e−αt.

The second estimate is then a direct consequence, since 1 − Snφ0 is a decreasing sequence by

Lemma 9.4.

Corollary 9.13. Assume that [suppμ] satisfies (C) and let m(α) = 1 for some α ∈ (0, 1] ∩ Iμ.
The functions Dα,φ0

and Gα,φ0
are in Cb (S≥ × R).

Proof. The continuity of both functions is obvious from their very definition.
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Abbreviate C ′ := supy∈S≥ eα∗ (u)−1. To obtain the bound on Dα,φ0
, use the inequalities (25.9) and

(9.16):

Dα,φ0
(u, t) =

eαt

eα∗ (u)
(1− φ0(e

−tu)) ≤ C ′eαt(1− φ0(e
−tϑd)) ≤ C ′d

α
2 .

In order to bound Gα,0, observe as a first step that it is bounded on the negative half-line by its very

definition, in fact

sup
(u,t)∈S≥×R≤

Gα,0(u, t) ≤ C ′N.

Now considering the positive half-line, by (9.16)

sup
u∈S≥

Gα,φ0
(u, t)

eαt(1− φ0(e
−tϑd))

≥ d−
α
2 sup
u∈S≥

Gα,φ0
(u, t) ≥ 0.

But considering (9.15), the LHS tends to 0 as t → ∞, thus the same holds for supu∈S≥ Gα,φ0
(u, t)

and consequently

sup
(u,t)∈S≥×R≥

Gα,0(u, t) < ∞.

Proposition 9.14. Assume that [suppμ] satisfies (C) and let m(α) = 1 for some α ∈ (0, 1] ∩ Iμ.
Let E ‖M1‖ < ∞. Then Gα,φ0

is dRi.

Proof. Introduce ĝ : t �→ supu∈S≥ Gα,φ0
(u, t). Referring to Corollary 9.13, Gα,φ0

∈ Cb (S≥ × R)

and by Lemma 9.7, t �→ e−αtĝ(t) is decreasing. Thus using Corollary 8.8, it is sufficient to show

that ĝ ∈ L1 (R).

Setting again C ′ := supu∈S≥
1

eχ∗ (u)
, it is a consequence of the estimates (9.14) and (9.16), that

ĝ(t) ≤ C ′eαtEh
(
C(T )d

α
2 e−αt

)
. (9.17)

Now estimate∫ ∞

−∞
ĝ(t)dt ≤ C ′

∫ ∞

−∞
eαtEh

(
C(T )d

α
2 e−αt

)
dt

= E C ′
∫ ∞

−∞
eαth

(
C(T )d

α
2 e−αt

)
dt = C ′E

∫ ∞

0

h(s)

s2
d

α
2
C(T )

α
ds

=
C ′

α

(∫ ∞

0

h(s)

s2
ds

)
EC(T ) ≤ C ′

α

(∫ ∞

0

h(s)

s2
ds

)
N(1 + E ‖M1‖) < ∞.

Here the substitution

s = C(T )d
α
2 e−αt, dt = − α

d
α
2 C(T )

eαtds = − α

d
α
2 C(T )

s ds,

Fubini’s theorem and Lemma 25.7 were used for the final conclusion.
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In this subsection, the proof of Theorem 1.2 is finished, several remarks and extensions are given

and it is discussed, why the approach to the existence of fixed points via the stable transformation
is not applicable in the multivariate setting.

Summarizing what has been done in the previous subsections, the following Theorem can now be

proved:

Theorem 9.15. Assume that [suppμ] satisfies (C). Suppose further that (M logM) holds and that
there is α ∈ (0, 1] with m(α) = 1 and m′(α) < 0. Let φ0 be the LT of S̃α(Keα∗ , 0) with K > 0.
Then ψ := limn→∞ Snφ0 is (the LT of) a fixed point of S , and for all u ∈ S≥

lim
s↓0

1− ψ(su)

sα
= Keα∗ (u) > 0. (9.18)

Proof. The convergence and fixed point property ofψ are contained in Proposition 9.5. In Corollary

9.10, the estimate

K ≥ Dα,ψ(u, t) =
1− ψ(e−tu)

eα∗ (u)(e−t)α
≥ K − Eα

u

( ∞∑
n=0

Gα,0(Xn, t− Vn)

)
(9.19)

was obtained. Referring to Proposition 9.14, Gα,0 is directly Riemann integrable. Thus by the

simple Markov Renewal Theorem applied to the present case (see Proposition 8.9) the last term

tends to zero as t → ∞. Consequently for all u ∈ S≥,

lim
t→∞

1− ψ(e−tu)

eα∗ (u)(e−t)α
= K.

Now replace s = e−t to obtain the assertion.

Remark 9.16. 1. By Corollary 7.5, a sufficient condition for the existence of α ∈ (0, 1) with

m(α) = 1, m′(α) < 0 is that the spectral radius of ET1 is less than N−1.

2. In Subsection 7.3, it was explained how a numerical simulation of να and m can be done.

3. Put K < 0 to obtain nontrivial fixed points supported on Rd
≤. The fixed point corresponding

to K = 0 is the trivial one, Y ≡ 0.

4. By Corollary 5.15, if α < 1 and Y has LT ψ, then Y is multivariate regular varying with

index α, in particular, there is C > 0 such that

tαP
(
t−1Y ∈ ·

) v→ Cνα ⊗ λα.

5. By Lemma 7.4, if α = 1 and Y has LT ψ, then

Keα∗ (u) = E〈u, Y 〉 = K〈u, y〉 ∀u ∈ S≥,

where y ∈ S≥ is the (essentially unique) eigenvector of ET1 corresponding to the eigenvalue

N−1. In other words, for α = 1 the fixed points described by Buraczweski, Damek and
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Guivarc’h (see Theorem 4.6) were rediscovered.

Theorem 9.15 also gives the nontriviality of the limit of the Biggins martingale.

Theorem 9.17. Under the assumptions of Theorem 9.15, it holds that EW (u) = eα∗ (u) for all
u ∈ S≥.

Proof. In Proposition 9.5, the formula ψ(su) = Ee−KsαW (u) was obtained. The function

s �→ 1− e−KsαW (u)

sα

is decreasing, with limitKW (u) for s → 0, thus the monotone convergence theorem may be applied

to deduce from formula (9.18), that

Keα∗ (u) = lim
s↓0

1− Ee−KsαW (u)

sα
= lim

s↓0
E

(
1− e−KsαW (u)

sα

)

= E

(
lim
s↓0

1− e−KsαW (u)

sα

)
= E (KW (u)) .

Finally, some words on what is different from the one-dimensional case:

In the one-dimensional case, it is sufficient to prove existence of fixed points in the case α = 1,
existence of fixed points for α < 1 is then derived via the stable transformation (see [41, Section

3]). This method is recalled here to point out, why it breaks down in the multidimensional case:

Consider the one-dimensional smoothing transform S and assume α < 1. Denote

Sα : ν �→ L
(

N∑
i=1

Tα
i Yi

)

with the usual conventions and let m̂α(s) =
∑N

i=1 E (Tα
i )

s. Then m̂α(1) = 1, m̂′
α(1) = αm̂′(α) <

0, this is the situation “α = 1”. So suppose there is φα with Sαφα = φα. Then a fixed point of S
is given by ψ(t) := φα(t

α), since this again defines a LT (see [41, Theorem 3.1] for details) and

Sψ(t) = E

(
N∏
i=1

ψ(Tit)

)
= E

(
N∏
i=1

φα(T
α
i t

α)

)
= Sαφα(t

α) = φα(t
α) = ψ(t).

The point is, that in the multivariate setting the weights Ti are matrices, so what is Tα
i ? For a

deterministic matrix A, these powers can be defined via spectral calculus, see e.g. [40, Theorem

VII.1.8]: But if [suppμ] satisfies (C), as always assumed, then by part (1) of (C), the realisations

of the random matrices do not have common eigenspaces, therefore it is impossible to write down

a spectral decomposition of the random matrix T1. This is why the stable transformation is not

applicable here.
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In this section, the case that m′(α−) = 0 is adressed, the so-called boundary case. The following

theorem will be proved.

Theorem 10.1 (Existence of fixed points in the boundary case). Assume that [suppμ] satisfies (C),
(M logM) holds, and that there is α ∈ (0, 1] with

m(α) = 1, m′(α−) = 0.

Then S0 possesses a nontrivial fixed point Y . If α = 1, then E |Y | = ∞.

The strategy of proof, which will be given by several subsequent lemmata, is similar to [41, Theorem

3.5]: Consider small perturbations Sχ of S , which satisfy the assumptions of Theorem 9.15, thus

possess nontrivial fixed points ηχ. Then it will be shown that there is a sequence ηχk
, χk → α,

which converges weakly to a nontrivial fixed point of S .

Lemma 10.2. Let the assumptions of Theorem 10.1 be in force. Fix u0 ∈ S≥. Then for all χ ∈
(0, α), the rescaled smoothing transform

Sχ : ν �→ L
(

N∑
i=1

1

m(χ)1/χ
TiXi

)
(10.1)

possesses a nontrivial fixed point ηχ and its LT satisfies ψχ(u0) = 1/2.

Proof. Step 1: Given the random variable T = (T1, . . . ,TN ) with (Ti) identically distributed

with distribution μ, define for χ ∈ (0, α) the rescaled weight vector

Tχ = (Tχ,1, . . . ,Tχ,N ) := m(χ)−1/χ(T1, . . . ,TN ). (10.2)

Then Sχ is the smoothing transform associated with Tχ and the Tχ,i are identically distributed with

law

μχ = L
(
m(χ)−1/χT1

)
.

Since χ ∈ (0, α) it holds that m(χ) > m(α) = 1, thus the factor m(χ)−1/χ < 1, it makes the

matrices Ti “smaller”. This is reflected in the corresponding spectral function mχ which decays

faster than m, as will be seen now. Let (T(n))n∈N be a sequence of i.i.d. copies of T1 and compute

mχ(s) = N lim
n→∞

(
m(χ)−1/χE

∥∥T(1) · · ·T(n)

∥∥s) 1
n

= Nm(χ)−s/χ lim
n→∞

(
E
∥∥T(1) · · ·T(n)

∥∥s) 1
n

= Nm(χ)−s/χκ(s) =
m(s)

m(χ)s/χ
.
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It follows that

mχ(0) = N, mχ(s) > 1 for s ∈ (0, χ), mχ(χ) = 1.

In other words, αχ = χ. Since mχ is again a spectral function, it is convex, thus it can be deduced

that it is decreasing on [0, χ]. But what is the derivative in χ?

By Proposition 7.3, κ and thusm are differentiable on [0, 1]. Consequently, mχ is differentiable and

it follows that

m′
χ(s) = m′(s)m(χ)−s/χ − logm(χ)

χ
m(s)m(χ)−s/χ

=
m′(s)

m(χ)s/χ
− logm(χ)

χ
mχ(s).

Thus m′
χ(χ) =

m′(χ)
m(χ) − logm(χ)

χ < 0, since m(χ) > m(α) = 1.

It is checked in the subsequent Lemma 10.3 that if [suppμ] satisfies (C), then (C) remains valid

for [suppμχ]. Moreover, the moment condition (M logM) implies

E(1 +
∥∥∥T	

χ,1

∥∥∥)(1 + ∣∣∣log ∥∥∥T	
χ,1

∥∥∥∣∣∣+ ∣∣∣log ι(T	
χ,1)

∣∣∣) < ∞.

Thus Theorem 9.15 applied to Sχ gives the existence of a nontrivial fixed point ηχ of Sχ for any

χ ∈ (0, α).

Step 2: It still has to be shown that the fixed point Yχ can be chosen such that ψχ(u0) = 1/2. By

property (9.18), ψχ(su0) < 1 for some s > 0. This gives in particular that

t �→ ψχ(tu0),

which is the LT of the real-valued random variable 〈u0, Yχ〉, is nontrivial, thus it is monotone de-

creasing from 1 to 0. In particular, there is t0 ∈ R> with ψχ(t0u0) = 1/2. But then Ỹχ := t0Yχ is

also a fixed point of Sχ and its LT ψ̃χ satisfies

ψ̃χ(u0) = ψχ(t0u0) = 1/2.

Lemma 10.3. With the definitions above, if [suppμ] satisfies (C), then [suppμχ] satisfies (C).

Proof. Recall that [A] denotes the smallest closed semigroup which contains A. That means, ele-

ments of [suppμ] are either of the form

(A) a1 · · ·an for some n ∈ N, a1, . . . ,an ∈ suppμ , or

(B) limn→∞ bn, where (bn)n∈N is a convergent sequence of elements of type (A).

Note that when taking (finite or infinite) products of elements of type (B), they are again of type

(B) by diagonal selection methods. The proof will rely on the fact that geometrical properties of

elements of type (A) of [suppμ] and [suppμχ] are the same, since

a1, . . . ,an ∈ suppμ ⇔ m(χ)
− 1

χa1, . . . ,m(χ)
− 1

χan ∈ suppμχ.

51



A. On Fixed Points of Multivariate Smoothing Transforms

To be precise, have a look at the two properties of (C).

1. Take any subspace ∅ �= W � Rd with W ∩ Rd
≥ �= ∅. Then there is an element c of [suppμ]

that does not leave W invariant. If c is of type (A), then cχ := m(χ)
−n

χ c ∈ [suppμχ] for

some n ∈ N and W is not invariant under cχ either. If it is of type (B), let (bn)n∈N be a

sequence of elements of type (A) that converges towards c. Then there exist vectors w ∈ W ,

w⊥ ∈ W⊥ such that

lim
n→∞〈bnw,w⊥〉 = 〈cw,w⊥〉 > 0.

But then due to the convergence, there is n0 ∈ N with

〈bn0w,w⊥〉 > 0,

i.e. bn0 does not leave W invariant and bn0 is of type (A).

2. A similar argument applies here. If c ∈ [suppμ] ∩ M̆+, then if it is of type (A), cχ as

defined above is (for suitable n) in [suppμχ] ∩ M̆+. If now c = limn→∞ bn is of type

(B), convergence of matrices implies the convergence of all its entries, thus already bn0 ∈
[suppμ] ∩ M̆+ for some n0 and bn0 is of type (A).

Lemma 10.4. Let the assumptions of Theorem 10.1 be in force. Let (ηχ)χ∈(0,α) be given by Lemma
10.2. Then there exists a convergent sequence (ηχn)n∈N and its weak limit η is a nontrivial fixed
point of S .

Proof. Step 1: Take any sequence (ηχk
)k∈N with χk → α. Use that the set M1(Rd

≥) is vaguely

compact by Proposition 3.1. Thus there is a convergent subsequence (ηχn)n∈N with vague limit

η ∈ M1(Rd
≥). The continuity theorem 5.2 yields for the corresponding LTs (ψχn)n∈N resp. ψ that

lim
n→∞ψχn(tu) = ψ(tu)

for all (u, t) ∈ S≥×R>. It remains to show that η is a nontrivial probability measure with Sψ = ψ.

Step 2: Use limn→∞m(χn)
− 1

χn = m(α) = 1 together with the vague convergence ηχn

v→ η to

infer by an application of Corollary 5.3 that

lim
n→∞ψχn

(
m(χn)

− 1
χn tT	

i u
)
= ψ(tT	

i u) (10.3)

for all (u, t) ∈ S≥ × R>. Since ψχn is a fixed point of Sχn ,

ψχn(tu) = E

(
N∏
i=1

ψχn

(
m(χn)

− 1
χn tT	

i u
))

. (10.4)

Now taking the limit n → ∞ in (10.4) and using (10.3) together with the bounded convergence
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11. From ℵ-Elementary Fixed Points to the Existence of α

theorem, it follows that for all t ∈ R>, u ∈ S≥,

ψ(tu) = E

(
N∏
i=1

ψ(tT	
i u)

)
. (10.5)

Step 3: As a Laplace transform of a finite measure, ψ can be continuously extended to 0 and the

value ψ(0) is the total mass of the measure. Since ψ is uniformly bounded by 1, it may be deduced,

again using the bounded convergence theorem, that

ψ(0) = lim
|x|↓0

ψ(x) = E

(
N∏
i=1

lim
|x|↓0

ψ(T	
i x)

)
= (ψ(0))N .

Together with (10.5) it gives that η is a fixed point of S and moreover implies ψ(0) ∈ {0, 1}.
But ψ(u0) = limn→∞ ψχn(u0) = 1/2, thus (since LT are monotone in any direction) ψ(0) = 1.
Consequently, η is a probability measure. Also η �= δ0, for ψ(u0) = 1/2.

Remark 10.5. There is no statement about uniqueness. Eventually, if a different reference point u′0
is chosen, the limiting distribution η may be different, also when choosing a different subsequence.

Moreover, the proof does not give that ψ(u) < 1 for all u ∈ ∂S≥, so the distribution may also be

concentrated on some subspace.

Lemma 10.4 proves Theorem 10.1 except for the last assertion thatE |Y | = ∞ if α = 1. This results

from [29, Theorem 2.2] (see Theorem 4.6) which states that if α = 1, the existence of a nontrivial

fixed point with finite expectation is equivalent to m′(1) < 0. Consequently, when m′(1) = 0, the

nontrivial fixed point that was constructed above necessarily has an infinite expectation.

��� ���� ℵ��	
�
���� ���
� ������ �� ��
 �����
��
 �� α

For ℵ ∈ R>, define the subset Fℵ ⊂ F of ℵ-elementary fixed points of S by

L
(
Fℵ

)
:=

{
ψ ∈ L(P(Rd

≥)) : Sψ = ψ, lim
t↓0

t−ℵ(1− ψ(tϑ1)) ∈ (0,∞)

}
. (11.1)

It has been shown in Section 9, that if ℵ = α with m′(α) < 0, then Fℵ �= ∅. This section is

mainly devoted to the converse implication, namely that if Fℵ �= ∅, then ℵ = α, i.e. ℵ ∈ (0, 1] with

m(ℵ) = 1 and m′(ℵ) ≤ 0. A further result will be that if ψ is (the LT of) an ℵ-elementary fixed

point, then readily

lim
t↓0

t−ℵ(1− ψ(tu)) = Keℵ∗ (u)

for some K > 0. This justifies the introduction of a reference point in the definition of Fℵ and will

be the basis for proofs of uniqueness in the subsequent section.

Note that the Greek letter α was developed from the Phoenician letter Aleph (see [71, Chapter 4]])

and that Aleph corresponds to the Hebrew letter ℵ. Figuratively speaking, the same evolution will

53



A. On Fixed Points of Multivariate Smoothing Transforms

happen in this section, from ℵ to α.

As a first step, some a priori observations about properties of ℵ will be made. Subsequently, asymp-

totics at zero of t−ℵ(1−ψ(tu)) are studied in a general setting of dilated Laplace transforms (defined

below). Convergence results are obtained by using compactness of special sets of functions, which

contain these dilated Laplace transforms. Then by an application of the Krein-Milman theorem and

Kesten’s Choquet-Deny lemma, it will be deduced that the existence of ℵ-elementary fixed points

implies m(ℵ) = 1, m′(ℵ) ≤ 0.

����� ℵ�������	
�� ���� ����	�

The following observations are trivial and stated without proof for further reference.

Lemma 11.1. The trivial fixed point δ0 is not in Fℵ for any ℵ > 0. It holds

lim
t↓0

1− ψ(tϑd)

tℵ
= K ⇔ lim

t↓0
1− ψ(tϑ1)

tℵ
= d

ℵ
2 K (11.2)

and both imply for all a ∈ R>, lim
t↓0

(at)ℵ

1− ψ(tϑd)
=

aℵ

K
. (11.3)

More detailed information is provided by the following lemma.

Lemma 11.2. If Fℵ �= ∅, then ℵ ∈ (0, 1]. If ℵ ∈ Iμ, then m(s) ≥ 1 for all s ∈ [0,ℵ).

Proof. Let L (Y ) ∈ Fℵ with LT ψ. Suppose ℵ > 1, then

E〈ϑd, Y 〉 = lim
t↓0

1− ψ(tϑd)

t
= 0.

Since Y ∈ Rd
≥, this already implies Y ≡ 0 a.s.. But this cannot be the case by Lemma 11.1. Turning

to the second assertion, observe first that

E |Y |s ≤ E〈ϑd, Y 〉s =
∫ ∞

0
sts−1P (〈ϑd, Y 〉 > t) dt.

Referring to the Tauberian theorem for LTs, Proposition 5.11, the tails of 〈ϑd, Y 〉 decay like t−ℵ.

Consequently, E |Y |s < ∞ for all s < ℵ. In other words, Y ∈ Fs and if now m(s) < 1 for some

s ∈ (0,ℵ) ⊂ (0, 1), then Proposition 4.3 gives that Y
d
= δ0, which is again a contradiction with

Lemma 11.1.

Corollary 11.3. If Fℵ �= ∅ then either ℵ ≤ α or m′(α) = 0 and m(ℵ) > 1.

Proof. By Lemma 11.2, two cases are possible. Case 1: If m(s) > 1 for all s ∈ [0,ℵ), then by

definition ℵ ≤ α. Case 2: If there is s ∈ [0,ℵ) with m(s) = 1, then α < ℵ. Considering the

strict convexity of m (see Theorem 7.3) and the fact that m(s) ≥ 1 for all s ∈ [0,ℵ) it follows that

m′(α) = 0 and m(ℵ) > m(α) = 1.
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11. From ℵ-Elementary Fixed Points to the Existence of α

����� ��� ��� Jχ

In this subsection, a compact subset of C (S≥ × R) is introduced and it is shown that properly dilated

LTs (to be defined below) of ℵ-elementary fixed points are in this set. The definition is stated with

a general parameter χ ∈ (0, 1].

Definition 11.4. For χ ∈ (0, 1] let Jχ be the set of continuous functions

g : S≥ × R → [0,∞)

satisfying

(i) supu∈S+
g(u, 0) · eχ∗ (u) ≤ 1 ,

(ii) t �→ g(u, t)e−χt is decreasing for all u ∈ S≥,

(iii) t �→ g(u, t)e(1−χ)t is increasing for all u ∈ S≥,

(iv) u �→ g(u, t)eχ∗ (u)e−χt is χ-Hölder with constant (less or equal to) 8 for each t ≥ 0 and

(v) u �→ g(u, t)eχ∗ (u)e(1−χ)t is χ-Hölder with constant (less or equal to) 8 for each t < 0.

The definition of this and the subsequent sets is in the spirit of [41, Lemma 2.11]. The multivariate

setting necessitates the additional properties (iv) and (v). Since the Arzelà-Ascoli will be used to

derive the compactness of Jχ, these conditions have to be uniform in g, this is why an explicit

constant is given there and the explicit choice 8 was made because of the constant 8 in Lemma 5.17.

Proposition 11.5. The set Jχ is a compact subset of C (S≥ × R) w.r.t. the topology of uniform
convergence on compact sets.

The following bounds on g ∈ Jχ will be needed for several of the subsequent proofs. Therefore,

they are noted in a seperate lemma:

Lemma 11.6. For all g ∈ Jχ and u ∈ S≥, the following uniform bounds hold:

0 ≤ g(u, t) ≤
{
eχ∗ (u)−1eχt t ≥ 0

eχ∗ (u)−1e−(1−χ)t t ≤ 0
. (11.4)

Proof. Combining properties (ii) and (i), it follows that g(u, t)eχ∗ (u, t)e−χt ≤ 1 for all g and t ≥ 0,
since this function is decreasing and for t = 0 bounded by 1 due to property (i). This implies the

bound for t ≥ 0. The bound for t ≤ 0 follows similarly by combining properties (iii) and (i). The

lower bound follows from the very definition of g ∈ Jχ.

The proof of Proposition 11.5 uses the Arzelà-Ascoli theorem. For the reader’s convenience, the

definition of equicontinuity is recalled:

Definition 11.7. Let (E, dE), (G, dG) be locally compact metric spaces. A family F of functions

(E, dE) → (G, dG) is equicontinuous at x ∈ E, if

∀ε > 0 ∃δ > 0 ∀y ∈ Bδ(x) ∀f ∈ F : f(y) ∈ Bε(f(x)).
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A. On Fixed Points of Multivariate Smoothing Transforms

Proof of Proposition 11.5. Jχ ⊂ C (S+ × R) by definition. To show that Jχ is compact, the general

version of the Arzelà-Ascoli theorem for locally compact metric spaces [58, Theorem 7.18] will be

applied. Therefore, it has to be checked that

• Jχ is closed in C (S+ × R),

• for all (u, t) ∈ S≥ × R, the closure of the orbit

Jχ(u, t) = {g(u, t) : g ∈ Jχ}

is compact in R and

• at each (u, t) ∈ S≥ × R, Jχ is equicontinuous.

Step 1, Jχ is closed: Let the sequence (gn)n∈N ⊂ Jχ be convergent with limit g ∈ C (S≥ × R).
This convergence is uniform on compact sets and in particular implies pointwise convergence, which

is sufficient to check validity of the properties (i) - (v) for the limit g.

Compactness of the orbits is a direct consequence of the uniform bounds on (g(u, t))g∈Jχ given in

Lemma 11.6.

Step 2, equicontinuity: Fix (u0, t0) ∈ S≥ × R and ε > 0. In order to prove equicontinuity, first

consider the variation in t. Let δ > 0. Then for any g ∈ Jχ, it follows from property (iii) that for

all u ∈ S≥ and t ∈ [t0 − δ, t0 + δ],

g(u, t)e(1−χ)(t0+δ) ≤ g(u, t)e(1−χ)t ≤ g(u0, t0 + δ)e(1−χ)(t0+δ),

thus

g(u, t) ≤ g(u, t0 + δ)e2(1−χ)δ.

Similarly, it is a consequence of property (ii) that g(u, t) ≥ g(u, t0 + δ)e−2χδ. Referring to Lemma

11.6, it holds that

M := sup{g(u, t) : g ∈ Jχ, (u, t) ∈ S≥ × [t0 − δ, t0 + δ]} < ∞.

Combining the estimates above gives

|g(u, t)− g(u, t0)| ≤ g(u, t0 + δ)e2(1−χ)δ − g(u, t0 + δ)e−2χδ

≤ M
(
e2(1−χ)δ − e−2χδ

)
.

Hence there is δ1 > 0 such that

|g(u, t)− g(u, t0)| <
ε

2
(11.5)

for all t ∈ Bδ1(t0) and all u ∈ S≥. In order to consider the variation in u, a case distinction has to

be made.

Case t0 ≥ 0: Writing h(u, t) = g(u, t)eχ∗ (u)e−χt, it is a consequence of Lemma 11.6 that

L := sup{h(u, t) : g ∈ Jχ, (u, t) ∈ S≥ × [t0 − δ1, t0 + δ1]} < ∞.
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Considering property (iv), it follows that for all u ∈ S≥,

|g(u, t0)− g(u0, t0)| = eχt0
∣∣∣∣h(u, t0)eχ∗ (u)

− h(u0, t0)

eχ∗ (u0)

∣∣∣∣
≤ eχt0

eχ∗ (u0)
|h(u, t0)− h(u0, t0)|+ eχt0

∣∣∣∣h(u0, t0)eχ∗ (u)
− h(u0, t0)

eχ∗ (u0)

∣∣∣∣
≤ 8

eχt0

eχ∗ (u0)
|u− u0|χ + eχt0L

∣∣∣∣ 1

eχ∗ (u)
− 1

eχ∗ (u0)

∣∣∣∣ .
Hence there is δ2 > 0 such that

|g(u, t0)− g(u0, t0)| ≤ ε2 (11.6)

for all u ∈ Bδ2(u0). Combining (11.5) and (11.6), it holds that for all (u, t) ∈ Bδ2(u0)×Bδ1(t0),

|g(u, t)− g(u0, t0)| ≤ |g(u, t)− g(u, t0)|+ |g(u, t0)− g(u, t)| ≤ ε.

This proves the equicontinuity in the case t0 ≥ 0. The Case t0 < 0 can be treated completely

similar, by using property (v) instead of property (iv).

Let φ ∈ L(P(Rd
≥)). Define the s-dilation of φ, s > 0, by

hs(u, t) :=
Dχ,φ(u, s+ t)

eχs(1− φ(e−sϑd))
=

eχt

eχ∗ (u)
1− φ(e−(s+t)u)

1− φ(e−sϑd)
.

Proposition 11.8. Let φ ∈ L(P(Rd
≥)), γ ∈ (0, 1] and K ∈ R> with

lim
t↓0

1− φ(tϑd)

tγ
= K. (11.7)

Then there is s0 such that (hs)s≥s0 ∈ Jχ for any χ ∈ (0, γ].

Moreover, if there is a function f : S≥ → [0,∞) with

lim
t↓0

1− φ(tu)

tγ
= f(u) ∀u ∈ S≥ (11.8)

then this convergence is uniform on S≥, i.e.

lim
t↓0

∣∣∣∣1− φ(t·)
tγ

− f

∣∣∣∣
∞

= 0. (11.9)

Proof. Step 1: Let’s check the properties of Jχ for hs, s > 0.

(i) Using Inequality (25.9),

hs(u, 0)e
χ
∗ (u) =

1− φ(e−su)

1− φ(e−sϑd)
≤ 1.
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(ii) By definition, hs(u, t)e
−χt = (eχ∗ (u)(1− φ(e−sϑd)))

−1
(1− φ(e−te−su)). Note that s and

u are fixed. As a function of t, it is decreasing since φ is a LT.

(iii) In this case

hs(u, t)e
(1−χ)t =

(
eχ∗ (u)(1− φ(e−sϑd))

)−1 1− φ(e−te−su)

e−t
,

where s, u can be considered fixed. Recall that r �→ (1 − φ(ru))/r is again a LT, thus de-

creasing in r (cf. Subsection 25.1). Now since t �→ e−t is as well decreasing,

t �→ 1− φ(e−te−su)

e−t

is increasing.

(iv) This will result from an application of Lemma 5.17. Set s0 := − logA, Then for all s ≥ s0,
t ≥ 0 a = e−(s+t) ≤ A. Consequently, for all u,w ∈ S≥∣∣hs(u, t)eχ∗ (u)e−χt − hs(w, t)e

χ
∗ (w)e

−χt
∣∣

=

∣∣∣∣∣1− φ(e−(s+t)u)

1− φ(e−sϑd)
− 1− φ(e−(s+t)w)

1− φ(e−sϑd)

∣∣∣∣∣ (5.19)

≤ 8(|u− w| ∧ 1)χ

≤ 8 |u− w|χ ,

which is the asserted Hölder continuity.

(v) Applying again Lemma 5.17 with the same s0. Now a = e−s ≤ A for all s ≥ s0 and

b = e−t > 1 for all t < 0. It follows that for all u,w ∈ S≥,∣∣∣hs(u, t)eχ∗ (u)e(1−χ)t − hs(w, t)e
χ
∗ (w)e

(1−χ)t
∣∣∣

= et
∣∣∣∣1− φ(e−te−su)

1− φ(e−sϑd)
− 1− φ(e−te−sw)

1− φ(e−sϑd)

∣∣∣∣
(5.20)

≤ et8e−t(|u− w| ∧ 1)χ ≤ 8 |u− w|χ ,

which is the asserted Hölder continuity.

Consequently, hs ∈ Jχ for all s ≥ s0 = − logA, where A is given by Lemma 5.17.

Step 2: Property (11.8) is equivalent to

lim
s→∞

1− φ(e−(s+t)u)

e−sγ
= e−γtf(u), (11.10)

for all (u, t) ∈ S≥×R and, taking (11.7) into account, also equivalent to the pointwise convergence

lim
s→∞hs(u, t) = lim

s→∞
eχt

eχ∗ (u)
1− φ(e−(s+t)u)

1− φ(e−sϑd)
=

e(χ−γ)t

eχ∗ (u)K
f(u) =: h(u, t). (11.11)
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Since the convergence in (11.7) is independent of u, it is sufficient to show that

lim
s→∞ |hs(·, 0)− h(·, 0)|∞ = 0

in order to prove (11.9).

Considering Step 1, there is s0 ∈ R> such that hs ∈ Jχ for all s ≥ s0. Jχ is compact and hence any

sequence hsn with sn → ∞ has a subsequence which is uniformly convergent on compact sets. But

referring to (11.11), any subsequence has the same limit, namely h. Since C (S≥ × R) is Hausdorff,

then readily hs → h, now uniformly on compact subsets of S≥ × R. The assertion follows by

considering the compact set S≥ × {0}.

����� ��� ��� Hχ,c

The set Jχ can be seen as a limit set for dilated Laplace transforms of arbitrary distributions on Rd
≥

with tail index < 1. In this subsection, a subset Hχ,c ⊂ Jχ will be defined which will turn out to be

the limit set for more specialized dilated LTs, namely those of ℵ-elementary fixed points.

Definition 11.9. Let [suppμ] satisfy (C). Forχ ∈ Iμ∩(0, 1], c ∈ (0, 1] define the subsetHχ,c ⊂ Jχ
as follows: A function g ∈ Jχ is in Hχ,c, if it satisfies the additional properties:

(i’) supu∈S≥ g(u, 0)eχ∗ (u) = c and g(u, 0)eχ∗ (u) ≥ mini ui for all u ∈ S≥.

(vi) For all (u, t) ∈ S≥ × R, g(u, t) = m(χ)Eχ
ug(X1, t− V1).

(vii) Introducing

Lt : S≥ × R → R>, (u, r) �→ g(u, t+ r)

g(u, r)
,

the following holds: For all t ∈ R, all compact C ⊂ S̆≥, all u,w ∈ C:

sup
r∈R

e−χt |Lt(u, r)− Lt(w, r)| ≤ 16 (1 ∨ e−t)( min
i=1,...,d;y∈C

yi)
−1 |u− w|χ .

Note that a priori, g(u, t) = 0 is possible for t �= 0 and also g(u, 0) = 0 for u ∈ ∂S≥. The following

lemma shows that this does not happen. Consequently, Lt and Hχ,c are well defined.

Lemma 11.10. Let [suppμ] satisfy (C). Let g ∈ Jχ for some χ ∈ (0, 1] ∩ Iμ and let g satisfy
properties (vi) and (i’) for some c ∈ (0, 1]. Then for all (u, t) ∈ S≥ × R, it holds that g(u, t) > 0.
In particular, Lt is well defined and continuous on S≥ × R.

Proof. Completely analogue to Lemma 11.6, for all g ∈ Hχ the lower bounds

g(u, t) ≥
{
g(u, 0)e−χt t ≤ 0

g(u, 0)e(1−χ)t t ≥ 0
(11.12)

can be obtained. Thus as soon as g(u, 0) > 0, readily g(u, t) > 0 for all t ∈ R. Referring to

property (i’), this already implies g > 0 on S̆≥ × R.
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Considering Theorem 7.3 (3) and (4), for every function f that is strictly positive on S̆≥, there is

n ∈ N such that (Pχ
∗ )nf(u) > 0 for all u ∈ S≥ i.e. Qχ

u{f(Xn) > 0} > 0.

Applying this for f = g(·, 0), it follows that for some n ∈ N, Qχ
u{g(Xn) > 0} > 0. Since Qχ

u is a

probability measure, there is even a compact set C ⊂ S≥ × R such that

Qχ
u{g(Xn) > 0, (Xn, Vn) ∈ C} > 0.

Write r := min(y,s)∈C g(y)
[
eχs1[0,∞)(s) + e−(1−χ)s1(−∞,0)(s)

]
and observe that this quantity is

positive by the bounds obtained above. Now using property (6), for all u ∈ S≥

g(u, 0) =
1

m(χ)n
Eχ
ug(Xn,−Vn)

≥ 1

m(χ)n
Eχ
ug(Xn)

[
eχVn1[0,∞)(Vn) + e−(1−χ)Vn1(−∞,0)(Vn)

]
≥ 1

m(χ)n
r Qχ

u{g(Xn) > 0, (Xn, Vn) ∈ C}

where r = min(y,s∈C) g(y)
[
eχs1[0,∞)(s) + e−(1−χ)s1(−∞,0)(s)

]
> 0.

The statement of property (vii) looks quite awkward. There are several excuses for considering it:

Firstly, it is satisfied by limits of s-dilated Laplace transforms of elemantary fixed points. Secondly,

and more important, it is necessary in order to apply the Choquet-Deny lemma of Kesten. Thirdly,

this particular formulation is compatible with the pointwise convergence of functions g. The latter

will be used in the next result:

Proposition 11.11. Let [suppμ] satisfy (C) and E ‖M1‖ < ∞. Then for each c ∈ (0, 1] and
χ ∈ (0, 1], the set Hχ,c is a compact subset of C (S × R) with respect to the topology of uniform
convergence on compact sets.

Proof. The main part of the proof is already contained in Proposition 11.5. Since Hχ,c ⊂ Jχ and

Jχ is compact, it is sufficient to show that Hχ,c is closed, i.e. any uniform limit g of functions

gn ∈ Hχ,c is again an element of Hχ,c. Uniform convergence on compact sets implies the pointwise

convergence gn → g, hence it is even sufficient to show that the additional properties (i’), (vi) and

(vii) are closed under pointwise convergence. For (i’) and (vii), this is (more or less) obvious, it

remains to consider (vi). Since gn ∈ Hχ,c, for all (u, t) ∈ S≥ × R

gn(u, t) = m(χ)Eχ
ugn(X1, t− V1).

Then the same holds for g if it can be shown that the sequence of r.v.s (gn(X1, t − V1))n∈N is

uniformly integrable w.r.t. Qχ
u because this would imply that

Eχ
ugn(X1, t− Vn) → Eχ

ug(X1, t− Vn).

The proof of uniform integrability is given in the subsequent lemma.
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Lemma 11.12. Let [suppμ] satisfy (C) and E ‖M1‖ < ∞. Let χ ∈ (0, 1]. Then for all (u, t) ∈
S≥ × R, the family of r.v.s (g(X1, t− V1))g∈Jχ is uniformly integrable w.r.t. to Qχ

u .

Proof. Let r > 0, g ∈ Jχ. Use the bounds (11.4) and the definition (8.4) of Qχ
u to compute∫

{g(X1,t−V1)>r}
g(X1, t− V1) dQ

χ
u

(8.4)
=

1

eχ∗ (u)κ(χ)
Eu

(
eχV1eχ∗ (X1)g(X1, t− V1)1{g(X1,t−V1)>r}

)
(11.4)

≤ 1

eχ∗ (u)κ(χ)
Eu

(
eχV1eχ∗ (X1)

[
eχ(t−V1)

eχ∗ (X1)
1{t≥V1}1{ eχ(t−V1)

e
χ∗ (X1)

>r}

+
e−(1−χ)(t−V1)

eχ∗ (X1)
1{t<V1}1{ e−(1−χ)(t−V1)

e
χ∗ (X1)

>r}

])
=

1

eχ∗ (u)κ(χ)

[
eχtPu

(
V1 ≤ t, eχV1 <

eχteχ∗ (X1)

r

)
+ e−(1−χ)tEu

(
eV11{V1>t, e(1−χ)V1>re(1−χ)teχ∗ (X1)}

)]
≤ 1

eχ∗ (u)κ(χ)

[
eχtP

(
|M1u|χ <

1

r
C

)
+ e−(1−χ)tE

(
‖M1‖1{‖M1‖>rC′}

)]
with

C = eχt sup
y∈S≥

eχ∗ (y) < ∞ C ′ = e(1−χ)t inf
y∈S≥

eχ∗ (y) > 0

and independent of g. Since by assumption E ‖M1‖ < ∞, the final expression converges to zero as

r → ∞. This gives the asserted uniform integrability.

Proposition 11.13. Let [suppμ] satisfy (C) and E ‖M1‖ < ∞. For ℵ ∈ (0, 1], let ψ ∈ L(Fℵ).
Choose χ ≤ ℵ. Then any sequence (hsn)n∈N of s-dilations of ψ with sn → ∞ has a convergent
subsequence hsnk

. For the subsequence’s limit h, there is c > 0 such that h ∈ Hχ,c.

Proof. Step 1: By its very definition, the LT ψ of an ℵ-elementary fixed point satisfies

lim
t→0

1− ψ(tϑd)

tℵ
= K ∈ R>.

Thus, for χ ≤ ℵ Proposition 11.8 gives that for some s0 > 0, (hs)s≥s0 is in the compact set Jχ.

This implies the existence of a convergent subsequence and its limit h is in Jχ. The main burden is

now to show that h ∈ Hχ,c, i.e. it satisfies the additional properties (i’), (vi) and (vii).

Step 2, property (i’): On the one hand, supu∈S≥ h(u, 0)eχ∗ (u) ≤ 1 by property (i) of Jχ. On the

other hand, for all u ∈ S̆≥ and all s > 0, by inequality (25.12)

hs(u, 0) =
1

eχ∗ (u)
1− φ(e−su)

1− φ(e−sϑd)
≥ min

i
ui
1− φ(e−sϑd)

1− φ(e−sϑd)
= min

i
ui > 0.
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In particular, h(·, 0) does not vanish, thus indeed c := supu∈S≥ h(u, 0)eχ∗ (u) ∈ (0, 1], consequently,

(i’) holds for h.

Step 3, property (vi): Fix (u, t) ∈ S≥ × R. Since Sψ = ψ, Lemma 9.6 gives

Dχ,ψ(u, s+ t) = m(χ)Eχ
uDχ,ψ(X1, s+ t− V1)−Gχ,ψ(u, s+ t).

Combining this with the defintion of hs,

hs(u, t) = m(χ)
Eχ
uDχ,ψ(X1, s+ t− V1)

eχs(1− ψ(e−sϑd))
− Gχ,ψ(u, s+ t)

eχs(1− ψ(e−sϑd))

= m(χ)Eχ
uhs(X1, t− V1)−

Gχ,ψ(u, s+ t)

eχ(s+t)(1− ψ(e−(s+t)ϑd))

eχ(s+t)(1− ψ(e−(s+t)ϑd))

eχs(1− ψ(e−sϑd))
.

(11.13)

By Lemma 9.11, equation (9.15),

lim
s→∞

Gχ,ψ(u, s+ t)

eχ(s+t)(1− ψ(e−(s+t)ϑd))
= 0

and by inequality (25.5)

0 ≤ eχ(s+t)(1− ψ(e−(s+t)ϑd))

eχs(1− ψ(e−sϑd))
≤ eχt

1− ψ(e−sϑd)

1− ψ(e−sϑd)
≤ eχt, (11.14)

thus the second term in (11.13) tends to zero as s → ∞.

Now by the uniform integrability of functions (hsnk
(X1, t − V1))nk

⊂ Jχ, which has been shown

in Lemma 11.12,

h(u, t) = lim
k→∞

hsnk
(u, t) = lim

k→∞
Eχ
uhsnk

(X1, t− V1) = Eχ
uh(X1, t− V1).

Step 4, property (vii): Fix t ∈ R, C ⊂ S̆≥ compact and compute for all u,w ∈ C

e−χt

∣∣∣∣hs(u, t+ r)

hs(u, r)
− hs(w, t+ r)

hs(w, r)

∣∣∣∣
= e−χt

∣∣∣∣eχ(t+r)(1− ψ(e−(s+t+r)u))

eχ∗ (u)(1− ψ(e−sϑd))
· e

χ
∗ (u)(1− ψ(e−sϑd))

eχr(1− ψ(e−(s+r)u))

− eχ(t+r)(1− ψ(e−(s+t+r)w))

eχ∗ (w)(1− ψ(e−sϑd))
· e

χ
∗ (w)(1− ψ(e−sϑd))

eχr(1− ψ(e−(s+r)w))

∣∣∣∣
=

∣∣∣∣∣1− ψ(e−(s+t+r)u)

1− ψ(e−(s+r)u)
− 1− ψ(e−(s+t+r)w)

1− ψ(e−(s+r)w)

∣∣∣∣∣
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Abbreviate the terms with a, b, c, d and continue

=
∣∣∣a
b
− c

d

∣∣∣ = ∣∣∣∣ab · d− b

d
+

c

d
· a− c

c

∣∣∣∣ ≤ ∣∣∣a
b

∣∣∣ ∣∣∣∣d− b

d

∣∣∣∣+ ∣∣∣ c
d

∣∣∣ ∣∣∣∣a− c

c

∣∣∣∣
=

(
1− ψ(e−(s+t+r)u)

1− ψ(e−(s+r)u)

)∣∣∣∣d− b

d

∣∣∣∣+
(
1− ψ(e−(s+t+r)w)

1− ψ(e−(s+r)w)

)∣∣∣∣a− c

c

∣∣∣∣
≤ (1 ∨ e−t)

∣∣∣∣d− b

d

∣∣∣∣+ (1 ∨ e−t)

∣∣∣∣a− c

c

∣∣∣∣
In the last line, the inequalities (25.5) and (25.8) were used. Extending the fractions and using

inequality (25.12) allows to continue by

= (1 ∨ e−t)
1− ψ(e−(s+r)ϑd)

1− ψ(e−(s+r)w)

∣∣∣∣∣1− ψ(e−(s+r)w)−
(
1− ψ(e−(s+r)u)

)
1− ψ(e−(s+r)ϑd)

∣∣∣∣∣
+ (1 ∨ e−t)

1− ψ(e−(s+t+r)ϑd)

1− ψ(e−(s+t+r)w)

∣∣∣∣∣1− ψ(e−(s+t+r)u)−
(
1− ψ(e−(s+t+r)w)

)
1− ψ(e−(s+t+r)ϑd)

∣∣∣∣∣
≤ (1 ∨ e−t)

(
min
i

wi

)−1
∣∣∣∣∣1− ψ(e−(s+r)w)−

(
1− ψ(e−(s+r)u)

)
1− ψ(e−(s+r)ϑd)

∣∣∣∣∣
+ (1 ∨ e−t)

(
min
i

wi

)−1
∣∣∣∣∣1− ψ(e−(s+t+r)u)−

(
1− ψ(e−(s+t+r)w)

)
1− ψ(e−(s+t+r)ϑd)

∣∣∣∣∣
By Lemma 5.17 there is A ∈ R> such that as soon as

e−(s+t+r) ∨ e−(s+r) ≤ A, (11.15)

the following estimate is valid

. . . ≤ (1 ∨ e−t)

(
min
y∈C

min
i

yi

)−1

· 2 · 8(|u− w| ∧ 1)ℵ

≤ 16(1 ∨ e−t)

(
min
y∈C

min
i

yi

)−1

|u− w|χ

The condition (11.15) holds for all r ∈ R in the limit s → ∞ (recall that t is fixed). Luckily, the

estimation just calculated remains valid unter pointwise convergence hsnk
→ h, so when taking

the limit snk
→ ∞, it follows that the estimate is valid for all r ∈ R and consequently, h satisfies

property (vii).

Corollary 11.14. Let [suppμ] satisfy (C) and E ‖M1‖ < ∞. If Fℵ �= ∅, then for all χ ∈ (0,ℵ],
Hχ,c �= ∅ for some c ∈ (0, 1].
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����� ��� ��� Eχ

It has been shown in Proposition 11.11 that Hχ,c is a compact subset of Cb (S≥ × R). By the Krein-

Milman theorem, it is contained in the convex hull of the set of its extremal points Eχ,c, say. In

this subsection, a description of Eχ,c will be given and in particular it will be proved that Eχ,c �= ∅
if and only if there is α ∈ (0, 1] such that m(α) = 1, m′(α) ≤ 0. This will lay out a path from

Fℵ �= ∅ to the conclusion that ℵ = α.

Property (vi) states that – depending on the value of m(χ) – the functions in Hχ,c are sub-, super- or

even harmonic for the MC (Xn, Vn)n∈N0 underQχ
u . So in a sense, the description ofEχ,c will consist

of an identification of extremal harmonic functions, which usually requires a result of Choquet-Deny

type.

The Choquet-Deny lemma that will be used is due to Kesten [60, Lemma 1]. It is part of the proof

of his MRT and is stated below in a version adapted to the present situation together with a proof

that the reformulations are valid.

Lemma 11.15. Assume that [suppμ] satisfies (C) and let

E |log ‖M1‖|+ |log ι(M1)|+ |log ι(T1)| < ∞. (log-moments)

If L ∈ Cb (S≥ × R) satisfies

(a) L(u, s) = EuL(X1, s− V1) for all (u, s) ∈ S̆≥ × R and

(b) for each u ∈ S̆≥, limv→u sups∈R |L(v, s)− L(u, s)| = 0,

then L is constant.

The original statement contained in the proof of [60, Lemma 1, bottom of p. 362] can be rephrased

as follows:

Kesten’s Choquet-Deny lemma
Assume that conditions I.1 - I.3 are satisfied. LetL be a bounded function on S×R that satisfies

L(u, s) = EuL(X1, s− V1) ∀ (u, s) ∈ S × R ((2.4))

and in addition, for all h ∈ Cc (R)

lim sup
v→u,δ↓0

sup
|s′−s′′|<δ

|Lh(v, s
′)− Lh(u, s

′′)| = 0 ((2.2))

where

Lh(u, s) =

∫ ∞

−∞
L(u, s+ r)h(r)dr.

Then L is a constant.

Here S is a separable metric space and the conditions I.1 - I.3, which will not be repeated here, can

be found on [60, page 359].

Proof of Lemma 11.15. It is shown in [29, Proposition 5.5] that under the assumptions of the present

lemma, Conditions I.1 - I.3 are satisfied for the MRW (Xn,−Vn)n∈N w.r.t. Qu. The negative sign
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appears since in I.2 it is assumed that the random walk part has a positive drift, but by Theo-

rem 8.2, limn→∞ Vn
n < 0 Qu-a.s. Nevertheless, considering L̃(u, s) := L(u,−s) together with

(Xn,−Vn)n∈N0 leaves assumptions and assertions invariant. Hence without loss of generality

(w.l.o.g.), the conditions I.1 - I.3 are satisfied for (Xn, Vn). Referring to Lemma 7.2, the assumption

E |log ι(T1)| gives that S̆≥×R is an invariant set for (Xn, Vn)n∈N0 . A close inspection of the proof

of [29, Proposition 5.5] shows that conditions I.1 - I.3 remain valid for the restriction of the MRW

to S̆≥ × R.

Obviously, it is sufficient to show that L is constant on this S̆≥ × R since it is assumed that L is

continuous on S≥ ×R. Hence Kesten’s Choquet-Deny Lemma will be applied with S = S̆≥ and L
restricted to S̆≥ × R.

It remains to check its assumptions ((2.2)) and ((2.4)). Condition ((2.4)) is just assumption (a). The

boundedness of L and h implies

lim
δ↓0

sup
u∈S̆≥

sup
|s′−s′′|<δ

∣∣Lh(u, s
′)− Lh(u, s

′′)
∣∣ = 0 (11.16)

(this also appears in Kesten’s proof as property [60, (2.5)]) by an appeal to the bounded convergence

theorem . Combining this with assumption (b), it follows that for all u ∈ S̆≥

0 ≤ lim sup
v→u,δ↓0

sup
|s′−s′′|<δ

∣∣Lh(v, s
′)− Lh(u, s

′′)
∣∣

≤ lim
v→u

sup
s′∈R

∣∣Lh(v, s
′)− Lh(u, s

′)
∣∣+ lim

δ↓0
sup
u∈S̆≥

sup
|s′−s′′|<δ

∣∣Lh(u, s
′)− Lh(u, s

′′)
∣∣ = 0.

This is ((2.2)). Thus Kesten’s Choquet-Deny lemma is applicable.

Using this Choquet-Deny type result, the extremal functions in Hχ,c can be identified:

Lemma 11.16. Assume that [suppμ] satisfies (C), let E ‖M1‖ < ∞ and let (log-moments) hold.
For each χ ∈ (0, 1] and c ∈ (0, 1], the extremal points of Hχ,c are contained in the set

Eχ,c :=

{
(u, t) �→ c

eγ∗(u)
eχ∗ (u)

e(χ−γ)t : γ ∈ (0, 1],m(γ) = 1

}
.

Proof. Let g ∈ Hχ,c be extremal.

Step 1: Use property (vi) to compute for u ∈ S≥

g(u, t+ s) = m(χ)Eχ
ug(X1, t+ s− V1)

= m(χ)

∫
g(x, t+ s− v)Pχ

u(X1 ∈ dx, V1 ∈ dv) (11.17)

= m(χ)

∫
g(x, t+ s− v)

g(x, s− v)
g(u, s)

g(x, s− v)

g(u, s)
Pχ
u(X1 ∈ dx, V1 ∈ dv) (11.18)

Recall that by Lemma 11.10, g > 0, thus the denominators are positive. Using (11.17) with t = 0,
it follows that

m(χ)

∫
g(x, s− v)

g(u, s)
Pχ
u(X1 ∈ dx, V1 ∈ dv) = 1.
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Hence (11.18) is a convex combination of functions gx,v(u, s, t) =
g(x,t+s−v)
g(x,s−v) g(u, s). Consequently,

since g is extremal,
g(u, t+ s)

g(u, s)
=

g(x, t+ s− v)

g(x, s− v)
(11.19)

for all u ∈ S≥, t, s ∈ R and all (x, v) ∈ supp Pχ
u((Y1, V1) ∈ ·) = supp Pu((Y1, V1) ∈ ·). This

yields that Lt(u, s) :=
g(u,t+s)
g(u,s) satisfies

Lt(u, s) = Eu (Lt(X1, s− V1)) . (11.20)

Step 2: Lemma 11.15 will be applied in order to show that Lt is constant on S≥ × R, i.e. equation

(11.19) holds for all u, x ∈ S≥, v, s, t ∈ R. Property (vii) yields condition (b) of the lemma, while

(11.20) is its condition (a). It remains to show that Lt is bounded (for fixed t). If t > 0, by property

(ii), g(u, t+ s)e−χ(t+s) ≤ g(u, s)e−χs, thus

0 < Lt(u, s) ≤ eχt
g(u, t+ s)e−χ(t+s)

g(u, s)e−χs
≤ eχt.

For t ≤ 0, use property (iii) for an analogue argument.

Step 3: Validity of (11.19) for any u, x ∈ S≥, t, s, v ∈ R implies that for some f̃ : S≥ → (0,∞),
a ∈ R>, b ∈ R,

g(u, t) = f̃(u)aebt.

Considering properties (ii) and (iii) it follows that b ∈ [χ− 1, χ], i.e. b = χ−γ for some γ ∈ [0, 1].
Rewriting af̃(u) =: eχ∗ (u)−1f(u), it follows that

g(u, t) =
f(u)

eχ∗ (u)
e(χ−γ)t. (11.21)

It remains to compute the possible values of f and γ. Therefore, use property (vi) which states

g = χPg, hence

f(u) = e−(χ−γ)t eχ∗ (u)m(χ)Eχ
u

(
f(X1)

eχ∗ (Y1)
e(χ−γ)(t−V1)

)
= e−(χ−γ)t eχ∗ (u)m(χ)

1

eχ∗ (u)κ(χ)
Eu

(
eχ∗ (X1)

f(X1)

eχ∗ (X1)
eχV1e(χ−γ)(t−V1)

)
= N Eu

(
f(X1)e

γV1
)
= N E (f(M1 · u) |M1u|γ)

= NP γ
∗ f(u).

This means that f is an eigenfunction of P γ
∗ with eigenvalue 1

N . Referring to the definition of Hχ,c,

f > 0. By (7.5), scalar multiples of eγ∗ are the only strictly positive eigenfunctions of P γ
∗ . Thus

f = ceγ∗ where c is given by property (i). The eigenvalue of P γ
∗ corresponding to eγ∗ is κ(γ). If now

κ(γ) = 1
N , then m(γ) = Nκ(γ) = 1, which shows that all extremal points of Hχ,c are in Eχ,c.

It may happen, that the set Eχ,c is even too large, in the sense that not every element of Eχ,c is an

extremal point of Hχ,c, for it may be possible that not every element of Eχ,c is actually in Hχ,c. In
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fact, if χ > γ, by the methods used in the proof above it is not possible to show that gγ satisfies the

Hölder-continuity properties (iv) and (v). In the case χ ≤ γ, the Hölder-continuity is a consequence

of Theorem 7.3, (3). Nevertheless, the following Corollary holds true:

Corollary 11.17. Assume that [suppμ] satisfies (C), let E ‖M1‖ < ∞ and let (log-moments) hold.
For each χ, c ∈ (0, 1] it holds that if Hχ,c �= ∅, then Eχ,c �= ∅.

Proof. A non-void compact set in a locally convex linear topological space, e.g. C (S≥ × R), has ex-

tremal points (see [40, Lemma V.8.2]). Proposition 11.11 states thatHχ,c is compact in C (S≥ × R),
thus if Hχ,c is non-void, the same holds for Eχ,c, since by Lemma 11.16, it contains all extremal

points of Hχ,c.

This allows to deduce the existence of α as soon as Fℵ �= ∅:

Theorem 11.18. Assume that [suppμ] satisfies (C), let E ‖M1‖ < ∞ and let (log-moments) hold.
If Fℵ �= ∅ for some ℵ ∈ (0, 1], then there is α ∈ (0, 1] with m(α) = 1, m′(α) ≤ 0.

Proof. The argumentation is now the same as in [41, Theorem 2.12]: If there is an ℵ-elementary

fixed point, then by Corollary 11.14, there is c ≥ 0, χ ≤ ℵ such thatHχ,c �= ∅. But then by Corollary

11.17Eχ,c is not empty and thus there is γ ∈ (0, 1]withm(γ) = 1. Sincem(0) = N > 1, the strict

convexity implies that there are at most values where m equals 1, and the smaller one, α, satisfies

m′(α) ≤ 0.

����� �����	
 �����	 ��������� �� ℵ���	�	����� ���	
 ������

In this section, the final conclusion ℵ = α will be shown, and that the definition of ℵ-elementary

fixed points is in fact independent of the reference point.

Proposition 11.19. Assume that [suppμ] satisfies (C), let E ‖M1‖ < ∞ and let (log-moments)

hold. Consider χ, c ∈ (0, 1]. Then every function in Hχ,c can be written as a convex combination

c

eχ∗ (u)

(
λeα∗ (u)e

(χ−α)t + (1− λ)eβ∗ (u)e
(χ−β)t

)
for λ ∈ [0, 1]. In particular, if some g ∈ Hχ,c satisfies t �→ g(u, t) ≡ g(u, 0) for some u ∈ S≥, then
λ ∈ {0, 1}, χ ∈ {α, β} and thus g is already constant on R× S≥.

Proof. By the Krein-Milman theorem [40, Theorem V.8.4], Hχ,c as a compact subset of a locally

compact vector space is contained in the closure of the convex envelope of the set of its extremal

points and this set is in turn contained in Eχ,c. This gives the representation of the functions.

Turning to the second assertion: If χ < α or χ > β, then both gα and gβ are strictly decreasing

resp. increasing in t, thus the same holds for any convex combination. If χ ∈ (α, β), then gβ(u, ·)
is bounded by 1 on R>, while limt→∞ gα(u, t) = ∞ for each u ∈ S≥, thus again any convex

combination cannot be constant in t for some fixed u. Consequently χ ∈ {α, β}. Then exactly one

of the functions gβ and gα is constant everywhere, while the other is strictly monotone in t for all

u ∈ S≥. Hence λ ∈ {0, 1} and g is equal to the constant function.
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Theorem 11.20. Assume that [suppμ] satisfies (C), let E ‖M1‖ < ∞ and let (log-moments) hold.
Suppose ℵ ∈ (0, 1] and ψ ∈ L(Fℵ). Then ℵ = α and

lim
t↓0

∣∣∣∣1− ψ(t·)
tα

−Keα∗

∣∣∣∣
∞

= 0 (11.22)

for some K>0.

Proof. Step 1: On the one hand, combining (11.2) and (11.3) it follows that

lim
s→∞

1− ψ(e−(s+t)ϑ1)

1− ψ(e−sϑd)
=

e−ℵt
√
d

∀t ∈ R. (11.23)

On the other hand, by Proposition 11.13 applied for χ = ℵ, any sequence sn → ∞ has a subse-

quence snk
such that for all t ∈ R

lim
k→∞

hsnk
(ϑ1, t) = lim

k→∞
eℵt

eℵ∗ (ϑ1)

1− ψ(e−(snk
+t)ϑ1)

1− ψ(e−snkϑd)
= h(ϑ1, t) ∀t ∈ R (11.24)

for a function h ∈ Hℵ,c. Comparing (11.23) with (11.24), it follows that

h(ϑ1, t) =
1

√
d
ℵ
eℵ∗ (ϑ1)

∀t ∈ R. (11.25)

Thus t �→ h(ϑ1, t) is constant. But then referring to Proposition 11.19, h is already constant on

S≥ × R and ℵ ∈ {α, β}. Considering Corollary 11.3, ℵ ≤ α, thus ℵ = α.

Step 2: Moreover, any subsequential limit is then necessarily equal to h, hence already

lim
s→∞hs = h

w.r.t. the topology of uniform convergence of compact sets. In particular, uniformly on the compact

set S≥ × {0},

lim
s→∞

1− ψ(e−su)

e−αs
= lim

s→∞ eα∗ (u)hs(u, 0)
1− ψ(e−sϑd)

e−αs
= Keα∗ (u)

for some K > 0.

��� ������	
����	�� � α���
�
�	��� ���
� ���	�

On the one hand, it follows from Theorem 11.20 that (LTs of) α-elementary fixed points have the

same tails (asymptotics at zero) as S̃α(Keα∗ , 0). On the other hand, it is a consequence of Theorem

9.15 that if m′(α) < 0, then SnS̃α(Keα∗ , 0) converges to an α-elementary fixed point. Up to now,

there is no result about uniqueness (up to scaling) of these α-elementary fixed points.

In this section, a positive answer will be given under the condition m′(α) < 0 by showing that for
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any random variable Z which has the same tails as S̃α(Keα∗ , 0), SnZ converges to the fixed point

Y := lim
n→∞SnS̃α(Keα∗ , 0)

which was constructed in Section 9.

The tool (transience of the maximal position of a branching random walk with negative drift) will,

together with the results from Subsection 4.4, also allow to obtain a full description of the set of α-

elementary fixed points of the inhomogeneous smoothing transform. Consequently, in this section

both the homogeneous S0 and inhomogeneous smoothing transform SQ will be considered.

Beforehand, results about the asymptotics of fixed points of SQ will be derived. Define the set Fα
Q

of α-elementary fixed points of SQ by

L
(
Fα
Q

)
= {ψ ∈ L(Rd

≥) : SQψ = ψ, lim
t→0

t−α(1− ψ(tϑ1)) ∈ (0,∞)}

and similarly write Fα
0 for the set of α-elementary fixed points of S0.

In this section, the notations ψ0 and ψQ will be used for the LTs of fixed points of S0 resp. SQ (and

not for the LTs of 0 resp. Q).
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In Theorem 4.9, a one-to-one correspondence betweenFQ andF0 was shown. The following Propo-

sition shows that this correspondence respect the sets of α-elementary fixed points.

Proposition 12.1. Assume that [suppμ] satisfies (C), let E ‖M1‖ < ∞ and let (log-moments)

holds. Assume that m′(α) < 0 and that there is s > α with m(s) < 1. Let η0 and ηQ be corre-
sponding fixed points of S0 resp. SQ as given by Theorem 4.9, with LTs ψ0 resp. ψQ. If one of them
is α-elementary, then it holds that for all u ∈ S≥

lim
t↓0

1− ψQ(ut)

1− ψ0(ut)
= 1, (12.1)

in particular, both fixed points are α-elementary.

Proof. Let (Y0, YQ) be a coupling of η0 and ηQ with E |Y0 − YQ|s < ∞. A coupling with this

property exists since ηQ ∈ Ps(η0) by Theorem 4.9, i.e. ls(η0, ηQ) < ∞. Using the inequality

|as − bs| ≤ |a− b|s which is valid for s ∈ [0, 1] and a, b ∈ R≥, it follows that for all u ∈ S≥

E |〈u, YQ〉s − 〈u, Y0〉s| ≤ E |〈u, YQ − Y0〉|s ≤ E |YQ − Y0|s < ∞.

Referring to the Goldie Lemma [47, Lemma 9.4] (see [4, Remark 4.4] for some corrections of this

Lemma), ∫ ∞

0

1

t

(
ts |P (〈u, YQ〉 > t)− P (〈u, Y0〉 > t)|

)
dt < ∞.
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A. On Fixed Points of Multivariate Smoothing Transforms

From the fact that
∫∞
1

1
t dt diverges, it follows that necessarily

lim sup
t→∞

ts |P (〈u, YQ〉 > t)− P (〈u, Y0〉 > t)| = 0.

Remember that s > α, so the convergence is also true with tα instead of ts.

Case 1, Y0 is α-elementary: Then it is a consequence of Theorem 11.20 combined with 5.12 that

lim
t→∞ tαP (〈u, Y0〉 > t) = Keα∗ (u) > 0.

It follows that

lim
t→∞

∣∣∣∣P (〈u, YQ〉 > t)

P (〈u, Y0〉 > t)
− 1

∣∣∣∣
= lim

t→∞ (tαP (〈u, Y0〉 > t))−1 tα |P (〈u, YQ〉 > t)− P (〈u, Y0〉 > t)|

= lim
t→∞ (tαP (〈u, Y0〉 > t))−1 lim

t→∞ tα |P (〈u, YQ〉 > t)− P (〈u, Y0〉 > t)|

= (Keα∗ (u))
−1 · 0 = 0. (12.2)

First this gives

lim
t→∞ tαP (〈u, YQ〉 > t) = Keα∗ (u)

for all u ∈ S≥, in other words, Y0 and YQ have the same tail behaviour. From this, the asserted

result (12.1) for the Laplace transforms follows by using Proposition 5.12.

Case 2, YQ is α-elementary: The calculations in (12.2) are valid for u = ϑ1, with YQ and Y0
interchanged. This allows to deduce

lim
t→∞ tαP (〈ϑ1, Y0〉 > t) ∈ (0,∞),

which is by Proposition 5.12 (and (11.2)) equivalent to

lim
t→0

t−α(1− ψ0(tϑd)) ∈ (0,∞),

so Y0 is α-elementary. Then Case 1 applies.

Corollary 12.2. Assume that [suppμ] satisfies (C), let E ‖M1‖ < ∞ and let (log-moments) hold.
If ψQ ∈ L

(
Fα
Q

)
, then there is K > 0 such that

lim
t↓0

∣∣∣∣1− ψQ(t·)
tα

−Keα∗

∣∣∣∣
∞

= 0. (12.3)

Conversely, for each K > 0 there is ψQ ∈ L
(
Fα
Q

)
such that (12.3) holds.

Proof. Step 1: If ψQ ∈ L(Fα
Q) then by a first application of Proposition 12.1, the corresponding

fixed point of S0, ψ0 is also α-elementary, and its asymptotics at zero are given by Keα∗ due to
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12. Characterization of α-Elementary Fixed Points

Theorem 11.20. Then using again Proposition 12.1, ψQ has the same asymptotics at zero. Finally,

Proposition 11.8 gives the uniform convergence.

Step 2: In order to show the converse implication, combining Theorem 9.15 and Theorem 11.20,

there is ψQ ∈ L(Fα
0 ) such that (12.3) holds with ψQ replaced by ψ0. Referring to Proposition 12.1,

SQ has an α-elementary fixed point ψQ with the same asymptotics at zero as ψ0, i.e. limt↓0 t−α(1−
ψQ(tu)) = Keα∗ (u) for all u ∈ S≥. In order to conclude that (12.3) holds, use again Proposition

11.8 to deduce the uniform convergence.
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In this subsection, it will be shown that for any φ ∈ L(P(Rd
≥)) which has the same asymptotics at

zero as ψ ∈ L(Fα), limn→∞ Snφ = ψ. This is the final ingredient needed for the characterization

of Fα in the next subsection. Two more lemmata are needed beforehand. For a better stream of

arguments, their proofs have been shortened or moved to the appendix.

Lemma 12.3. Let α ∈ Ĭμ ∩ (0, 1) and m′(α) < 0. If φ, ϕ ∈ L(P(Rd
≥)) and there is t0 ∈ R> such

that for all (y, s) ∈ S≥ × [0, t0],
φ(sy) ≤ ϕ(sy),

then for all (u, t) ∈ S≥ × R≥

lim inf
n→∞ Sn

Qφ(tu) ≤ lim inf
n→∞ Sn

Qϕ(tu) and lim sup
n→∞

Sn
Qφ(tu) ≤ lim sup

n→∞
Sn
Qϕ(tu).

Proof. The proof can be found in the appendix on page 127.

Lemma 12.4. Let φ1, φ2 ∈ L(P(Rd
≥)) with

lim
t↓0

1− φ1(tu)

1− φ2(tu)
= 1 ∀u ∈ S≥ (12.4)

and
lim
t↓0

1− φ2(tu)

tγ
= e(u) > 0 ∀u ∈ S≥ (12.5)

for a strictly positive function e and γ ∈ (0, 1]. Then the convergence in (12.4) is uniform on S≥.

Proof. Write
1− φ1(tu)

1− φ2(tu)
=

1− φ1(tu)

1− φ1(tϑd)

1− φ1(tϑd)

1− φ2(tϑd)

1− φ2(tϑd)

1− φ2(tu)

and use Proposition 11.8 several times.

The following theorem is the final step for characterizing the set of α-elementary fixed points. It is

valid for both the homogeneous and the inhomogeneous smoothing transform.
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Theorem 12.5. Assume that [suppμ] satisfies (C), let E ‖M1‖ < ∞ and let (log-moments) hold.
Assume that α ∈ (0, 1) and m′(α) < 0. Let ψ ∈ L (Fα) and let φ ∈ L(P(Rd

≥)), such that

lim
t↓0

1− φ(tu)

1− ψ(tu)
= 1 (12.6)

for all u in S≥. Then limn→∞ Snφ = ψ.

In particular, if ψ1, ψ2 are two α-elementary fixed points with the same asymptotics at zero, then

readily ψ1 = ψ2.

Proof. The proof will be given for the inhomogeneous case; the homogeneous case is contained

when setting Q ≡ 0. Referring to Corollary 12.2 (resp. Theorem 11.20 in the homogeneous case),

there is K > 0 such that for all p > 0

lim
t↓0

1

eα∗ (u)
1− ψ(ptu)

(pt)αK
= 1 = lim

t↓0
1

eα∗ (u)
1− ψ(tu)

tαK

uniformly in u ∈ S≥. It follows that

lim
t↓0

1− ψ(ptu)

1− ψ(tu)
= pα (12.7)

and this convergence is uniform on S≥. For p > 1 arbitrary but fixed, set

ψ(tu) := ψ(ptu), and ψ(tu) := ψ(p−1tu).

Note that both ψ, ψ are just scaled versions of the initial fixed point, consequently, they are fixed

points themselves. Referring to Lemma 12.4, the convergence in (12.6) is uniform; and combining

this with (12.7), it follows that

lim
t↓0

1− φ(tu)

1− ψ(tu)
= pα > 1 and lim

t↓0
1− φ(tu)

1− ψ(tu)
= p−α < 1 (12.8)

uniformly in u ∈ S≥. So there is t0 > 0 such that for all (y, s) ∈ S≥ × [0, t0]

ψ(sy) ≤ φ(sy) ≤ ψ(sy).

Considering Lemma 12.3,

ψ(tu) = lim inf
n→∞ Sn

Qψ(tu) ≤ lim inf
n→∞ Sn

Qφ(tu)

≤ lim sup
n→∞

Sn
Qφ(tu) ≤ lim sup

n→∞
Sn
Qψ(tu) = ψ(tu).

Since p was arbitrary, ψ and ψ can be brought arbitrarily close to infer first the convergence of

Snφ(tu) for any t ∈ R≥, u ∈ S≥ and next that limn→∞ Snφ(tu) = ψ(tu) for all t ∈ R>, u ∈
S≥.
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Denote by Eig+(Pα∗ , N−1) the cone of positive eigenfunctions of Pα∗ with eigenvalue N−1. Then

the characterization of the α-elementary fixed points of S is given by the following theorem, which

is formulated in the spirit of Propositions 4.3 and 4.4.

Theorem 12.6. Assume that [suppμ] satisfies (C), let (M logM) and (log-moments) hold. Let
E |Q| < ∞. Suppose that there is α ∈ (0, 1) with m(α) = 1 and m′(α) < 0. Then the mappings

Eig+(Pα
∗ , N

−1) → Fα
0

e �→ d−lim
n→∞

Sn
0 S̃α(e, 0)

and

Eig+(Pα
∗ , N

−1) → Fα
Q

e �→ d−lim
n→∞

Sn
QS̃α(e, 0)

are well defined and bijective.

Proof. As the first step, consider S0. By Theorem 7.3,

Eig+(Pα
∗ , N

−1) = {Keα∗ : K ∈ R>}.

In Theorem 9.15, it was shown that Sn
0 S̃α(Keα∗ , 0) converges to an α-elementary fixed point of S0.

The same theorem also gives injectivity since K is a scaling factor.

The mapping is surjective because by Theorem 11.20, the LT of each α-elementary fixed point ψ0

of S has the same asymptotics at zero as L(S̃α(Keα∗ , 0)) for some K ∈ R>. But then by Theorem

12.5, d−lim
n→∞

Sn
0 S̃α(Keα∗ , 0) = ψ0.

For the inhomogeneous smoothing transform, this follows by the same arguments, using Corollary

12.2 instead of Theorem 11.20 and 9.15.

As mentioned before, fixed points of SQ with a finite moment of order α were constructed in [75].

It was stated there (see [75, Remark 1.8]) that the constructed fixed point is unique within the set

Ps(R
d
≥) for some s > α. The theorem above now shows that there is no chance of finding a fixed

point that is unique in P(Rd
≥), since there are more.

Recalling Proposition 9.5, the following description of L(Fα
0 ) has been obtained:

Corollary 12.7 (Structure of Fα
0 ). Under the assumptions of Theorem 12.6, L(Fα

0 ) equals the one-
parameter family of Laplace transforms

(u, t) �→ E exp (−KtαW (u)) ,

parametrised by K ∈ R>.
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The final result gives a very handy and simple description ofFα
Q which is similar to [6, Theorem 8.1].

It shows that the “new” fixed points are somehow of the form homogeneous solution + particular
inhomogeneous solution.

Theorem 12.8. Let (Ti)
N
i=1 be i.i.d. and assume that [suppμ] satisfies (C). Let P (Q �= 0) > 0,

let (M logM) and (log-moments) hold. Assume that there are s1 ∈ (0, 1/2], s2 > s1 such that
E ‖M1‖s1 ≤ 1

N , E ‖M1‖s2 ≤ 1
N and E |Q|s2 < ∞. Then α ≤ 1

2 and the set L
(
Fα
Q

)
equals the

one-parameter family of Laplace transforms

(u, t) �→ E exp (−t〈u,W ∗〉 −KtαW (u)) (12.9)

parametrised by K ∈ R>.

For K = 0, the formula (12.9) is the LT of the fixed point constructed in [75, Theorem 1.7]. Note

that the assumption of independent weights stems only from [75, Theorem 1.7] which is used here.

Proof. The moment assumptions are those of [75, Theorem 1.7] (which was restated in Theorem

4.7), the assumptions of Proposition 9.2 and Theorem 12.8 are given as well. The a.s. convergence

of W ∗
n to W ∗ and Wn(u) to W (u) for all u ∈ S≥ holds by [75, Theorem 1.7] resp. Proposition 9.2.

Referring to Theorem 12.6, the LT of each α-elementary fixed point of SQ can be written as

d−lim
n→∞

Sn
Qφ0, where φ0 = L(S̃α(Keα∗ , 0)). This gives by an application of Lemma 2.4

ψQ(u, t) = lim
n→∞E

⎛⎝exp

⎛⎝−t〈u,
∑
|w|<n

L(w)Q(w)〉

⎞⎠ ∏
|v|=n

φ0(tL(v)
	u)

⎞⎠
= lim

n→∞E

⎛⎝exp (−t〈u,W ∗
n〉) exp

⎛⎝−Ktα
∑
|v|=n

∫
S≥

〈L(v)	u, y〉ανα(dy)

⎞⎠⎞⎠
= lim

n→∞E (exp (−t〈u,W ∗
n〉) exp (−KtαWn(u)))

= E
(
exp

(
−t〈u, lim

n→∞W ∗
n〉

)
exp

(
−Ktα lim

n→∞Wn(u)
))

= E exp (−t〈u,W ∗〉+KtαW (u))

for all (u, t) ∈ S≥ × R≥. In the final lines, the bounded convergence theorem and as the main

ingredient, the a.s. convergence of W ∗
n and Wn(u) have been used.

Corollary 12.9. In the situation of Theorem 12.8, the one-dimensional marginals 〈u, YQ〉 can be
written in the form

〈u, YQ〉 d
= 〈u,W ∗〉+KW (u)

1
αZ,

where K > 0 and Z
d
= Sα(1, 1, 0) and independent of W ∗,W (u).
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W ∗,W (u) can be interpreted as a random shift resp. random scaling where the randomness is

inherited from the randomness of the weights. This becomes even more obvious, since both are

functions of T . Abusing the notation from Proposition 5.7, the above Corollary can be stated as

〈u, YQ〉 d
= E Sα

(
K ′W (u), 1,W ∗) ,

with K ′ =
(
cos

(
πα
2

)
K
) 1

α .
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The prototype of stochastic fixed point equations is the affine equation

Y
d
= TY +Q, (13.1)

where (T, Q) is a random element of M(d× d,R)× Rd and independent of R.

It describes stationary solutions of Random difference equations (RDEs), defined by

Rn = T(n)Rn−1 +Qn, (RDE)

where (T(n), Qn)n∈N is a sequence of i.i.d. copies of (T, Q). In turn, RDEs are a special and very

important subclass of Lipschitz recursions, defined by

Rn = Fn(Rn−1), (13.2)

where (Fn)n∈N is an i.i.d. sequence of Lipschitz continuous mappings Fn : Rd → Rd. The

sequence Rn obviously constitutes a MC on Rd. See the review by Diaconis and Freedman [36] for

details.
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Write L(F ) for the Lipschitz constant of a Lipschitz function F and define the (upper) Lyapunov

exponent of the Lipschitz recursion (13.2) by

l := lim
n→∞

1

n
logL(Fn ◦ · · · ◦ F1) P-a.s.. (13.3)

Note that there are some measure theoretic issues when defining the random variablesL(Fn), which

will not be discussed here. If E log+ L(F1) < ∞, then l exists in [−∞,∞) by Kingman’s subaddi-

tive ergodic theorem [61] and equals

l = lim
n→∞

1

n
E logL(Fn ◦ · · · ◦ F1).

In the case of RDEs, where L(F1) = ‖T1‖, this result was shown earlier and is known as the

Furstenberg-Kesten theorem [46, Theorem 1 & 2].
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B. On Fixed Points of Multivariate Random Difference Equations

If E log+ L(F1) < ∞, l < 0 and E log+ |x− F1(x)| < ∞ for some (and then for all) x ∈ Rd, then

the Lipschitz recursion (13.2) has a unique stationary distribution, which is given by the law of the

then a.s. convergent series

Zn := F1 ◦ · · · ◦ Fn(0),

the backward process. Observe that if R0 = 0 then Zn
d
= Rn for all n ∈ N. Hence Rn converges

in law to the stationary distribution. This result for general Lipschitz recursion was shown by Elton

[42, Theorem 3].

Returning to the matrix recursion, the corresponding conditions for existence and uniqueness are

E log+ ‖T‖+ log+ |Q| < ∞ (logmom)

and negativity of the upper Lyapunov exponent

l = P-a.s. − lim
n→∞

1

n
log ‖�n‖ < 0 (l<0)

where

�n := T(1) · . . . ·T(n).

The unique fixed point is then given by the law of the almost sure convergent series

R =
∞∑
n=1

�n−1Qn. (13.4)

A classical reference for these existence and uniqueness results in dimension d = 1 is [93, Theorem

1.6]. The multivariate case is explicitly considered in [27, Theorem 1.1] with a special emphasis on

the necessarity of condition (l<0).
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From the explicit representation of R simple moment estimates can be derived.

Lemma 13.1. Let β > 0 such that E ‖T‖β + |Q|β < ∞ and for all s < β,

m(s) := lim
n→∞ (E ‖�n‖s)

1
n < 1.

Then E |R|s < ∞ for all s < β.

Proof. If s ∈ (0, 1], use subadditivy to estimate

E |R|s ≤ E

∞∑
n=1

‖�n−1‖s |Qn|s =
∞∑
n=1

E ‖�n−1‖s E |Q|s . (13.5)

78



13. Introduction

If s > 1, use the Minkowski inequality for

(E |R|s)
1
s ≤

∞∑
n=0

(E ‖�n−1‖s)
1
s (E |Q|s)

1
s . (13.6)

In both cases, the right hand side converges by domination with the geometric series if m(s) <
1.

This may serve as an heuristic argument that the spectral function m(s) is closely connected with

moments of R. Spitzer conjectured (for dimension d=1, cf. [59, bottom of p.208]) that |R| is in the

domain of attraction of a stable law with index β. In other words, Spitzer conjectured that R has the

heavy tail property

lim
t→∞ tβP (|R| > t) = K > 0. (13.7)
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Spitzer’s conjecture was proved in the multivariate setting by Kesten in his seminal paper [59] and

independently by Grincevičjus [48, Theorem 2] in dimension d = 1. In dimension d = 1, Goldie

[47] later gave a very much uni- and simplified approach, using so-called implicit renewal theory.

Kesten’s main theorem [59, Theorem B] is formulated for T ∈ M(d × d,R≥) under conditions

similar to, but more restrictive than (C). At the end of his article, Kesten also stated without proof a

theorem [59, Theorem 6] for the situation (T, Q) ∈ GL(d,R)×Rd. A proof was given by Le Page

[66] and it dit not need Kesten’s density assumption [59, Theorem 6 (iii)]. Over the years, Le Page’s

approach was further developed. A definite result was obtained by Guivarc’h and Le Page in [52]:

Property (13.7) and even multivariate regular variation of R hold (under some additional moment

assumptions) as soon as [suppμ] satisfies condition (i−p). Condition(i−p) is the analogue of (C)
in the setting of invertible matrices. The interested reader is referred to [51] for a shorteraccount of

the main ideas of the proof in that fundamental paper.

The merit of the present work is to show how regeneration methods from the theory of Harris recur-

rent Markov chains can be used to provide a much shorter argument (particularly for the positivity

of K) in the situation of [59, Theorem 6] when taking the density assumption into account. This

calls for the development of bivariate regeneration schemes in the spirit of [13] and a detailed study

of the action of T on S which are interesting in their own right.

Note that the present assumptions are stronger than those of [52], but cover many interesting sit-

uations for applications: E.g. if μ = P (T ∈ ·) has a component with a Lebesgue density on a

ball centered at the identity matrix Id, then these assumptions will be satisfied. Two further refer-

ences should be mentioned: A situation similar to [59, Theorem 6] was considered by Klüppelberg

and Pergamenchtchikov [64], but for a more specialized model and much closer along the lines of

Kesten’s proof. In the case where suppμ is restricted to the group of similarities (products of a

dilations and orthogonal matrices), related results were obtained by Buraczewski et al. [30].

Random Difference Equations appear in a broad variety of settings: Discretization of generalised

Ornstein-Uhlenbeck processes [68], insurance ruin theory [81] or random walks in random envi-

ronment on Z [44], to mention just a few recent articles.
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The same notation as in Chapter A will be used, mutatis mutandis: S≥ is no longer a homogeneous

space for the action of GL(d,R), thus it has to be replaced by S, the whole unit sphere in Rd. The

definition e.g. of the transfer operators has to be changed correspondingly. Write � = L (T, Q) and

let (T(n), Qn)n∈N be a sequence of i.i.d. copies of (T, Q) under P. As before, μ∗ = L
(
T	), and

(Mn)n∈N will be a sequence of i.i.d. r.v.s with distribution μ∗.

Remark that the moment results above may also be obtained from Theorem 4.4 with N = 1 - in

the setting of RDE, m(s) = κ(s), m(s) = 1 and under the assumption (l<0), α = 0. Figuratively

speaking Chapter A was concerned with tail index α while Chapter B will be concerned with tail

index β.
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The assumptions that will be imposed on μ are the following: First, assume that μ∗ acts irreducibly

on the unit sphere, i.e.

∀x∈S ∀open U⊂S max
n∈N

P (Πn · x ∈ U) > 0. (irred)

Secondly, assume that μ∗ (resp. μ) is spread-out, i.e.

∃Γ0∈GL(d,R) ∃c,p>0 ∃n0∈N P (Πn0 ∈ ·) ≥ p1Bc(Γ0)λ
d2 . (density)

Recall that λd2 denotes Lebesgue measure on M(d × d,R), seen as a subset of Rd2 . For brevity,

say that μ satisfies (i-d), if (irred) and (density) hold.

Observe that there will be no condition on the dependence structure of (T, Q) except for the neces-

sary one,

∀ r ∈ Rd P (Tr +Q = r) < 1, (R �= r)

which guarantees that the fixed point is not just a point mass.

Then the main result is as follows:

Theorem 13.2. Let (T, Q) be a random element of GL(d,R)×Rd, let μ = L (T) satisfy (i-d). Let
(R �= r) hold and assume that there is β > 0 such that m(β) = 1, m′(β−) > 0 and

E ‖T‖β
(
|log ‖T‖|+

∣∣log ∥∥T−1
∥∥∣∣) < ∞ (TlogT)

as well as
0 < E |Q|β < ∞. (Q-beta)

Then the RDE (RDE) has a unique stationary distribution R. R has unbounded support if and only
if (R �= r) holds. In that case,

lim
t→∞ tβP (〈u,R〉 > t) = Keβ∗ (u) (13.8)

for all u ∈ S, where eβ∗ (u) is a strictly positive continuous function on S.
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As in Chapter A, the transfer operator P s∗ will be studied and it will be shown that it has the same

properties under (i-d) as it has under (C). Thus eβ∗ denotes the unique strictly positive eigenfunction

of P β
∗ with eigenvalue κ(β) = 1, and νβ∗ the corresponding eigenmeasure.

Remark 13.3. • The constant K has the implicit representation

1

β l(β) νβ∗ (e
β
∗ )

∫
S
E
(
(〈y,R〉+)κ − (〈y,TR〉+)κ

)
νs∗(dy).

This is the multivariate version of the formula for K given by Goldie in [47, Theorem 4.1].

• Recall from (7.3) that if A ∈ GL(d,R) then ι(A) =
∥∥A−1

∥∥−1
, so condition (TlogT) corre-

sponds to (M logM) and is the precise adaption of (8.7) to the present situation of invertible

matrices. Kesten does not impose a condition on
∣∣log ∥∥T−1

∥∥∣∣ and indeed the theorem is valid

without, but then the analysis of l(β) becomes more involved. Since it is not a severe restric-

tion (it is satisfied e.g. if the matrices are compactly supported) it is added here for easing the

presentation.

• The statement of [59, Theorem 6] is slightly different at more points as well: In the theorem

above, Kesten’s condition (iv) is not needed. Moreover, instead of assuming the existence of

β, Kesten imposes the condition

∃s0>0 E inf
u∈S

∣∣∣T	x
∣∣∣s0 ≥ 1 (∃β)

which gives that m(s0) ≥ 1. Hence by convexity of m and the negativity of the Lyapunov

exponent which is assumed in(l<0) the existence of β follows. The moment assumptions are

replaced by similar ones formulated in terms of s0. The condition (∃β) has caused some

confusions, since it is not necessary for the existence of β, as pointed out in [64, Remark 2.8

(iii)].

• A simple situation in which (irred), (density) and (R �= r) are satisfied, is when (density)

holds with Γ0 = Id and Q is independent of T.

In the spirit of Proposition 5.12, the following multivariate regular variation property holds.

Corollary 13.4. Let β /∈ N. Then for all f ∈ Cc
(
Rd \ {0}

)
,

lim
t→∞ tβE

(
f(t−1R)

)
= K

∫ ∞

0

∫
S
f(sw) νβ(dw)

1

s1+β
ds (13.9)

for some K > 0.

As before, the measure νβ is an eigenmeasure of P β with eigenvalue 1. See [52, Lemma 5.17] for

a recent result covering all possible values of β > 0.

����� � ���	
� �� ���
������


The main tools of the proof are the theory of Harris recurrent chains, a newly developed bivari-

ate minorization condition, a multivariate version of implicit renewal theory and a combination of
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B. On Fixed Points of Multivariate Random Difference Equations

regeneration techniques stemming from the bivariate minorization and a generalization of Lévy’s

symmetrization inequality.

Basic ideas from the theory of Harris chains are introduced first, in Section 14, to motivate the

study of minorization properties in Section 18. These are refined in Section 16 where some useful

results concerning a whole class of SFPE that are solved by R and obtained via the use of stopping

times. In particular, geometric sampling will allow to simplify some assumptions in Theorem 13.2

before proving it. With this results at hand, the transfer operators P s∗ are studied in Section 17.

This allows to reintroduce the harmonic change of measure in Section 18 where also another family

of probability measures, useful for the proof of positivity of K is defined and an extension of the

regeneration lemma of Athreya and Ney [13, Lemma 3.1] using bivariate minorization is given.

In Section 19, the MRT for Harris chains is introduced and an extension is proved, using bivariate

minorization. It is shown in the subsequent Section 20 that the intrinsic MRW (Xn, Vn)n≥0 satisfies

its assumption under the changed measure. By a first application of the MRT, it will be shown in

Section 21 that limt→∞ tβP (supn∈N |Πnx| > t) exists and is positive, and that the same holds for

lim inft→∞ tβP (supn∈N |Πσn−1x| > t) , which is the restriction to regeneration times. This will

also be needed to prove that K is positive. Finally, the proof of the main theorem is given in Section

22 where the convergence assertion is shown and in Section 23 which is concerned with the positivity

of K. The Corollary about multivariate regular variation is proved in Section 24.

Parts of this results have been already published in [7], the result on multivariate regular variation

has been published as part of the article [35].

��� ��� ��	
� �� �		�� ������

As the theory of Harris recurrent Markov chains will be a main ingredient in the subsequent proofs

and motivates some quite technical calculations, it is convenient to introduce its basic ideas at the

outset.

A Markov chain (Xn)n∈N0 on a separable metric space S with transition kernel P is called strongly
aperiodic Harris chain, if there exists a measurable R ⊂ S, called regeneration set, such that

Px (Xn ∈ R infinitely often) = 1

for all x ∈ S (recurrence) and, furthermore,

inf
x∈R

P (x, ·) ≥ ξΦ (14.1)

for some ξ > 0 and a probability measure Φ with Φ(R) = 1. Strong aperiodicity refers to the fact

that (14.1) holds for P instead of just for Pm with m ≥ 2. If S itself is regenerative then (Xn)n∈N0

is called Doeblin chain. A Harris chain (Xn)n∈N0 possesses a nice regenerative structure: One can

redefine (Xn)n∈N0 on a possibly enlarged probability space together with a filtration (Gn)n∈N0 and

a sequence of stopping times (σn)n∈N0 , σ0 = 0 w.r.t. (Gn)n∈N0 such that (Xn)n∈N0 is still Markov

adapted w.r.t. (Gn)n∈N0 and for each k ∈ N, x ∈ S

Px ((Xσk+n)n∈N0 ∈ ·|Gσk−1) = PΦ ((Xn)n∈N0 ∈ ·) . (14.2)

82



15. Minorization: Implications of (i-d)

This property allows to carry over many techniques of proof from the theory of discrete MCs. An

important result that will be used later is the “ergodic theorem” for strongly aperiodic Doeblin

chains:

Theorem 14.1. Suppose there is Φ ∈ P(S) and ξ > 0 such that for all x ∈ S,

P (x, ·) ≥ ξΦ,

i.e. P satisfies the strongly aperiodic Doeblin chain condition. Then P has a unique stationary
distribution π, and is geometric ergodic:

tv [Pn(x, ·)− π] ≤ C(1− ξ)n

for some C > 0 and all x ∈ S, n ∈ N.

Proof. This is [73, Theorem 16.0.2], the assumption stated here corresponds to [73, Theorem 16.0.2

(v)] with m = 1 and νm = Φ. See [73, Section 5.2] for the definition of small sets.

An extended minorization condition for bivariate Markov chains, e.g. MRWs, will be introduced

in Section 18. There, also a proof of the existence of the regenerative structure will be given which

contains the classical version as a special case. Thus the reader is refered to Section 18 for details,

as well as to the introductory texts [9, Section VII.3] and [73, Section 5.1]. The theory of was

developed around 1978 independently by Nummelin [79] and Athreya & Ney [13].

��� ������	
����� �����
����� �� �����

In this section, a bivariate minorization condition for the sequence (Πn · x,Πn)n∈N will be shown.

It is closely connected with condition (i-d)and is the basis for applying Harris chain theory later on.

First is a preparatory lemma.

Lemma 15.1. Let x ∈ S. For all ε > 0 there is η > 0 such that for all u ∈ Bη(x) there is an
orthogonal matrix Au ∈ Bε(Id) with u = Aux.

Proof. If u = x, choose Au = Id. If u �= x, then choose an orthonormal basis ê1, . . . , êd with

orthogonal transformation matrix L such that x = Le1, and u = L(cos θe1 + sin θe2) for some

θ ∈ [0, 2π]. Define

Âu =

(
B 0
0 C

)
where B =

(
cos θ − sin θ
sin θ cos θ

)
and C is the (d-2)-dimensional identity matrix. Set Au := LÂuL

−1. Then Aux = u and, since L,

L−1 are isometries,

‖Au − Id‖2 =
∥∥∥LÂuL

−1 − LIdL−1
∥∥∥2 = ∥∥∥Âu − Id

∥∥∥2
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B. On Fixed Points of Multivariate Random Difference Equations

≤ max
x∈S1

((cos θ − 1)x1 − sin θx2)
2 + ((cos θ − 1)x2 + sin θx1)

2

≤ 4
[
(cos θ − 1)2 + (sin θ)2

]
.

Thus Au → Id if u → x, this is the asserted continuity property.

The formulation of the following proposition may look a bit scaring at first glance, but all properties

will be used later and the sum will vanish in the next section, where geometric sampling will be

introduced.

Proposition 15.2. Let μ satisfy (i-d). Then for each x ∈ S, there is n ∈ N, ξ, δ > 0, C ⊂ GL(d,R)
compact and a stochastic kernel Ψ from S to S×GL(d,R) such that

n∑
k=1

2−kP ((Πk · y,Πk) ∈ ·) ≥ ξΨ(y, ·) (MC1’)

and
suppΨ(y, ·) ⊆ Bδ(x)× C

for all y ∈ S.

For the first marginal of Ψ the following holds: There is Φ ∈ P(S), suppΦ = Bδ(x) such that for
all y ∈ S and measurable A ⊂ S

Ψ(y,A× C) = Φ(A) (15.1)

and thus for all y ∈ S
n∑

k=1

2−kP (Πk · y ∈ A,Πk ∈ C) ≥ ξΦ(A). (MC2’)

For the second marginal of Ψ it holds that there is L > 0, such that for all y ∈ S and measurable
B ⊂ GL(d,R),

Ψ(y,Bδ(x)×B) = L

∫
Bς(Id)

1Bδ(x)×B(A · x,AAy)λ
d2(dA), (15.2)

where Ay is a deterministic matrix in GL(d,R) for each fixed y.

Proof. Fix x ∈ S. The first step is to show that (MC1’) holds for all y ∈ U for a specific open set

U . Then the minorization is extended to all y ∈ S by using (irred).

The idea of proof for the first step is quite simple, but details are very technical. So let’s give an

heuristic how to prove (MC2’): Writing x0 = Γ−1
0 · x and using (density),

P(Πn · x0 ∈ A) ≥
∫
Bc(Γ0)

1A(AΓ−1
0 · x)λd2(dA).

Thus L (Πn · x0) has an absolutely continuous component w.r.t. Lebesgue measure λS on S, sup-

ported around x. If x0 is replaced by y which is close to x0, the integral on the right hand side
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15. Minorization: Implications of (i-d)

changes smoothly and the idea is to find a common component for all y ∈ Bδ(x0) with δ suffi-

ciently small.

Step 1: Recall that p, c,Γ0, n0 are given by condition (density). It follows the existence of c′ > 0
such that

Bc′(Id) ⊂ Bc(Γ0)Γ
−1
0 .

Using the inequality

‖LA− Id‖ ≤ (1 + ‖L− Id‖) ‖A− Id‖+ ‖L− Id‖ ,

there is ε > 0 such that

Bc′/2(Id) ⊂ Bc′(Id)A

for all A ∈ Bε(Id). Set ς := c′/2.

Referring to Lemma 15.1, there is η > 0 such that for all u ∈ U := Γ−1
0 ·Bη(x), there is a orthogonal

matrix Au ∈ Bε(Id) with

u = Γ−1
0 ·Aux and Bς(Id) ⊂ Bc(Γ0)Γ

−1
0 Au. (15.3)

Next there is δ > 0 such that ∫
Bς(Id)

1A(A · x)λd2(dA) (15.4)

defines a non-zero measure Θ with Bδ(x) ⊂ supp (Θ).

Now for fixed u ∈ U ,

P ((Πn0 · u,Πn0) ∈ B) ≥
∫
Bc(Γ0)

1B(A · u,A)P (Πn0 ∈ dA)

≥ p

∫
Bc(Γ0)

1B(A · u,A)λd2(dA)

= p

∫
Bc(Γ0)

1B(AΓ−1
0 Au · x,A)λd2(dA)

= p

∫
g−1(Bc(Γ0))

1B(g(A)Γ−1
0 Au · x, g(A)) |detDg|λd2(dA)

for a diffeomorphism g by the change-of-variables formula (see [86, Theorem 7.26]). With

g(A) = AA−1
u Γ0,

and taking (15.3) into account,

g−1(Bc(Γ0)) = Bc(Γ0)Γ
−1
0 Au ⊃ Bς(Id). (15.5)

By [70, Equation (4.6)], the linear mapping g : Rd2 → Rd2 is given by the Kronecker product

(A−1
u Γ0)

	 ⊗ Id, and thus also its derivative Dg. By the determinant formula for the Kronecker
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B. On Fixed Points of Multivariate Random Difference Equations

product, [70, (ix)],

detDg = det((AuΓ0)
	)d det(Id)d = det(Γ0)

d.

Consequently,

P
(
(Πn0 · u,Πn0) ∈ B,Πn0 ∈ Bc(Γ0)

)
≥p

∫
Bς(Id)

1B(A · x,AA−1
u Γ0) |det Γ0|d λd2(dA).

Step 2: Recall that by (irred), for any y ∈ S there is n1(y) ∈ N such that P
(
Πn1(y) · y ∈ U

)
> 0.

It follows from a tightness argument that there is as well a compact subset C(y) ⊂ GL(d,R) with

P
(
Πn1(y) · y ∈ U,Πn1(y) ∈ C(y)

)
> 0. For fixed y, the mapping z �→ L

(
Πn1(y)·z

)
is continuous

w.r.t. the topology of weak convergence. Thus it is continuous w.r.t. the Prohorov metric. Hence

there is ε(y) such that

inf
z∈Bε(y)(y)

P
(
Πn1(y) · z ∈ U,Πn1(y) ∈ C(y)

)
> 0.

By compactness, S =
⋃k

i=1Bε(yi)(yi) for suitable (yi)
k
i=1. Setting C1 =

⋃k
i=1C(yi), this set is

still compact as a finite union of compact sets. Let n1 = max{n1(y1), . . . , n1(yk)}, then

ξ′ := inf
y∈S

n1∑
k=1

2−(k)P (Πn · y ∈ U,Πn ∈ C1) > 0. (15.6)

Set n := n0 + n1 and C := C1Bc(Γ0), which is a compact subset of GL(d,R) as the continuous

image under matrix multiplication of the compact C1×Bc(Γ0). Then for all y ∈ S and measurable

A ⊂ S, B ⊂ GL(d,R)

n∑
k=1

2−kP((Πk · y,Πk) ∈ A×B)

≥
n1∑
k=1

2−(k+n0)P((Πk · y,Πk) ∈ U × C1, (Πk+n0 · y,Πk+n0) ∈ A×B,Πk+n0 ∈ C)

=

n1∑
k=1

2−(k+n0)

∫
P
(
(Πn0L · y,Πn0L) ∈ A×B,Πn0 ∈ Bc(Γ0)

)
P (Πk ∈ dL,Πk · y ∈ U,Πk ∈ C1)

≥
n1∑
k=1

2−(k+n0)

∫
C1

1U (L · y)
[
p

∫
Bc(Γ0)

1A×B(AL · y,AL)λd2(dA)

]
P (Πk ∈ dL)

≥
n1∑
k=1

2−(k+n0)p

∫
C1

1U (L · y)
[∫

Bς(Id)
1A×B(A · x,AA−1

L·yΓ0) |det Γ0|d λd2(dA)

]
P (Πk ∈ dL)

≥ ξΨ(y,A×B)
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with ξ = 2−n0pξ′ and

Ψ(y,A×B) = L(y)−1
n1∑
k=1

2−(k+n0)

∫
C1

1U (L · y)p (15.7)

×
∫
Bς(Id)

1A∩Bδ(x)×B(A · x,AA−1
L·yΓ0) |det Γ0|d λd2(dA)P (Πk ∈ dL)

where

L(y) = |det Γ0|d
∫
Bς(Id)

1Bδ(x)(A · x)λd2(dA)

n1∑
k=1

2−(k+n0)P (Πk · y ∈ U,Πk ∈ C1) .

The assertion about Ψ(y,Bδ(x)× ·) follows directly from this definition.

Now set

Φ̃(A) :=

∫
Bς(Id)

1A∩Bδ(x)(A · x) |det Γ0|d λd2(dA).

By (15.4), Φ̃(A) is nonzero, has support Bδ(x), and its renormalization Φ := Φ̃(Bδ(x))
−1Φ̃ satis-

fies for all y ∈ S
Ψ(y, · × C) = Φ.

��� ��� ��	

�� �� ��� ��	������ ���
����

As already observed by Vervaat [93, Lemma 1.2], geometric sampling and, more generally, the use

of stopping times for (T(n), Qn)n∈N provides a useful technique the analysis of RDEs and is thus

discussed in this section.

����� R �� ��� 	
���� ������
 �� ��� ������ �������


Let (Fn)n∈N0 be a filtration such that (T(n), Qn)n∈N is adapted to it and (T(k), Qk)k>n is inde-

pendent of Fn for any n ∈ N0. Consider any a.s. finite stopping time τ w.r.t. (Fn)n∈N0 which,

by suitable choice of the latter, includes the case that τ and (T(n), Qn)n∈N are independent (pure

randomization). Then it is readily checked that R defined in (13.4) satisfies

R = �τR
τ +Qτ (16.1)

where

Qn :=

n∑
k=1

�k−1Qk and Rn :=
∑
k>n

⎛⎝ k−1∏
j=n+1

T(j)

⎞⎠Qk (16.2)
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B. On Fixed Points of Multivariate Random Difference Equations

for n ∈ N. But since the sequence (T(τ+n), Qτ+n)n∈N is a copy of (T(n), Qn)n∈N and independent

of (T(n), Qn)1≤n≤τ and τ , it follows that Rτ is independent of (�τ , Q
τ ) with

Rτ d
= R. (16.3)

In other words, (the law of) R also solves the stopped stochastic fixed point equation (SFPE)

Y
d
= �τY +Qτ (16.4)

and provides a stationary distribution to the RDE

Rn = T′
nRn−1 +Q′

n, n ≥ 1, (16.5)

where (T′
n, Q

′
n)n∈N is a sequence of i.i.d. copies of (�τ , Q

τ ). Uniqueness follows if (logmom)

persists to hold for the ”stopped pair” (�τ , Q
τ ) together with

lim
n→∞

1

n
log ‖�σn‖ < 0 P-a.s.

where (σn)n≥0 denotes a zero-delayed renewal process such that σ1 = τ and(
σn − σn−1, (Tk, Qk)σn−1<k≤σn

)
, n ≥ 1

are i.i.d.. For stopping times τ with finite mean this is indeed easily verified and the result is stated

(without proof) in the following lemma.

Lemma 16.1. The law of R forms the unique solution to the SFPE (16.4) whenever Eτ < ∞.

Study of R is now allowed within the framework of any stopped SFPE (16.4) with finite mean τ .

The idea is to pick τ in such a way that (�τ , Q
τ ) has nice additional properties compared to (T, Q).

Geometric sampling provides a typical example that will be used hereafter and therefore discussed

next. Another use of this technique, in particular of identities (16.1) and (16.3) appears in Section

23.

����� �����	
�� �������

Suppose now that (σn)n≥0 is independent of (T(n), Qn)n≥1 with geometric(1/2) increments, that

is P (τ = n) = 1/2n for each n ∈ N. Then not only Lemma 16.1 holds true but also the following

result:

Lemma 16.2. If (T, Q) satisfies the assumption of Theorem 13.2, then so does (�τ , Q
τ ) with the

same function m, in particular the same β > 0; and n = n0 = 1 in (irred), (density).

Proof. That (logmom) and limn→∞ n−1 log ‖Πσn‖ < 0 P-a.s. persist to hold under any finite mean

stopping time τ has already been pointed out before Lemma 16.1. As for (irred) and (density), just

note that P (Πτ ∈ ·) =
∑

k≥1 2
−nP (Πn ∈ ·). Assumption (R �= r) ensures that the law of R is
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16. The Stopped RDE and Geometric Sampling

nondegenerate. But since R is also the unique solution to (16.4), (R �= r) must hold for (�τ , Q
τ )

as well.

For the assertion about m, use the subsequent Lemma 16.3 : The value m(s) is given as the spectral

radius of P s∗ (see below for a recap of the definition) while the value of mτ (s), the spectral function

associated with �τ , is given as the spectral radius of P s,τ
∗ =

∑∞
k=1 2

−k(P s∗ )k. Then it is a direct

consequence of the spectral mapping theorem [40, VII.3.11], thatm(s) = mτ (s) for all s ∈ Iμ. The

remaining moment assertions (TlogT) and (Q-beta) are again easily verified by standard estimates.

Further details are therefore omitted.

Lemma 16.3. Let μ satisfy (i-d). For each s ∈ Iμ, the spectral radius r(P s∗ ) of P s∗ is given by

r(P s
∗ ) = κ(s) = m(s).

Proof. Obviously,

r(P s
∗ ) = lim

n→∞ sup
x∈S

(E|Πnx|s)1/n ≤ lim inf
n→∞ (E‖Πn‖s)1/n.

For the converse note that, by [26, Proposition III.3.2], Zx0 := infn≥0 ‖Πn‖−1 |Πnx0| > 0 a.s. for

any x0 ∈ S, whence

sup
x∈S

E|Πnx|s ≥ E‖Πn‖s
E|Πnx0|s
E‖Πn‖s

≥ E‖Πn‖s
EZx0 ‖Πn‖s
E‖Πn‖s

and therefore (using Jensen’s inequality)

r(P s
∗ ) ≥ lim sup

n→∞
(E‖Πn‖s)1/n lim

n→∞
EZ

1/n
x0 ‖Πn‖s
E‖Πn‖s

= lim sup
n→∞

(E‖Πn‖s)1/n

which completes the proof.

The assumption of [26, Proposition III.3.2] is that Tμ = [suppμ] (see [26, p. 43]]) is strongly
irreducible: There is no finite union

⋃k
i=1 Vi of proper linear subspaces ∅ �= V1, . . . , Vk � Rd that

is invariant under [suppμ], i.e.

A
k⋃

i=1

Vi ⊂
k⋃

i=1

Vi (16.6)

for all A ∈ [suppμ] (see [26, Definition III.2.1]). For each choice of (Vi)
k
i=1 this gives a finite set

of polynomial equations for the matrix coefficients, that have to be satisfied by all A ∈ [suppμ].
But by (density), Bc(Γ0) ∈ [suppμ], so this cannot hold.

In [26, Propositon III.3.2], also the index of [suppμ] (see [26, Definition III.1.3]) is addressed, but

it is irrelevant to the part of the result that was used here.

Considering Lemma 16.2, the following standing assumption holds:

If (irred),(density),(MC1’) and (MC2’) hold, they hold with n0 = n = 1. (StA)
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B. On Fixed Points of Multivariate Random Difference Equations

Corollary 16.4. Let μ satisfy (i-d) and let (StA) be in force. Then the assertions of Proposition 15.2
hold with (MC1’), (MC2’) replaced by

P ((Π1 · y,Π1) ∈ ·) ≥ ξΨ(y, ·) (MC1)

resp.
P (Π1 · y ∈ ·,Π1 ∈ C) ≥ ξΦ. (MC2)

��� �����	
� ��
����� ���
� �������� �����

Recall the definition of the transfer operators, which are now considered as operators in C (S):

P sf(x) := E (|Tx|s f(T · x)) ,

P s
∗ f(x) := E

(∣∣∣T	x
∣∣∣s f(T	 · x)

)
= E (|M1x|s f(M1 · x)) .

This section is devoted to the proof of the following theorem, which is the analogue of Theorem 7.3

under condition (i-d). This time, proofs will be given. In the proofs, Harris chain theory and the

minorization properties proved above will play an important role. For previous results, where μ has

a density w.r.t. to the Haar measure on the group of unimodular matrices, see [92] as well as [26,

Proposition V.2.6]

Theorem 17.1. Let μ satisfy (i-d) and s ∈ Iμ. Then the following holds:

1. The spectral radius and the dominant eigenvalue of P s∗ are equal to κ(s).

2. There is a unique strictly positive normalized function es∗ ∈ C (S) (|es∗|∞ = 1) and a unique
probability measure νs∗ on S such that

P s
∗ e

s
∗ = κ(s)es∗, P s

∗ ν
s
∗ = κ(s)νs∗. (17.1)

3. The function es∗ is symmetric, i.e. es∗(x) = es∗(−x) for all x ∈ S and supp (νs∗) = S.

4. For all f ∈ C (S),

lim
n→∞

∣∣∣∣(P s∗ )nf
κ(s)n

− νs∗(f)
νs∗(es∗)

es∗

∣∣∣∣
∞

= 0. (17.2)

Moreover, for all x ∈ S

lim
n→∞ tv

[
(P s∗ )n(x, ·)

κ(s)n
− νs∗

νs∗(es∗)

]
= 0. (17.3)

5. The function s �→ κ(s) is convex on Iμ.

6. The mapping s �→ es∗ is continuous w.r.t. |·|∞ and the mapping s �→ νs∗ is continuous w.r.t.
to the total variation norm.

The proof will be given in a series of subsequent lemmata.
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17. Transfer Operators under Condition (i-d)

����� ��� ���	
�� �� P s
∗

The first assertion in 1. about the spectral radius r(P s∗ ) of P s∗ has already been shown in Lemma

16.3. The second assertion about the dominant eigenvalue is contained in the following Lemma. Its

proof follows the same ideas as Kesten’s original proof [59, Theorem 3, Step 1] and is valid under

very general assumptions.

Lemma 17.2. Assume that s ∈ Iμ. Then P s∗ has an eigenvalue λs ∈ C with |λs| = κ(s).

Proof. Let’s introduce some notation first. The conjugate space of (C (S) , |·|∞) will be denoted by

C (S)′, this is the space M± (S) of regular bounded signed measures on S equipped with the total

variation norm tv [·]. The weak topology on C (S)′ (which is also called the X topology of X∗ in

[40] sometimes) is the topology of weak convergence of measures.

Step 1: Referring to [40, Definition IV.6.1 & Lemma VI.2.2]), the adjoint operator (P s∗ )′ : C (S)′ →
C (S)′ has the same operator norm as P s∗ and it is bounded since∥∥(P s

∗ )
′∥∥ = ‖P s

∗ ‖ ≤ E ‖T1‖s < ∞.

It follows that

(P s
∗ )

′D =
{
(P s

∗ )
′ν : tv [ν] ≤ 1

}
is bounded in (C (S)′ , tv [·]). Hence the weak closure of (P s∗ )′D is weakly compact, this is the

assertion of [40, Corollary V.4.3]. This proves that (P s∗ )′ is weakly compact (see [40, Definition

VI.4.1]).

Step 2: Referring to [40, Theorem VI.4.8], P s∗ is then weakly compact as well. Considering [40,

Corollary VI.7.5], it follows that (P s∗ )2 is compact. With these properties, it is the assertion of [40,

Theorems VII.4.5 & 6] that the spectrum of P s is at most denumerable and has no point of accu-

mulation except for possibly 0. Moreover, each non-zero number in the spectrum is an eigenvalue

with a finite dimensional eigenspace. In particular, P s∗ has an eigenvalue λs which is in modulus

equal to the spectral radius.

����� ��� ��������	�� �� κ(s)

In order to deduce that in fact λs = κ(s), condition (i-d) enters the stage. In particular property

(irred) yields that the operators P s∗ are strictly positive: I.e. if f ≥ 0, and f(x) > 0 for some x ∈ S
then P s∗ f(y) > 0 for all y ∈ S. Indeed, for any such f , the set Uf = {f > 0} is nonempty and

open by continuity. Now use (irred) with n = 1 to infer

P s
∗ f(x) ≥

∫
|Mx|s 1Uf

(M · x) f(M · x) P (M1 ∈ dM) > 0.

Then the final assertion in 1. as well as existence and uniqueness of normalized es∗ result from the

next lemma:

Lemma 17.3. Let s ∈ Iμ and P s∗ be strictly positive. Then there is a unique strictly positive function
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B. On Fixed Points of Multivariate Random Difference Equations

es∗, |es∗|∞ = 1, such that P s∗ es∗ = κ(s)es∗. Moreover,

Eig(P s
∗ , κ(s)) = Res∗.

Proof. The following argument goes back to Karlin [57, Section 5]. By Lemma 17.2, P s∗ has eigen-

value λs with |λs| = κ(s). Let f be a corresponding eigenfunction. Hence,

κ(s) |f | = |λsf | = |P s
∗ f | ≤ P s

∗ |f | .

Suppose thatP s∗ |f |−κ(s) |f | �= 0. It is a consequence of the strict positivity ofP s∗ thatP s∗ (P s∗ |f |−
κ(s) |f |) is positive on S and thus bounded from below by some η > 0. Choose η small such that,

furthermore, κ(s)P s∗ |f | < 1/η. It follows from these inequalities that

(P s
∗ )

2 |f | − P s
∗κ(s) |f | > η > η2κ(s)|f |

hence

(P s
∗ )

2 |f | > (1 + η2)κ(s)P s
∗ |f |

and thereby

(P s
∗ )

nP s
∗ |f | > (1 + η2)nκ(s)nP s

∗ |f |
for all n ∈ N upon iteration. Consequently, ‖(P s∗ )n‖ > (1 + η2)nκ(s)n for all n ∈ N and thus

r(P s∗ ) > κ(s). This is a contradiction with Lemma 16.3 and leads to the conclusion that P s∗ |f | =
|f |. Thus es∗ := |f | is a positive eigenfunction for the eigenvalue 1. It is positive everywhere due to

the strict positivity of P s∗ .

Now, suppose there is another eigenfunction g, linearly independent of es∗ and w.l.o.g. real-valued

(for, if g is an eigenfunction, then so are its real and imaginary parts if nontrivial). Pick ε such that

h := es∗ + εg is nonnegative, but h(x) = 0 for some x. By linear independence, h does not vanish

everywhere. Since it is again an eigenfunction, the strict positivity of P s∗ implies that it must be

positive everywhere which is a contradiction. Hence es∗ must be the unique eigenfunction modulo

scalars.

From this the corresponding properties of νs∗ will be deduced. The idea of proof here is very similar

to [52, Theorem 2.6] (see also [50]), but more straightforward due to the density assumption.

Lemma 17.4. Let μ satisfy (i-d), let s ∈ Iμ and (StA) be in force. Then

Qs
∗f(x) =

1

es∗(x)κ(s)
P s
∗ (e

s
∗f)(x) (17.4)

defines a Markov transition operator on S. It has a unique stationary distributionπs∗ and is geometric
ergodic: For all x ∈ S,

tv [(Qs
∗)

n(x, ·)− πs
∗] ≤ (1− ξ)n. (17.5)

The probability measure
νs∗(dx) := ces∗(x)

−1πs
∗(dx) (17.6)
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17. Transfer Operators under Condition (i-d)

(with norming constant c−1 =
∫
es∗(x)−1πs∗(dx)) satisfies

P s
∗ ν

s
∗ = κ(s)νs∗,

and supp (νs∗) = supp (πs∗) = S.

Proof. Step 1: The operator Qs∗ maps positive functions onto positive functions since P s∗ and es∗
are strictly positive. It is a Markov operator since

Qs
∗1S(x) =

1

es∗(x)κ(s)
P s
∗ (e

s
∗)(x) =

κ(s)es∗(x)
κ(s)es∗(x)

= 1.

By canonical extension, for all measurable A ⊂ S,

Qs
∗(x,A) =

1

es∗(x)κ(s)

∫
1A(y)e

s
∗(y) |Mx|s P (Π1 · x ∈ dy,Π1 ∈ dM) .

Step 2: Choose arbitrary x0 ∈ S. By Corollary 16.4 resp. Proposition 15.2 there is ξ > 0, a compact

subset C ∈ GL(d,R) and a probability measure Φ such that P (Π1 · x ∈ dy,Π1 ∈ C) ≥ ξΦ(dy)
for all x ∈ S. Note that due to compactness of S and C

ξ1 := min
z1,z2∈S

es∗(z1)
es∗(z2)

> 0 and ξ2 := min
z∈S,A∈C

|Az|s > 0.

Consequently, for each x ∈ S and measurable A ⊂ S,

Qs
∗(x,A) ≥

ξ1ξ2
κ(s)

∫
1A(y)P (Π1 · x ∈ dy,Π1 ∈ C)

≥ ξξ1ξ2
κ(s)

Φ(A). (17.7)

Thus Qs∗ satisfies the assumption of the ergodic theorem 14.1 which gives the geometric ergodicity

and existence and uniqueness of πs∗. The assertion about the support of πs∗ follows directly by an

inspection of the minorization in (17.7): By Corollary 16.4, for any x0 ∈ S there is ξ, δ > 0 and Φ
with supp (Φ) = Bδ(x). It follows that for all ε > 0

πs
∗(Bε(x0)) =

∫
S
Qs

∗(x,Bε(x0))π
s
∗(dx) ≥

ξξ1ξ2
κ(s)

Φ(Bε(x0)) > 0.

Step 3: Recall that es∗ > 0 on S, thus νs∗ as defined in (17.6) is well defined and has the same support

as πs∗. In addition, for any f ∈ C (S)∫
f(x)νs∗(dx) =

∫
f(x)

es∗(x)
πs
∗(dx)

=

∫
1

es∗(x)κ(s)
P s
∗

(
f

es∗
es∗

)
(x)πs

∗(dx)
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B. On Fixed Points of Multivariate Random Difference Equations

=
1

κ(s)

∫
P s
∗ f(x)ν

s
∗(dx)

which proves that (P s∗ )′νs∗ = κ(s)νs∗ .

Lemma 17.5. Let s ∈ Iμ and P s∗ be strictly positive. Then κ(s) is an eigenvalue of (P s∗ )′ with
one-dimensional eigenspace.

Proof. By [40, Exercise VII.5.35], if κ(s) is an eigenvalue of P s∗ and isolated in the spectrum with

one-dimensional eigenspace, then the same holds true with P s∗ replaced by its adjoint (P s∗ )′. It

was shown in the proof of Lemma 17.2, that each point (except maybe 0) of the spectrum of P s∗ is

isolated, and Lemma 17.3 yields that the eigenspace of κ(s) is one-dimensional.

Thus, after renormalizing νs∗ to a probability measure, it is unique, and assertions 2. is proved.

The convergence assertion in 4. is easily deduced from the geometric ergodicity: For any f ∈ C (S),
|f |∞ ≤

∣∣(es∗)−1
∣∣
∞, (17.5) implies

|(Qs
∗)

nf(x)− πs
∗(f)| ≤

∣∣(es∗)−1
∣∣
∞ (1− ξ)n,

thus this convergence is uniform in f and x. Now let f ∈ C (S), |f |∞ ≤ 1.Let g(x) = es∗(x)−1f(x),
then |g|∞ ≤

∣∣(es∗)−1
∣∣
∞. It follows∣∣∣∣ (P s∗ )nf(x)

es∗(x)κ(s)n
− νs∗(f)

νs∗(es∗)

∣∣∣∣ = ∣∣∣∣(Qs
∗)

n(g)− πs∗(g)
πs∗(1)

∣∣∣∣ ≤ ∣∣(es∗)−1
∣∣
∞ (1− ξ)n.

The assertion about the symmetry of es∗ is as well a direct consequence: It can easily be seen that

P s∗ maps symmetric functions onto symmetric functions. Referring to the convergence assertion

above,
(P s∗ )n1(x)

κ(s)n
→ ces∗(x)

for some c > 0. Thus as a pointwise limit of symmetric functions, es∗ is itself symmetric.

Lemma 17.6. The function s �→ κ(s) is convex on Ĭμ.

Proof. Since s �→ ‖(P s∗ )nf‖ is log-convex on Ĭμ for each f ∈ C (S) and n ≥ 1 (use Hölder’s

inequality), the same holds true for s �→ ‖(P s∗ )n‖ as its pointwise supremum. Again as the pointwise

limit of the log-convex functions s �→ ‖(P s∗ )n‖1/n, κ(s) is log-convex on Ĭμ.

Turning finally to assertion 6., these convergence results can be proved by means of a perturbation

theorem [54, Theorem III.8]. That theorem is applicable to the operators in C (S), defined for #z ∈
Iμ by

P z
∗ f(x) := E (|M1x|z f(M1 · x)) .

It is a consequence of that perturbation theorem, that for each s0 ∈ Ĭμ, the mappings s �→ κ(s),
s �→ es∗ and s �→ νs∗ are even holomorphic on Bε(s0) ⊂ C for some ε > 0. See [94, Section V.3]

for the definition of holomorphic Banach space-valued functions. In particular, such functions are

continuous w.r.t. to the norm topology by [94, Theorem V.3.1]. This gives the assertion.
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18. Further Facts on Harris Chains

��� �����	� �
��� � �
���� ��
���

As announced in Section 14, in this section Markov chains satisfying an extended minorization

condition will be studied and a regenerative structure for this chains will be developed.

First, the Markov Chains in question will be explicitly construct in the following subsection, which

also contains the definition of the intrinsic MRW and the change of measure as in Section 8. Then

a method, due to Athreya & Ney [13] and Nummelin [79] will be described that allows to construct

a distributional copy of these Markov chains with an additional sequence of regeneration times.

����� �����	�
 ��������
� ���	�� ��� ����� ������

Recall that if not noted otherwise, it is assumed that all occuring random variables are defined on a

common probability space, equipped with the measure P. Subsequently, several random variables

will be redefined on newly constructed probability spaces. It is far more convenient to write the

same symbol for corresponding random variables on different probability spaces than to introduce

new letters. But the reader should keep in mind, that in particular the identities (18.3) and (18.5)

below are distributional identities.

��� �������� Qs
x

For n ∈ N, s ∈ Iμ define probability measures nQ
s
x on S×GL(d,R)n by the property

nQ
s
x(A) :=

1

es∗(x)κn(s)
E
(
es log|Πnx|es∗(Πn · x)1A(x,M1, . . . ,Mn)

)
(18.1)

for all measureable sets A. The sequence (nQ
s
x)n constitutes a projective system, thus referring

to the Kolmogorov extension theorem [28, Corollary 2.19] it defines a probability measure Qs
x on

S × GL(d,R)N. Denote the corresponding expectation symbol by Es
x and let (X0, (Mn)n∈N) be

the fibered identity. Recalling the definition of (Xn, Vn)n∈N0 in Subsection 6.1,

Xn := Πn ·X0, Vn := log |ΠnX0| , Un = Vn − Vn−1,

then (18.1) yields the identity

Es
x (f(X0, V0, . . . Xn, Vn))

=
1

es∗(x)κn(s)
E
(
es log|Πnx|es∗(Πn · x)f(x, 0, . . . ,Πn · x, log |Πnx|)

)
(18.2)

=
1

es∗(x)κn(s)
Ex

(
esVnes∗(Xn)f(X0, V0, . . . , Xn, Vn)

)
(18.3)

which is valid for all n ∈ N and all bounded measurable functions f . For the second identity, it

was taken into account that e0∗ ≡ 1. It is a consequence of Theorem 17.1 that the bivariate sequence
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B. On Fixed Points of Multivariate Random Difference Equations

(Xn, Un)n∈N0 is a Markov chain under each Qs
x with transition kernel

Q̂s((x, u), A×B) =
1

es∗(x)κ(s)
E (es∗(M1 · x) |M1x|s 1A(M1 · x)1B(log |M1x|)) . (18.4)

Thus (Xn, Vn)n∈N0 constitutes a Markov random walk under each Qs
x and the associated Markov

renewal measure will be denoted by Us
x :=

∑∞
n=0Q

s
x((Xn, Vn) ∈ ·). Then along the same lines as

Lemma 17.4, the following minorization result can be obtained.

Corollary 18.1. For each x0 ∈ S there is ξs, δ > 0, I ⊂ R compact and a Markov kernel Υ from
S to S× R with

suppΥ(x, ·) ⊆ Bδ(x0)× I, Υ(x, · × I) = Φ

for all x ∈ S. The Markov chain (Xn, Un)n∈N0 satisfies the bivariate minorization condition

Q̂s((x, u), ·) ≥ ξsΥ(x, ·)

for all (x, u) ∈ S × R. In particular, (Xn)n∈N0 is a strongly aperiodic Doeblin chain under each
Qs

x.

Proof. This is a direct consequence of Corollary 16.4 and Proposition 15.2 with

Υ(x,A×B) =

∫
1B(log |Mx|)Ψ(x,A× dM)

and

I = [ min
z∈S,A∈C

log |Az| ,max
A∈C

log ‖A‖]

with Ψ and C given by Proposition 15.2.

��� �������� Ox

Define for each x ∈ S a probability measure on S× (GL(d,R)× Rd)N0 by

Ox := δ(x)⊗ δ(Id)⊗ δ(0)⊗
∞⊗
n=1

�

and denote the fibered identity by (X0, (Tn, Qn)n∈N0). Then for all x ∈ S

Ox([(X0,T0, Q0), (Xn,Tn, Qn)n∈N] ∈ ·) = P ([(x, Id, 0), (Πn · x,Tn, Qn)n∈N] ∈ ·) . (18.5)

As before, write Mn = T	
n . The multivariate sequence (Xn,Mn, Qn)n∈N0 is a Markov chain

under each Ox with transition kernel

Ô((x,A, q), A×B × C) = P ((Π1 · x,Π1, Q1) ∈ A×B × C) . (18.6)

The following Corollary again results from Proposition 15.2 and Corollary 16.4:
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18. Further Facts on Harris Chains

Corollary 18.2. For each x0 ∈ S there is ξ, δ > 0, C ⊂ GL(d,R) compact and a Markov kernel
Ψ from S to S×GL(d,R) with

suppΨ(x, ·) ⊆ Bδ(x0)× C, Ψ(x, · × C) = Φ

for all x ∈ S. The Markov chain (Xn,Mn, Qn)n∈N0 satisfies the minorization condition

Ox ((X1,M1, Q1) ∈ A×B ×D)

≥ ξ

∫
B
P
(
Q ∈ D|T = A	

)
Ψ(x,A× dA) =: ξΞ(x,A×B ×D),

for all x ∈ S. There are L, ς > 0 such that

Ξ(x,Bδ(x0)×B × Rd) = L

∫
Bς(Id)

1Bδ(x0)×B(A · x,AAx)λ
d2(dA) (18.7)

for all x ∈ S where Ax is a deterministic matrix in GL(d,R), only depending on x.

Remark 18.3. It will be important in the subsequent considerations that the image measures on the

path spaces, Qx((Xn, Vn)n∈N0 ∈ ·) and Ox((Xn,Tn, Qn)n∈N0 ∈ ·), may also be defined via the

Markov transition kernels Q̂s resp. Ô by means of the Ionescu-Tulcea theorem while the identities

(18.3) resp. (18.5) still hold true.

����� � ���	
��
�	� �������	
�� �����

The following Lemma extends the classical regeneration lemma [13, Lemma 3.1] to bivariate MCs

satisfying bivariate minorization conditions as above. Note the initial distribution via the convention

Px (X0 = x) = 1.

Lemma 18.4. Consider a MC (Xn, Zn)n∈N0 taking values in a separable metric space S × E.
Assume that it satisfies a bivariate minorization condition

P ((X1, Z1) ∈ ·|X0 = x, Z0 = z) =P (x, ·) ≥ ξΨ(x, ·) ∀x ∈ S

for Markov transition kernels P , Ψ with the additional property that for some probability measure
Φ ∈ P(S),

Ψ(x, · × E) = Φ ∀x ∈ S.

Then the following holds: On a possibly enlarged probability space, one can redefine (Xn, Zn)n∈N0

together with an increasing sequence (σn)n∈N0 of random epochs such that the following conditions
are fulfilled under any Px,z , x ∈ S × E:

(R1) There is a filtration G = (Gn)n≥0 such that (Xn, Zn)n∈N0 is Markov adapted and each σn is
a stopping time with respect to G.

(R2) (σn−σ1)n∈N forms a zero-delayed renewal sequence with increment distribution PΦ (σ1 ∈ ·)
and is independent of σ1.
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B. On Fixed Points of Multivariate Random Difference Equations

(R3) For each k ≥ 1, the sequence (Xσk+n)n∈N0 is independent of (Xj)0≤j≤σk−1 with distribution
PΦ ((Xn)n∈N0 ∈ ·).

(R4) For each k ≥ 1, P (Xσk
, Zσk

∈ ·|Gσk−1) = Ψ(Xσk−1
, ·) P-a.s..

The σn, called regeneration epochs w.r.t. Ψ, are obtained by the following coin-tossing procedure:

At each step, a ξ-coin is tossed. If head comes up, then (Xn+1, Zn+1) is generated according to

Ψ(Xn, ·), while it is generated according to (1 − ξ)−1(P (Xn, ·) − ξΨ(Xn, ·)) otherwise. Hence,

the σn − 1 are those steps at which the coin toss produces a head. More formally, this is realized by

introducing i.i.d. Bernoulli(ξ) (B(1,ξ)) variables J0, J1, ... with the following properties:

(R5) For each n ≥ 0, Jn is independent of σ((Xk, Zk)0≤k≤n).

(R6) σ0 := 0 and σn := inf{k > σn−1 : Jk−1 = 1} for n ≥ 1.

Then (Xn, Zn, Jn)n≥0 is defined as a Markov chain on S × E × {0, 1} with transition kernel P̂
given by

P̂ ((x, z, 0), A×B × C) =(1− ξ)−1

(
P (x,A×B)− ξΨ(x,A×B)

)
B(1,ξ)(C)

P̂ ((x, z, 1), A×B × C) =Ψ(x,A×B)B(1,ξ)(C).

Denote by P̂x,z the measure induced by this transition kernel on the path space of (Xn, Zn, Jn)
with (X0, Z0) = (x, z) and L (J0) =B(1, ξ). Introduce the canonical filtrations Gn and Fn for

(Xn, Zn, Jn) resp. (Xn, Zn). Then use the “tower rule” ([28, Prop. 4.20 3)]) for conditional ex-

pectations to derive that for all n ∈ N

P̂x,z(Xn ∈ A,Zn ∈ B|Fn−1)

= Êx,z (1A(Xn)1B(Zn)| Fn−1)

= Êx,z (E (1A(Xn)1B(Zn)|Gn−1)| Fn−1)

= Êx,z

(
P̂ ((Xn−1, Zn−1, Jn−1), A×B × {0, 1})

∣∣∣Fn−1

)
= Êx,z

(
Jn−1Ψ(Xn−1, A×B)

+ (1− Jn−1)(1− ξ)−1

(
P (Xn−1, A×B)− ξΨ(Xn−1, A×B)

)∣∣∣∣∣Fn−1

)

= ξJn−1Ψ(Xn−1, A×B) + (1− ξ)(1− ξ)−1

(
P (Xn−1, A×B)− ξΨ(Xn−1, A×B)

)
= P (Xn−1, A×B) a.s..

In the penultimate line, (R5) was used. It follows that the marginal sequence (Xn, Zn) is a Markov

chain with transition kernel P also on this enlarged space.

Remark 18.5. • Any sequence (σn)n∈N0 satisfying (R1)-(R4) with some kernel Ψ is called

sequence of regeneration epochs for (Xn, Zn)n∈N0 w.r.t. Ψ.
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19. The Markov Renewal Theorem for Strongly Aperiodic Doeblin Chains

• The classical regeneration lemma for a strongly aperiodic Harris recurrent MC gives asser-

tions (R1)-(R3), (R1) of course just for (Xn)n∈N0 instead of the bivariate chain. In this con-

text, any sequence (σn)n∈N0 satisfying (R1)-(R3) is called sequence of regeneration epochs

for (Xn)n∈N0 .

• The (up to scalar multiplication) unique invariant measure of a strongly aperiodic Harris re-

current chain is finite if and only if EΦσ1 < ∞ (see [13, Theorem 6.1]). Obviously, in the

case of a strongly aperiodic Doeblin chain, σ1 has a geometric(ξ)-distribution, thus σ1 has

finite expectation and (Xn)n∈N0 has a unique stationary distribution.

����� �����	 
������ ��	�

In view of Corollaries 18.1 and 18.2 and Remark 18.3, the measures induced by Qs
x and Ox on

the path spaces of (Xn, Vn)n∈N0 resp. (Xn,Tn, Qn)n∈N0 can be redefined to carry regeneration

sequences, while the identities (18.3) and (18.5) still hold. Subsequently, the following stopping

times will appear (for arbitrary but fixed x0 ∈ S):

• When considering measures Qs
x, the sequence (σn)n∈N0 will always be a sequence of regen-

eration epochs w.r.t. to the bivariate minorization Υ, given by Corollary 18.1. In particular,

Qx ((Xσn , Uσn) ∈ Bδ(x0)× I) = 1

for some δ > 0, a compact interval I ⊂ R and all x ∈ S, n ∈ N.

• The subsequent hitting times of (Xn)n∈N0 in Bδ(x0) will be denoted by (τn)n∈N, with the

convention τ0 = 0.

• When considering measures Ox, the sequence �n will be a sequence of regeneration epochs

w.r.t. to the multivariate minorization Ξ given by Corollary 18.2 with the additional property

that X�n−1 ∈ Bδ(x0) for all n ∈ N, with the δ > 0 also given by Corollary 18.2. It will be

introduced in Subsection 21.2. The particular formula (18.7) will be used.

��� ��� ��	
�� ������ ����	�� ��	 ��	����� ���	����� ������� ������

In this section, first the MRT for MRWs with Harris recurrent driving chain [2, Theorem 1] will be

formulated in the setting of strongly aperiodic Doeblin chains. Its convergence result a priori only

holds for π-almost all x ∈ S, with π being the stationary distribution of the driving chain. Using a

bivariate minorization property, it will be shown that the convergence assertion is valid for all x ∈ S
under an extra assumption on the random walk part. In this section, S denotes a separable metric

space.

����� ��	 ������ �	�	��� ��	��	�

Let (Xn, Vn)n∈N0 be a MRW with strongly aperiodic Doeblin driving chain and stationary distri-

bution π. The MRW (Xn, Vn)n∈N0 is called d-arithmetic, if there exists a minimal d > 0 and a
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B. On Fixed Points of Multivariate Random Difference Equations

measurable function f : S → [0, d) such that

P (U1 − f(x) + f(y) ∈ dZ|X0 = x,X1 = y) = 1

for Pπ((X0, X1) ∈ ·) almost all (x, y) ∈ S2, and nonarithmetic otherwise.

Definition 19.1. A measurable function g : S × R → R is called π-directly Riemann integrable if

g(x, ·) is Lebesgue-a.e. continuous for π-almost all x ∈ S, and (19.1)∫
S

∑
n∈Z

sup
t∈[nδ,(n+1)δ)

|g(x, t)|π(dx) < ∞ for some δ > 0. (19.2)

Defining the first exit time N(t) := inf{n ≥ 0 : Vn > t} consider the residual lifetime process
R(t) := (VN(t) − t)1{N(t)<∞} and the jump process Z(t) := XN(t)1{N(t)<∞}. The following

MRT is the main result of [2]:

Theorem 19.2. Let (Xn, Vn)n∈N be a nonarithmetic MRW with strongly aperiodic Doeblin driving
chain (Xn)n∈N with stationary distribution π. Let l := EπV1 > 0. Then for every function g which
is π-directly Riemann integrable,

lim
t→∞ g ∗ Ux(t) = lim

t→∞Ex

⎛⎝∑
n≥0

g(Xn, t− Vn)

⎞⎠ → 1

l

∫
S

∫
R
g(u, v) dv π(du). (19.3)

for π-almost all x ∈ S. Moreover, if f : S × (0,∞) → (0,∞) is bounded and continuous, then

lim
t→∞Ex

(
f(Z(t), R(t))1{N(t)<∞}

)
= L(f) (19.4)

for π-almost all x ∈ S and some constant L(f) > 0.

Remark 19.3. The following extension of the above result follows directly upon inspection of the

coupling proof given in [2, Section 7]: If Φ is any minorizing distribution for the transition kernel

of the Harris driving chain (Xn)n≥0, then g ∗ UΦ(t) is a bounded function and converges to the

limit given in (19.3). This fact will be used below.

����� ��� �	
����
�� �	��� ����������

In this subsection, it is shown that under some stronger assumptions, the convergence in 19.3 holds

for all x ∈ S instead of just for π-almost all.

Therefore, yet another definition of direct Riemann integrability is needed. It interpolates between

the Definitions 8.4 and 19.1:

Definition 19.4. A function g ∈ Cb (S× R) is called weakly directly Riemann integrable (wdRi), if

sup
u∈S

∑
l∈Z

sup
∈[l,l+1]

|g(u, t)| < ∞. (19.5)
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19. The Markov Renewal Theorem for Strongly Aperiodic Doeblin Chains

Obviously, this property is stronger than (19.2), but weaker than (8.12). Now for the announced

bivariate minorization condition:

Definition 19.5. Let (Xn, Vn)n∈N0 be a MRW with strongly aperiodic Doeblin driving chain. Say

that the MRW has bounded increments at regeneration epochs, if there is ξ > 0, a finite interval

I ⊂ R and a stochastic kernel Υ with

supp (Υ(x, ·)) ⊂ S × I, Υ(x, · × I) = Φ (19.6)

for all x ∈ S and some Φ ∈ P(S), such that

Px (X1, U1 ∈ ·) ≥ ξΥ(x, ·). (19.7)

In other words, (Xn, Vn)n∈N0 having bounded increments at regeneration epochs means

Uσn ∈ I (19.8)

for any sequence (σn)n∈N0 of regeneration epochs w.r.t. to Ψ and all n ∈ N.

Proposition 19.6. In the situation of Theorem 19.2, if the MRW has bounded increments at regen-
eration epochs and g is wdRi, then the convergence in (19.3) holds for all x ∈ S.

Remark 19.7. The question, whether the convergence in (19.4) holds for all x ∈ S as well is more

delicate: It is derived by applying (19.3) to the MRW (Ẍn, V̈n)∈N0) := (Xυn , Vυn)n∈N0 , where

υ0 = 0 and υn, n ∈ N are the strictly ascending ladder epochs for the random walk part Vn and to

the function

g(x, t) := Ex

(
f(Ẍ1, V̈1 − t)1{V̈1>t}

)
.

Properties of (Ẍn, V̈n) are studied in [3]; but it cannot be deduced from those results that (Ẍn)n∈N
satisfies the Doeblin condition, or at least, that there is a sequence of regeneration epochs (σn)n∈N
with supx∈S Exσ1 < ∞ - this property is needed in Lemma 19.8. As a step in proving the main

theorem, (19.4) will be applied, thus some of the interim results will hold only for π-almost all

x ∈ S. Nevertheless, the main result uses (19.3) whence it holds for all x ∈ S.

Now for the proof of Proposition 19.6. Denote the RHS of (19.3) by K. Let Υ be a minorizing

kernel for (Xn, Un) and I ⊂ R a finite interval such that (19.6) holds. Let (σn)n≥1 be an associated

sequence of regeneration epochs and put σ := σ1. The task is to show that g ∗ Ux(t) converges to

K for all x ∈ S. Begin by pointing out that

g ∗ Ux(t) = Ex

⎛⎝∑
k≥0

g(Xk, t− Vk)

⎞⎠ = G(x, t) + g ∗ Uϕ(x,·)(t) (19.9)

where ϕ(x, ·) := Px ((Xσ, Vσ) ∈ ·) and

G(x, t) := Ex

(
σ−1∑
k=0

g(Xk, t− Vk)

)
, (x, t) ∈ S × R. (19.10)
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B. On Fixed Points of Multivariate Random Difference Equations

As for this last function, the following lemma holds:

Lemma 19.8. The function G is bounded and satisfies limt→∞G(x, t) = 0 for all x ∈ S.

Proof. By (19.5), C := sup{|g(x, t)| : x ∈ S, t ∈ R} < ∞, and since (Xn)n≥0 is a strongly

aperiodic Doeblin chain, it follows

sup
x∈S,t∈R

|G(x, t)| ≤ C sup
x∈S

Exσ < ∞.

Just recall that a geometric number of coin tosses (the Jn) determines σ. Turning to the convergence

assertion, observe that, again by property (19.5), limt→∞ g(x, t) = 0 for all x ∈ S, which implies

the desired result by an appeal to the dominated convergence theorem.

In view of (19.9), it remains to show that g ∗ Uϕ(x,·)(t) → K. This requires one more lemma.

Lemma 19.9. For each x ∈ S, the sequence (Xσ, (Xn, Un)n>σ) is independent of (Xσ−1, Vσ−1)
under Px with distribution given by PΦ ((X0, (Xn, Un)n≥1) ∈ ·).

Proof. The first assertion follows directly when observing that, by regeneration, (Xσ+n)n≥0 and

(Xσ−1, Vσ−1) are independent under Px, and the fact that the conditional distribution of Uk given

(Xn)n≥0 only depends on (Xk, Xk−1) (see Definition 6.1). The proof is completed by the obser-

vation that Px ((Xσ+n)n≥0 ∈ ·) = PΦ ((Xn)n≥0) ∈ ·).

Define Vσ,n := Vσ+n − Vσ for n ≥ 0 and then

h(x, s, t) := Ex

⎛⎝∑
k≥0

g(Xσ+k, t− s− Vσ−1 − Vσ,k)

⎞⎠
for s, t ∈ R. Lemma 19.9 implies

h(x, s, t) =

∫
R
g ∗ UΦ(t− s− r) κPx(Vσ−1 ∈ dr).

As g satisfies (19.5), it follows from the MRT 19.2 and the subsequent remark that g ∗ UΦ(t) is

bounded and converges to K. By the dominated convergence theorem, the same limit holds for

limt→∞ h(x, s, t) for all s.

Finally, the connection between h(x, s, t) and g ∗ Uϕ(x,·)(t) becomes apparent after the following

observations: By assumption, Uσ is taking its values in the finite interval I . Hence g ∗ Uϕ(x,·)(t)
can be estimated by

inf
s∈I

h(x, s, t) ≤ g ∗ Uϕ(x,·)(t) ≤ sup
s∈I

h(x, s, t).

Hence the sandwich theorem yields the desired conclusion that limt→∞ g ∗ Uϕ(x,·)(t) = K.

By the way, the subsequent Corollary has been proved:
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20. Study of a Markov Random Walk

Corollary 19.10. If (Xn, Vn)n≥0 is a MRW with strongly aperiodic Doeblin driving chain and
bounded increments at regeneration epochs, then for every wdRi function g,

sup
x∈S,t∈R

|g| ∗ Ux(t) < ∞.

��� ����� 	
 � ���	� ����	� ����

In this section, properties of the MRW (Xn, Vn)n∈N0 under the measures Qs
x are studied in order to

prove that the MRT 19.2 as well as its extension in Proposition 19.6 are applicable.

Lemma 20.1. Under each Qs
x, the Markov chain (Xn, Un+1)n∈N0 has a unique stationary distri-

bution ϕ = Pπs∗ ((X0, U1 ∈ ·).

Proof. By the very definition of a MRW (Definition 6.1), the (Un)n∈N are conditionally indepen-

dent, given (Xn)n∈N0 and the distribution of Un+1 depends only on (Xn, Xn+1). Hence any sta-

tionary distribution π for the driving chain (Xn)n∈N0 has a unique extension to a stationary distribu-

tion ϕ for (Xn, Un+1)n∈N0 , given by Pπ ((X0, U1) ∈ ·). Conversely, any stationary distribution of

(Xn, Un+1)n∈N0 reduces to a stationary distribution for (Xn)n∈N0 . Referring to Lemma 17.4, the

driving chain has the unique stationary distribution πs∗ thus ϕ is the unique stationary distribution

for (Xn, Un+1)n∈N0 .

The following proposition corresponds to Theorem 8.2.

Proposition 20.2. Let μ satisfy (i-d) and

E ‖T‖s
(
|log ‖T‖|+

∣∣log ∥∥T−1
∥∥∣∣) < ∞. (20.1)

Then for all x ∈ S,

lim
n→∞

Vn

n
= Es

πs∗V1 Qs
x-a.s.. (20.2)

Proof. The moment assumption 20.1 assures that

Es
πs∗ |V1| =

∫
S

1

es∗(x)κ(s)
E (|M1x|s es∗(M1 · x) |log |M1x||)πs

∗(dx)

≤ sup
z1,z2∈S

es∗(z1)
es∗(z2)

1

κ(s)
E ‖M1‖s (|log ‖M1‖|+ |log ι(M1)|)

= ξ1
1

κ(s)
E ‖T‖s (|log ‖T‖|+

∣∣log ‖(‖T−1
∣∣) < ∞,

i.e. V1 ∈ L1(Qs
πs∗). Here (7.3) should be recalled.

Since ϕ is the unique stationary distribution for (Xn, Un+1)n∈N0 , the chain is indecomposable (see

[28, Definition 7.13]). Referring to [28, Theorem 7.16], it is ergodic underQs
πs∗ . Hence by Birkhoff’s
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B. On Fixed Points of Multivariate Random Difference Equations

ergodic theorem [28, Theorem 6.28],

lim
n→∞

1

n

n−1∑
k=0

Uk+1 = lim
n→∞

Vn

n
= Es

πs∗U1 = Es
πs∗V1 Qs

πs∗-a.s.

Since (Xn)n∈N0 is a strongly aperiodic Doeblin chain by Corollary 18.1, a coupling argument which

is in spirit similar to the arguments given in the proof of Proposition 19.6, this convergence holds

under each Qs
x due to the Doeblin property of (Xn)n∈N0 .

The identification of the limit in (20.2) as
κ′(s−)
κ(s) can be copied word by word from the proof of [29,

Theorem 3.7]. In the present situation, the estimate

Eβ

πβ
∗
V1 > 0

is sufficient. Since it can be obtained by a somewhat shorter argument, its proof will be given:

Lemma 20.3. Let μ satisfy (i-d), let there be β > 0 with κ(β) = 1 and let

E ‖T‖β
(
|log ‖T‖|+

∣∣log ∥∥T−1
∥∥∣∣) < ∞. (20.3)

Then
l(β) = Eβ

πβ
∗
V1 > 0.

Proof. For n ∈ N, consider the function

gn : s �→
∫
S

1

eβ∗ (x)
E |Πnx|s eβ∗ (Πn · x)πβ

∗ (dx).

It is finite and convex on Iμ with gn(β) = 1. Under (20.3), [0, β] ⊂ Iμ and at least the left derivative

in β exists, which can be expressed in two different ways. On the one hand, for all s ∈ (0, β],

g′n(s
−) =

∫
S

1

eβ∗ (x)
E log |Πnx| |Πnx|s eβ∗ (Πn · x)πβ

∗ (dx),

in particular

g′n(β
−) =

∫
S
Eβ
xVnπ

β
∗ (dx) = Eβ

πβ
∗
Vn = n l(β)

by stationarity.

On the other hand,

g′n(β
−) = lim

s↑β
gn(β)− gn(s)

β − s
.

Hence by convexity of gn, l(β) is positive as soon as there is n ∈ N, s ∈ (0, β) with gn(s) < 1.
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20. Study of a Markov Random Walk

But this results from the upper bound

gn(s) =

∫
S

1

eβ∗
[(P s

∗ )
neβ∗ ](x)π

β
∗ (dx) ≤

(
max
z∈S

eβ∗ (z)
−1

)
‖(P s

∗ )
n‖ ,

valid for all n ∈ N, s ∈ Iμ. Since for s ∈ (0, β), r(P s∗ ) = m(s) < 1, the RHS tends to zero as n
goes to infinity. Consequently, there is n ∈ N, s ∈ (0, β) with gn(s) < 1.

One assumption of the MRT 19.2 remains to be checked: the lattice-type condition. As one would

expect, it is mainly a consequence of (density).

Lemma 20.4. Suppose that (density) and (StA) hold. Then for all s ∈ Iμ, (Xn, Vn)n≥0 is nonar-
ithmetic under (Qs

x)x∈S, in fact

Es
x

∣∣E (
eitV1 |X0, X1

)∣∣ < 1

for all t �= 0 and πs∗-almost all x ∈ S.

Proof. Fix s ∈ Iμ. If the assertion fails to hold, there exists a distribution ν on S, absolutely

continuous with respect to πs∗, such that Es
ν

∣∣E (
eitV1 |X0, X1

)∣∣ = 1 for some t �= 0. In other words,

E
(
eitV1 |X0, X1

)
= eitf(X0,X1) Qs

x-a.s.

for some measurable function f and ν-almost all x ∈ S or, equivalently,

Qs
ν

(
V1 ∈ f(X0, X1) + t−1Z

)
= 1. (20.4)

W.l.o.g. suppose t = 1 hereafter. Due to (irred) and (StA) and referring to (18.3) & (18.4), a

nonzero component of Qs
x((X1, V1) ∈ ·) is given by

Λx(A×B) := ξ3

∫
Bc(Γ0)

1A(M · x)1B(log |Mx|)λd2(dM)

for measurable A ⊂ S, B ⊂ R and any x ∈ S. Here

ξ3 = pmin
z1,z2

es∗(z1)
es∗(z2)

inf
z∈S,M∈Bc(Γ0)

> 0.

The mapping M �→ Mx induces an absolutely continuous measure on Rd with some λd-density g,
say. Switching to spherical coordinates, there are ε1, ε2 > 0 such that

Λx(A×B) = ξ3

∫ |Γ0x|+ε1

|Γ0x|−ε1

∫
Bε2 (Γ0·x)∩S

1A(ω)1B(s)g(sω)σ(dω)
1

s1+d
ds

where σ is a measure on S. Now, if (20.4) were true with t = 1, then

Λx(S × R) = ξ3

∫
Bε2 (Γ0·x)∩S

(∫ |Γ0x|+ε1

|Γ0x|−ε1

1f(x,ω)+Z(s)g(sω)
1

s1+d
ds

)
σ(dω) > 0
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B. On Fixed Points of Multivariate Random Difference Equations

for ν-almost all x which is impossible because the inner integral over a countable set is clearly zero

for any fixed ω.

Considering finally the assumptions of Proposition 19.6, these hold by Corollary 18.1, the minoriz-

ing kernel satisfies the definition of bounded increments, and the bivariate minorization condition

contains the strongly aperiodic Doeblin chain property as a special case.

��� ������	 
���� �� ������� �� ������ �������

It has been shown in the previous Section that the MRW (Xn, Vn)n∈N0 satisfies the assumptions

of the MRT19.2 w.r.t. the measures (Qβ
x)x∈S. Following Kesten [59, p.233f], the tail behaviour of

supn≥1 |Πnx| as well as of supn≥1 |Π�n−1x| (see Subsection 18.3) will be deduced.

����� ���� �	
����� �� supn≥1 |Πnx|

Proposition 21.1. Let μ satisfy (i-d), assume there is β > 0 with m(β) = 1, m′(β) > 0 and let
(TlogT) hold. Then

lim
t→∞ tβ P

(
sup
n≥1

|Πnx| > t

)
= Leβ∗ (x),

for πs∗-almost all x ∈ S and some L > 0.

Proof. The function f : S×R> → R>, (y, s) �→ e−βs/eβ∗ (y) is bounded and continuous whence,

by an application of the MRT 19.2,

L(f) := lim
t→∞Eβ

x

(
f(Z(t), R(t))1{N(t)<∞}

)
exists for πβ

∗ -almost all x ∈ S, is independent of x and positive. Now using (18.3),

Eβ
x

(
f(Z(t), R(t))1{N(t)<∞}

)
=

∑
n≥1

Eβ
x

(
f(Xn, Vn − t)1{N(t)=n}

)
=

∑
n≥1

Eβ
x

(
1

eβ∗ (Xn)
e−βVn+βt 1{N(t)=n}

)

=
eβt

eβ∗ (x)

∑
n≥1

Ex

(
1

eβ∗ (Xn)
e−βVn eβ∗ (Xn) e

βVn 1{N(t)=n}

)

=
eβt

eβ∗ (x)
Qx(N(t) < ∞)

=
eβt

eβ∗ (x)
P

(
sup
n≥1

log |Πnx| > log et
)
, (21.1)

which provides the asserted result upon substituting et by t.
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����� ���� �	
����� �� supn≥1 |xΠσn−1|

For any fixed x0 ∈ S, Corollary 18.2 yields the existence of δ > 0 and a Markov kernelΞwhose first

marginal is a probability measure Φ which is supported on Bδ(x0). Consider a sequence (�n)n∈N0

of regeneration epochs under Ox w.r.t. to Ψ which satisfies the additional property that

X�n−1 ∈ Bδ(x0)

for all n ∈ N. Call such a sequence of regeneration epochs feasible. Writing (τn)n∈N for the

subsequent hitting times of Xn in Bδ(x0), it follows that (�n)n∈N as well as (�n − 1)n∈N are

subsequences of (τn)n∈N0 (with the convention τ0 = 0.) In Section 23, it will needed and is therefore

shown below that

lim
t→∞ tκOx

(
sup
n≥1

|Π�n−1x| > t

)
> 0

for πβ
∗ -almost all x ∈ Bδ(x0). The proof hinges on the following proposition similar to Proposition

21.1 above.

Proposition 21.2. Let μ satisfy (i-d), assume there is β > 0 with m(β) = 1, m′(β) > 0 and let
(TlogT) hold. Then there exists L′ > 0 such that

lim
t→∞ tκOx

(
sup
n≥1

|Πτnx| > t

)
= L′ eβ∗ (x),

for πβ
∗ -almost all x ∈ Bδ(x0).

Proof. For x ∈ Bδ(x0), write τn(x) for the subsequent hitting times of Πn · x in Bδ(x0), and

τ0(x) = 0. Referring to (18.5), it has to be shown that

lim
t→∞ tκ P

(
sup
n≥1

∣∣Πτn(x)x
∣∣ > t

)
= L′ eβ∗ (x),

for πβ
∗ -almost all x ∈ Bδ(x0). Since Vτn = log

∣∣Πτn(x)x
∣∣ a.s. under Qx and Qβ

x , one can proceed

exactly as in the proof of Proposition 21.1, provided that the assumptions of the MRT 19.2 hold for

the sequence (Xτn , Vτn)n≥0 under (Qβ
x)x∈Bδ(x0), which is verified by the subsequent lemma. Note

that (18.3) extends to

Eβ
xf(X0, V0, . . . , Xτn , Vτn)

=
1

eβ∗ (x)
E
(
eβ∗ (Πτn(x) · x)eβ log|Πτn(x)x|f

(
x, 0, . . . ,Πτn(x) · x, log

∣∣Πτn(x)x
∣∣) ), (21.2)

as one can easily see by applying (18.3) toEβ
xf(X0, V0, X1, V1, . . . , Xk, Vk)1{τn=k} for each k ∈ N,

which in turn is possible because the appearing indicator is a function of (X0, V0, . . . , Xk, Vk).

Lemma 21.3. The hit chain (Xτn)n∈N0 constitutes a strongly aperiodic Doeblin chain under each
Qβ

x , x ∈ Bδ(x0) with stationary distribution π = πβ
∗ (· ∩ Bδ(x0))/π

β
∗ (Bδ(x0)). Moreover, the

sequence (Xτn , Vτn)n≥0 is a nonarithmetic MRW under (Qβ
x)x∈S with positive drift.
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B. On Fixed Points of Multivariate Random Difference Equations

Proof. For the first statement, just note that {σn : n ≥ 1} ⊂ {τn : n ≥ 1} for any sequence

of regeneration epochs w.r.t. Ψ. Next, due to Lemma 20.4 and the conditional independence of

U1, U2, ... given (Xn)n≥0, it follows that for t �= 0

Eβ
x

∣∣E (
eitVτ1 |X0, Xτ1

)∣∣ ≤ Eβ
x

τ1∏
k=1

|E
(
eitUk |Xk−1, Xk

)
|

≤ Eβ
x

∣∣E (
eitV1 |X0, X1

)∣∣ < 1

for πβ
∗ -almost all and thus π-almost all x. Consequently, (Xτn , Vτn)n≥0 is nonarithmetic under

(Qβ
x)x∈S. Finally, considering the drift,

Eβ
πV

′
τ1 = lim

n→∞
Vτn

n
≥ lim

n→∞
Vτn

τn
· lim inf

n→∞
τn
n

≥ l(β) · 1 > 0 Qβ
π-a.s., (21.3)

where the convergence of Vτn/n can be shown as in Proposition 20.2.

Proposition 21.4. Let x0 ∈ S be fixed, let the assumptions of Proposition 21.2 be in force and
(�n)n∈N0 a sequence of feasible regeneration epochs. Then

lim
t→∞ tβ Ox

(
sup
n≥1

|Π�n−1x| > t

)
= L′′eβ∗ (x) (21.4)

for πβ
∗ -almost all x ∈ Bδ(x0) and some L′′ > 0.

Proof. Referring to Proposition 21.2,

lim
t→∞ tβ Ox

(
sup
n≥1

∣∣Πτn(x)x
∣∣ > t

)
= L′ eβ∗ (x) > 0

for some L′ > 0 and πβ
∗ -almost all x ∈ S.

Fix any such x hereafter and put N̂(t) := inf{n ≥ 1 : |Πτnx| > t}, thus

{sup
n≥1

|Πτnx| > t} = {N̂(t) < ∞}.

Then it holds that

Ox

(
sup
n≥1

|Π�n−1x| > t

)
=

∑
n≥0

Ox

(
N̂(t) = n, Jτn = 1

)
∗
= ξ

∑
n≥0

Ox

(
N̂(t) = n

)
= ξOx

(
sup
n≥1

|Πτnx| > t

)
where ξ comes from the minorization condition, and ∗ holds by property (R5).
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In this section, the convergence assertion in the main result Theorem 13.2 will be proved, all as-

sumptions of which will therefore be in force throughout, in fact in strengthened form given by

(StA). Positivity of K is postponed to the next section.

Embarking on ideas by Goldie [47] and Le Page [66], the main tool is a comparison of the distri-

bution functions of 〈x,R〉 and 〈x,T1R〉 in order to make use of a Markov modulated version of

Goldie’s implicit renewal theory. This will prove that

K = lim
t→∞

tβ

eβ∗ (x)
P (〈x,R〉 > t) (22.1)

exists for all x ∈ S, which proves the main assertion of Theorem 13.2. A formula for K, which is

very similar to the one given in [47, Theorem 4.1] will be obtained as well.

Define

f(x, t) =
eβt

eβ∗ (x)
P
(
〈x,R〉 > et

)
.

The aim is to write the function f as a renewal function (potential) g ∗ Uβ
x(t) in order to apply

Theorem 19.2 to prove that limt→∞ f(x, t) = K ′. Then this obviously implies (22.1).

However the function f is not sufficiently smooth to satisfy all the hypotheses of the Markov re-

newal theorem, in particular the direct Riemann integrability. Therefore its smoothed version will

be considered: For any function g : S × R → R define its exponential smoothing as convolution

with a standard exponential distribution:

ḡ(y, t) =

∫ t

−∞
e−(t−s)g(y, s)ds.

By [47, Lemma 9.3], (or more generally, the monotone density theorem [23, Theorem 1.7.2]) if one

of the functions f(x, t) and f̄(x, t) converges for t → ∞, then both of them converge to the same

limit. So it is sufficient to consider the exponential smoothed version of f .

The better part of this section is devoted to the proof the following Proposition, from which the

desired results will be derived by an application of the MRT 19.2. Recall that Uβ
x denotes the

Markov renewal measure associated with Qβ
x(X1, V1 ∈ ·)

Proposition 22.1. The function f̄ satisfies f̄(x, t) = ḡ ∗ Uβ
x(t), where

g(x, t) =
eβt

eβ∗ (x)

[
P
(
〈x,R〉 > et

)
− P

(
〈x,TR〉 > et

) ]
, (22.2)

and the function ḡ is wdRi.

First, the wdRi of ḡ will be shown (Subsection 22.1) for it will be used in the second step, the proof

of the identity f̄ = ḡ ∗ Uβ (subsection 22.2).
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In order to show that ḡ is wdRi the following Lemma due to Goldie, stated here without proof, will

be useful:

Lemma 22.2 ([47, Lemma 9.2]). Let x ∈ S such that f(x, ·) ∈ L1(R). Then∑
l∈Z

sup
t∈[l,l+1]

∣∣f̄(x, t)∣∣ ≤ e2
∫

|f(x, t)| dt < ∞.

Lemma 22.3. Let (TlogT) and (Q-beta) hold. Then the function ḡ as defined in 22.2, is wdRi.

Proof. In view of the previous lemma, it suffices to show that
∫
|g(x, t)| dt is uniformly bounded in

x ∈ S. Referring to [47, Lemma 9.4], the integral can be rewritten as an expectation as follows (the

lemma is applied in *):∫
R
|g(x, t)| dt =

∫
R

eβt

eβ∗ (x)

∣∣P (
〈x,R〉 > et

)
− P

(
〈x,TR〉 > et

)∣∣ dt
=

∫
R

eβt

eβ∗ (x)

∣∣P (
〈x,TR+Q〉 > et

)
− P

(
〈x,TR〉 > et

)∣∣ dt
∗
=

1

βeβ∗ (x)
E
∣∣∣(〈x,TR+Q〉+)β − (〈x,TR〉+)β

∣∣∣.
Thus it suffices to show that

sup
x∈S

E
∣∣∣(〈x,TR+Q〉+)β − (〈x,TR〉+)β

∣∣∣ < ∞.

Case β ≤ 1: Finiteness results directly from the inequality |as − bs| ≤ |a− b|s, valid for all

a, b ∈ R≥, s ∈ (0, 1], since E |〈x,Q〉+|β ≤ E |Q|β and the latter is finite by assumption (Q-beta).

Case β > 1: The same a case-by-case analysis with respect to the signs of 〈x,Q〉 and 〈x,TR〉 as

in [47, Theorem 4.1] will be used. For shortness of notation, write gx(β) := (〈x,TR +Q〉+)β −
(〈x,TR〉+)β . Using the inequality |as − bs| ≤ smax{as, bs} |a− b|s−1

, valid for a, b ∈ R>,

s ≥ 1, one obtains

• E
(
|gx(β)|1{〈x,Q〉≥0, 〈x,TR〉≥0}

)
≤ E

(
βmax

{
〈x,TR+Q〉β−1, 〈x,Q〉β−1

}
〈x,Q〉1{... }

)
≤ βE‖T‖β−1E |R|β−1 E |Q|+ βE |Q|β ,

• E
(
|gx(β)|1{〈x,Q〉>0, 〈x,TR〉<0}

)
≤ E

(
〈x,Q〉β1{... }

)
≤ E

(
|Q|β

)
,

• E
(
|gx(β)|1{〈x,TR〉>−〈x,Q〉>0}

)
≤ E

(
βmax

{
〈x,TR+Q〉β−1, 〈x,Q〉β−1

}
〈x,Q〉1{... }

)
≤ βE ‖T‖β−1 E |R|β−1 E |Q|,

• E
(
|gx(β)|1{−〈x,Q〉>〈x,TR〉>0}

)
= E

(
〈x,TR〉β1{... }

)
≤ E

(
(−〈x,Q〉)β1{... }

)
≤ E |Q|β .

Recall that, by Lemma 13.1, E |R|s < ∞ for all s < β. Thus all bounds are finite and independent

of x ∈ S.
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Lemma 22.4. For all (x, t) ∈ S× R,

f̄(x, t) =
n−1∑
k=0

∫
ḡ(y, t− u)Qβ

x (Xk ∈ dy, Vk ∈ du)

+

∫ t

−∞
e−(t−s) eκs

eβ∗ (x)
P (〈Πnx,R〉 > es) ds. (22.3)

Proof. Recall the independence ofR,T, and (Πn)n≥1 underP and the definition ofQx, in particular

the identity (18.3). For arbitrary n ∈ N, x ∈ S and s ∈ R, consider the following telescoping sum

for P (〈x,R〉 > es)

n∑
k=1

[P (〈x,�k−1R〉 > es)− P (〈x,�kR〉 > es)] + P (〈x,�nR〉 > es)

=
n∑

k=1

[
P (〈Πk−1x,R〉 > es)− P

(
〈Πk−1x,M

	
k R〉 > es

)]
+ P (〈Πnx,R〉 > es)

=
n∑

k=1

[
P
(
elog|Πk−1x|〈Πk−1 · x,R〉 > es

)
− P

(
elog|Πk−1x|〈Πk−1 · x,TR〉 > es

)]
+ P (〈Πnx,R〉 > es)

=

n−1∑
k=0

∫
P
(
〈y,R〉 > es−u

)
− P

(
〈y,TR〉 > es−u

)
Qx (Xk ∈ dy, Vk ∈ du)

+ P (〈Πnx,R〉 > es)

Multiply by eβs/eβ∗ (x) > 0 and use again (18.3), this time with the transformed measure Qβ
x to

obtain

f(x, t) =
n−1∑
k=0

∫
eβ(s−u)

eβ∗ (x)

[
P
(
〈y,R〉 > es−u

)
− P

(
〈y,TR〉 > es−u

)]
× eβ∗ (y)

eβ∗ (y)
eβuQx(Xk ∈ dy, Vk ∈ du) +

eβs

eβ∗ (x)
P (〈Πnx,R〉 > es)

=

n−1∑
k=0

∫
g(y, s− u)Qβ

x (Xk ∈ dy, Vk ∈ du) +
eβs

eβ∗ (x)
P (〈Πnx,R〉 > es) .

Applying the exponential smoothing to both sides then gives the assertion.

The proof of Proposition 22.1 is now finished by the subsequent lemma.

111



B. On Fixed Points of Multivariate Random Difference Equations

Lemma 22.5. For all (x, t) ∈ S× R:

lim
n→∞

∫ t

−∞
e−(t−s) eκs

eβ∗ (x)
P (〈Πnx,R〉 > es) ds = 0, (22.4)

lim
n→∞

n−1∑
k=0

∫
ḡ(y, t− u)Qβ

x (Xk ∈ dy, Vk ∈ du) = ḡ ∗ Ux(t). (22.5)

Proof. Step 1: By the Cauchy-Schwarz inequality,

P (〈Πnx,R〉 > es) ≤ P (|Πnx| |R| > es) ≤ P
(
|R| > es−log|Πnx|

)
.

But the last term converges to 0 as n → ∞ for any s > 0, since the upper Lyapunov exponent

l(0) = lim
n→∞

1

n
log |Πnx| < 0 P-a.s.

is negative by assumption (l<0). Moreover, since t is fixed, the integrand is bounded. Thus assertion

(22.4) follows by an appeal to the bounded convergence theorem.

Step 2: In Lemma 22.3, the wdRi of ḡ was shown. By the results of Section 20 and referring to

Corollary 19.10,

|ḡ| ∗ Ux(t) =

∫ ∞∑
k=0

|ḡ(Xk, t− Vk)| dQβ
x < ∞.

Consequently, using the bounded convergence theorem,

lim
n→∞

n−1∑
k=0

∫
ḡ(y, t− u)Qβ

x (Xk ∈ dy, Vk ∈ du) =

∫
lim
n→∞

n−1∑
k=0

ḡ(Xk, t− Vk) dQ
β
x = ḡ ∗ Ux(t).

and thus again the asserted convergence results from the bounded convergence theorem.
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Summarizing what has been done so far, the main assertion can now be proved.

Theorem 22.6. For all x ∈ S,

lim
t→∞ f(x, t) =

1

l(β)β

∫
S

1

eβ∗ (y)
E
(
(〈y,R〉+)κ − (〈y,TR〉+)κ

)
πs
∗(dy) =: K < ∞.

Proof. By Proposition 22.1 and the monotone density theorem [23, Theorem 1.7.2]

lim
t→∞ f(x, t) = lim

t→∞ f̄(x, t) = lim
t→∞ ḡ ∗ Ux(t).

It was shown in Section 20 that under Qβ
x , the MRW (Xn, Vn)n∈N0 satisfies the assumptions of the

MRT 19.2 as well as the additional assumptions of Proposition 19.6. Referring again to Proposition
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22.1, ḡ is wdRi. Thus the limit limt→∞ ḡ ∗ Ux(t) exists for all x ∈ S, is finite and equals

1

l(β)

∫
S

∫
R
ḡ(y, v)dv πβ

∗ (dy) =
1

l(β)

∫
S

∫
R

∫ v

−∞
e−(v−s)ḡ(y, s)dsdv πβ

∗ (dy)

∗
=

1

l(β)

∫
S

∫
R

(∫ ∞

s
e−(v−s)dv

)
ḡ(y, s)ds πβ

∗ (dy) =
1

l(β)

∫
S

∫
R
g(y, s) ds πβ

∗ (dy)

#
=

1

l(β)

∫
S

1

eβ∗ (y)

∫
R
eβs [P (〈y,R〉 > es)− P (〈y,TR〉 > es)] ds πβ

∗ (dy)

=
1

l(β)

∫
S

1

eβ∗ (y)

∫ ∞

0
uβ−1 [P (〈y,R〉 > u)− P (〈y,TR〉 > u)] du πβ

∗ (dy)

∗∗
=

1

l(β)β

∫
S

1

eβ∗ (y)
E
(
(〈y,R〉+)β − (〈y,TR〉+)β

)
πβ
∗ (dy).

In ∗, Fubini’s theorem was used as well as the fact that the inner integral equals 1, for it is the density

of a shifted standard exponential distribution. In ∗∗, again as in the proof of Lemma 22.3 the Goldie

Lemma [47, Lemma 9.4] was used.

Corollary 22.7. For all x ∈ S,

lim
t→∞ tβP (|〈x,R〉| > t) =

1

β l(β) νβ∗ (e
β
∗ )

eβ∗ (x)
∫
S
E
(
|〈y,TR+Q〉|β − |〈y,TR〉|β

)
νβ∗ (dy).

Additionally,

eβ∗ (x)K = lim
t→∞ tβP (〈x,R〉 > t) = lim

t→∞ tβP (〈−x,R〉 > t) =
1

2
lim
t→∞ tβP (|〈x, t〉| > t) (22.6)

Proof. In line # in the proof above, P (〈y,R〉 > es) may be replaced by P (〈y,TR+Q〉 > es) in

order to derive that

lim
t→∞ tβP (〈x,R〉 > t) =

eβ∗ (x)
l(β)β

∫
S

1

eβ∗ (y)
E
(
(〈y,TR+Q〉+)β − (〈y,TR〉+)β

)
πβ
∗ (dy).

Substitute −R for R to infer

lim
t→∞ tβP (〈x,R〉 < −t) =

eβ∗ (−x)

l(β)β

∫
S

1

eβ∗ (y)
E
(
(〈y,TR+Q〉−)β − (〈y,TR〉−)β

)
πβ
∗ (dy).

Adding both, considering the symmetry of eβ∗ (Theorem 17.1, 3.) and using that

πβ
∗ (dx) = νβ∗ (e

β
∗ )

−1eβ∗ (x)ν
β
∗ (dx)

by Lemma 17.4 gives the first assertion.

For the second assertion, just note that eβ∗ and hence also f are symmetric in x.

When β is an even integer, this formula can sometimes be used to show that K > 0, e.g. if β = 2
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and Q be independent of T with EQ = 0: With C = 2βl(β)νβ∗ (e
β
∗ ) > 0,

CK =

∫
S
E(〈y,TR〉+ 〈y,Q〉)2 − 〈y,TR〉2νs∗(dy)

=

∫
S
E2〈y,TR〉〈y,Q〉+ 〈y,Q〉2νs∗(dy)

=

∫
S
2〈y,EQ〉〈y,ETR〉+ E〈y,Q〉2νs∗(dy) = E〈Y,Q〉2,

for a r.v. Y independent of Q with L (Y ) = νβ∗ . Since by Theorem 17.1, 3. the support of Y is

the whole sphere S, it follows that CK = E〈Y,Q〉2 > 0. But in most cases, this expression is not

suitable for checking whether K > 0 (and thus β is the precise tail index of R). This calls for a

different argument, which will be given in the next section.

In the one-dimensional setting and even in the multivariate case if T is restricted to the group of

similarities, a nice argument involving holomorphic extension of the expression for K (seen as a

function in β) gives the positivity of K under some additional moment assumptions on Q and M ,

see [30] for details. That method was introduced by Guivarc’h in [49] and has been applied to more

general stochastic fixed point equations as well, see [5, 31, 74].

In dimension d = 1, Enriquez et al. [43] and Collamore [34, Theorem 2.1] derived different rep-

resentations for K, which give the positivity of K more easily. Nevertheless, up to now there is no

multivariate version of this expressions though it was pointed out by Guivarc’h that these may be

are closely related to the (multivariate) approach in [52].
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To complete the proof of Theorem 13.2, it remains to show that K is positive, which is the topic of

this final section.

����� �� ��	 
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Taking Corollary 22.7 into account, it clearly suffices to show that lim inft→∞ tκP (|〈x,R〉| > t) >
0 for some x ∈ S. A necessary condition for this to hold is that supp 〈x,R〉 is unbounded. The

following lemma, originally due to Le Page [66, Lemma 3.11] proves the corresponding statement

in the main theorem. It is this result where the nondegeneracy assumption (R �= r), unused so far,

enters in a crucial way.

Lemma 23.1. Let μ satisfy (i-d). Assume that there is β > 0 such that m(β) = 1, m′(β−) > 0 and
let (TlogT), (Q-beta) hold. Then exactly one of the following assertions hold:

1. P (Tr +Q = r) = 1 for some r ∈ Rd

2. For all x ∈ S and t ∈ R,
P (〈x,R〉 ≤ t) < 1. (23.1)

If 1. holds, then this r is unique, and R ≡ r.
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Proof. In this and the following proofs, inequality (6) from the appendix will be used several times.

It states that for x ∈ S, δ < 1,
inf

z∈Bδ(x)
〈x, z〉 ≥ 1− δ.

Step 1: If 1 holds for some r ∈ Rd, then R = r is a fixed point of the RDE. But under the

assumptions stated, this fixed point is unique (as shown in the Introduction). This obviously yields

the uniqueness of r, too.

Step 2: Conversely, if (R �= r) holds then suppR is unbounded, as the following arguments show:

Use (16.1) to infer for each n ≥ 1,

�nsuppR+Qn ⊆ suppR P-a.s.

Now assume, that suppR is bounded. By (R �= r), there exist at least two distinct r1, r2 ∈ suppR.

Defining v := r1 − r2, it then follows that for all n ≥ 1 and some C ∈ (0,∞)

|�nv| ≤ |�nr1 +Qn|+ |�nr2 +Qn| ≤ C P-a.s.

and thereupon for all x ∈ S

|Πnx| |〈Πn · x, v〉| = |〈x,�nv〉| ≤ |�nv| ≤ C P-a.s.. (23.2)

Consequently, the sequence (|Πnx| |〈Πn · x, v〉|)n∈N0 is bounded by C Qβ
x-a.s. as well, for the

marginal distributions of Πn under Qβ
x are P (Πn ∈ ·)-continuous by the very definition (18.1) of

Qx. Equation (23.2) then reads

eVn |〈Xn, v〉| ≤ C Qβ
x-a.s..

Referring to Corollary 18.1, there is δ > 0 such that Bδ(v) is a regenerative set for (Xn)n∈N0 and

the latter chain is a strongly aperiodic Doeblin chain w.r.t. to this minorization (see also Lemma

21.3). In particular, the hitting times (τn)n∈N of Xn in Bδ(v) are Qβ
x-a.s. finite. By Inequality (6),

|〈Xτn , v〉| ≥ 1− δ. Together this yields

lim sup
n→∞

eVτn ≤ lim sup
n→∞

C

|〈Xτn , v〉|
≤ C

1− δ
Qβ

x-a.s.

for all x ∈ S. Consequently,

lim sup
n→∞

Vτn

τn
≤ 0 Qβ

x-a.s.

for all x ∈ S, which contradicts the fact that Vn has positive drift under Qβ
π, see (21.3).

Step 3: Having thus shown that suppR is not compact in Rd, there exist sequences (rn)n≥1 ⊂
suppR with limn→∞ |rn| = ∞whence, by compactness of S, the following set is nonempty (recall

the notation x = |x|−1 x):

D :=
{
y ∈ S : ∃ (rn)n≥1 ⊂ suppR, lim

n→∞ |rn| = ∞, lim
n→∞ rn = y

}
.
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Now suppose that P (〈x0, R〉 ≤ t0) = 1 for some (x0, t0) ∈ S × R. This implies 〈x0, r〉 ≤ t0
for all r ∈ suppR by continuity of the scalar product. Then for any y ∈ D, there is a sequence

(rn)n≥1 ⊂ suppR such that rn → y. Using that 〈x0, rn〉 ≤ t0 for all n together with |rn| → ∞
implies that 〈x0, y〉 ≤ 0 and this is true for all y ∈ D.

At the same time,

P ((T1rn +Q)n∈N ⊂ supp (R)) = 1 and P
(
lim
n→∞ |T1rn +Q| = ∞

)
= 1,

thus for any y0 ∈ D,

P
(
lim
n→∞T1rn +Q = T1 · y0 ∈ D

)
= 1.

Consequently,

P (〈x0,T1 · y0〉 ≤ 0) = P (〈M1 · x0, y0〉 ≤ 0) = 1,

in particular P(M1 · x0 �∈ Bδ(y0)) = 0 for sufficiently small δ > 0 by Inequality (6). But this is a

contradiction to (irred) (with n = 1). Thus (2) has been proved.

Replacing x by −x in (23.1) yields the additional inequality that for all (x, t) ∈ S×R,

P (〈x,R〉 ≥ t) < 1.

From the converse inequalities

P (〈x,R〉 > t) > 0 and P (〈x,R〉 < t) > 0, (23.3)

valid for all (x, t) ∈ S × R, the following Corollary can be deduced (assuming from now on, that

all assumptions of the main theorem are in force, including (R �= r)):

Corollary 23.2. For each x0 ∈ S, ξ ∈ R> and ζ ∈ (0, 1) there are η > 0 and δ ∈ (0, ζ/2) such
that Bδ(x0) is a minorizing set in the sense of Corollary 18.2 and

P (〈z,R〉 > ξ) ≥ η and P (〈z,R〉 < (1− ζ)ξ) ≥ η (23.4)

for all z ∈ Bδ(x0).

Proof. Referring to (23.3), there is η > 0 such that

P (〈x0, R〉 > ξ + 1) ≥ 2η and P (〈x0, R〉 < (1− ζ)ξ − 1) ≥ 2η. (23.5)

The mapping z �→ P (〈z,R〉 ∈ ·) is continuous w.r.t. weak convergence, thus by [22, Theorem 6.8]

it is also continuous w.r.t. the Prohorov metric. Referring to (3.5), it follows that for all ε ∈ (0, η)
there is δ > 0 such that for all z ∈ Bδ(x0)

P (〈z,R〉 > ξ) ≥ P (〈z,R〉 > ξ + 1− ε) ≥ P (〈x0, R〉 > ξ + 1)− ε ≥ η

as well as

P (〈z,R〉 < (1− ζ)ξ) ≥ P (〈z,R〉 < (1− ζ)ξ − 1 + ε) ≥ P (〈x0, R〉 < (1− ζ)ξ − 1)− ε ≥ η.
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Possibly after making δ smaller, Bδ(x0) is a minorizing set for (Xn,Tn, Qn)n∈N by Corollary

18.2.
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Recall from Subsection 16.1 the definition of Qn and Rn, the identity

R = �τR
τ +Qτ Ox-a.s

as well as Ox (R
τ ∈ ·) = P (R ∈ ·) for any a.s. finite stopping time τ with respect to (Fn)n≥0, the

natural filtration of (Xn,Tn, Qn)n≥1 and all x ∈ S. The next lemma is a generalization of Lévy’s

symmetrization inequality in the spirit of [47, Proposition 4.2]. The idea is to decompose

〈x,R〉 = 〈x,�nR
n +Qn〉 = |Πnx| 〈Πn · x,Rn〉+ 〈x,Qn〉

w.r.t. the entrances τn of Πn · x into Bδ(x0) and to replace Rn by a deterministic vector ξy in order

to compare the tail behaviour of 〈x,R〉 and |Πnx| in Proposition 23.4. In fact, instead of the hitting

times τn, a feasible (see Subsection 21.2) sequence of regeneration epochs �n is considered in the

subsequent lemma. This is due to the additional regeneration properties of (X�n)n∈N which will

be used in Propositon 23.4 and Lemma 23.5. The vector ξy should be interpreted as a generalized

median - observe that if putting η = 1/2, ζ = 0 in (23.4), then ξ is the median of 〈x0, R〉.

Lemma 23.3. Given any x0 ∈ S, ξ ∈ R>, there are δ, η > 0 and a feasible sequence of regeneration
epochs (�n)n∈N0 w.r.t. Bδ(x0), such that

P (|〈x,R〉| > t) ≥ ηOx

(
sup
n≥1

|〈x,Q�n〉+ ξ〈Π�nx, y〉| > t

)
holds true for all x ∈ S and y ∈ Bδ(x0).

Proof. Fix x0, x ∈ S and ζ ∈ (0, 1). Then by Corollary 23.2 there are δ, η >0 such that (23.4) holds

and Bδ(x0) is a minorizing set in the sense of Corollary 18.2. Hence a feasible sequence (σn)n∈N0

of regeneration epochs exists. In this proof, again the inequality (6) from the Appendix will be used,

which gives that

inf
z,y∈Bδ(x0)

〈z, y〉 > 1− 2δ. (23.6)

Note that this and (23.4) particularly hold for z=X�n . As noted above, Ox (R
�n ∈ ·) = P (R ∈ ·)

for all n ≥ 1. It follows that (23.4) holds for R�k under Ox as well.

Step 1: Show that

P (〈x,R〉 > t) ≥ ηOx

(
sup
n≥1

〈x,Q�n〉+ ξ 〈Π�nx, y〉 > t

)
.

In order to do so, define

Ck :=

{
max
1≤j<k

(
〈x,Q�j 〉+ ξ 〈x,��jy〉

)
≤ t, 〈x,Q�k〉+ ξ 〈x,��k

y〉 > t

}
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B. On Fixed Points of Multivariate Random Difference Equations

and Dk := {〈x,��k
R�k〉 > ξ〈x,��k

y〉} = {〈Π�k
x,R�k〉 > ξ〈Π�k

x, y〉} .

By (23.6), 0 < 〈Π�k
· x, y〉 ≤ 1 for all y ∈ Bδ(x0), giving

Dk = {〈Π�k
· x,R�k〉 > ξ〈Π�k

· x, y〉} ⊃ {〈X�k
, R�k〉 > ξ}

and thus O (Dk|F�k
) ≥ η Ox-a.s. In combination with

⋃n
k=1(Ck ∩ Dk) ⊂ {〈x,R〉 > t} and

Ck ∈ F�k
, this implies

P(〈x,R〉 > t) = Ox (〈x,R〉 > t) ≥
n∑

k=1

∫
Ck

O (Dk|F�k
) dOx ≥ ηOx

(
n⋃

k=1

Ck

)
,

and thus

P(〈x,R〉 > t) ≥ ηOx

(
sup
n≥1

(〈x,Q�n〉+ ξ〈Π�nx, y〉) > t

)
by letting n → ∞.

Step 2: Turning to the respective inequality for P (〈x,R〉 < −t), define

C ′
k :=

{
min
1≤j<k

(
〈x,Q�j 〉+ ξ 〈x,��jy〉

)
≥ −t, 〈x,Q�k〉+ ξ 〈x,��k

y〉 < −t

}
and D′

k := {〈X�k
, R�k〉 < ξ〈X�k

, y〉} .

Using again (23.6), 〈X�k
, y〉 ≥ 1− 2δ > 1− ζ for all y ∈ Bδ(x0), giving

D′
k ⊃ {〈X�k

, R�k〉 < (1− ζ)ξ}

and thus O (D′
k|F�k

) ≥ η Ox-a.s. Now reasoning as above,

P(〈x,R〉 < −t) ≥ η lim
n→∞ Ox

(
n⋃

k=1

C ′
k

)
= ηOx

(
inf
n≥1

(〈x,Q�n〉+ ξ〈Π�nx, y〉) < −t

)
.

The desired result hence follows by a combination of this inequality with the one obtained for

P (xR > t).

����� � �� ����	�
�

Proposition 23.4. There is x ∈ S such that lim inft→∞ tκ P(|xR| > t) is positive.

Proof. Fix any x0 ∈ S and ξ ∈ R> and apply Lemma 23.3. Recall that Corollary 18.2 gives the

existence of a probability measure Φ, supported on Bδ(x0) and a compact set C ⊂ GL(d,R) with

X�n

d
= Φ and M�n ∈ C. The additional property (18.7) will be used in the subsequent Lemma

23.5, which will finish the present proof and thereby determine the choice of y ∈ Bδ(x0) (see

Lemma 23.3) which has at the moment to be seen as a parameter of the proof (as well as ε > 0).
Recall furthermore, that by Proposition 21.4, limt→∞ tβOx

(
supn≥1 |xΠ�n−1| > t

)
is positive for
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23. The Constant K is Positive

πβ
∗ -almost all x ∈ Bδ(x0). Fix any such x hereafter .

Define �j,k := Tj · ... ·Tk, Q
j,n :=

∑n
k=j �j,k−1Qk and

Tn := 〈x,Q�n〉+ ξ 〈x,��ny〉,
Δn := Q�n−1+1,�n − ξ (I − ��n−1+1,�n) y,

Un := 〈x,��n−1Δn〉

for n ∈ N, with the convention �0 := 0. Then Tn = Tn−1 + Un and {supn≥1 |Tn| > t} ⊃
{supn≥2 |Un| > 2t}. Referring to Lemma 23.3,

P (|〈x,R〉| > t) = Ox (〈x,R〉 > t) ≥ ηOx

(
sup
n≥1

|Tn| > t

)
for some η > 0.

Since M�n ∈ C, infz∈S |M�nz| ≥ c Ox-a.s. for all n ∈ N and a suitable c > 0. Set

Ak = {|Π�k−1x| ≤ 2t/(cε)}

for k ≥ 1 and some fixed 0 < ε < 1 (to be chosen in Lemma 23.5 Hence, for all t > 0,

P (|〈x,R〉| > t) ≥ ηOx

(
sup
n≥2

|Un| ≥ 2t

)
= ηOx

(
sup
n≥1

|〈Π�nx,Δn+1〉| ≥ 2t

)
= ηOx

(
sup
n≥1

|Π�n−1x| |M�n(Π�n−1 · x)| |〈X�n ,Δn+1〉| ≥ 2t

)

≥ η
∑
n≥1

Ox

(
n−1⋂
k=1

Ak, |Π�n−1x| >
2t

cε
, |〈X�n ,Δn+1〉| > ε

)
∗
≥ η

∑
n≥1

Ox

(
n−1⋂
k=1

Ak, |Π�n−1x| >
2t

cε

)
OΦ (|〈X0,Δ1〉| > ε)

≥ ηOΦ (|X0Δ1| > ε) Ox

(
sup
n≥1

|xΠ�n−1| >
2t

cε

)
.

In ∗, the regeneration property (R3) and the fact that (Xn,Tn, Qn)n∈N can be defined as a Markov

chain under Ox via (18.6) with the transition only depending on Xn−1 have been used. The proof

is finished by the subsequent lemma where the positivity of OΦ (|〈X0,Δ1〉| > ε) will be shown.

Together with (21.4) this clearly yields the desired conclusion.

Lemma 23.5. In the situation of Proposition 23.4, there exist ε > 0 and y ∈ Bδ(x0) such that

OΦ (|〈X0,Δ1〉| > ε) = OΦ

(
|〈X0, Q

�1 − ξ (Id−Π�1) y〉| > ε

)
> 0.
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B. On Fixed Points of Multivariate Random Difference Equations

Proof. First, observe that it suffices to show the positivity of

OΦ (|〈X0,Δ1〉| > ε,�1 = 1) = OΦ

(∣∣∣〈X0, Q�1 − ξ (Id−M	
�1

) y〉
∣∣∣ > ε,�1 = 1

)
.

By Corollary 18.2 and the regeneration lemma 18.4, for all x ∈ supp Φ = Bδ(x0),

OΦ ((X�1 ,M�1 , Q�1) ∈ A×B ×D|X0 = x) = Ξ(x,A×B ×D).

Recall from (18.7), that there are L, ς > 0 such that

Ξ(x,Bδ(x0)×B × Rd) = L

∫
Bς(Id)

1Bδ(x0)×B(A · x,AAx)λ
d2(dA)

where Ax is a deterministic matrix in GL(d,R), only depending on x. In other words, for all

x ∈ Bδ(x0), the conditional distribution of M�1 given X0 = x has a nonzero component which is

absolutely continuous w.r.t. to the Lebesgue measure on GL(d,R) ⊂ Rd2 . Consequently,

OΦ

(
Id−M	

�1
∈ GL(d,R), �1 = 1

)
=: p′ > 0.

As said before, there is no information about the dependence structure between Q�1 and M�1 , but

nevertheless, the above yields that the affine mapping Q�1 − ξ(Id−M	
�1

) has full range Rd with

probability at least p′ > 0 under OΦ (·, �1 = 1).

Now suppose that

〈X0, Q�1 − ξ (I −M	
�1

) y〉 = 0

OΦ (·, �1 = 1)-a.s. for all y ∈ Bδ(x0). Then the same holds true for all y in the convex hull of

Bδ(x0) inRd. But this convex hull contains a basis ofRd and thus the range ofQ�1−ξ (Id−M�1)
and {tX0 : t ∈ R} would be orthogonal OΦ (·, �1 = 1)-a.s.. This is in contradiction with the

above.

��� �� ���	
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This section is also contained in the article [35].

As mentioned before in the proof of Proposition 5.12, Basrak et. al. [15] investigated conditions

under which (13.8) already implies that R is multivariate regularly varying with index β. For non-

integer β, this holds true, see [15, Theorem 1.1 (ii)] or [25, Corollary 2]. Writing V := Rd \ {0},
it follows that for all f ∈ Cc

(
Rd \ {0}

)
lim
t→∞ tβE

(
f(t−1R)

)
= K

∫ ∞

0

∫
S
f(sw) ν(dw)λβ(ds) (24.1)

for some ν ∈ P(S) and λβ(ds) = 1
s1+β ds.
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24. On Multivariate Regular Variation

It remains to identify ν. The next proposition characterizes ν ⊗ λβ as a stationary measure of the

Markov Chain on V , given by the action of μ on V .

Proposition 24.1. The measure ν ⊗ λβ satisfies for all f ∈ Cc(V ),∫
V
f(x)ν ⊗ λβ(dx) =

∫
V
E (f(Tx)) ν ⊗ λβ(dx). (24.2)

Proof. Step 1: Proceed as in the proof of Lemma 2.19 in [30], to show that if 0 < ε < min{1, β},
then for all f ∈ Hε ∩ Cc (V ), the space of ε-Hölder functions,

lim
t→∞ tβE

(
f(t−1R)− f(t−1TR)

)
= 0.

Since limt→∞ tβE
(
f(t−1R)

)
exists, this yields the existence of limt→∞ tβE

(
f(t−1TR)

)
and both

are equal to
∫
V f(x)ν ⊗ λβ(dx).

The assertion (24.2) follows if limt→∞ tβE
(
f(t−1TR)

)
is also equal to

∫
V E (f(Tx)) ν⊗λβ(dx).

Observe that x �→ E (f(Tx)) in general has unbounded support, i.e. it is not an element of Hε ∩
Cc (V ), thus some more calculations are needed.

Step 2: Let f ∈ Hε ∩ Cc (V ). Hence there is η > 0 such that supp f ⊂ Bη(0)
c
for some η > 0.

Then for any t ∈ R> and A ∈ GL(d,R),

tβE
(
f(t−1AR)

)
≤ tβ |f |∞ E

(
1{|t−1AR|>η}

)
≤ ‖A‖β |f |∞

(
tβ ‖A‖β P

(
t−1 ‖A‖ |R| > η

))
≤ ‖A‖β |f |∞ sup

s>0
sβP (|R| > sη) .

It is a consequence of (13.8) that C := sups>0 s
−βP (s |R| > η) < ∞. It follows that∫ (

‖A‖β |f |∞ sup
s>0

sβP (|R| > sη)
)
P (T ∈ dA) = C |f |∞ E‖T‖β < ∞.

Using the bounded convergence theorem and that for fixedA ∈ GL(d,R), x �→ f(Ax) is in Cc (V ),
it follows that

lim
t→∞ tβE

(
f(t−1TR)

)
=

∫
lim
t→∞ tβE

(
f(t−1AR)

)
P (T ∈ dA)

=

∫ ∫
V
f(Ax)ν ⊗ λβ(dx)P (T ∈ dA) =

∫
V
E (f(Tx)) ν ⊗ λβ(dx).

Finally observe thatHε is dense in Cc (V ) due to the Stone-Weierstrass theorem, hence the assertion

holds for all f ∈ Cc (V ).

Remark 24.2. It is obvious from the definition of λβ , that for all ε > 0 there exists C > 0 such that

ν ⊗ λβ(S × [C,∞)) < ε.
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B. On Fixed Points of Multivariate Random Difference Equations

This is the main ingredient for showing that (24.2) holds for the more general class of test functions

f ∈ Cc
(
Rd \ {0}

)
,

i.e. bounded continuous functions with limit at infinity, and supported away from 0. The proof goes

along the same lines as the proof of Theorem 2.8 in [30] and is therefore omitted.

Lemma 24.3. The measure ν satisfies P βν = ν.

Proof. Due to Remark 24.2, the identity (24.2) also holds for bounded continuous functions f on V
such that supp f ∩Bη(0) = ∅ for some η > 0, in particular for functions gu(sv) = f(v)1(u,∞)(s)
where f is any continuous function on S and u > 0. Then∫ ∞

u

∫
S
f(v)ν(dv)λβ(ds) =

∫ ∞

0

∫
S
E
(
f(T · v)1(u,∞)(s |Tv|)

)
ν(dv)

1

sβ+1
ds

= E

(∫
S

∫ ∞

0
f(Tv)1(u,∞)(t)

|Tv|β
tβ+1

dt ν(dv)

)

=

∫ ∞

u

∫
S
E
(
f(T · v) |Tv|β

)
ν(dv)

1

tβ+1
dt =

∫ ∞

u

∫
S
(P βf)(v)ν(dv)

1

tβ+1
dt.

Since u is arbitrary, it follows that
∫
S f(v)ν(dv) =

∫
S(P

βf)(v)ν(dv) for all f ∈ C (S). Thus

P βν = ν.

Remark 24.4. Assuming additionally that

∀x∈S ∀open U⊂S max
n∈N

P (�n · x ∈ U) > 0, (irred*)

it can be shown by the methods of Section 17 that ν is (up to scalar multiplication) the unique

eigenmeasure of P β with eigenvalue m(β) = 1.
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This is a technical subsection, where a bunch of inequalities related to multivariate LTs is collected.

If φ is the Laplace transform of a r.v. Z on R≥, then integration by parts yields

1− φ(t)

t
=

∫ ∞

0
exp(−tx)P (Z > x) dx

(see [45, XIII.2 (2.7)]), thus t−1(1 − φ(t)) is again a LT of a measure on R≥. Consequently, it is

decreasing and this yields the inequality, valid for all u ∈ S≥, t ∈ R≥, 0 < a < 1:

1− φ(at)

at
≥ 1− φ(t)

t
⇒ 1− φ(at) ≥ a(1− φ(t)), (25.3)

as well as, for b ≥ 1,
1− φ(bt) ≤ b(1− φ(t)). (25.4)

For convenience, note this also in the multivariate setting:

Lemma 25.5. For φ a Laplace transform of a distribution on Rd
≥, the following inequalities for

u ∈ S≥, s ∈ R> hold:

1− φ(asu) ≤ 1− φ(su) for a < 1, (25.5)

1− φ(asu) ≥ a(1− φ(su) for a < 1, (25.6)

1− φ(bsu) ≥ 1− φ(su) for b > 1, (25.7)

1− φ(bsu) ≤ b(1− φ(su)) for b > 1. (25.8)

Lemma 25.6. Let φ be the Laplace transform of a distribution on Rd
≥, u ∈ S≥, t ∈ R≥ and

A ∈ M(d× d,R≥). Then

1− φ(tu) ≤ 1− φ(tϑd) (25.9)

1− φ(tAu) ≤ 1− φ(t |Au|ϑd) ≤ 1− φ(t ‖A‖ϑd) (25.10)

1− φ(tAu) ≤ (‖A‖ ∨ 1) (1− φ(tϑd)) (25.11)

1− φ(tu) ≥ 1− φ(t(min
i

ui)ϑd) ≥ (min
i

ui)(1− φ(tϑd)) (25.12)
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Proof. Let Z be a r.v. with LT φ. For all u ∈ S≥, 〈u, Z〉 ≤ 〈ϑd, Z〉. Thus

1− φ(tu) = E
(
1− e−t〈u,Z〉

)
=

∫ ∞

0
te−trP (〈u, Z〉 > t) dt

≤
∫ ∞

0
te−trP (〈ϑd, Z〉 > t) dt = 1− φ(tϑd).

From (25.9) and (25.5) now (25.10) follows:

1− φ(tAu) = 1− φ(t |Au|A · u)
(25.9)

≤ 1− φ(t |Au|ϑd)

= 1− φ(t
|Au|
‖A‖ ‖A‖ϑd)

(25.5)

≤ 1− φ(t ‖A‖ϑd).

Then (25.11) follows by applying (25.5) resp. (25.8) in (25.10).

In order to prove (25.12), observe that

〈u, Z〉 =
d∑

i=1

uiZi ≥ min
i

ui

d∑
i=1

Zi = min
i

ui〈ϑd, Z〉.

Then the argument is the same as given for (25.9), with an additional use of (25.6).

����� ���� �	
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Here several inequalities for vector and matrix norms, taken from [72] are listed.

(1) For x, y ∈ Rd \ {0} it holds that |x− y| ≤ 2
|x| |x− y|:

|x− y| =
∣∣∣∣ x|x| − y

|y|

∣∣∣∣
=

1

|x| · |y|
∥∥∥x |y| − y |x|

∥∥∥
=

1

|x| · |y|
∥∥∥x |y| − y |y|+ y |y| − y |x|

∥∥∥
≤ 1

|x| · |y|
(
|y| · |x− y|+ |y| ·

∣∣|y| − |x|
∣∣)

≤ 2

|x| |x− y| .

(2) For x ∈ S≥ it holds that
∑d

i=1 xi ≥ |x| :
Since all xi ≥ 0, (

∑d
i=1 xi)

2 ≥ ∑d
i=1 x

2
i . Now take the power 1

2 .

(3) Let A ∈ M(d× d,R). Then ‖A‖ ≤
√∑d

i,j=1(A(i, j))2:
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Inequalities

Let x ∈ S. By Cauchy-Schwartz,

d∑
i=1

xiM(i, j))2 = 〈x,A(·, j)	〉2 ≤ ‖x‖2 (
d∑

i=1

A(i, j)2

for all 1 ≤ j ≤ d. This implies

‖A‖ = sup
x∈S

√√√√√ d∑
j=1

(
d∑

i=1

xiA(i, j)

)2

≤

√√√√ d∑
i,j=1

(A(i, j))2.

(4) For A ∈ M+, combining the above with (2) implies ‖A‖ ≤ ∑d
i,j=1M(i, j).

(5) For all x ∈ Rd, |x| ≥ d−
1
2
∑d

i=1 xi:

Use the inequality of arithmetic and geometric means to obtain√∑d
i=1 x

2
i

d
≥

∑d
i=1 xi
d

,

and multiply by d
1
2 .

(6) Let x ∈ S,δ < 1. Then infz∈Bδ(x)〈x, z〉 ≥ 1 − δ: For all z ∈ Bδ, |z − x| < δ and by an

application of the Cauchy-Schwartz inequality

0 ≤ 1− 〈x, z〉 = 〈x, x− z〉 ≤ |x| |x− z| ≤ δ

����� ���� 	
����

Lemma 25.7. Considering the function f : R → R,

f(s) = e−s + s− 1, (25.13)

it holds that

1. f(s) ≥ 0 for all s ∈ R.

2. lims→0 s
−1f(s) = 0.

3. lims→0 s
−2f(s) = 1

2 .

4.
∫∞
0

f(s)
s2

ds < ∞.

Moreover, the following inequalities hold:

1− e−r ≤ r ≤ e−(1−r) ∀r ∈ R, (25.14)
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and
1− e−r ≥ r − 1

2
r2 ∀r ∈ R≥. (25.15)

Proof. First, note

f ′(s) = −e−s + 1, f ′′(s) = e−s.

Thus f has a global minimum at s = 0 with f(0) = 0, thus (1) follows. This also gives the first

inequality directly resp. by replacing s = 1 − r. The second inequality follows from considering

F (r) = 1 +
∫ r
0 f(s)ds. (2) and (3) follow from L’Hôpital’s rule. By (3), the function g(s) :=

s−2f(s) can be extended continuously in 0, and lims→∞ g(s) = 0. I.e. g ∈ C0 (R>), thus the

integral in (4) converges.

���������� 	
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Lemma (Lemma 6.2). Let x ∈ S, t ∈ R, a ∈ R>, k ∈ N. Then the family

(Nt)t∈R := (N(Ck × [t, t+ a]))t∈R (25.16)

is uniformly integrable w.r.t. to Px, and

Ux(Ck × [t, t+ a]) = ExN(C1 × [t, t+ a]) ≤ 2(k + 1 + ka). (25.17)

Proof. This is the same proof as in [72]. A sufficient condition for the uniform integrability is to

show that there is a r.v. N ≥ 0 with EN < ∞, such that

sup
t∈R

Px (Nt ≥ r) ≤ Px (N ≥ r) ∀r > 0

(stochastic domination).

Introduce the stopping times

τ0 := inf{n ≥ 0 : Xn ∈ Ck, Vn ∈ [t, t+ a]},
τi+1 := inf{τi +m : m > k,Xτi+m ∈ Ck, Vτi+m ∈ [t, t+ a], Vτi+m − Vτi < mk−1}.

As soon as m > ka, the last condition is redundant, since Vτi+m, Vτi ∈ [t, t+ a] imply that

Vτi+m − Vτi ≤ a < mk−1.

Thus, taking also the first condition into account, it follows that

N(Ck × [t, t+ a]) =
∞∑
n=0

1Ck×[t,t+a](Xn, Vn)

=

∞∑
i=0

1{τi<∞}
τi+1−1∑
n=τi

1Ck×[t,t+a](Xn, Vn)
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≤
∞∑
i=0

1{τi<∞}(k + 1 + ka) (25.18)

Let Fn be the canonical filtration of (Xn, Vn)n≥0. Then for all i ≥ 0

Px (τi+1 < ∞|Fτi) = Px (τi+1 < ∞, τi < ∞, . . . , τ0 < ∞|Fτi)

= Px (τi+1 < ∞|Fτi)1{τi<∞,...,τ0<∞}
≤ Px

(
∃m > k : Vτi+m − Vτi < mk−1|Fτi

)
1{τi<∞,...,τ0<∞}

≤
(
1− PXτi

(
∀m > k : Vm ≥ mk−1

))
1{τi<∞,...,τ0<∞}

≤ 1

2
1{τi<∞,...,τ0<∞},

where in the last line it was used that Xτi ∈ Ck on τi < ∞. Thus by induction

sup
t∈R

Px

( ∞∑
i=0

1{τi<∞} ≥ m

)
= sup

t∈R
Px (τm−1 < ∞) ≤

(
1

2

)m

for all m ∈ N.

Thus, if N has a geometric distribution on the positive integers with parameter 1
2 , then for all r > 0

sup
t∈R

Px (N(Ck × [t, t+ a]) > r) ≤ P ((k + 1 + ka)N > r) .

This is the first assertion, the second follows directly:

Ex (N(Ck × [t, t+ a])) =

∫ ∞

0
Px (N(Ck × [t, t+ a]) > r) dr

≤
∫ ∞

0
P ((k + 1 + ka)N > r) dr = E(k + 1 + ka)N = 2(k + 1 + ka),

since EN = 2.

Lemma (Lemma 12.3). Let α ∈ Ĭμ ∩ (0, 1) and m′(α) < 0. If φ, ϕ ∈ L(P(Rd
≥)) and there is

t0 ∈ R> such that for all (y, s) ∈ S≥ × [0, t0],

φ(sy) ≤ ϕ(sy),

then for all (u, t) ∈ S≥ × R≥

lim inf
n→∞ Sn

Qφ(tu) ≤ lim inf
n→∞ Sn

Qϕ(tu) and lim sup
n→∞

Sn
Qφ(tu) ≤ lim sup

n→∞
Sn
Qϕ(tu).

The strategy of the proof is due to [69, Lemma 7.3] and adapted here to the inhomogeneous smooth-

ing transform and the multivariate case which calls for some stronger assumptions. Beforehand,
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another Lemma is needed: Define

Rn := max
|v|=n

‖L(v)‖ .

Lemma 25.8. Let α ∈ Ĭμ ∩ (0, 1) and m′(α) < 0. Then limn→∞Rn = 0 P-a.s..

In dimension d = 1, this is a classical result (see e.g. [62]) which can be understood as a statement

about the maximal position in a branching random walk: The logarithmic weights along the paths

are additive,

logL(vi) = logL(v) + log Ti(v)

and can be interpreted as displacements of particles which are generated by a Galton-Watson pro-

cess. Then logRn gives the maximal position of particles in the n-th generation which. With

this interpretation it shows that the maximal position tends to −∞ when n → ∞. In the one-

dimensional case, the condition m′(α−) < 0 is a sufficient assumption, for it holds as well that

NETα
1 = m(α) = 1. But in the present multidimensional case NETα

1 ≥ m(α) = 1. This is why

a slightly different proof under the assumption that m(s) < 1 for some s ∈ (α, 1) is given here.

Note that the existence of such s is guaranteed by the assumption α ∈ Ĭμ.

Proof. Step 1, reductions: Rn ≥ 0 for all n ∈ N, thus it suffices to show that lim supn→∞Rn =
0. Writing Rm,l = max|w|=ml ‖L(w)‖, it follows that

lim sup
n→∞

Rn ≤
l−1∑
k=0

∑
|v|=k

‖L(v)‖ lim sup
m→∞

[Rm,l]v .

This is why it is enough to consider the maximum at each l-th generation for some l ∈ N. By

assumption, there is s ∈ Iμ, such that m(s) < 1. Referring to the definition of m(s), there is l ∈ N
such that

�(s) := E
∑
|v|=l

‖L(v)‖s = N lE ‖Πl‖s < 1.

Fix this l. Define Z0 = 1 and

Zm =
∑
|v|=l

‖L(v)‖s [Zm−1]v =
∑

|v|=ml

m∏
k=1

∥∥∥[L(v|kl)]v|(k−1)l

∥∥∥s
as the sum over the norms of the weights, taken in blocks of l generations. Hence EZ1 = �(s) and

([Rm,l]v)
s ≤ [Zm]v for all m ∈ N, v ∈ T.

Step 2: Considering the filtration Fm = Tml = σ((T (v))|v|≤ml), it can be shown that Um :=
�(s)−mZm is a Fm martingale:

E [Um+1| Fm] = E
[
�(s)−(m+1)Zm+1

∣∣∣Fm

]
= E

⎡⎣�(s)−(m+1)
∑

|v|=ml

m∏
k=1

∥∥∥[L(v|kl)]v|(k−1)l

∥∥∥s ∑
|w|=l

‖[L(w)]v‖s
∣∣∣∣∣∣Fm

⎤⎦
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= �(s)−(m+1)
∑

|v|=ml

m∏
k=1

∥∥∥[L(v|kl)]v|(k−1)l

∥∥∥s E ∑
|w|=l

‖[L(w)]v‖s

= �(s)−(m+1)
∑

|v|=ml

m∏
k=1

∥∥∥[L(v|kl)]v|(k−1)l

∥∥∥s E ∑
|w|=l

‖L(w)‖s

= �(s)−mZm = Um P-a.s.

Moreover, Um is a nonnegative martingale, thus it converges to a random variable U and by Fatou’s

lemma, E U ≤ E �(s)Z1 = 1. In particular, U is almost sure finite, and this gives the final estimate

lim sup
m→∞

(Rm,l)
s ≤ lim sup

m→∞
�(s)mUm = 0 P-a.s..

Proof of Lemma 12.3. Fix (u, t) ∈ S≥ × R≥. Let ε > 0. By Lemma 25.8, there is n0 ∈ N
such that P (tRn > t0) < ε for all n ≥ n0. On the set tRn ≤ t0, by assumption φ(tL(v)	u) ≤
ϕ(tL(v)	u) for all v with |v| = n and the same holds true when multiplying both sides with

exp(−t〈u,∑|w|<n L(w)Q(w)〉). Therefore, for all n ≥ n0

Sn
Qφ(tu) = E exp(−t〈u,

∑
|w|<n

L(w)Q(w)〉)
∏
|v|=n

φ(tL(v)	u)

= E1{tRn≤t0} exp(−t〈u,
∑
|w|<n

L(w)Q(w)〉)
∏
|v|=n

φ(tL(v)	u)

+ E1{tRn>t0} exp(−t〈u,
∑
|w|<n

L(w)Q(w)〉)
∏
|v|=n

φ(tL(v)	u)

≤ E1{tRn≤t0} exp(−t〈u,
∑
|w|<n

L(w)Q(w)〉)
∏
|v|=n

ϕ(tL(v)	u) + P (tRn > t0)

≤ E exp(−t〈u,
∑
|w|<n

L(w)Q(w)〉)
∏
|v|=n

ϕ(tL(v)	u) + ε = Sn
Qϕ(tu) + ε.

Now take first the lim infn→∞ resp. lim supn→∞, and then let ε → 0 to infer the assertion.
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����� irreducibility and density assumption.

���� almost surely.

�	� directly Riemann integrable.


� fixed point.


� Fourier transform.

������ independent identically distributed.

�� left-hand side.

� Laplace transform.

�� Markov chain.

�	� Markov renewal theorem.

�	� Markov random walk.

���� random variable.

	�� Random difference equation.

	�� right-hand side.

	� random walk.

��	� strongly directly Riemann integrable.

�
�� stochastic fixed point equation.

�������� without loss of generality.

������ with respect to.

��� weighted branching process.

��	� weakly directly Riemann integrable.
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The page numbers indicate where further information can be found. In Chapter A, S = S≥ and in

Chapter B, S = S as well as M = M(d× d,R≥) resp. M = GL(d,R).

(∃β) ∃s0>0 E infu∈S
∣∣T	x

∣∣s0 ≥ 1 81

(density) ∃Γ0∈GL(d,R) ∃c,p>0 ∃n0∈N P (Πn0 ∈ ·) ≥ p1Bc(Γ0)λ
d2 80

(eigenvalue) w = NET1w + EQ 13

(irred) ∀x∈S ∀open U⊂S maxn∈N P (Πn · x ∈ U) > 0 80

(l<0) l = P-a.s. − limn→∞ 1
n log ‖�n‖ < 0 78

(log-moments) E |log ‖M1‖|+ |log ι(M1)|+ |log ι(T1)| < ∞ 64

(logmom) E log+ ‖T‖+ log+ |Q| < ∞ 78

(M logM) E(1 + ‖M1‖) (1 + |log ‖M1‖|+ |log ι(M1)|) < ∞ 36

(s-moments) E (‖T1‖s + |Q|s) < ∞ 13

(MC1) P ((Π1 · y,Π1) ∈ ·) ≥ ξΨ(y, ·) 90

(MC2) P (Π1 · y ∈ ·,Π1 ∈ C) ≥ ξΦ 90

(Q-beta) 0 < E |Q|β < ∞ 80

(R. . . ) properties of the regenerative structure, see Lemma 18.4 97

(R �= r) ∀ r ∈ Rd P (Tr +Q = r) < 1 80

(StA) If (irred),(density),(MC1’) and (MC2’) hold, they hold with n0 = n =
1

89

(TlogT) E ‖T‖β
(
|log ‖T‖|+

∣∣log ∥∥T−1
∥∥∣∣) < ∞ 80

(variance) Σ = NE
(
T1ΣT

	
1

)
13

⊥ For W ⊂ Rd, W⊥ = {x ∈ Rd : 〈x, y〉 = 0 ∀y ∈ W} 30

· action of matrices on the sphere, A · x = Ax 3

∨ (a ∨ b)i = max{ai, bi}, i = 1, . . . , d for a, b ∈ Rd 24

∧ (a ∧ b)i = min{ai, bi}, i = 1, . . . , d for a, b ∈ Rd 24

ḡ ḡ(y, t) =
∫ t
−∞ e−(t−s)g(y, s)ds 109

x x = |x|−1 x for x ∈ Rd 3

|·|∞ |f |∞ = supx∈E |f(x)| for f ∈ C (E). 3

˘ topological interior of the specified set 4

‖·‖ operator norm: ‖A‖ := sup|x|=1 |Ax| 3

〈·, ·〉 euclidean scalar product on Rd 3

[·]v tree shift operator 7
v→ vague convergence 9
d→ convergence in distribution, weak convergence 9

Ac For A ⊂ E: Ac = E \A
α α := inf{s ∈ Iμ : m(s) ≤ 1}. α ∈ Ĭμ ⇒ m(α) = 1, m′(α) ≤ 0 4
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Bε(x) Bε(x) := {y : |x− y| < ε} 3

B1 (E) bounded Borel-measurable functions E → R with |f |∞ ≤ 1. 8

β β := sup{s ∈ Iμ : m(s) ≤ 1}. β ∈ Ĭμ ⇒ m(β) = 1, m′(β) ≥ 0 4

C (E) set of continuous mappings f : E → R 3

Cm (E) set of m-times continuously differentiable mappings f : E → R 3

C0 (E) set of continuous mappings f : E → R, that vanish at infinity 3

Cb (E) set of bounded continuous mappings f : E → R 3

Cc (E) set of compactly supported continuous mappings f : E → R 3

Cc
(
Rd
≥ \ {0}

)
functions f ∈ Cb

(
Rd
≥
)

which are supported away from the origin 22

C (E)′ conjugate space of (C (E) , |·|∞): regular bounded signed measures on

E, equipped with the total variation norm

31, 91

Ck Ck =
{
x ∈ S : Px

(
Vm
m ≥ 1

k ∀m ≥ k
)
≥ 1

2

}
27

cs cs =
∣∣∫ 〈·, y〉sνs(dy)∣∣∞ 32

∂B topological boundary of the set B 9

d−lim weak limit, limit in distribution 9

Dα,n Dα,n = Dα,Snφ0
43

δ Dirac measure in the specified point 1

Dk Dkf : k-th Fréchet derivative of f 11

Dχ,φ Dχ,φ(u, t) =
eχt

es∗(u)
(1− φ(e−tu)) 41

Ds

{
f ∈ Ck

(
Rd

)
: ∀x,y∈Rd

∥∥Dkf(x)−Dkf(y)
∥∥ ≤ |x− y|s−k

}
11

Eig(A, λ) eigenspace of A for eigenvalue λ 14

Eig0(A, λ) Eig(A, λ) ∪ {0} 14

Eig+(Pα∗ , λ) positive eigenfunctions of Pα for eigenvalue λ 73

es P ses = κ(s)es, |es|∞ = 1 32, 90

es∗ P s∗ es∗ = κ(s)es∗, |es∗|∞ = 1 32, 90

Ex expectation symbol of Qx 34

Es
x expectation symbol of Qs

x, satisfying

Es
x (f((Xi, Vi)

n
i=1)) =

1
es∗(x)κn(s)Ex

(
esVnes∗(Xn)((Xi, Vi)

n
i=1)

)
for all bounded measurable functions f and all n ∈ N.

35, 95

F set of fixed points of S 1

Fℵ set of ℵ-elementary fixed points of S 53

Fα
0 set of α-elementary fixed points of S0 69

Fα
Q set of α-elementary fixed points of SQ 69

Fs F ∩ Ps(R
d) 14

ĝ For g : S≥ × R → R, ĝ(t) = supu∈S |g(u, t)| 36

Γ0 invertible matrix, appearing in (density) 80

Gα,n Gα,n = Gα,Snφ0
43
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Gχ,φ(u, t) = eχt

es∗(u)
E
(∏N

i=1 φ(e
−tT	

i u) +
∑N

i=1

(
1− φ(e−tT	

i u)
)
− 1

)
41

Eχ,c extremal points of Hχ,c,

Eχ,c =
{
(u, t) �→ c e

γ
∗(u)

eχ∗ (u)
e(χ−γ)t : γ ∈ (0, 1],m(γ) = 1

}
.

65

Hχ,c compact subset of Jχ, see Def. 11.9 59

Hγ(E) set of γ-Hölder functions on E:

Hγ = {f ∈ C (E) : supx,y∈E
|f(x)−f(y)|

|x−y|γ < ∞}
24

hs hs(u, t) =
Dχ,φ (u,s+t)

eχs(1−φ(e−sϑd))
= eχt

eχ∗ (u)
1−φ(e−(s+t)u)
1−φ(e−sϑd)

57

Id identity matrix 7

Iμ Iμ = {s ≥ 0 : E ‖T1‖s < ∞} 4

ι(A) ι(A) = infx∈S≥ |Ax| 3

Jχ compact subset of C (S≥ × R), see Def. 11.4 55

(Jn)n∈N0 iid B(1,ξ) r.v.s, determining whether regeneration occurs, see Lemma

18.4

98

K covariance matrix 12

κ(s) κ(s) = limn→∞ (E ‖�n‖s)
1
n = limn→∞ (E ‖Πn‖s)

1
n 4

L Laplace transform mapping η �→ φη 2

L(v) matricial path weights in the weighted branching tree, recursively de-

fined by L(∅) = Id, L(vi) = L(v)Ti(v)
7

l(s) l(s) = Es
πs∗V1 =

κ′(s−)
κ(s) 35

l(0) l(0) = limn→∞ 1
n log |Πnx| < 0 P-a.s.,

upper Lyapunov exponent

35

Λ(Γ) Λ(Γ) = {uA : A ∈ Γ ∩ M̆+} 32

λA Perron-Frobenius eigenvalue of A 31

L law (distribution) of the specified random variable 1

λd2 Lebesgue measure on M(d× d,R) ⊂ Rd2 30

λα λα(ds) = 1
s1+αds 22

limt↓0 right sided limit in zero, limt↓0 = limt→0,t>0 21

ls ls(ν, η) := inf{E |Y − Z|s : L (Y ) = ν,L (Z) = η.} 11

Lt Lt(u, r) =
g(u,t+r)
g(u,r) for g ∈ Hχ,c 59

(Mn)n∈N sequence of i.i.d. random matrices with distribution μ∗ 4

m′(s−) left derivative of m in s 16

m(s) spectral function, Chapter A: m(s) = Nκ(s), Chapter B: m(s) =
κ(s)

4

mχ spectral function of Tχ 50

M(d× d,E) set of d× d matrices with entries in E 3

M± (E) (vector space) of regular bounded signed measures on E 10
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M+ M+ = M(d× d,Rd
≥) 3

[suppμ] smallest closed subsemigroup containing suppμ 4

supp support of a measure μ: {x : ∀ open O with x ∈ O,μ(O) > 0} 4

μ μ = L (T1) = · · · = L (TN ) 3

μχ μχ = L
(
m(χ)

− 1
χT1

)
50

μ∗ μ∗ = L
(
T	

1

)
4

N positive integers {1, 2, . . . } 3

N(t) first exit time N(t) = inf{n ≥ 0 : Vn > t} 100

N0 natural numbers {0, 1, 2, . . . } 3

N(0,Σ) multivariate Normal distribution with expectation 0 and covariance

matrix Σ
14

N(A) number of renewals (visits of the random walk) in the set A 27

νs probability measure, P sνs = κ(s)νs 32, 90

νs∗ probability measure, P s∗ νs∗ = κ(s)νs∗ 32, 90

Ô Ô((x,A, q), A × B × C) = P ((Π1 · x,Π1, Q1) ∈ A×B × C),
Markov transition operator of (Xn,Mn, Qn)n∈N0 under Ox

96

Ω Ω = S ×MN 34

Ox Ox = δ(x)⊗ δ(Id)⊗ δ(0)⊗⊗∞
n=1 � 96

Φ minorizing measure: P (Π1 · y ∈ ·,Π1 ∈ C) ≥ ξΦ (under (StA)),

Ψ(y, · × C) = Φ for all y ∈ S
84

φZ Laplace transform of Z, φZ(x) = E exp (−〈x, Z〉) 2

φ0 (In Section 9:) φ0(tu) = exp (−Ktαeα∗ (u)) 38

Πn Πn = Mn . . .M1 34

�n �n = T(1) · . . . ·T(n) 78

πs∗ stationary distribution for Qs∗, πs∗(dx) = es∗(x)νs∗(dx) 35
αP sPf(u, t) = Es

uf(X1, t− V1) 43

P s P sf(x) = E (|T1x|s f(T1 · x)) 29, 90

P set of probability measures (on the specified measurable space) 1

Ps(E) set of probability measures on E with finite s-th moment 10

Pwd
(η) Ps(η) = {ν ∈ P(Rd) : ls(ν, η) < ∞} 11

Ps,w(E) set of probability measures on E with finite s-th moment and expecta-

tion w
12

Ps,w,Σ(E) set of probability measures on E with finite s-th moment, expectation

w and covariance matrix Σ
12

Ψ minorizing kernel: P ((Π1 · y,Π1) ∈ ·) ≥ ξΨ(y, ·) (under (StA)),

there is compact C with suppΨ(y, ·) ⊂ Bδ(x)× C for all y ∈ S
84

ψ (In Section 9:) ψ = limn→∞ Snφ0 40

P s∗ P s∗ f(x) = E
(∣∣T	

1 x
∣∣s f(T	

1 · x)
)
= E (|M1x|s f(M1 · x)) 29, 90

Qs Qs =
∫
Qs

xπ
s∗(dx), (Xn)n∈N0 is stationary under Qs 35
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Q̂s Q̂s((x, u), A×B)
= 1

es∗(x)κ(s)
E (es∗(M1 · x) |M1x|s 1A(M1 · x)1B(log |M1x|)).

Markov transition operator of (Xn, Un)n∈N0 under Qs
x

96

Qs∗ Markov transition kernel on C (S), Qs∗f(x) =
1

es∗(x)κ(s)
P s∗ (es∗f)(x) 35

Qn Qn =
∑n

k=1 �k−1Qk 87

nQ
s
x nQ

s
x((X0, (Mi)

n
i=1) ∈ A) :=

1
es∗(x)κn(s)Ex

(
esVnes∗(Xn)1A(X0, (Mi)

n
i=1)

) 34

Qs
x probability measure on (Ω,A), projective limit of nQ

s
x 95

Qx Qx = δx ⊗
⊗∞

n=1 μ
∗ 34

R≥ nonnegative real numbers [0,∞) 1, 3

R R =
∑∞

n=1 �n−1Qn, R
d
= TR+Q 78

r(Q) spectral radius of the operator Q 91

R(t) residual lifetime process R(t) = (VN(t) − t)1{N(t)<∞} 100

� � = L (T, Q) 80

Rn Rn =
∑

k>n

(∏k−1
j=n+1T(j)

)
Qk 87

Rn Rn = max|v|=n ‖L(v)‖ 128

R> positive half-line (0,∞) 3, 18

Sα(σ, λ, b) one-dimensional stable distribution with scale parameter σ, skewness

parameter λ and shift parameter b
19

S̃α(Keα∗ , 0) multivariate stable distribution with LT φ(tu) = exp (−Ktαeα∗ (u)) 38

Sα(Kν, b) multivariate stable distribution with scale parameter K, spectral mea-

sure ν and shift parameter b
20

S̃α(Kν, 0) multivariate stable distribution with LT exp
(
−K

∫
S≥

〈x, y〉αν(dy)
)
,

x ∈ Rd
≥

21

S unit sphere in Rd 3

(σn)n∈N0 regeneration epochs for (Xn, Un)n∈N0 under Qβ
x w.r.t. Υ. 99

s∞ s∞ = sup Iμ 4

S≥ S ∩ Rd
≥ 3

S smoothing transform 1

S0 homogeneous smoothing transform S0 : ν �→ L
(∑N

i=1TiYi

)
2

Sχ Sχ : ν �→ L
(∑N

i=1
1

m(χ)
1
χ
TiXi

)
50

Sf(x) Sf(x) = E
(∏N

i=1 f(T
	
i x)

)
8

SQ inhomogeneous smoothing transform

SQ : ν �→ L
(∑N

i=1TiYi +Q
) 2

T T = (Ti)
N
i=1 1

T N -ary Ulam-Harris tree, T :=
⋃∞

n=0{1, . . . , N}n 6

(τn)n∈N hitting times of (Xn)n≥0 in Bδ(x0) 107
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Tχ Tχ = (Tχ,1, . . . ,Tχ,N ) = m(χ)
− 1

χ (T1, . . . ,TN ) 50

ϑ1 ϑ1 :=
√
d
−1

(1, . . . , 1)	 ∈ Rd 24

ϑd ϑd := (1, . . . , 1)	 ∈ Rd 24

(Ti)
N
i=1 random matrices in M(d× d,R≥), w.l.o.g. identically distributed 3

(T(n))n∈N sequence of i.i.d. random matrices with distribution μ 4

T T := (T (v))v∈T, sequence of i.i.d. copies of T 6

Tn filtration of T , Tn = σ
(
(T (v))|v|≤n

)
7

U renewal measure 26

uA normalized Perron-Frobenius eigenvector of A 31

Υ minorizing kernel: Q̂s((x, u), ·) ≥ ξsΥ(x, ·) There is compact I ⊂ R
with suppΥ(x, ·) ⊂ Bδ(x0)× I for all x ∈ S

96

Ux Markov renewal measure, Ux =
∑∞

n=0 Px ((Xn, Vn) ∈ ·),
g ∗ Ux(t) = Ex (

∑∞
n=0 g(Xn, t− Vn))

27

Us
x Markov renewal measure of (Xn, Vn)n∈N0 under Qs

x 37

Wn Biggins martingale for α = 1: Wn =
∑

|v|=n L(v)w, w = NET1w 15

(�n)n∈N0 feasible sequence of regeneration epochs for (Xn,Mn, Qn)n∈N0 under

Ox w.r.t. Ξ, X�n−1 ∈ Bδ(X0).
107

W ∗
n W ∗

n =
∑n−1

k=0

∑
|v|=k L(v)Q(v) 16

Wn(u) Biggins martingale for α < 1:
Wn(u) =

∑
|v|=n

∫
S≥

〈L(v)	u, y〉ανα(dy)
38

W ∗ a.s. limit of W ∗
n 16

W (u) a.s. limit of Wn(u) 38

Ξ minorizing kernel: Ô(x, ·) ≥ Ξ(x, ·). There are L, ς > 0 such that

Ξ(x,Bδ(x0)×B×Rd) = L
∫
Bς(Id)

1Bδ(x0)×B(A ·x,AAx)λ
d2(dA)

97

(Xn, Vn)n∈N0 Markov random walk; Xn := Πn ·X0, Vn := log |ΠnX0| 34, 64

Yn weighted branching process associated with T ⊗ Y ,

Yn :=
∑

|v|=n L(v)Y (v) +
∑n−1

k=0

∑
|v|=k L(v)Q(v)

7

Y Y := (Y (v))v∈T, sequence of i.i.d. copies of a r.v. Y 7

Z(t) jump process Z(t) = XN(t)1{N(t)<∞} 100

ζs Zolotarev metric 11

146




