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Abstract. We study topological properties of the space of compact metric
measure spaces equipped with the Gromov-weak topology. In particular,
we show a characterization of relative compactness and give necessary and
sufficient conditions on a metric measure space to be (locally) compact.

The latter is used to study random metric measure spaces which arise
from Λ-coalescents. Λ-coalescents are stochastic processes, which start with
an infinite number of lines and evolve through multiple mergers in an ex-
changeable setting. We show, that the resulting Λ-coalescent measure tree
is compact if and only if the Λ-coalescent comes down from infinite, i.e. only
consists of finitely many lines at any positive time. If the Λ-coalescent stays
infinite, then the Λ-coalescent measure tree is not even locally compact.

Zusammenfassung. Wir untersuchen topologische Eigenschaften im Raum
der kompakten metrischen Maßräume, der mit mit der Gromov-schwachen
Topologie ausgestattet ist. Insbesondere zeigen wir eine Charakterisierung
der relativen Kompaktheit und geben hinreichende und notwendige Bedin-
gungen an einen metrischen Maßraum, damit dieser (lokal) kompakt ist.

Letzteres findet Anwendung in der Untersuchung von zufälligen metrischen
Maßräumen, welche im Kontext der Λ-Koaleszenten auftreten. Λ-Koaleszenten
sind stochastische Prozesse, welche mit einer unendlichen Anzahl an Linien
starten und sich durch mehrfache Verschmelzungen in einer austauschbaren
Umgebung entwickeln. Wir zeigen, dass der daraus resultierende Λ-Koaleszent
Maßraum kompakt ist, genau dann wenn der Λ-Koaleszent von unendlich
herunterkommt, d.h. zu jeder positiven Zeit nur noch aus endlich vielen
Linien besteht. Wenn der Λ-Koaleszent unendlich bleibt, dann ist der Λ-
Koaleszent Maßraum nicht einmal mehr lokal kompakt.









Vorab

»Auch der erste Schritt gehört zum Wege.«

[Arthur Schnitzler]

Ich betrachte nachdenklich den Wegweiser, darauf steht in großen Lettern
geschrieben »Zukunft«, und er zeigt gleichzeitig in verschiedenste Richtun-
gen. Ich blicke auf den Weg, der schließlich zu dieser Arbeit geführt hat,
zurück, denn wenn das eine Wegstück zu Ende geht und ein Neues beginnt,
dann denkt man gerne wieder an den Anfang, und vielleicht erkennt man
besser, wohin man gehen will, wenn man weiß woher man gekommen ist.

Das Straßenschild am Anfang des Weges kann ich noch deutlich lesen,
obwohl es ein langer Weg war, »Eckerstraße«. Man sagt, der Mut stelle sich
die Wege kürzer vor [Goethe] und sicherlich auch weniger steinig, Aber man
wird von ihm dann doch immer zu deren Ende geführt. Ich sehe mich, wie ich
die Grundlagen der Mathematik versuche zu verstehen, wie ich im Hochge-
fühl gelöster Aufgaben bade und im Frust ungelöster Probleme ertrinke, wie
ich mich auf die Vordiplomsprüfungen vorbereite, sie bestehe, unterrichte,
ins Ausland gehe und wie ich mich schließlich zu dieser Arbeit entschließe.

Die Faszination, die die Mathematik auf mich ausübt, wollte stehts die
Hintergründe dieser begreifen und trieb mich voran. Die Beschäftigung an
dieser Arbeit und das damit verbundene von Vorlesungen gelöste Denken ließ
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mich das bis dahin Gelernte neu und mit einem tieferen Verständnis erfahren
und schührte nur noch mehr den Wunsch, Mathematiker zu sein.

Ich kann nicht behaupten, im Laufe dieses Weges der Selbe geblieben zu
sein, aber das ist auch gut so, [Klaus Wowereit]. Im Lauf der vergangenen
sechs Jahre des Studiums habe ich mir zwar sicherlich einiges an Mathe-
matikwissen aneignen können, die wachsende mathematische Intuition be-
einflusste mich selbst im alltäglichen Denken, aber vielmehr lernte ich über
mich selbst, wer ich bin und wo mein Platz in dieser Welt ist. Nichts übt den
Geist mehr, als das Bemühen, Rätselhaftes zu ergründen, [Goethe], nichts
formt den Geist mehr, als das Bemühen, immer besser zu werden, nichts
erhöht die Grenze zur Frustration mehr, als ein Studium der Mathematik.

Natürlich gab es viele Höhen und Tiefen auf diesem Weg, die ihre Spuren
hinterließen. Unterwegs traf ich viele Menschen, von denen viele mir heute
noch sehr wichtig sind, und die mich unterstützten, förderten, forderten oder
einfach nur ablenkten von Frust und Arbeit. Allen voran möchte ich Louisa
danken, die mir über lange Zeit eine sehr gute Freundin und mehr war. Unsere
Diskussionen über diverse Übungsaufgaben stellten stehts mein bisheriges
Verständnis in Frage und sie lehrte mich, mich nicht immer ganz so ernst
zu nehmen. Ich danke meinen Freunden Andrea, deren Art so sehr anders
ist als die meine, aber die ich dennoch oder gerade deswegen sehr schätze,
Raija, die immer ein offenes Ohr für mich hat, Heiko, der mir seit nun mehr
als fünfzehn Jahren ein guter Freund ist, Kerstin, Corinna, Christian und
vielen mehr..
Meinem Vater danke ich für seine finanzielle Unterstützung.

Nicht vergessen möchte ich meine Kommilitonen und Lehrer, die mir
nicht nur bei mathematischen Problemen gerne weiter geholfen haben; Heinz,
der jeden Vortragenden mit seinen Fragen ins Schwitzen bringt, Bene und
Nico, vor allem aber dem Betreuer dieser Arbeit Peter Pfaffelhuber, der sich
stets Zeit nahm und mir mit Rat und Tat zur Seite stand.

Mein Blick richtet sich nun wieder voraus auf den Wegweiser. Ich versuche
die Augen leicht zusammenkneifend in die Ferne, die sich hinter dem Schild
weit erstreckt, zu schauen; vergebens. Dann mache ich den ersten Schritt..

Freiburg im Breisgau, Mai 2011 Florian Holger Biehler
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CHAPTER 1

Introduction

Metric structures arise frequently in probability theory. Common exam-
ples are the euclidean space Rd, the space of càdlàg paths, equipped with
the Skorohod metric or the space of probability measures, equipped with
the Prohorov metric. Also, prominent examples are random tress ([Ald93],
[Ber09]). We discuss in M, the space of measure-preserving isometry classes
of metric measure spaces, a more general model.

The space M is build as follows. Take a metric space equipped with
a probability measure, to keep the possibility of random sampling. It is
necessary to choose an arbitrary but fix set and to let the spaces be subsets
of it, to avoid problems which arise from the Zermelo-Fraenkel axioms. Then,
we build classes by using the equivalence relation of being measure-preserving
isometric.

Following the philosophy of Aldous, [Ald93], a sequence of metric measure
spaces converges to a limit metric measure space if and only if all randomly
sampled finite subspaces converge to the corresponding subspace. The re-
sulting topology is referred to as the Gromov-weak topology. It turns out
that the space M equipped with this topology is metrizable by a complete
metric, the Gromov-Prohorov metric. Actually, M is also separable, hence
Polish and suitable for probability theory, [GPW09].

Results on weak convergence and stochastic process theory require be-
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sides an underlying Polish space informations about tightness of probability
measures. Therefore, a characterization of the (relatively) compact sets is
necessary.

In the context of Riemannian geometry, such foundations have already
been laid by Gromov, [Gro99], or Burago et al., [BBI01]. These authors
study convergence of (isometry classes of) compact metric spaces. Here, we
mainly refer to work of Greven, Pfaffelhuber, Winter, Depperschmidt et al.
([GPW09], [GPW10], [Win07], [DGP11a], [DGP11b]) on the space M.

In this work, we focus on the subspaceMc of (isometry classes of) compact
metric measure spaces. Firstly, we give necessary and sufficient conditions
on a metric measure space to be (locally) compact. This leads to a charac-
terization of the relative compact sets in Mc and to a criterion for tightness
in the space of probability measures with respect to the Borel-σ-algebra.

A class of random trees is given by coalescent processes, where a subset
of an infinite number of lines can merge at random and the distance of two
points is proportional to their coalescence time. The complexity of this class
of processes is properly described by the concepts of Λ-coalescents, where
any set of lines can merge to a single line. Hence, Λ-coalescents are also
known as coalescents with multiple collisions. If any set of lines can merge
to several lines at the same time, we speak of simultaneous multiple collisions
and of Ξ-coalescents, [Sch00a].

Around 1982 Kingman ([Kin82a], [Kin00], [Kin82b]) studied coalescent
processes with binary mergers. In 1999 Pitman, [Pit99], established the
notion of Λ-coalescent as a Markovian stochastic process with the state space
of all partitions of N. For a generalization of Λ-coalescents to a spatial setting
we refer to the work of Limic and Sturm, [LS06]. Since the coalescent theory
expanded at a quick pace over the last decades, we refer to a review from N.
Berestycki, [Ber09], for a recent survey on coalescent theory.

There are several applications of coalescent theory mainly in theoretical
population genetics but also, for instance, in statistical physics. The most
known case is Kingman’s coalescent for populations with constant size, low
offspring variability and in equilibrium. The relevance of the Kingman’s
coalescent is founded in the relationship to the Moran model and the Wright-
Fisher diffusion. But there is a natural need for more general models.
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In spin glass models of statistical physics the Bolthausen-Sznitman coa-
lescent turns out as a universal scaling limit, [BS98].

It is important to know, if a coalescent process comes down from infinity,
i.e. only consists of finitely many lines at any positive time. Schweinsberg
gives in [Sch00b] a necessary and sufficient condition on a Λ-coalescent to
come down from infinity.

Looking into this matter, we focus on the resulting metric space of a Λ-
coalescent, i.e. the Λ-coalescent measure tree. This space exists if and only
if the Λ-coalescent is free of dust, i.e. there are almost surely no singleton
blocks, [GPW09].

In this work, we show that the Λ-coalescent comes down from infinity
if and only if the corresponding Λ-coalescent measure tree is compact. See
also [Eva00] for a similar result for the Kingman’s coalescent. Moreover, if
the Λ-coalescent stays infinite, then the corresponding metric measure space
is not even locally compact.

Outline. The goal of the present work is the following. We concentrate
on (locally) compact metric measure spaces and give a characterization of
these in Theorem 2.32 and Theorem 2.36, respectively. Moreover, we give in
Theorem 2.37 a characterization of relative compactness in Mc. We apply
these general results to the Λ-coalescent measure tree in Theorem 3.36.

The rest of the thesis is organized as follows. In Chapter 2 we give a
review over the theory of metric measure spaces. Section 2.1 refers to the
first definitions and results on M. We show that the space M equipped with
the Gromov-weak topology is Polish, Theorem 2.15, and characterize relative
compactness in Theorem 2.18. Then Section 2.2 focuses on Mc.

Section 2.3 treats tightness in the spaceM1(M) andM1(Mc) of probabil-
ity measures on M and Mc with respect to the Borel-σ-algebra, respectively.
We extend the characterization of tightness inM1(M) as given in Proposi-
tion 2.45 to a criterion of tightness inM1(Mc), Proposition 2.47.

In Chapter 3 we study the Λ-coalescent. Firstly, in Section 3.1 we give a
basic building block of coalescent theory considering exchangeable random
partitions. The main part is proving Kingman’s representation, Theorem
3.5. In Section 3.2, we define the Λ-coalescent process and prove Theorem
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3.10 which ensures existence and uniqueness of the Λ-coalescent. As an im-
portant corollary about dust, i.e. about the singleton blocks, in a coalescent
we have Corollary 3.13. In Section 3.3 we show a characterization of the
Λ-coalescent coming down from infinity from Schweinsberg, Theorem 3.22.
Finally, in Section 3.4 we deal with the connection between the Λ-coalescent
and the corresponding metric measure space and prove the existence of the
Λ-coalescent measure tree in Theorem 3.33.

To ensure self-containment of this work we recall some vocabulary and
results from general metric topology, Section 4.1, from the set of (isometry
classes of) compact metric spaces, Section 4.2, and from general probability
and measure theory, Section 4.3.



CHAPTER 2

The space of metric measure spaces

The second chapter emphasizes on the set of metric measure spaces M. We
give a review on the theory of metric measure spaces as studied by Greven
et al., mainly from [GPW09] and [DGP11a]. It turns out that this space
equipped with the Gromov-weak topology is metrizable and Polish, Theorem
2.15.

We focus on topological properties. Hence, we characterize compactness
and local compactness of a metric measure space in Theorem 2.32 and The-
orem 2.36, respectively. Then, we turn to relative compactness in M with
respect to the Gromov-weak topology as characterized in Theorem 2.18. This
extends to Theorem 2.37, which gives a characterization of relative compact-
ness in Mc, the space of compact metric measure spaces.

Finally, in Section 2.3, we study tightness in the space of probability
measures on the Borel-σ-algebra of M and Mc, respectively.

2.1 Metric measure spaces

In this section we give a review on the theory of random metric measure
spaces. We introduce the space of metric measure spaces M and recall some
results due to Greven, Pfaffelhuber et al., [GPW09].

Firstly, we define the Gromov-weak topology on M and state some equiv-
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alent characterizations, since there is a need for several approaches for our
proofs. We then show equivalence in Theorem 2.26. In addition, we show in
Theorem 2.15 that M equipped with the Gromov-weak topology is a Polish
space. The main part here is Theorem 2.18, which gives a characterization
of relative compactness with respect to the Gromov-weak topology.

As usual, given a topological space (X,O), we denote by Mf (X) the
space of all finite measures on the Borel-σ-algebra B(X). In particular,
M1(X) denotes the space of probability measures on B(X). The support
supp(µ) of µ ∈M1(X) is the smallest closed set Xµ ⊂ X such that

µ(X \Xµ) = 0.

The push forward of µ under a measurable map ϕ from X into another
metric space (Z, rZ) is the probability measure ϕ∗µ ∈M1(Z) defined for all
A ∈ B(Z) by

ϕ∗µ(A) := µ(ϕ−1(A)).

We denote by =⇒ weak convergence in M1(X) and by P[·] the expectation
operator.

Definition 2.1 (Metric measure space). Fix any set R. A metric measure
space is a complete and separable metric space (X, r), where X ⊂ R, which
is equipped with a probability measure µ. We write M for the space of
measure-preserving isometry classes of metric measure spaces, where we say
that (X, r, µ) and (X ′, r′, µ′) are measure-preserving isometric if there exists
an isometry ϕ between the support of µ on (X, r) and of µ′ on (X ′, r′) such
that µ′ = ϕ∗µ. It is clear that the property of being measure-preserving
isometric is an equivalence relation. We abbreviate X = (X, r, µ) = (X, r, µ)

for a whole measure-preserving isometry class whenever no confusion seems
to be possible.

Remark 2.2 (On Zermelo-Fraenkel axioms). One may wonder why we fix in
the definition of metric measure spaces a arbitrary set R. We have to be
careful to deal with sets in the sense of Zermelo-Fraenkel axioms. Without
the restriction X ⊂ R, M is not a set, not even a class (in the sense, that
elements of a class are sets). It just does not exist. The set R may be
arbitrary but to keep things easy one can think of R = R.
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Following [GPW09], we equip M with the following topology. A sequence
of metric measure spaces converges if and only if all finite subspaces sampled
by the measure sitting on the corresponding metric space converge. Firstly,
we define a map which is invariant under measure-preserving isometries. For
a metric space (X, r) let

R(X,r) :

XN → R(N2)
+

((xi)i∈N) 7→ (r(xi, xj))1≤i<j

be the map which sends a sequence of points in X to its distance matrix .
Moreover, for a metric measure space (X, r, µ), we define the distance matrix
distribution by

ν(X,r,µ) := (R(X,r))∗µ
⊗N ∈M1(R(N2)

+ ),

where µ⊗N is the infinite product measure of µ with respect to the product

σ-field on R(N2)
+ .

Definition 2.3 (Distance matrix distribution). The distance matrix distri-
bution νX of X ∈ M is the distance matrix distribution ν(X,r,µ) of an arbi-
trary representative (X, r, µ) ∈ X . Note that ν(X,r,µ) depends on (X, r, µ)

only through its measure-preserving isometry class. Therefore νX is well-
defined.

Remark 2.4. Note that, if we define

R(X,r)
n :

Xn → R(n2)
+

((xi)1≤i≤n) 7→ (r(xi, xj))1≤i<j≤n

and ν
(X,r,µ)
n := (R

(X,r)
n )∗µ

⊗n ∈ M1(R(n2)
+ ), then we get the finite distance

matrix distribution νXn . In addition, let

πn+1
n : R(n+1

2 )
+ → R(n2)

+

be the restriction operator, forgetting the last column and row. Then we
have that

νXn = (πn+1
n )∗ν

X
n+1.
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Moreover, since R(N2)
+ is Polish, Proposition 4.2, νX appears as the projective

limit of the measures νXn , i.e.

νX = lim←−
n→∞

νXn .

See also Theorem 4.31 and Definition 4.32.

Remark 2.5 (Gromov’s reconstruction theorem). By Gromov’s reconstruc-
tion theorem [Gro99, 31

2 .5. or 31
2 .7.] metric measure spaces are uniquely de-

termined by their distance matrix distribution. If νX = νX
′ for X = (X, r, µ)

and X ′ = (X ′, r′, µ′) in M, then there exists equidistributed sequences
(xi)i∈N and (x′i)i∈N in X and X ′, respectively, such that for all i, j ∈ N,
r(xi, xj) = r′(x′i, x

′
j). The map xi 7→ x′i is isometric and can be contin-

uously extended to an isometry ψ : X → X ′. Since these sequences are
equidistributed, this isometry sends µ to µ′.

We base our notion of convergence in M on the convergence of distance
matrix distributions.

Definition 2.6 (Gromov-weak topology, version 1). A sequence (Xn)n∈N in
M is said to converge Gromov-weakly to X in M if and only if

νXn
n→∞
===⇒ νX

in the weak topology on M1(R(N2)
+ ). We call the corresponding topology OM

on M the Gromov-weak topology .

There is a characterization of the Gromov-weak convergence, Lemma
2.10. Firstly, we introduce polynomials on M.

Definition 2.7 (Polynomials). A function Φ = Φn,φ : M → R is called a
polynomial (of degree n with respect to the test function φ) on M if and only
if there exists a bounded continuous function φ : [0,∞)(

n
2) → R such that

Φ((X, r, µ)) =

∫
µ⊗n(d(x1, ..., xn))φ

(
(r(xi, xj))1≤i<j≤n

)
,

where µ⊗n is the n-fold product measure of µ. We denote by A the algebra
of all polynomials on M..

Remark 2.8. Note that for X ∈M and a polynomial Φ we have that

Φ(X ) =

∫
νX (d(ri,j)1≤i<j)φ

(
(ri,j)1≤i<j≤n

)
. (2.1)
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Lemma 2.9 (Polynomials separate points). The algebra A of all polyno-
mials is a rich enough class to determine a metric measure space, i.e. A

separates points in M (Definition 4.17).

Proof. Let X = (X, r, µ) and X ′ = (X ′, r′, µ′) be some metric measure spaces
with Φ(X ) = Φ(X ′) for all Φ ∈ A . Since by Proposition 4.20 the algebra
{φ ∈ Cb(R(n2)), n ∈ N} is separating in M1(R(n2)), we have that νX = νX

′ by
equation (2.1). Therefore, by Remark 2.5, we have X = X ′.

Lemma 2.10 (Gromov-weak topology, version 2). A sequence (Xn)n∈N in
M converges Gromov-weakly to X in M if and only if Xn converges weakly
to X with respect to the algebra of polynomials A , i.e. Φ(Xn) converges to
Φ(X ) in R, for all polynomials Φ ∈ A .

In [GPW09, Theorem 5], it is shown that this is equivalent to our defini-
tion of Gromov-weak convergence. Moreover, the Gromov-weak topology is
metrizable by the Gromov-Prohorov metric dGPr. We give a short proof at
the end of Section 2.1 in Theorem 2.26. Firstly, we recall the definition of
the Gromov-Prohorov distance but we leave out the details that it is indeed
a metric. For that see for example [GPW09, Lemma 5.4].

Definition 2.11 (Gromov-Prohorov metric). The Gromov-Prohorov dis-
tance between two metric measure spaces X = (X, rX , µX) and Y = (Y, rY , µY )

in M is defined by

dGPr(X ,Y) := inf
(ϕX ,ϕY ,Z)

d
(Z,rZ)
Pr ((ϕX)∗µX , (ϕY )∗µY ),

where the infimum is taken over all isometric embeddings ϕX and ϕY from
X and Y , respectively, into some common metric space (Z, rZ).

Recall that the Prohorov metric between two probability measures µ1

and µ2 on a common metric space (Z, rZ) is defined by

d
(Z,rZ)
Pr (µ1, µ2) := inf{ε > 0 : µ1(F ) ≤ µ2(F ε) + ε for all closed F ⊂ Z},

where

F ε := {z ∈ Z : rZ(z, F ) < ε} is the ε-enlargement of F .
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Remark 2.12. Note that one can choose in the definition of the Gromov-
Prohorov metric for a common metric space (Z, rZ) the disjoint union XtY .
Therefore, we can also write

dGPr(X ,Y) := inf
rXtY

d
(XtY,rXtY )
Pr ((ϕX)∗µX , (ϕY )∗µY ).

We need the following two lemma.

Lemma 2.13. Fix a sequence (εn)n∈N in (0, 1). Let X1 = (X1, r1, µ1),
X2 = (X2, r2, µ2), . . . ∈M. Then,

dGPr(Xn,Xn+1) < εn (2.2)

iff there exists a complete and separable metric space (Z, rZ) and isometric
embeddings ϕ,ϕ1, ϕ2, . . . from X ,X1,X2, . . . into (Z, rZ), respectively, such
that

d
(Z,rZ)
Pr ((ϕn)∗µn, (ϕn+1)∗µn+1) < εn.

Proof. We give a sketch of the proof following [GPW09, Lemma 5.7].
Assume first that (2.2) holds. Let Yn = Xn t Xn+1 be the disjoint union.
Then by Remark 2.12, there is a metric rYn such that

d
(Yn,rYn )
Pr ((ϕn)∗µn, (ϕn+1)∗µn+1) < εn,

where ϕn and ϕn+1 are the canonical embeddings. We define a correspon-
dence Rn, Definition 4.3, by

Rn := {(xn, xn+1) ∈ Xn ×Xn+1 : rYn(ϕn(xn), ϕn+1(xn+1)) < εn}.

Then, Rn is not empty. Hence, by Remark 4.4, we have metrics rRnYn , such
that

d
(Yn,r

Rn
Yn

)

Pr ((ϕn)∗µn, (ϕn+1)∗µn+1) ≤ εn.

Now, let Zn :=
⊔n
k=1Xk and ψnk be the isometric embeddings from Xk to

Zn which arise from the canonical embeddings. Then, again by Remark 4.4,
we define using the correspondence given by

R̃n := {(zn, xn+1) ∈ Zn ×Xn+1 : ((ψnk )−1(zn), xn+1) ∈ Rn}
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metrics rR̃nZn+1
on Zn+1. Taking the limit n → ∞ and then the completion,

we obtain a separable and complete metric space (Z, rZ) and isometric em-
beddings ψn from Xn to Z. Finally, the restriction of rZ to Yn is isometric
to (Yn, r

Rn
Yn

). Hence,

d
(Z,rZ)
Pr ((ψn)∗µXn , (ψn+1)∗µXn+1) ≤ εn

and we are done. The converse direction is clear by definition.

Lemma 2.14. Let X = (X, r, µ),X1 = (X1, r1, µ1), . . . ∈M. Then

dGPr(Xn,X )
n→∞−−−→ 0, (2.3)

iff there exists a complete and separable metric space (Z, rZ) and isometric
embeddings ϕ,ϕ1, ϕ2, . . . from X ,X1,X2, . . . into (Z, rZ), respectively, such
that

d
(Z,rZ)
Pr ((ϕn)∗µn, (ϕ)∗µ)

n→∞−−−→ 0. (2.4)

Proof. As in [GPW09, Lemma 5.8], we can follow the same line of arguments
as in the proof of Lemma 2.13. Just the metric rZ extending the metrics
r, r1, r2, . . . is built on correspondences between X and Xn.

The following theorem from [GPW09, Proposition 5.6] ensures that the
state space M is suitable for probability theory.

Theorem 2.15. The space (M, dGPr) is Polish.

Proof. To get completeness, it suffices to show that a Cauchy-sequence (Xn)n∈N

has a convergent subsequence. Take therefore a subsequence (Yn)n∈N of
(Xn)n∈N, Yn = (Yn, rn, µn), such that

dGPr(Yn,Yn+1) ≤ 2−n.

By Lemma 2.13, there is a complete and separabel metric space (Z, rZ)

and isometric embeddings ϕn from Yn to Z such that ((ϕn)∗µn)n∈N is a
Cauchy-sequence in M1(Z). Since (M1(Z), dPr) is complete, the sequence
((ϕn)∗µn)n∈N converges to some µ̃ ∈M1(Z). Letting Z = (Z, rZ , µ̃), we find

dGPr(Yn,Z)
n→∞−−−→ 0.
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To get separability, we partly follow the proof of [EK86, Theorem 3.2.2]
or rather [GPW09, Proposition 5.6]. Let X = (X, r, µ) ∈M and ε > 0. Then
there is X ε = (X, r, µε) ∈M such that µε is a finitely supported atomic mea-
sure on B(X) and dPr(µ, µ

ε) < ε. Then, we find that dGPr(X ,X ε) < ε.
Since X ε is just a »finite metric space« it can be approximated in the
Gromov-Prohorov metric by finite metric spaces with rational mutual dis-
tances and weights. The set of isometry classes of finite metric spaces with
rational edge-lengths is countable. Hence, we are done.

Now, we focus on compactness in M. Roughly speaking, a subset of M
is relatively compact iff the corresponding sequence of probability measures
puts most of their mass on subspaces of a uniformly bounded diameter and if
the contribution of points not carrying much mass in their vicinity is small,
[GPW09]. These two criteria lead to the following definitions.

Definition 2.16 (Distance distribution, Modulus of mass distribution). Let
X = (X, r, µ) ∈M.

(a) The distance distribution is given by wX := r∗µ
⊗2, i.e.

wX (·) := µ⊗2({(x, x′) : r(x, x′) ∈ ·}).

(b) For δ > 0, define the modulus of mass distribution as

vδ(X ) := inf{ε > 0 : µ({x ∈ X : µ(Bε(x)) ≤ δ}) ≤ ε},

where Bε(x) is the open ball with radius ε and center x.

Lemma 2.17. Let δ > 0, ε > 0 and X = (X, r, µ) ∈ M. If vδ(X ) < ε, then
there exists Nε < b1

δ c and points x1, . . . , xNε ∈ X such that the following
holds.

(a) For i = 1, . . . , Nε we have µ(Bε(xi)) > δ and µ(
⋃Nε
i=1B2ε(xi)) > 1− ε.

(b) For all i, j = 1, . . . , Nε with i 6= j we have r(xi, xj) > ε.

Proof. We follow the proof given in [GPW09, Lemma 6.9]. By definition of
vδ(·), there exists ε′ < ε for which µ({x ∈ X : µ(Bε′(x)) ≤ δ}) ≤ ε′. Since
{x ∈ X : µ(Bε(x)) ≤ δ} ⊂ {x ∈ X : µ(Bε′(x)) ≤ δ}, we find that

µ({x ∈ X : µ(Bε(x)) ≤ δ}) ≤ µ({x ∈ X : µ(Bε′(x)) ≤ δ}) ≤ ε′ < ε.
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Let D := {x ∈ X : µ(Bε(x)) > δ}, then we have µ(D) > 1 − ε. Take a
maximal 2ε separated net {xi ∈ D : i ∈ I}, i.e. D ⊂

⋃
i∈I B2ε(xi) and for all

i 6= j, r(xi, xj) > 2ε. By [BBI01, p. 278], such a net exists in every metric
space. Since

1 ≥ µ(
⋃
i∈I

Bε(xi)) =
∑
i∈I

µ(Bε(xi)) ≥| I | δ,

we find that | I |≤ b1
δ c.

The next result from [GPW09] characterizes relative compactness in the
topology induced by the Gromov-Prohorov metric on M. We denote by
(Xc, dGH) the space of (isometry classes of) compact metric spaces equipped
with the Gromov-Hausdorff metric. See Section 4.2 for more.

Theorem 2.18 (Characterization of relative compactness). Let Γ ⊆M. The
following conditions are equivalent.

(a) The family Γ is relatively compact in the Gromov-Prohorov topology.

(b) The family {wX : X ∈ Γ} is tight and supX∈Γ vδ(X )
δ→0−−−→ 0.

(c) For all ε > 0 there exists Nε ∈ N such that for all X ∈ Γ there is a
subset Xε,X ⊆ X with

c1) µ(Xε,X ) ≥ 1− ε,

c2) Xε,X can be covered by at most Nε balls of radius ε,

c3) Xε,X has diameter at most Nε.

(d) For all ε > 0 and X ∈ Γ there exists a compact subset Kε,X ⊂ X with

d1) µ(Kε,X ) ≥ 1− ε,

d2) the familyKε := {Kε,X ,X ∈ Γ} is relatively compact in (Xc, dGH).

We give later a proof following [GPW09, Proposition 7.1]. After Example
2.19, we first introduce the random distance distribution of a given metric
measure space, Definition 2.20, and prepare the proof of the theorem with
Proposition 2.23.

Example 2.19. The following examples illustrate condition (b) in Theorem
2.18 for relative compactness of a family in M by counter-examples. The
examples (a) and (b) are from [GPW09, Example 2.12].
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(a) Consider the sequence of metric measure spaces defined by

Xn := ({1, 2}, rn(1, 2) = n, µn({1}) = µn({2}) =
1

2
).

A potential Gromov-weak limit object would be a metric measure space
with masses 1

2 within distance infinity. This clearly does not exist.
Indeed, the family {wXn = 1

2δ0 + 1
2δn : n ∈ N} is not tight. Hence,

{Xn : n ∈ N} is not relatively compact.

(b) Consider the sequence of metric measure spaces defined by

Xn := ({1, . . . , 2n}, rn(x, y) := 1{x6=y}, µn := 2−n
2n∑
i=1

δi).

A potential Gromov-weak limit object would consist of infinitely many
points of mutual distance one with a uniform measure. Such a space
does not exist. Indeed, we have for δ < 2−n that vδ(Xn) = 0 and for
δ ≥ 2−n that vδ(Xn) = 1. It follows that for all δ > 0,

sup
n∈N

vδ(Xn) = 1.

(c) Let reucl be the euclidean metric and N(0, n) the normal distribution
with expectation 0 and variance n. Then, consider the sequence of
metric measure spaces defined by

Xn := (R, reucl, N(0, n)).

A potential Gromov-weak limit object would consist of (R, reucl) and
a normal distribution with infinite variance. Since the set of variances
of the family of distributions {N(0, n) : n ∈ N} is not bounded, the
family is not tight. Hence, {wXn : n ∈ N} is not tight.

Definition 2.20 (Random distance distribution). Let X = (X, r, µ) ∈ M.
We define the map rx : X → R+ by rx(x′) := r(x, x′) and for x ∈ X, let the
distribution of distance be µx := (rx)∗µ ∈M1(R+). Moreover, we define the
map r̂ : X →M1(R+) by r̂(x) := µx. Now let

µ̂X := r̂∗µ ∈M1(M1(R+))

be the random distance distribution of X .
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Remark 2.21. For X = (X, r, µ) we have by definition, that

µ̂X ({ν ∈M1(R+) : ν([0, ε)) ≤ δ}) = µ({x ∈ X : µ(Bε(x)) ≤ δ}).

Remark 2.22. The random distance distribution does not characterize the
metric measure spaces uniquely. Consider, for example, the two metric mea-
sure spaces X and Y. Both consist of eight points. The distance between
two points equals the minimal number of edges one has to cross to come
from one point to the other.f1

20

f2
20

f3
20

f4
20

X

f 1
20

f 2
20

f 3
20

f 4
20

f1
20

f1
20

f4
20

f4
20

Y

f 2
20

f 2
20

f 4
20

f 4
20

The random distance distributions agree, since

µ̂X = µ̂Y =
1

10
δ 1

20
δ0+ 9

20
δ2+ 1

2
δ3

+
1

5
δ 1

10
δ0+ 2

5
δ2+ 1

2
δ3

+

3

10
δ 3

20
δ0+ 7

20
δ2+ 1

2
δ3

+
2

5
δ 1

5
δ0+ 3

10
δ2+ 1

2
δ3
.

But X and Y are not measure-preserving isometric, [GPW09].

Proposition 2.23 (Continuity properties). Let X ,X1,X2, . . . in M.

(a) If for all polynomials Φ ∈ A , Φ(Xn)
n→∞−−−→ Φ(X ), then µ̂Xn

n→∞
===⇒ µ̂X .

(b) If for all polynomials Φ ∈ A ,Φ(Xn)
n→∞−−−→ Φ(X ), then wXn

n→∞
===⇒ wX .

(c) Let δ > 0. If µ̂Xn
n→∞
===⇒ µ̂X , then lim supn→∞ vδ(Xn) ≤ vδ(X ).

In order to prove this result, we need the following definition.

Definition 2.24 (kth moment measure). for X = (X, rX , µX) and k ∈ N
we define the kth moment measure µ̂kX ∈M1(Rk+) of µ̂X by

µ̂kX (d(r1, . . . , rk)) :=

∫
µ̂X (dν) ν⊗k(d(r1, . . . , rk)).
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Remark 2.25. By [Kal02, Theorem 16.16], weak convergence of random mea-
sures is equivalent to weak convergence of all moment measures.

Proof of Proposition 2.23. We follow the proof given in [GPW09, Proposi-
tion 6.6].

(a) By the above remark, it suffices to show that for arbitrary k ∈ N,

µ̂kXn
n→∞
===⇒ µ̂kX . For k ∈ N , consider all φ ∈ Cb(R

(k+1
2 )

+ ) which depend
on (rij)0≤i<j≤k only through (r0,j)1≤j≤k, i.e. there exists φ̃ ∈ Cb(Rk+)

with

φ((rij)0≤i<j≤k) = φ̃((r0,j)1≤j≤k).

Since for any Y = (Y, rY , µY ),∫
µ̂kY(d(r1, . . . , rk))φ̃(r1, . . . , rk)

=

∫
µ⊗k+1
Y (d(u0, u1, . . . , uk))φ̃(rY (u0, u1), . . . , rY (u0, uk))

=

∫
µ⊗k+1
Y (d(u0, u1, . . . , uk))φ((rY (ui, uj))0≤i<j≤k),

it follows by assumption, µ̂kXn
n→∞
===⇒ µ̂kX . Hence, we are done.

(b) By definition, the distance distribution wX satisfies

wX =

∫
M1(R+)

µ̂X (dν) ν,

i.e. wX equals the first moment measure of µ̂X . Hence by (a), we are
done.

(c) Assume that ε > 0 is such that vδ(X ) < ε. Note that

vδ(X ) = inf{ε > 0 : µ̂X {ν ∈M1(R+) : ν([0, ε)) ≤ δ} ≤ ε}.

Then we have

µ̂X {ν ∈M1(R+) : ν([0, ε)) ≤ δ} < ε.

Since the set {ν ∈ M1(R+) : ν([0, ε)) ≤ δ} is closed in M1(R+),
Lemma 4.13, we got by the Portmanteau-Theorem, Theorem 4.12, that

lim sup
n→∞

µ̂Xn{ν ∈M1(R+) : ν([0, ε)) ≤ δ}

≤ µ̂X {ν ∈M1(R+) : ν([0, ε)) ≤ δ} < ε.
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That is, we have for all but finitely many n ∈ N, vδ(Xn) < ε. Therefore,
we find lim supn→∞ vδ(Xn) < ε.

Proof of Theorem 2.18. In order to prove this theorem, we anticipate
parts of Theorem 2.26, in particular (a) ⇒ (c). But of course, this implica-
tions do not need the following proof.

Proof. We follow [GPW09, Proposition 7.1].
(a) ⇒ (b). We consider a sequence (Xn)n∈N ⊂ Γ. Since Γ is relatively
compact by assumption, there is a convergent subsequence (Xnk)k∈N. By
Theorem 2.26 and Proposition 2.23, we have wXnk (·) k→∞

===⇒ wX (·). As the
sequence was arbitrarily chosen it follows with Proposition 4.16 that the
family {wX : X ∈ Γ} is tight.
The second part is by contradiction. Assume that vδ(X ) does not converge
to 0 uniformly in X ∈ Γ. Therefore, we find ε > 0 such that for all n ∈ N
there exist a sequence (δn)n∈N converging to 0 and a sequence (Xn)n∈N in Γ

with

vδn(Xn) ≥ ε. (∗)

By assumption, there is a subsequence (Xnk)k∈N converging in the Gromov-
Prohorov topology to a metric measure space X ∈ Γ. By Theorem 2.26 and
Proposition 2.23, µ̂Xnk converges weakly to µ̂X as n→∞. Finally, again by
Proposition 2.23, we have that lim supk→∞ vδk(Xnk) = 0 which contradicts
(∗).

(b) ⇒ (c). By assumption, the family {wX : X ∈ Γ} is tight, i.e. for all
ε > 0 there exists C(ε) ∈ R+ and δ = δ(ε) such that

sup
X∈Γ

wX ([C(ε),∞)) < ε,

and

sup
X∈Γ

vδ(X ) < ε.

Now set

X
′
ε,X := {x ∈ X : µX(B

C( ε
2

4
)
(x)) > 1− ε

2
}.
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Then it follows, that µX(X
′
ε,X ) > 1− ε

2 . By Lemma 2.17, we can choose for
all X ∈ Γ points x1, . . . , xNXε ∈ X with

NXε ≤ Nε := b 1

δ(ε/2)
c,

rX(xi, xj) >
ε

2
for 1 ≤ i < j ≤ NXε ,

µX(

NXε⋃
i=1

Bε(xi)) > 1− ε

2
.

Now set

Xε,X := X
′
ε,X ∩

NXε⋃
i=1

Bε(xi).

Then µX(Xε,X ) > 1 − ε and Xε,X can be covered by (at most) Nε balls of
radius ε. Since the diameter of X ′ε,X is bounded by 4C( ε

2

4 ), the same is true
for Xε,X .

(c) ⇒ (d). Fix ε > 0 and set for all n ∈ N, εn := ε2−(n+1). Then we
choose for each n ∈ N, Nεn ∈ N such that for all X ∈ Γ there exists a subset
Xεn,X ⊂ X such that c1), c2) and c3) holds. Without loss of generality
we may assume that all Xεn,X are closed. Otherwise we just take their
closure. Now, we take for every X ∈ Γ a compact set Kεn,X ⊂ X with
µX(Kεn,X ) > 1− εn. Set

Kε,X :=
∞⋂
n=1

(Xεn,X ∩Kεn,X ).

As intersection of a compact set with closed sets, Kε,X is also compact, and
µX(Kε,X ) > 1− ε. Let

Kε := {Kε,X ,X ∈ Γ}.

By construction Kε is uniformly totally bounded and by Proposition 4.7, Kε
is relatively compact in (Xc, dGH).

(d) ⇒ (a). The proof is in two steps. First assume that all met-
ric spaces (X, rX) with X = (X, rX , µX) ∈ Γ are compact and that the
family {(X, rX) : (X, rX , µX) ∈ Γ} is relatively compact in (Xc, dGH).
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That is, we can choose for every sequence in Γ a subsequence (Xn)n∈N,
Xn = (Xn, rXn , µXn), and a metric space (X, r) ∈ Γ such that

dGH(Xn, X)
n→∞−−−→ 0.

By Lemma 4.5, there is a compact metric space (Z, rZ) and isometric embed-
dings ϕX , ϕX1 , ϕX2 , . . . of X,X1, X2, . . . , respectively, into (Z, rZ) such that
d

(Z,rZ)
H (ϕXn(Xn), ϕX(X))

n→∞−−−→ 0. Since Z is compact the set of measures
{(ϕXn)∗µXn : n ∈ N} is tight. Therefore, relatively compact with respect to
the weak topology, i.e. there is a subsequence ((ϕXnk )∗µXnk )k∈N such that

dPr((ϕXnk )∗µXnk , ϕX(X))
k→∞−−−→ 0.

Then by definition, dGPr(Xnk ,X )
k→∞−−−→ 0 and we are done.

In the second step, let εn := 2−n and fix for every X ∈ Γ and every
n ∈ N, x ∈ Kεn,X . We define

µX,n(·) := µX(· ∩Kεn,X ) + (1− µX(Kεn,X ))δx(·)

and

X n := (X, rX , µX,n), Γn := {X n : X ∈ Γ}.

Then, for all X ∈ Γ we have

dGPr(X n,X ) ≤ εn.

Moreover, Γn is relatively compact in (Xc, dGH). Therefore, we find a con-
vergent subsequence in Γn by the first step.
By a diagonal argument we find a subsequence (Xm)m∈N such that (X nm)m∈N

converges for every n ∈ N to some metric measure space Zn. We pick a
subsequence such that for all n ∈ N and m ≥ n,

dGPr(X nm,Zn) ≤ εm.

Then for all m,m′ ≥ n,

dGPr(X nm,X nm′) ≤ 2εn.

Finally, it follows that (Xm)m∈N is a Cauchy-sequence in (M, dGPr) and since
(M, dGPr) is complete by Theorem 2.15, this sequence converges and we are
done.
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Theorem 2.26 (Versions of the Gromov-weak topology). Let X = (X, r, µ),
X1 = (X1, r1, µ1), X2 = (X2, r2, µ2), . . . be metric measure spaces. Then the
following is equivalent.

(a) The Gromov-Prohorov metric converges, i.e.

dGPr(Xn,X )
n→∞−−−→ 0.

(b) The distance matrix distributions converge, i.e.

νXn
n→∞
===⇒ νX .

(c) All polynomials converge, i.e.

∀Φ ∈ A ,Φ(Xn)
n→∞−−−→ Φ(X ).

Proof. We follow the proof given in [GPW09, Theorem 5].
(a) ⇒ (b). By Lemma 2.14, there are a complete and separable metric

space (Z, rZ) and isometric embeddings ϕ,ϕ1, ϕ2, . . . from (X, r), (X1, r1), . . .

into (Z, rZ), respectively, such that ((ϕn)∗µn)n∈N converges weakly to ϕ∗µ.
By the definition of the distance matrix distribution, Definition 2.3, we have
that

νXn = (R(Xn,rn))∗µ
⊗N
n = (R(Z,rZ))∗

(
((ϕn)∗µn)⊗N

)
converges weakly to

(R(Z,rZ))∗

(
(ϕ∗µ)⊗N

)
= (R(X,r))∗µ

⊗N = νX

as n→∞.
(b) ⇒ (c). This follows easily with the two different representations of

the polynomials, Remark 2.8.
(c) ⇒ (a). It suffices to show that the sequence (Xn)n∈N is relatively

compact with respect to the Gromov-weak topology. Since the algebra of
polynomials A separates points in M, Lemma 2.9, this would imply that all
limit points coincide and are equal X . Therefore, we have to check the two
conditions for relative compactness given in Theorem 2.18.

By Proposition 2.23, the family {wXn : n ∈ N} is tight and we find that
lim supn→∞ vδ(Xn) ≤ vδ(X )

δ→0−−−→ 0.
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Remark 2.27. Note that by Theorem 2.26, the above Proposition 2.23 means,
that the maps X 7→ µ̂X and X 7→ wX are continuous with respect to the
Gromov-weak topology on M and the weak topology on M1(M1(R+)) or
M1(R+), respectively.

2.2 Compact and locally compact metric measure

spaces

We consider the space of measure-preserving isometry classes of (locally)
compact metric measure spaces, denoted by Mc and Mlc, respectively. A
metric measure space X = (X, r, µ) is (locally) compact if and only if there
is (X, r, µ) ∈ X such that (X, r) is (locally) compact. We equip Mc and Mcl

with the Gromov-weak topology induced by M.
We give a characterization of (local) compactness of a metric measure

space in Theorem 2.32 and Theorem 2.36, respectively. Then, we extend the
characterization of relative compactness in M, Theorem 2.18, to Mc. This
attempt results in Proposition 2.37. Furthermore, we reformulate a criterion
for relative compactness from [GPW10] in Corollary 2.41.

Remark 2.28 (Mc is not closed). If X = (X, r, µ) is a finite metric measure
space then X ∈ Mc. Moreover, since elements of M can be approximated
by a sequence of finite metric measure spaces, the subspace Mc ⊂ M is not
closed. See also the proof of separability in Theorem 2.15.

In order to formulate the characterization of (locally) compact metric
measure spaces we need the following notion of the size of ε-separated sets.

Definition 2.29 (Size of ε-separated sets). Let R := (ri,j)1≤i<j ∈ R(N2)
+ . For

ε > 0, define the minimal size of an ε-separated set by

ξε(R) := max{N ∈ N : ∃k1 < · · · < kN (rki,kj )1≤i<j≤N ∈ (ε,∞)(
N
2 )}.

Recall from Definition 2.3 the distance matrix distribution νX of a metric
measure space X .

Lemma 2.30. Let X ∈M. Then ξε is νX -almost surely constant and equals

ξε(X ) = min{N ∈ N : (πN+1)∗ν
X ((ε,∞)(

N+1
2 )) = 0},
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where πNn+1 := πN+1 : R(N2)
+ → R(N+1

2 )
+ is the restriction operator. Moreover,

for all ε > 0, ξε is lower semi-continuous and hence measurable (Definition
4.21).

Proof. Take X = (X, r, µ) ∈M. Let x1, x2, · · · ∈ X be such that

ξε((r(xi, xj))1≤i<j) = N.

Then N is the maximal size of an ε-separated set in (X, r), µ⊗N-almost
surely. The identity is clear by definition.

For lower semi-continuity, by Lemma 4.22, it suffices to show that for all
N ∈ N the set Aε,N := {X ∈M : ξε(X ) ≤ N} is closed. For that, let (Xn)n∈N

be a sequence in Aε,N and X ∈ M such that Xn converges Gromov-weakly
to X . We have to show that X ∈ Aε,N .

Clearly, we have that for all n ∈ N, (πN+1)∗υ
Xn((ε,∞)(

N+1
2 )) = 0. Then,

we get by the Portmanteau-Theorem that

(πN+1)∗υ
X (BN+1

ε ) ≤ lim inf
n→∞

(πN+1)∗υ
Xn((ε,∞)(

N+1
2 )) = 0.

Hence, ξε(X ) ≤ N .

Remark 2.31. For a metric space, let Nε be the minimal number of ε-balls
needed to cover (X, r). Then

Nε ≤ ξε ≤ Nε/2.

The first inequality is clear, since the points x1, . . . , xξε of a maximal ε-
separated set, serve as centers of ε-balls covering (X, r). For the second
inequality, we consider the disjoint (ε/2)-balls around the points of the max-
imal ε-separated set. Any other set of centers of ε/2-balls covering (X, r)

must hit each Bε/2(xi) at least once.

Recall the random distance distribution µ̂X of a given metric measure
space X from Definition 2.20. The characterization of compact metric mea-
sure spaces reads as follows.

Theorem 2.32 (Characterization of compact metric measure spaces). Let
X ∈M. Then the following is equivalent.

(a) The metric measure space X is compact.
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(b) For all ε > 0, ξε(X ) <∞.

(c) For all ε > 0 there is δ > 0 such that

µ̂X ({ν ∈M1(R+) : ν([0, ε)) ≤ δ}) = 0.

Proof. Let X be compact and fix ε > 0. Since (X, r) is totally bounded,
there is Nε/2 ∈ N, such that (X, r) can be covered by Nε/2 balls of radius
ε/2. Then by Remark 2.31, ξε ≤ Nε/2 <∞. It follows (b).

Now, assume (b) holds. Then, (X, r) can be covered by ξε/2 < ∞ balls
of radius ε/2. Let x1, . . . , xξε/2 be centers of such balls and define

δ := min{µ(Bε(xi)) : µ(Bε(xi)) > 0}.

Then, δ > 0. Now, take any x ∈ X and choose i ∈ {1, . . . , ξε/2} such that
x ∈ Bε/2(xi). Then we have

µ(Bε(x)) ≥ µ(Bε/2(xi)) ≥ δ.

Hence, µ̂X ({ν ∈M1(R+) : ν([0, ε)) ≤ δ}) = µ({x ∈ X : µ(Bε(x) ≤ δ)}) = 0,

and (c) follows.
Finally, by (c), for ε > 0 there is δ > 0 such that µ̂X (ν([0, ε)) ≤ δ) = 0.

For (a), it suffices to show that (X, r) is totally bounded, or alternatively
that there is a finite 2ε-net in X, i.e. a finite maximal 2ε-separated set. For
this, take a maximal 2ε-separated set S ⊂ X. Then, by Remark 2.31,

1 = µ(X) = µ(
⋃
x∈S

B2ε(x)) ≥ µ(
⋃
x∈S

Bε(x)) =
∑
x∈S

µ(Bε(x)) ≥| S | δ,

since for µ-almost all x ∈ X we have µ(Bε(x)) > δ, by assumption. Now,
| S | ≤ 1/δ < ∞ and ε > 0 was arbitrary. So (X, r) is totally bounded, i.e.
compact.

As an immediate consequence of the above theorem we have a charac-
terization of M-valued random variables to be supported by the space of
compact metric measure spaces.

Corollary 2.33 (Random compact metric measure spaces). Let X be a M-
valued random variable. Then the following is equivalent.

(a) The random metric measure space X is almost surely compact.
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(b) For all ε > 0, P(ξε(X ) <∞) = 1.

(c) For all ε > 0 there is a random ∆ > 0 such that

P(µ̂X ({ν ∈M1(R+) : ν([0, ε)) ≤ ∆}) = 0) = 1.

Remark 2.34. If we define a modification of the modulus of mass distribution
(Definition 2.16) by

ṽδ(X ) := inf{ε > 0 : µ({x ∈ X : µ(Bε(x)) ≤ δ}) = 0},

there follows that ṽδ(X ) ≤ ε iff µ({x : µ(Bε(x)) ≤ δ}) = 0. Therefore,
condition (c) in Theorem 2.32 can be replaced by the following condition.

(c’) For all ε > 0 there is δ > 0 such that ṽδ(X ) ≤ ε.

Moreover, in Corollary 2.33 the condition (c) can be replaced by

(c’) For all ε > 0 there is a random ∆ > 0 such that P(ṽ∆(X ) ≤ ε) = 1.

Next, we come to the characterization of locally compact metric measure
spaces. We need the following notion.

Definition 2.35 (δ-restriction). Let R = (ri,j)1≤i<j ∈ R(N2)
+ . Then for δ > 0

the δ-restriction is defined by

τδ(R) := (rτ̂δ(i),τ̂δ(j))1≤i<j ,

where τ̂δ(0) := 1 and recursively τ̂δ(i+ 1) := inf{j > τ̂δ(i) : r1,j ≤ δ}.

Theorem 2.36 (Characterization of locally compact metric measure spaces).
Let X ∈M. Then X is locally compact if and only if

νX
( ⋂

0<ε<δ

{
R : ξε(τδ(R)) <∞

})
δ→0−−−→ 1.

Proof. Let X = (X, r, µ). Then X is locally compact iff for µ-almost all
x ∈ X there is δ > 0, such that for all 0 < ε < δ the ball Bδ(x) can
be covered by a finite number of balls with radius ε. Or equivalently, that
the maximal ε-separated set in Bδ(x) is finite. Hence, it is necessary and
sufficient that,

1 = lim
δ→0

µ⊗N
( ⋂

0<ε<δ

{
(x1, x2, . . . ) : ξε(τδ((r(xi, xj))1≤i<j)) <∞}

)
= lim

δ→0
νX
( ⋂

0<ε<δ

{
R : ξε(τδ(R)) <∞

})
.
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Turning to relative compactness in the Gromov-weak topology on Mc,
note, that a criterion for a subset Γ ⊂ Mc to be relatively compact is given
in [GPW10], as recalled in Remark 2.43. We give in Corollary 2.41 in the
present work a version of this criterion and prove it with help of the following
stronger proposition which characterizes relative compactness in Mc.

Proposition 2.37 (Characterization of relative compactness in Mc). A set
Γ ⊂Mc is relatively compact in the Gromov-weak topology on Mc if and only
if

(a) the set Γ is relatively compact in M,

(b) for all ε > 0 there is δ > 0 such that the set

{µ̂X ({ν ∈M1(R+) : ν([0, ε)) ≤ δ}) : X ∈ Γ}

has only accumulation point 0.

Proof. The proposition is an immediate consequence of the following Lemma
2.38 and Lemma 2.39.

Lemma 2.38. Let A ⊂ R+. Then 0 is the only accumulation point of A iff
for all sequences (an)n∈N ⊂ A we have lim supn→∞ an = 0.

Proof. The proof is by contradiction. If there is a sequence (an)n∈N such
that lim supn→∞ an = a > 0, then a is another accumulation point of A. On
the other hand, if we have for all sequences (an)n∈N that lim supn→∞ an = 0,
then zero is an accumulation point. And if a > 0 is another accumulation
point there is a sequence (an)n∈N such that lim supn→∞ an = a.

Lemma 2.39. Let X ∈ M and (Xn)n∈N be a sequence in Mc such that
Xn

n→∞−−−→ X in the Gromov-weak topology. Then X is compact iff for all
ε > 0 there is δ > 0 such that

lim sup
n→∞

µ̂Xn({ν ∈M1(R+) : ν([0, ε)) ≤ δ}) = 0.

Proof. By Theorem 2.32, if (X, r, µ) is compact, for all ε > 0 there is δ >
0 such that µ̂X (ν([0, ε)) ≤ δ) = 0. Note that by Lemma 4.13, the set
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{ν ∈ M1(R+) : ν([0, ε)) ≤ δ} is closed in M1(R+). We conclude by the
Portmanteau-Theorem, Theorem 4.12,

lim sup
n→∞

µ̂Xn(ν([0, ε)) ≤ δ) ≤ µ̂X (ν([0, ε)) ≤ δ) = 0.

On the other hand for ε > 0 let δ > 0 be such that

lim sup
n→∞

µ̂Xn({ν ∈M1(R+) : ν([0, ε)) ≤ δ}) = 0.

As {ν ∈M1(R+) : ν([0, 2ε]) < δ
2} is open in M1(R+), Lemma 4.13, we again

conclude by the Portmanteau-Theorem,

µ̂X ({ν ∈M1(R+) : ν([0, 4ε)) ≤ δ

4
})

≤ µ̂X ({ν ∈M1(R+) : ν([0, 2ε]) <
δ

2
})

≤ lim sup
n→∞

µ̂Xn({ν ∈M1(R+) : ν([0, 2ε]) <
δ

2
})

≤ lim sup
n→∞

µ̂Xn({ν ∈M1(R+) : ν([0, ε)) ≤ δ}) = 0.

Remark 2.40. Note that by Theorem 2.18 the condition (a) in Proposition
2.37 can be replaced by {wX : X ∈ Γ} is tight.

Corollary 2.41. A set Γ ⊂ Mc is relatively compact in the Gromov-weak
topology on Mc if

(a) the set Γ is relatively compact in M,

(b) for all ε > 0, supX∈Γ ξε(X ) <∞.

Proof. By Proposition 2.37, it suffices to show that for all ε > 0 there is
δ > 0 such that the set

{µ̂X ({ν ∈M1(R+) : ν([0, ε)) ≤ δ}) : X ∈ Γ}

has only accumulation point 0. The proof is by contradiction. Assume there
is ε > 0 such that for all δ > 0 there are Xn = (Xn, rn, µn) ∈ Γ, such that

lim sup
n→∞

µn({x ∈ Xn : µn(Bε(x)) ≤ δ}) > 0. (∗)

By assumption, for all n ∈ N, there is N ∈ N such that ξε/2(Xn) ≤ N <∞.
Hence, there are points xn1 , . . . , xnN ∈ Xn such that



Chapter 2. The space of metric measure spaces 27

(a) 0 < µn(Bε/2(xn1 )) ≤ · · · ≤ µn(Bε/2(xnN )) ≤ 1,

(b) supp(µn) =
⋃N
i=1Bε/2(xni ).

By (∗) we find that

0 < lim sup
n→∞

µn({x ∈ Xn : µn(Bε(x)) ≤ δ})

≤ lim sup
n→∞

n∑
i=1

µn({x ∈ Bε/2(xni ) : µn(Bε(x)) ≤ δ}).

Therefore, there is in ∈ {1, . . . , N} such that

lim sup
n→∞

µn({x ∈ Bε/2(xnin) : µn(Bε(x)) ≤ δ}) =: η > 0. (∗∗)

Furthermore, for x ∈ {x ∈ Bε/2(xnin) : µn(Bε(x)) ≤ δ} we have since
Bε/2(xnin) ⊂ Bε(x) that 0 < µn(Bε/2(xnin)) ≤ µn(Bε(x)) ≤ δ. With (a)

we find 0 < µn(Bε/2(xn1 )) ≤ δ and finally

0 < η ≤ lim sup
n→∞

µn(Bε/2(xn1 )) ≤ δ.

Note that the latter is independent of δ. Hence, there follows a contradiction
with δ < η and we are done.

Remark 2.42. By the definition of ξε, Definition 2.29, and Corollary 2.41,
note that for (Xn)n∈N and X ∈ M with Xn

n→∞−−−→ X in M we have that
Xn

n→∞−−−→ X in Mc if for all ε > 0 there is Nε ∈ N such that

lim sup
n→∞

(πN+1)∗ν
Xn(BN+1

ε ) = 0.

Remark 2.43 (Original version of Corollary 2.41). The original result for
relative compactness in Mc from [GPW10, Proposition 6.1] reads as follows.

A set Γ ⊂Mc is relatively compact in the Gromov-weak topology on Mc

if the following two conditions are satisfied.

(a) The set {wX : X ∈ Γ} is tight in M1(R+).

(b) For all ε > 0 there is Nε ∈ N such that for all X ∈ Γ and (X, r, µ) ∈ X ,
(supp(µ), r) can be covered by Nε open balls of radius ε.
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Example 2.44. Consider the metric measure spaces defined by

Xn := ({0, 1, . . . , n}, reucl, Bin(n,
1

n2
)),

where reucl is the euclidean metric andBin denotes the binomial distribution.
Since (Xn)n∈N converges Gromov-weakly to X := (N, reucl, δ0), as n → ∞,
the set Γ = {Xn : n ∈ N} is relatively compact in Mc. But (b) in Corollary
2.41 clearly does not hold.

Taking the limit n→∞, the mass concentrates in zero, therefore, for all
ε > 0 we can choose δ > 0 small enough such that

0 /∈ {k ∈ {0, . . . , n} : Bin(n,
1

n2
)(Bε(k)) ≤ δ},

i.e.

lim sup
n→∞

µ({x ∈ X : µ(Bε(x)) ≤ δ}) = 0.

Open questions on relative compactness in Mc. It turned out to be
hard to give a more handy characterization of relative compactness inMc. As
indicated in the above example, the limit procedure was hardly transferred
to a subset of Mc.

We supposed a characterization for relative compactness of a subset Γ ⊂
Mc in, for all ε > 0,

sup
X∈Γ

µ({x : µ(Bε(x)) ≤ δ}) δ→0−−−→ 0.

The sequence defined by Xn := ({0, n}, reucl, (1 − 1
n)δ0 + 1

nδn) converges
Gromov-weakly to X := ({0}, reucl, δ0), as n → ∞, but does not satisfy the
above condition.

In addition, we considered a modification of the modulus of mass distri-
bution as mentioned in Remark 2.34,

ṽδ(X ) := inf{ε > 0 : µ({x ∈ X : µ(Bε(x)) ≤ δ}) = 0}.

We supposed a connection between relative compactness of Γ ⊂ Mc and
the condition supX∈Γ ṽδ

δ→0−−−→ 0. The following sequence gives a counter-
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example.

X1 := ({1}, reucl, δ1),

X2 := ({1, 2}, reucl,
1

2
δ1 +

1

2
δ2),

X3 := ({1, 2, 3}, reucl,
1

2
δ1 +

1

4
δ2 +

1

4
δ3),

. . .

that is, the »new« point n ∈ Xn gets half of the mass of n − 1 ∈ Xn−1.
Clearly, Xn converges in the Gromov-weak topology to (N, reucl,

∑
n≥1

1
2n δn),

as n→∞, but the above condition does not hold.

2.3 Tightness in M1(M) and M1(Mc)

This section applies to tightness in the space of probability measures on the
Borel-σ-algebra of M and Mc. Greven et al. extended the characterization of
relative compactness inM to characterize tightness in M1(M) with respect to
the Gromov-weak topology, [GPW09, Proposition 8.1]. Following the same
idea, we give a criterion for tightness in the subspace M1(Mc).

Proposition 2.45 (Characterization of tightness in M1(M)). A family A ⊂
M1(M) is tight with respect to the Gromov-weak topology on M if and only
if for all ε > 0 there is δ > 0 and C > 0 such that

sup
P∈A

P[vδ(X ) + wX ([C,∞))] < ε. (2.5)

Proof. Assume first, that A ⊂ M1(M) is tight and fix ε > 0. Then, there
exists a compact subset Γ = Γ( ε4) of M such that infP∈A P(Γ) > 1− ε

4 . Since
Γ is compact, by Theorem 2.18, there exists C( ε4) > 0 and δ( ε4) > 0 such
that

sup
X∈Γ

wX ([C,∞)) <
ε

4
,

sup
X∈Γ

vδ(X ) <
ε

4
.

Hence, for all P ∈ A we have

P[vδ(X ) + wX ([C,∞))]

= P[(vδ(X ) + wX ([C,∞))) · 1Γ] + P[(vδ(X ) + wX ([C,∞))) · 1Γc ]

≤ ε

2
+
ε

2
= ε.
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Now assume (2.5) is true and fix ε > 0. By assumption, for ε2n := (2−nε)2

there is δn > 0 and Cn > 0 such that

sup
P∈A

P[vδn(X ) + wX ([Cn,∞))] < ε2n.

By Chebyshev’s inequality, Lemma 4.8, for all n ∈ N, we get

sup
P∈A

P{X ∈M : vδn(X ) + wX ([Cn,∞)) ≥ εn} < εn.

Now set

Γε :=
∞⋂
n=1

{X ∈M : vδn(X ) + wX ([Cn,∞)) < εn}.

By Theorem 2.18, Γε is compact with respect to the Gromov-weak topology.
We conclude for all P ∈ A by

P(Γε) ≥ P(Γε) = 1− P(Γcε)

≥ 1−
∑
n∈N

P{X ∈M : vδn(X ) + wX ([Cn,∞)) ≥ 2−nε}

≥ 1−
∑
n∈N

2−nε

≥ 1− ε.

Lemma 2.46. Condition (2.5) in Proposition 2.45 is equivalent to the fol-
lowing two conditions.

(a) The family {P[wX ] : P ∈ A} is tight inM1(R+).

(b) For all ε > 0 there is δ > 0 such that supP∈A P[vδ(X )] < ε.

The latter is also equivalent to

(b’) For all ε > 0 there is δ > 0 such that

sup
P∈A

P[µ({x : µ(Bε(x)) ≤ δ})] < ε.

Proof. (2.5)⇒ (a), (b). Since vδ ≥ 0 and wX ≥ 0, it follows (a) with

P[wX ([C,∞))] ≤ P[vδ(X )] + P[wX ([C,∞))] < ε

and analogous it follows (b).
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(a), (b) ⇒ (2.5). Let ε > 0. Then we have δ > 0 and C > 0 such that
supP∈A P[wX ([C,∞))] < ε

2 and supP∈A P[vδ(X )] < ε
2 .

For the latter equivalence we use Chebyshev’s inequality, Lemma 4.8.
Let P[vδ(X )] < ε2. Then, it follows that P(vδ(X ) < ε) ≥ 1 − ε. Since for
X = (X, r, µ), vδ(X ) < ε implies that µ({x ∈ X : µ(Bε(x)) ≤ δ}) < ε,
it follows P(µ({x ∈ X : µ(Bε(x)) ≤ δ}) < ε) ≥ 1 − ε. Hence, again by
Chebyshev’s inequality, P[µ({x : µ(Bε(x)) ≤ δ})] < ε2.

Recall the map ξε, ε > 0, from Lemma 2.30. The following condition is
sufficient for a subset of M1(Mc) to be tight.

Proposition 2.47 (Criterion for tightness in M1(Mc)). A set A ⊂M1(Mc)

is tight if it is tight in M1(M) and for all ε > 0 there exists Nε ∈ N such that

sup
P∈A

P{X ∈Mc : ξε(X ) > Nε} < ε. (2.6)

Proof. The proof is easy if we follow the idea given in the proof of the
characterization of tightness in M1(M), Proposition 2.45. For fixed ε > 0

we define εn := 2−n(ε/2) and by using the assumption a set

ΓMc
ε :=

∞⋂
n=1

{X ∈Mc : ξεn(X ) ≤ Nεn}.

We are done by taking intersection with the set given in the proof of Propo-
sition 2.45.

Remark 2.48. Note that condition (2.6) in Proposition 2.47 is equivalent to
the condition that for all ε > 0, the set of distributions of ξε(X ), such that
there is ν ∈ A with X is distributed by ν, is tight.

Remark 2.49 (Open question). It turned out to be hard to characterize the
compact sets inMc, see the last paragraph in Section 2.2. Hence, the problem
extends to find a characterization of tightness in M1(Mc).
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CHAPTER 3

Λ-coalescents and Λ-coalescent measure trees

This chapter deals with the notion of Λ-coalescent. The first three sections
give a review over the theory and prepare Section 3.4, where we give a
characterization of a Λ-coalescent to come down from infinity by using an
assigned metric measure space, the Λ-coalescent measure tree.

By definition, the Λ-coalescent comes down from infinity if it consists only
of finitely many lines at any positive time. Indeed, we show in Theorem 3.36
that the coalescent comes down from infinity if and only if the corresponding
metric measure space, if it exists, is compact. Moreover, if the coalescent
stays infinite, then the corresponding metric measure space is not even locally
compact.

We start by setting the basic fundament considering exchangeable ran-
dom partitions of the natural numbers in Section 3.1. Theorem 3.5 is King-
man’s representation which characterizes random partitions. In Section 3.2,
we define the Λ-coalescent as a partition-valued stochastic process and show
existence and uniqueness in Theorem 3.10. Some important properties about
blocks consisting only of one element are collected in Corollary 3.13. Finally,
Section 3.3 gives a review over some criteria of a Λ-coalescent to come down
from infinity. Mainly, we show in Theorem 3.22 a characterization due to
Schweinsberg.

33
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3.1 Exchangeable random partitions

In this section we give a brief summary of the theory of exchangeable ran-
dom partitions, which is elementary for coalescent theory. The theory is
mainly due to Kingman. We show Kingman’s representation, Theorem 3.5,
an analogue of de Finetti’s Theorem for exchangeable random partitions. In
addition, we have as a corollary Kingman’s correspondence, Corollary 3.8,
which permits to think of a random partition as a discrete object, taking
values in the set S of partitions of N, or alternatively as a continuous object,
taking values in the set defined by

S := {f = (f0, f1, f2, . . . ) ∈ (0, 1)N : f1 ≥ f2 ≥ . . . ,
∑
i≥0

fi = 1}.

We follow primarily [Pit05], [Pit99] and [Ber09].

We fix some vocabulary and notations. A partition of a set A is a collec-
tion P = {πi, i ∈ I} of pairwise disjoint subsets of A, also called blocks, with
A =

⋃
i∈I πi. We call a block consisting only of one element a singleton block .

Let S be the set of all partitions of N, and for all n ∈ N, let Sn be the finite
set of all partitions of [n] := {1, 2, 3, . . . , n}. In addition, let ρn : S→ Sn and
for m ≥ n, ρmn : Sm → Sn be the restriction operators.

We equip Sn with the discrete topology. Each P ∈ S can be identified
with the sequence (ρ1P, ρ2P, . . . ) in S1 × S2 × · · · . Now, we give S the
topology it inherits as a subset of S1 × S2 × · · · . Therefore, S is compact
as a product of compact sets. Furthermore, S is metrizable by the complete
metric dS given by

dS(P1,P2) := (max{n : ρnP1 = ρnP2})−1.

Equipped with this metric S is a Polish space.

Each partition P ∈ S defines an equivalence relation ∼P on N by i ∼P j
if and only if there exists a partition element π ∈ P with i, j ∈ π. Given a
block π ⊂ N, we define, if it exists, the asymptotic frequency of π by

f(π) := lim
n→∞

1

n
#{k ∈ {1, . . . , n} : k ∈ π}.

For instance, consider the blocks of N consisting either of odd or even num-
bers. Then the frequencies are both equal to 1/2.
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We turn toward the definition of exchangeable random partitions and
remark that each permutation σ of [n] operates on a subset π ⊂ [n] by

σπ := {σ(i) : i ∈ π}.

Hence, we have an operation on partitions P(n) = (π1, π2, . . . ) of [n] if we
define

σP(n) := (σπ1, σπ2, . . . ).

Definition 3.1 (Exchangeable random partition). A random partition Π(n)

of [n] := {1, . . . , n} is a random element of Sn. It is called exchangeable if
for all permutations σ of [n], σΠ(n) has the same distribution as Π(n). A
random partition Π of N is called exchangeable if Π(n), the restriction of Π

to [n], is exchangeable for all n ∈ N.

Remark 3.2 (Equivalent definition). The following definition of exchangeable
random partitions is equivalent to Definition 3.1. A random partition Π(n)

of [n] := {1, . . . , n} is called exchangeable if for each partition {π1, . . . , πk}
of [n],

P(Π(n) = {π1, . . . , πk}) = p(#π1, . . . ,#πk)

for some symmetric function p : Cn → [0, 1], where Cn denotes the set of
all compositions of n. This function is called the exchangeable partition
probability function, [Pit99].

Example 3.3. We consider a random bond percolation (clusters in a ran-
dom graph) on Zd. Firstly, we arbitrarily enumerate all vertices of Zd by
(v1, v2, . . . ). Then let i, j ∈ N be in the same block of Π(ω) iff vi and vj

are in the same connected component in a realization ω of the bond perco-
lation. The resulting random partition is not exchangeable. On the other
hand, take some i.i.d. random vertices (V1, V2, . . . ) and let i, j ∈ N be in the
same block iff Vi and Vj are in the same connected component. The second
random partition is exchangeable, [Ber09].

The paintbox construction. The following construction of an exchange-
able random partition is due to Kingman. According to Theorem 3.5, every
exchangeable random partition has the same distribution as one generated
this way.
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We follow [Ber09] and consider the set defined by

S := {f = (f0, f1, f2, . . . ) ∈ (0, 1)N : f1 ≥ f2 ≥ . . . ,
∑
i≥0

fi = 1}.

The coordinate f0 plays a special role, since we do not require f0 ≥ f1.
Take f ∈ S and let U1, U2, . . . be independent uniformly distributed

random variables. We think of a tiling of (0, 1) given by

J0 := (0, f0),

J1 := (f0, f0 + f1),

J2 := (f0 + f1, f0 + f1 + f2)

. . .

That is, each tile Ji has size fi. Clearly we can identify the nth tile with the
nth coordinate of f . Let, for 0 < u < 1,

I(u) := inf{n :

n∑
i=0

fi > u}

be the index of the tile which contains u or rather the index of the corre-
sponding coordinate of f .

We define a random partition Πf = Π by letting i, j ∈ N be in the same
block iff I(Ui) = I(Uj) > 0 or i = j. It is important to note, that if Ui
falls into J0, i.e. in the 0th coordinate of f , then i is guaranteed to form a
singleton block in the partition Π. For this reason, f0 is referred to as the
dust of f . We say, that the partition Π has no dust if s0 = 0, i.e. if Π has
no singletons.

On the other hand, if I(Ui) ≥ 1, then the block containing i is infinitely
large. Moreover, the asymptotic frequencies of this blocks exist and are
strictly positive, see Corollary 3.6. The partition Π is exchangeable, since
(U1, . . . , Un) is for all n ≥ 1 a sequence of exchangeable random variables,
Definition 4.24.

Remark 3.4 (Paintbox principle). Kingman suggests the following mental
picture: Think of real numbers 0 < u < 1 as labeling the colors of the
spectrum. Imagine coloring objects 1, 2, 3, . . . at random by painting ob-
ject i with color I(Ui). If Ui falls into J0, then paint i with a unique new
color. Hence, we obtain a partition into sets of »identically-colored« objects,
[Ald85].
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For f ∈ S, let ρf be the law of a random partition Πf constructed as
above.

Theorem 3.5 (Kingman’s representation). Let Π be an exchangeable ran-
dom partition of N, then there exists a probability distribution µ on B(S)

such that

P(Π ∈ ·) =

∫
S
ρf (·)µ(df).

Proof. Let Π be an exchangeable random partition. We sketch the proof
given in [Ald85] following [Ber09, Theorem 1.1] and define a random map

ϕ : N→ N

i 7→ min{n : i ∼Π n},

i.e. the minimal integer lying in the same block as i.
Take a sequence (Ui)i∈N of independent uniformly distributed random

variables, independent from ϕ, and let Xi := Uϕ(i). The sequence (Xi)i∈N

is exchangeable, Definition 4.24. Hence, by de Finetti’s Theorem, Theorem
4.26, there exists a measure µ, such that, conditionally the exchangeable
σ-algebra, the sequence is i.i.d. with distribution µ. Moreover, we find, that
i, j ∈ N are in the same block iff Xi = Xj .

We denote by F the distribution function of µ. In addition, let

q(x) := inf{y ∈ R : F (y) > x},

then we find that (Xi)i∈N has the same distribution as (q(Vi))i∈N, where
(Vi)i∈N is a sequence of independent uniformly on [0, 1] distributed random
variables.

We find that Π has distribution ρf , where f = (f0, f1, f2, . . . ) ∈ S and
(f1, f2, . . . ) gives an ordered listing of the atoms of µ and f0 := 1−

∑
i≥1 fi.

Corollary 3.6 (Asymptotic frequencies). Let Π be an exchangeable random
partition of N and let (Kn,i, i ≥ 1) be the decreasing rearrangement of block
sizes of Π(n), with Kn,i = 0 if Π(n) has fewer than i blocks, where Π(n)

denotes the restriction of Π to [n]. Then for each i ≥ 1, the frequency
fi := limn→∞

1
nKn,i exists almost surely.
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Proof. We follow the notation as given in the proof of Theorem 3.5. Since
by the Glivenko-Cantelli Theorem, Theorem 4.28, the empirical distributions
Fn of the first n values of the sequence given by

Fn(x) :=
1

n

n∑
i=1

1Xi≤x

are converging uniformly almost surely to F , we find that 1
nKn,i, the ith

largest atom of Fn, has almost sure limit fi, the ith largest atom of F ,
[Pit05, Theorem 2.2] and [Ald85].

Note that by Theorem 3.5, for any exchangeable random partition, the
only finite blocks are the singletons, identified with f0. Overwise, the block
is infinite and has by Corollary 3.6 well-defined, strictly positive frequency
fi, i ≥ 1.

Definition 3.7 (Proper frequencies of a partition). A random partition Π

corresponding to f = (f0, f1, f2, . . . ) ∈ S has proper frequencies if∑
i≥1

fi = 1, i.e. f0 = 0.

To summarize, there is a one to one correspondence between exchange-
able random partitions and the set S.

Corollary 3.8 (Kingman’s correspondence). There is a one to one cor-
respondence between the law of exchangeable random partitions Π and the
distributions µ on B(S).

3.2 The Λ-coalescent

In this section we introduce the coalescent process with multiple but no si-
multaneous collisions. The main part here is Theorem 3.10, which gives a
characterization of this process by a finite measure Λ on B([0, 1]). It is due
to Pitman and principally motivated the name Λ-coalescent for this kind of
processes. Moreover, we prove some properties of this process in Corollary
3.11 and Corollary 3.13. Finally, we give a quick view over a possible con-
struction of a Λ-coalescent by a Poisson point process as given in [Pit99]
and consider a Lévy process interpretation as motivated from Berestycki in
[Ber09].
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Recall from Section 3.1 the Polish space S of partitions of N. In addition,
let ρn : S → Sn and ρmn : Sm → Sn be the restriction operators. Each
partition P ∈ S defines an equivalence relation ∼P on N by i ∼P j if and
only if there exists a block π ∈ P with i, j ∈ π.

We are looking for an S-valued Markov process Π = (Πt, t ≥ 0) such that
for all n ∈ N, the restriction Π(n) = ρnΠ is an Sn-valued Markov process,
exchangeable for any t ≥ 0 and consistent in the sense that for all 1 ≤ m ≤ n,
the law of Π(n) restricted to [m] is that of Π(m). The dynamic of the process
is as follows. When Π

(n)
t has b blocks, any fixed k-tuple of blocks of Π

(n)
t

merges to form a single block at rate λb,k, for some array of nonnegative real
numbers (λb,k : 2 ≤ k ≤ b < ∞). We call such an array (λb,k) consistent if
the corresponding process is consistent.

Lemma 3.9 (Characterization of consistent arrays). An array of rates (λb,k)

is consistent iff for all 2 ≤ k ≤ b <∞,

λb,k = λb+1,k + λb+1,k+1.

Proof. It suffices to consider the case m = n − 1, i.e. we consider Π(n) and
Π(n−1). Given k blocks among b there are two ways for a Markovian process
to coalesce when revealed an extra block b+1. Either these k blocks coalesce
among themselves without the extra block, or they coalesce with it.

The following theorem from [Pit99, Theorem 1] ensures that such a pro-
cess Π as desired exists.

Theorem 3.10 (Λ-coalescent). Let (λb,k : 2 ≤ k ≤ b < ∞) be an array of
nonnegative real numbers. Then there exists a S-valued process Π as described
above if and only if there is a nonnegative finite measure Λ on B([0, 1]) such
that

λb,k =

∫ 1

0
xk−2(1− x)b−kΛ(dx). (3.1)

Since the measure Λ uniquely determines the law of the process Π, we call
Π = (Πt, t ≥ 0) a Λ-coalescent . In addition, let PΛ,P0 be the law of Π with
Π0 = P0 on the space of càdlàg paths with the Skorohod topology. Normally,
we start in the trivial partition P0 = {{1}, {2}, {3}, . . . } of singletons.



40 3.2. The Λ-coalescent

Proof of Theorem 3.10. The necessity follows since equation (3.1) gives a bi-
jection between consistent arrays and nonnegative finite measures on B([0, 1]):
If we define for i, j = 0, 1, 2, . . . ,

µi,j := λi+j+2,i+2,

then by Lemma 3.9, we have consistency iff for i, j = 0, 1, 2, . . . ,

µi,j = µi+1,j + µi,j+1.

By Theorem 4.27, a version of de Finetti’s Theorem for an infinite sequence
of exchangeable random variables taking only values 0 and 1, this yields to

µ0,0 = 1,

µi,j =

∫ 1

0
xi(1− x)jΛ(dx)

for some nonnegative finite measure Λ on B([0, 1]).

For sufficiency, assume (3.1) holds. Then by Lemma 3.9, it follows easily
by linearity of the integral, that the array of rates is consistent. Then,
the process Π(n) can be constructed following [Kin82b] by an application of
the Kolmogorov consistency Theorem, Theorem 4.31. Finally, the desired
process Π is obtained by letting Πt be the unique partition whose restriction
to [n] is Π

(n)
t for every n ∈ N.

Corollary 3.11 (Exchangeability of the Λ-coalescent). For a nonnegative
finite measure Λ on B([0, 1]) in a Λ-coalescent the partition Πt is for each
t ≥ 0 an exchangeable random partition of N.

Proof. This is an immediate consequence of the form of the rates of Π(n). If
σ is a permutation of [n], the process σΠ(n) whose blocks are the σ-image of
the blocks of Π(n) is a copy of Π(n), [Pit99, Section 3.2].

The next Corollary 3.13 will be frequently used in Section 3.4. We con-
sider for π ⊂ N, the block size Kn,π := #{k ∈ {1, . . . , n} : k ∈ π}. As above
in Section 3.1 the family {f̃(π) : π ∈ Πt} of frequencies

f̃(π) := lim
n→∞

1

n
Kn,π
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exists PΛ,P0-almost surely. We define f := (f1, f2, ...) to be the ranked
rearrangement of the family {f̃(π) : π ∈ Πt}. In addition, let

(Πt)
j := {k ∈ N : k ∼Πt j}

denote the partition element of Πt containing j. Recall the notion of dust
and of proper frequencies from Section 3.1 and Definition 3.7.

Definition 3.12 (Properties of Λ-coalescent). Let Π = (Πt)t≥0 be a Λ-
coalescent corresponding to f = (f0, f1, f2, . . . ) ∈ S.

(a) The Λ-coalescent Π has the dust-free property if for all t > 0,

PΛ,P0{f̃((Πt)
1) = 0} = 0.

(b) The Λ-coalescent has proper frequencies if Πt has proper frequencies
for all t > 0, almost surely.

(c) The Λ-coalescent Π comes down form infinity if P(N(t) <∞) = 1 for
all t > 0. It stays infinite if P(N(t) =∞) = 1 for all t > 0.

Note, that the dust-free property means, that, by exchangeability, the
Λ-coalescent has for all times t > 0 no singleton blocks, PΛ,P0-almost surely.

Corollary 3.13 (Dust-free). The total collision rate λ(i)
b of the block contain-

ing i ∈ N with any other blocks among b is bounded above by
∫ 1

0 x
−1Λ(dx).

Moreover, if the Λ-coalescent has infinitely many blocks, then

lim
b→∞

λ
(i)
b =

∫ 1

0
x−1Λ(dx).

Furthermore, the following conditions are equivalent.

(a) The dust-free property holds.

(b) The Λ-coalescent has proper frequencies.

(c)
∫ 1

0 x
−1Λ(dx) =∞.
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Proof. The first assertion is easily proven by the following calculation.

λ
(i)
b =

b∑
k=2

(
b− 1

k − 1

)
λb,k =

b∑
k=2

∫ 1

0

(
b− 1

k − 1

)
xk−2(1− x)b−kΛ(dx)

=

∫ 1

0
x−1

b∑
k=1

(
b− 1

k − 1

)
xk−1(1− x)(b−1)−(k−1) − (1− x)b−1Λ(dx)

=

∫ 1

0
x−1

(
(x+ (1− x))b−1 − (1− x)b−1

)
Λ(dx)

=

∫ 1

0
x−1

(
1− (1− x)b−1

)
Λ(dx).

If there are infinitely many blocks, we find by monotone convergence,

lim
b→∞

λ
(i)
b =

∫ 1

0
x−1Λ(dx).

Recall from the definition of proper frequencies, Definition 3.7, and from the
comment above this corollary, that (a) and (b) mean the same, namely that
there are no singleton blocks.

To prove the equivalence of (c), assume first that the integral is finite.
Since this is an upper bound for λ(i)

b , we may have only finitely many colli-
sions and therefore a strictly positive probability for a singleton block. Con-
versely, assume (c) holds. IfN(t) := #Πt =∞ then infinitely many collisions
have occurred, since the total collision rate is infinite. If N(t) <∞ then by
exchangeability, we have neither finite nor singleton blocks.

Remark 3.14 (Classification of Λ-coalescents). Note, that there is a clas-
sification of the Λ-coalescents into (at least) three classes. The class of
Λ-coalescents coming down from infinity and the larger class of processes
having the dust-free property.

Λ-coalescents

Dust-free, proper frequencies

Coming down from infinity
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Example 3.15.

(a) For Λ = δ0 the rates are given by λb,k = 0 except for k = 2, in which
case λb,k = 1. Thus, the corresponding Λ-coalescent is the Kingman’s
coalescent , in which each pair of blocks merges at rate 1 but no multiple
collisions are allowed.

(b) For Λ = δ1 the rates are λb,k = 0 expect of k = b, in which case
λb,k = 1. Thus, nothing happens for an exponential distributed time
with parameter 1, then all blocks coalesce.

(c) For Λ = U([0, 1]), the uniform distribution, we find that

λb,k =
(k − 2)!(b− k)!

(b− 1)!

and hence the Λ-coalescent is the Bolthausen-Sznitman coalescent . The
Bolthausen-Sznitman coalescent firstly appeared in connection to the
physics of spin glasses. A spin glass is a magnet with a special geo-
metrical property of the crystal structure (frustration), where usually
ferromagnetic and antiferromagnetic bonds are randomly distributed.
Moreover, the Bolthausen-Sznitman coalescent has applications in cer-
tain combinatorial models of branching Brownian motion, [BBS10],
random trees and random traveling waves, [Ber09].

(d) Let 0 < α < 2. For Λ = Beta(2− α, α), i.e.

Λ(dx) :=
1

Γ(2− α)Γ(α)
x1−α(1− x)α−1dx,

the Λ-coalescent is called the Beta-coalescent with parameter α. The
Beta-coalescent has applications in the genealogy of populations mainly
with large variation in the offspring distribution. Moreover, the Beta-
coalescent is some kind of interpolation between the Kingman’s coa-
lescent and the Bolthausen-Sznitman coalescent. Indeed, if α = 1, the
Beta-coalescent is just the Bolthausen-Sznitman coalescent. If α→ 2,
then the Beta-coalescent converges in distribution to the Kingman’s
coalescent with respect to the Skorohod topology, [Ber09].
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Poissonian construction. In the following we describe a construction of
the Λ-coalescent as given by Pitman in [Pit99, above Corollary 3]. We have
to assume, that Λ has no atom at 0, otherwise see Example 3.16.

Take a sequence ξ = (ξi)i∈N of independent Bernoulli distributed random
variables governed by Px with Px(ξi = 1) = x. In addition, letN be a Poisson
point process on R+ × {0, 1}N with intensity dt⊗ ν(dξ), where

ν(A) :=

∫ 1

0
x−2Px(A)Λ(dx),

for A ⊂ {0, 1}N product measurable. Recall that a Poisson point process N
is a σ-finite kernel N with independent increments, i.e. for all B1, . . . , Bn ⊂
R+ × {0, 1}N disjoint and measurable, N(B1), . . . , N(Bn) are independent
and for B ⊂ R+ × {0, 1}N, N(B) is Poisson distributed.

For all n ∈ N, it is now possible to construct a Markov process Π(n). For
this, take any partition P ∈ S and set Π

(n)
0 := ρnP.

We get the desired dynamic of Π(n) as follows. The process jumps at
times t of points (t, ξ) of N such that

∑n
i=1 ξi ≥ 2. By the construction of the

intensity measure, this set is discrete. For such t, if Π
(n)
t− = {π1, . . . , πn}, then

Π
(n)
t is defined by merging all blocks πi such that ξi = 1, i.e. Px(ξi = 1) = x

is the probability of one block to take part in the merging.
Interpreting this way, the intensity measure ν leads directly to the rates

(λb,k). By a fix success probability x, the probability that k blocks among b
merge and b− k blocks stay untouched is given by

Px(ξ1 = 1, . . . , ξk = 1, ξk+1 = 0, . . . , ξb = 0) = xk(1− x)b−k.

Note, that the consistency of the joint distributions is guaranteed by the
independence of (ξi). Moreover, by the construction of the intensity, Π(n) is
Markovian. Then, define Π by letting Π(n) be the restriction to [n].

Example 3.16.

(a) Let Λ have an atom at 0 with Λ({0}) := θ. Then, decomposing Λ into

Λ = θδ0 + Λ̃,

where Λ̃ has no atom at 0, the dynamic of the Λ-coalescent is described
by a Poisson point process with intensity dt⊗ ν̃(dξ) given by

ν̃ =

∫ 1

0
x−2PxΛ̃(dx)
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added the dynamic of a Kingman’s coalescent, i.e. every pair of blocks
merges at rate θ.

(b) Let Λ have an atom at 1 with Λ({1}) := θ. Then, we define

Λ̃ := Λ− θδ1.

For the Λ̃-coalescent Π and an independent with parameter θ expo-
nential distributed time T , we consider the coalescent process defined
by

Π′t :=

Πt, if t < T

{N}, if t ≥ T
.

Then, Π′ is a Λ-coalescent, [Pit99, Example 20].

Lévy process interpretation. For completeness we propose the following
interpretation of Theorem 3.10 and the above Poissonian construction as
given by Berestycki in [Ber09].

Firstly, we define an operation ◦ on S which turns (S, ◦) into a monoid.
Let P = {π1, π2, . . . } and P ′ be two partitions of N. Then, if i, j ∈ N are in
the same block of P ′, πi and πj are subsets of a single block of P ◦ P ′, i.e.
we merge (»coagulate«) all blocks of P whose labels are in the same block
of P ′.

We regard a Λ-coalescent Π as a Lévy-process in the monoid (S, ◦) in the
sense that for every t, s ≥ 0,

Πt+s = Πt ◦Πs.

Recall that a Lévy-process is a (normally real-valued) process X with in-
dependent and stationary increments. The most common examples are the
Brownian motion and the Poisson process. A fundamental result about Lévy-
processes is the Lévy-Itô decomposition, i.e. any Lévy-process is the sum of
a Brownian motion, a deterministic drift and compensated Poisson jumps.

For every Lévy-process, there is a measure ν ′, the Lévy measure, such
that the process makes a jump of size x at rate ν ′(dx). We naively write

ν ′(dx) = rate : Xt → Xt + x.
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The state space of a Lévy-process can be extended to be a group G. The
three most interesting cases are locally compact Abelian groups, Lie groups
and general locally compact groups. In the first case there exists an ana-
logue Lévy-Itô decomposition, since the Fourier analysis approach to prove
the decomposition is possible to be extended, [Hey77, Section 5.6]. In the
nonabelian cases, there are still some important results. We refer to [Hun56]
and [App04] for more information.

The case where the state space is a monoid such as S does not seem
to be well studied. Nevertheless, we assume that a Λ-coalescent process
interpreted as a Lévy-process on the monoid S also can be described by a
measure ν ′ on the space S, such that the process makes a jump of size P at
rate ν ′(dP). We write as above

ν ′(dP) = rate : Πt → Πt ◦ P.

Thus, the Poissonian construction can be seen as some kind of Lévy-Itô
decomposition for a Λ-coalescent.

Next, we have to consider the following random partition Px. Given
x ∈ (0, 1), the integer i ∈ N takes part into one special block by success
of a Bernoulli distribution with parameter x, else we get a singleton. We
consider P ◦ Px for any P ∈ S. For every block in P we toss a coin with
success probability x, then we merge all the blocks that come success. Hence,
we find for the rate λb,k of a k-tuple to merge among b blocks

λb,k :=

∫ 1

0
xk(1− x)b−kν ′(dx).

In the end, we assume that the rate at which at least two blocks among n
merge is finite. Hence, we have∫ 1

0

(
n

2

)
x2ν ′(dx) <∞.

This yields to a finite measure Λ by letting ν ′(dx) =: x−2Λ(dx). We find
Theorem 3.10.

3.3 Criteria for coming down from infinity

It is natural to ask if a random partition or a Λ-coalescent has finitely or
infinitely many blocks. In this section we focus on the question if a given Λ-
coalescent comes down from infinity or not, Definition 3.12. The first results
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about this are due to Pitman and we start with a quick introduction to these.
Then, the main part of this section is Theorem 3.22. It is from the PhD thesis
of Schweinsberg and gives a well and more manageable characterization of
Λ-coalescent coming down from infinity.

Let Λ be a finite measure on B([0, 1]) and Π = (Πt)t≥0 be a Λ-coalescent
as defined in Section 3.2. In addition, we set N(t) := #Πt, the number of
blocks in the partition Πt.

We recall the definition of a Λ-coalescent coming down from infinity from
Definition 3.12.

Definition 3.17. Let Π be a Λ-coalescent and N(t) := #Πt.

(a) The Λ-coalescent comes down form infinity if P(N(t) <∞) = 1 for all
t > 0.

(b) The Λ-coalescent stays infinite if P(N(t) =∞) = 1 for all t > 0.

Example 3.18.

(a) As we will see later in Example 3.24, for Λ = δ0 or Λ = U([0, 1]),
respectively, the Kingman’s coalescent comes down form infinity and
the Bolthausen-Sznitman coalescent stays infinite.

(b) Assume Λ has an atom at 0, i.e. Λ({0}) := θ. Moreover, let NΛ(t) de-
note the number of blocks in the Λ-coalescent and Nθδ0(t) the number
of blocks in the θδ0-coalescent, i.e. a Kingman’s coalescent. Then, we
find for all t ≥ 0 that NΛ(t) ≤ Nθδ0(t). Hence, the Λ-coalescent comes
down from infinity. See also Example 3.16 or the later Corollary 3.25.

(c) Assume Λ has an atom at 1. Then, corresponding to Example 3.15
(b), all blocks coalesce in finite time, i.e. the Λ-coalescent comes down
from infinity. Note that [Pit99, Example 20] gives a description of a
Λ-coalescent in which Λ has an atom at 1 in terms of a coalescent with
the atom at 1 removed, Example 3.16.

Thanks to the above examples, we always can assume that Λ has no
atoms at 0 or 1. Moreover, Pitman shows in [Pit99, Proposition 23] that,
if Λ ∈ Mf ([0, 1]) has no atom at 1, then the Λ-coalescent Π either comes
down from infinity or stays infinite for all times, almost surely.
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Proposition 3.19. Assume Λ does not have an atom at 1. Then the Λ-
coalescent Π either comes down from infinity or stays infinite for all times,
almost surely.

In order to prove this result, we have to recall [Pit99, Theorem 4].

Theorem 3.20. Let Π be a Λ-coalescent, i, j ∈ N in distinct blocks of Π0

and τi,j the collision time of i and j. If the event {N(τi,j−) = ∞} has
strictly positive probability, then given this event a random variable Xi,j with
distribution Λ is recovered as the almost sure relative frequency of blocks of
Πτi,j− which merge at time τi,j to form the block containing both i and j.

Proof of Proposition 3.19. Let

T := inf{t : N(t) <∞}.

We argue by contradiction, therefore, assume that

P(0 < T <∞) > 0.

Then, we find on {0 < T < ∞} that N(T ) < ∞ a.s. In addition, by the
definition of T , we have N(T−) = ∞ a.s. Hence, T is a collision time. By
Theorem 3.20, we recover a random variable XT as the almost sure relative
frequency of blocks of ΠT− which merge at time T . Then, by assumption on
Λ,

P(XT = 1) = Λ({1}) = 0.

But, since T is the time coming down from infinity, there merge infinitely
many blocks and just finitely many blocks are left over. Hence, the frequency
is 1, almost surely, i.e. P(XT = 1) = 1. A contradiction.

Proposition 3.21. The Λ-coalescent stays infinite if
∫ 1

0 x
−1Λ(dx) <∞.

Proof. By Corollary 3.13, the rate at which a given block takes part in a
merger is finite by assumption. Hence, there are singletons which have never
taken part in a merger. By exchangeability, the Λ-coalescent stays infinite.
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Recall from Section 3.2, Theorem 3.10, that the rate λb,k at which a k-
tuple of blocks, given b blocks, is merging to form a single block, is given
by

λb,k =

∫ 1

0
xk−2(1− x)b−kΛ(dx).

We define

γb :=
b∑

k=2

(k − 1)

(
b

k

)
λb,k,

which is the rate at which the number of blocks is decreasing because merging
k blocks into one decreases the number of blocks by k − 1, i.e.

P[N(t+ dt) | N(t) = b] = b− γbdt.

In addition, let

ηb :=
b∑

k=2

k

(
b

k

)
λb,k.

In [Sch00b, Theorem 1] we have the following characterization for a Λ-
coalescent to come down from infinity.

Theorem 3.22 (Coming down from infinity). The Λ-coalescent comes down
from infinity if and only if

∞∑
b=2

γ−1
b <∞. (3.2)

We give a detailed proof of Theorem 3.22 following the original proof of
Schweinsberg later in this section mainly in Proposition 3.29 and Proposition
3.31. Firstly, we have a look at some corollaries and examples.

Corollary 3.23. The Λ-coalescent comes down from infinity if and only if

∞∑
b=2

η−1
b <∞.

Roughly speaking, the Λ-coalescent stays infinite whenever the ηb don’t
grow too rapidly as b → ∞, to be more precise, whenever ηb don’t grow
faster than O(b).
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Proof. Following [Sch00b, Corollary 2], since for all k ≥ 2 we have that
1 ≤ k/(k − 1) ≤ 2, we find that for all b ≥ 2,

(2γb)
−1 ≤ η−1

b ≤ γ
−1
b .

By Theorem 3.22, we are done.

Example 3.24.

(a) The Kingman’s coalescent has rates λb,k = 1 for k = 2 and λb,k = 0

otherwise. Therefore, we have γb =
(
b
2

)
and

∑∞
b=2 γ

−1
b =

(
b
2

)−1
= 1.

So, the Kingman’s coalescent comes down from infinity.

This result is surprising, since in a Kingman’s coalescent only two
blocks are allowed to coalesce. Imagine a coalescent in which many
more blocks merge at once, one may think that this coalescent should
also come down from infinity. But this is not true in general. Indeed,
the Kingman’s coalescent is the one in which coalescence is strongest
in the sense that among all Λ with Λ([0, 1]) = 1 we have for all ε > 0

and for all t sufficiently small,

NΛ(t) ≥ 2

t
(1− ε),

almost surely, where 2/t is the speed of coming down from infinity for
the Kingman’s coalescent, i.e.

lim
t→0

N(t)

2/t
= 1,

almost surely. See also Remark 3.32.

(b) By Example 3.15, the rates of the Bolthausen-Sznitman coalescent are
given by

λb,k =
(k − 2)!(b− k)!

(b− 1)!
.

Hence, we find γb =
∑b

k=2
b
k . Since b ln b ≥ γb, we have to show that∑

b≥2 1/(b ln b) =∞. Note, that∑
b≥2

1/(b ln b) ≥
∫
x≥2

1/(x lnx)dx =

∫
d

dx
ln lnxdx.

As ln lnx
x→∞−−−→∞, we are done.
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Corollary 3.25. Let Λ1,Λ2 be in M1([0, 1]) such that for all x ∈ [0, 1],

Λ1([0, x]) ≥ Λ2([0, x]).

If the Λ1-coalescent stays infinite, then the Λ2-coalescent stays infinite. If the
Λ2-coalescent comes down from infinity, then the Λ1-coalescent comes down
from infinity.

Proof. We just give a sketch, for more details see [Sch00b, Lemma 10].
Let η(1)

b be the rate for the Λ1-coalescent as defined above and let η(2)
b be the

rate for the Λ2-coalescent, respectively. Then it follows from the assumption
that η(1)

b ≥ η
(2)
b . We conclude by Corollary 3.23.

Now, let for 0 < a < b ≤ 1, Λ[a,b] denote the restriction of Λ to [a, b].

Lemma 3.26. Let a > 0. If the Λ[0,a]-coalescent stays infinite, then the
Λ-coalescent stays infinite.

Proof. We follow [Sch00b, Lemma 8] and consider the Poisson constructions
of the Λ-coalescent Π, the Λ[0,a]-coalescent Π[0,a] and the Λ(a,1]-coalescent
Π(a,1], respectively, as described in Section 3.2. Since the total rate at which
merges are occurring converges to the second moment of the corresponding
measure, Corollary 3.13, the holding time of the initial state has an expo-
nential distribution with parameter

∫ 1
0 x
−2Λ(a,1](dx), [Pit99, Section 2.1]. In

addition, we have∫ 1

0
x−2Λ(a,1](dx) ≤ a−2Λ(a,1]([0, 1]) <∞.

Therefore, there is p ∈ (0, 1], such that P(Πt = Π[0,a],t) ≥ p. By assumption,
the Λ[0,a]-coalescent stays infinite. Hence, we find #Πt =∞ with probability
at least p. It follows that the Λ-coalescent also stays infinite.

Corollary 3.27.

(a) If there is ε > 0 and M <∞ such that for all δ ∈ [0, ε] we have

Λ([0, δ]) ≤Mδ,

then the Λ-coalescent stays infinite.
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(b) If there is ε > 0, M > 0 and α > 0 such that for all δ ∈ [0, ε] we have

Λ([0, δ]) ≥Mδα,

then the Λ-coalescent comes down from infinity.

Proof. The proof is from [Sch00b, Proposition 11, 13].

(a) Let Λ[0,ε] be the restriction of Λ to [0, ε]. By Lemma 3.26, it suffices
to show that the Λ[0,ε]-coalescent stays infinite. By Example 3.24, for
the uniform distribution, the U([0, 1])-coalescent stays infinite. Since
multiplying U with a constant M leads to multiplying each γb by M ,
the MU([0, 1])-coalescent also stays infinite. Then, for all x ∈ [0, 1],

Λ[0,ε]([0, x]) ≤Mx = MU([0, 1])([0, x]).

We conclude by Corollary 3.25.

(b) By Corollary 3.25, we assume without loss of generality that

Λ([0, δ]) = Mδα.

Therefore, we have a Radon-Nikodym derivative Mαxα−1 of Λ with
respect to the Lebesgue measure which makes it possible to find for all
b ≥ 2 a lower bound Cb2−α, C > 0, for ηb. Hence,

∑
b≥2 η

−1
b < ∞, so

the Λ-coalescent comes down from infinity.

Example 3.28.

(a) For 0 < y < 1 let Λ := δy. Take ε := y
2 . Then, we find for all

δ ∈ [0, ε] that Λ([0, δ]) = δ2ε([0, δ]) = 0 ≤ δ. By Proposition 3.27 (a),
the Λ-coalescent stays infinite.

(b) Consider the Beta-coalescent as defined in Example 3.15. If α < 0, then
the coalescent has singletons for all times, therefore it stays infinite.
If α = 1, we find the Bolthausen-Sznitman coalescent, which stays
infinite but has no dust. For α > 1, the coalescent comes down from
infinity. Finally, if α→ 2, we find the Kingman’s coalescent, [Ber09].
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Proof of Theorem 3.22. We turn toward the proof of Theorem 3.22. For
the necessity of equation (A.3), we define the stopping time

Tn := inf{t : #Π
(n)
t = 1}.

Then, we naturally find that 0 = T1 < T2 ≤ · · · ≤ T∞ ≤ ∞, [Pit99]. In
addition, the Λ-coalescent comes down from infinity iff T∞ < ∞, moreover,
iff P[T∞] <∞, [Sch00b, Proposition 5]. Since (P[Tn])n≥1 ↑ P[T∞] we find by
monotone convergence, Proposition 4.9, that the Λ-coalescent comes down
from infinity iff (P[Tn])n≥1 is bounded.

In addition, we define for N (n)(t) := #Π
(n)
t stopping times R0 := 0 and

for i ≥ 1,

Ri : =

inf{t : N (n)(t) < N (n)(Ri−1)}, if N (n)(Ri−1) > 1

Ri−1, if N (n)(Ri−1) = 1
.

That is the time at which Π(n) decreases about at least one block. Let
Ji := N (n)(Ri−1)−N (n)(Ri) be the decrease of N at this collision.

Proposition 3.29. If
∑∞

b=2 γ
−1
b < ∞, then the Λ-coalescent comes down

from infinity.

Proof. By the above comment, it suffices to show that (P[Tn])n≥1 is bounded.
We follow [Sch00b, Lemma 6] and define Li := Ri −Ri−i. Then, we find on
the set {N (n)(Ri−1) > 1} that

P[Li | N (n)(Ri−1)] = λ−1
N(n)(Ri−1)

,

where

λb :=
b∑

k=2

(
b

k

)
λb,k

is the total rate at which mergers are occurring. Moreover, on the same set
we have

P[Ji | N (n)(Ri−1)] = γN(n)(Ri−1)λ
−1
N(n)(Ri−1)

,

since

P(Ji = k − 1 | N (n)(Ri−1) = b) =

(
b

k

)
λb,k
λk

.
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It follows, that

P[Tn] = P[Rn−1] =

n−1∑
i=1

P[Li] =

n−1∑
i=1

P
[
P[Li | N (n)(Ri−1)]

]
=

n−1∑
i=1

P[λ−1
N(n)(Ri−1)

1{N(n)(Ri−1)>1}]

=
n−1∑
i=1

P
[
γ−1
N(n)(Ri−1)

P[Ji | N (n)(Ri−1)]1{N(n)(Ri−1)>1}

]
=

n−1∑
i=1

P
[
P[γ−1

N(n)(Ri−1)
Ji1{N(n)(Ri−1)>1} | N

(n)(Ri−1)]
]
.

Note that Ji = 0 on the set {N (n)(Ri−1) = 1}. Hence, we find

P[Tn] =
n−1∑
i=1

P
[
P[γ−1

N(n)(Ri−1)
Ji | N (n)(Ri−1)]

]
=

n−1∑
i=1

P[γ−1
N(n)(Ri−1)

Ji] = P[
n−1∑
i=1

γ−1
N(n)(Ri−1)

Ji]

= P[
n−1∑
i=1

Ji−1∑
j=0

γ−1
N(n)(Ri−1)

].

(3.3)

Finally, since the sequence (γb)b≥2 is increasing, [Sch00b, Lemma 3], we
conclude

P[Tn] ≤ P[

n−1∑
i=1

Ji−1∑
j=0

γ−1
N(n)(Ri−1)−j ] = P[

n∑
b=2

γ−1
b ]

<

n∑
b=2

γ−1
b .

By assumption,
∑∞

b=2 γ
−1
b < ∞. Hence, (P[Tn])n≥1 is bounded and we are

done.

Now, we turn toward the sufficiency in Theorem 3.22, which is Proposi-
tion 3.31.

Lemma 3.30. Let Λ be concentrated on [0, 1/2]. If
∑∞

b=2 γ
−1
b = ∞, then

the Λ-coalescent stays infinite.
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Proof. By the comment at the beginning of this paragraph, it suffices to
show that P[T∞] =∞. We follow [Sch00b, Lemma 7] and define for n, l ∈ N,

Dl : = {2l−1 + 1 ≤ N (n)(t) ≤ 2l, for some t},

K : = inf{i : N (n)(Ri−1) ≤ 2l}.

Note, that we suppress n at the lefthand side of the above definitions.
By considering the total rate of all collisions that would take the Λ-

coalescent given n blocks down to 2l or fewer blocks and the total rate of
all collisions that would take the coalescent down to between 2l−1 + 1 and
2l blocks and some calculation, see [Sch00b, Lemma 7] for a more detailed
analysis, we find,

P(Dl | N (n)(K − 1)) ≥ 1

2
.

In addition, for n = 2m, m ∈ N and j ∈ {2, . . . , n}, we define

Ln(j) := min{s ≥ j : N (n)(t) = s, for some t}.

If N (n)(Ri−1) ≥ j ≥ N (n)(Ri), we find Ln(j) = N (n)(Ri−1). Hence, by using
equation (3.3) from the proof of Proposition 3.29, it follows

P[Tn] =
n−1∑
i=1

P[γ−1
N(n)(Ri−1)

Ji] =
n∑
j=2

P[γ−1
Ln(j)]

=
m∑
l=1

2l∑
j=2l−1+1

P[γ−1
Ln(j)].

Since (γb)b≥2 is increasing, [Sch00b, Lemma 3], and if j ≤ 2l then Ln(j) ≤
2l+1 on Dl+1, we find

P[Tn] ≥
m−1∑
l=1

2l∑
j=2l−1+1

P[γ−1
Ln(j)] ≥

m−1∑
l=1

2l∑
j=2l−1+1

P(Dl+1)γ−1
2l+1

≥
m−1∑
l=1

2l−1 · 1

2
· γ−1

2l+1 ≥
1

8

m−1∑
l=1

2l+1γ−1
2l+1 .

Finally, since the sequence (Tn)n≥1 is monotonically increasing,

lim
n→∞

P[Tn] = lim
m→∞

P[T2m ] ≥ lim
m→∞

1

8

m−1∑
l=1

2l+1γ−1
2l+1

≥ 1

8

∑
l≥4

γ−1
l .



56 3.3. Criteria for coming down from infinity

By assumption,
∑

b≥2 γ
−1
b =∞. Hence, P[T∞] =∞.

Proposition 3.31. If
∑∞

b=2 γ
−1
b =∞, then the Λ-coalescent stays infinite.

Proof. The proof follows [Sch00b, Lemma 9].
Let γb,[0,1/2] be the analogous quantity for the Λ[0,1/2]-coalescent. Then,
clearly, for all b ≥ 2,γb,[0,1/2] ≤ γb. Hence,

∑
b≥2(γb,[0,1/2])

−1 = ∞. By
Lemma 3.30, the Λ[0,1/2]-coalescent stays infinite. We conclude by using
Lemma 3.26.

Remark 3.32. There are several more remarkable results on coming down
from infinity. One result worth mentioning is the following characterization
of coming down from infinity due to Berestycki, [Ber09, Theorem 4.9]. Define

ψ(q) =

∫ 1

0
(e−qx − 1 + qx)x−2Λ(dx),

then the Λ-coalescent comes down from infinity iff for some t > 0,∫ ∞
t

ψ(q)−1dq <∞.

Note that if the integral is finite for same t > 0 it is finite for all t > 0.
Therefore, we define

u(t) :=

∫ ∞
t

ψ(q)−1dq

and its cádlág inverse

v(t) := inf{s > 0 :

∫ ∞
s

ψ(q)−1dq < t}.

The second result we want to mention here is the following on the speed of
coming down from infinity from [BL10, Theorem 1], i.e.

lim
t→0

N(t)

v(t)
= 1 a.s.,

where N(t) is the number of blocks in a coalescent at time t. For instance,
we have for the Kingman’s coalescent, v(t) = 2/t.
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3.4 Coming down from infinity and compactness

In this section we put together Chapter 2 with what we have seen so far in
this chapter. Our goal is to give another characterization of a Λ-coalescent
to come down from infinity by identifying the process with an element in M,
the Λ-coalescent measure tree. First, we have to ensure the existence of such
a space in Theorem 3.33 which is due to Greven et al. Then the main part
here is Theorem 3.36.

Let Π = (Πt : t ≥ 0) be a Λ-coalescent. Then for all initial partitions
P ∈ S and PΛ,P -almost all sample paths of Π, there is a metric dΠ on N
defined by

dΠ(i, j) := inf{t ≥ 0 : i ∼P j}.

That is the time needed for i and j to coalesce. It is clear that dΠ is an ultra
metric. We denote by (LΠ, dΠ) the completion of (N, dΠ). The extension of
dΠ to LΠ is also an ultra-metric. Since ultra-metric spaces are associated
with tree-like structures, [GPW10, Remark 2.2], we call the metric space
(LΠ, dΠ) equipped with a »uniform distribution« the Λ-coalescent measure
tree. In order to equip (LΠ, dΠ) with this probability measure, we use in
the following a limit procedure. In [GPW09], there is a characterization of
existence and uniqueness of the Λ-coalescent measure tree.

Define Hn to be the map which takes a realization of the Λ-coalescent
and maps it to a metric measure space as follows,

Hn : Π 7→ (LΠ, dΠ, µΠ
n :=

1

n

n∑
i=1

δi).

Moreover, define for given P0 ∈ S the distribution of Hn by

QΛ,n := (Hn)∗PΛ,P0 .

Recall from Definition 3.12, the notion of the dust-free property.

Theorem 3.33 (The Λ-coalescent measure tree). The family {QΛ,n : n ∈ N}
converges in the weak topology with respect to the Gromov-weak topology if
and only if the dust-free property,

PΛ,P0{∀j ∈ N : f̃((Πt)
j) = 0} = 0,

holds.
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Proof. By Proposition 2.45 and Remark 2.46, we have to show that the
family {QΛ,n[wX ] : n ∈ N} is tight and that for all ε > 0 there is δ > 0 such
that supn∈NQΛ,n[µ{x : µ(Bε(x)) ≤ δ}] < ε.

By definition, for all n ∈ N, QΛ,n[wX ] is exponentially distributed with
parameter λ2,2. Hence, the family is tight. For the latter, by the uniform
distribution and exchangeability, we get

QΛ,n[µ{x : µ(Bε(x)) ≤ δ}]

= PΛ,P0 [
1

n

n∑
i=1

µΠ
n {x ∈ LΠ : µΠ

n (Bε(x)) ≤ δ | x = i}]

= PΛ,P0 [µΠ
n {x ∈ LΠ : µΠ

n (Bε(x)) ≤ δ | x = 1}]

= PΛ,P0 [µΠ
n (Bε(1)) ≤ δ].

By de Finetti’s Theorem, Theorem 4.26, µΠ
n (Bε(1))

n→∞−−−→ f̃((Πε)
1). Hence,

lim
δ→0

lim
n→∞

QΛ,n[µ{x : µ(Bε(x)) ≤ δ}] = lim
δ→0

PΛ,P0 [f̃((Πε)
1) ≤ δ]

= PΛ,P0 [f̃((Πε)
1) = 0].

Remark 3.34 (Open question). We attempted to extend this criterion to the
subspace of compact metric measure spaces Mc to find a characterization of
a compact limit object. But as we discuss in the paragraph at the end of
Section 2.2, it was hard to give a well characterization of relative compactness
in Mc. See also Remark 2.49.

Recall from Corollary 3.13, the different equivalent assumptions on a
Λ-coalescent to have the dust-free property.

Example 3.35.

(a) For the Kingman’s coalescent, i.e. Λ = δ0, we have
∫ 1

0 x
−1Λ(dx) =∫ 1

0 x
−1δ0(dx) =∞. Therefore, the Kingman’s coalescent measure tree

exists.

(b) If Λ = U([0, 1]), the uniform distribution, the Λ-coalescent is the
Bolthausen-Sznitman coalescent. Since∫ 1

0
x−1Λ(dx) =

∫ 1

0
x−1U([0, 1])(dx) =∞,

the Bolthausen-Sznitman coalescent measure tree exists.
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(c) The Beta-coalescent as defined in Example 3.15 and considered in Ex-
ample 3.28 has singletons iff α < 1. Therefore the corresponding metric
measure tree exists iff α ≥ 1.

(d) Let Λ = δ1. Then
∫ 1

0 x
−1Λ(dx) =

∫ 1
0 x
−1δ1(dx) = 1. Hence, a corre-

sponding metric measure space does not exist.

Compactness-characterization of a Λ-coalescent. As we see in Sec-
tion 3.3, Proposition 3.21, the Λ-coalescent stays infinite if∫ 1

0
x−1Λ(dx) <∞.

Conversely, we show in Corollary 3.13 that the dust-free property and hence
the existence of the Λ-coalescent measure tree is equivalent to∫ 1

0
x−1Λ(dx) =∞.

Therefore, we look for a quality of the Λ-coalescent measure tree to de-
cide if the corresponding Λ-coalescent comes down from infinity or not. For
the Kingman’s coalescent, which is known to come down from infinity, the
Kingman’s coalescent measure tree is compact, [Eva00]. The Bolthausen-
Sznitman coalescent has infinitely many partitions for all times, therefore,
the corresponding metric measure space is not compact.

We show that a Λ-coalescent comes down from infinity if and only if the
corresponding metric measure space is compact. The idea is not new but we
give here a detailed proof. Moreover, we show that if the Λ-coalescent stays
infinite, then the corresponding metric measure space is not even locally
compact.

For a Λ-coalescent Π = (Πt)t≥0, we denote the corresponding Λ-coalescent
measure tree by L = LΠ = (LΠ, dΠ, µΠ) ∈ M. As usual, let N(t) := #Πt

denote the number of blocks in the partition Πt.

Theorem 3.36 (Characterization of Λ-coalescent).

(a) The Λ-coalescent comes down from infinity if and only if the corre-
sponding metric measure space is compact.

(b) If the Λ-coalescent stays infinite, then the corresponding metric mea-
sure space is not even locally compact.
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Proof. (a) Assume first, that the Λ-coalescent comes down from infinity.
Using Corollary 2.33, it suffices to show that for all ε > 0, ξε(L) <∞,
almost surely. Since ξε(L) ≤ N(ε) <∞ by assumption, we are done.

We prove the converse by contradiction. Hence, assume L is compact
and Π stays infinite for some time ε > 0. Recall from Theorem 3.33,
that the Λ-coalescent measure tree exists iff the dust-free property,

PΛ,P0{∀j ∈ N : f̃((Πt)
j) > 0} = 1,

holds. Hence, it follows that

µ̂X ({ν ∈M1(R+) : ν([0, ε)) ≤ δ}) > 0.

Since L is compact, we have by Corollary 2.33, that there is a random
∆ > 0 with

µ̂X ({ν ∈M1(R+) : ν([0, ε)) ≤ ∆}) = 0,

almost surely. In particular, there is δ > 0, such that

µ̂X (ν([0, ε)) ≤ ∆) = 0

with positive probability. A contradiction.

(b) By Corollary 3.13, the total collision rate of the block containing 1 and
any other blocks is infinite. Let 0 < ε < δ and take the ball with radius
δ around 1 in LΠ. Considering the times between ε and δ, there are
infinitely many lines coalesce to the line containing 1. Hence, there is
a infinite ε-separated set in Bδ(1). It follows that

νL({R : ξε(τδ(R)) <∞}) = 0,

almost surely. So, for any sequence 0 < εn < δn with δn
n→∞−−−→ 0, we

have

νL(
⋂

0<ε<δn

{R : ξε(τδn(R)) <∞}) ≤ νL({R : ξεn(τδn(R)) <∞}) = 0,

almost surely. We conclude by Theorem 2.36.



CHAPTER 4

Foundations

In the last chapter we summarize well known vocabulary and results on
metric topology, probability and measure theory. In Section 4.2, we discuss
the space of (isometry classes of) compact metric spaces. There is a lot of
fitting literature and most statements are known from the first two or three
courses in probability theory. But we seek completeness and self-containment
of this work, hence we prove most results we have directly referred to in
several situations throughout the different chapters.

4.1 Metric spaces

In this section we recall some vocabulary on (ultra) metrics and their in-
duced topology. The characterization of the compact set of a metric spaces,
Proposition 4.1, is frequently used throughout this work, [Rin75], [SJAS78]
or [Lim04].

A metric space is a set X together with a positive definite symmetric
map d : X ×X → R and such that the triangle inequality holds, i.e. for all
x, y, z ∈ X, we have

(a) d(x, y) ≥ 0 and d(x, y) = 0 iff x = y,

(b) d(x, y) = d(y, x),

61
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(c) d(x, z) ≤ d(x, y) + d(y, z).

The map d is called a metric on X. The metric d is called an ultra metric,
if it satisfies the strong triangle inequality , i.e. for all x, y, z ∈ X,

d(x, z) ≤ d(x, y) ∨ d(y, z),

where p ∨ q := max{p, q}.
We define by

Br(x) := {y ∈ X : d(x, y) < r}

the open ball of radius r with center x and by B̄r(x) := {y ∈ X : d(x, y) ≤ r}
the closed ball. The diameter of a nonempty subset A ⊂ X is defined by

diam(A) := sup{d(x, y) : x, y ∈ A}.

The set A is bounded if diam(A) <∞. The distance between two nonempty
subsets A,B ⊂ X is dist(A,B) := inf{d(a, b) : a ∈ A, b ∈ B}. In addition,
the distance between a point x ∈ X and a nonempty subset A ⊂ X is defined
by dist(x,A) := dist({x}, A).

A sequence (xn)n∈N is called a Cauchy-sequence if for any ε > 0 there
exists an n0 such that d(xn, xm) < ε for all n,m ≥ n0. A metric d is called
complete if every Cauchy sequence converges. By an abuse of notation, we
often say, that the metric space is complete. A point x ∈ X is called an
accumulation point of a set if in every neighborhood of x there are infinitely
many points of the set.

A metric d induces a topology on X as follows: A set U ⊂ X is open iff
for every point x ∈ U there is an ε > 0 such that Bε(x) ⊂ U . For A ⊂ X the
closure Ā of A is the intersection of all closed sets containing A. Analogue,
we define the interior Å of A as the union of all open sets included in A.
The metric space X is separable if there exists a countable subset A ⊂ X

dense in X, where dense means, that every point in X can be approximated
arbitrarily close by a sequence in A. We call (X, d) Polish if X is separable
and complete.

A subset A ⊂ X is compact if any open covering of A has a finite sub-
covering. Moreover, A is locally compact if every point in A has a compact
neighborhood. A is called relatively compact if the closure Ā is compact.
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Moreover, we call A totally bounded if for any ε > 0, A can be covered by
Nε open balls of radius ε. For ε > 0, a set S ⊂ X is called an ε-net for X
if dist(x, S) ≤ ε for every x ∈ X. Indeed, X is totally bounded if for any
ε > 0, there is a finite ε-net in X. A subset S ⊂ X is called ε-separated if
d(x, y) ≥ ε for any two different points x, y ∈ S. A maximal ε-separated set
is an ε-net.

Proposition 4.1 (Compactness characterization for metric spaces). Let
(X, d) be a metric space. Then the following is equivalent.

(a) X is compact.

(b) Any sequence in X has a converging subsequence.

(c) X is complete and totally bounded.

Proof. (a) ⇒ (b). Let (xn)n≥1 be a sequence in X. The proof is by con-
tradiction. Hence, assume (xn)n≥1 has no accumulation point. Then there
is for all y ∈ X a neighborhood Uy of y which contains finitely many xn.
Since X is compact, the covering (Uy)y∈X has a finite subcovering (Uy)y∈Y ,
Y ⊂ X finite. Moreover, X =

⋃
y∈Y Uy contains only finitely many xn. A

contradiction.

(b) ⇒ (c). To get completeness, consider a Cauchy-sequence, then by
assumption, there is a converging subsequence. Hence, the Cauchy-sequence
is convergent itself.

The second part is by contradiction. Assume, X is not totally bounded,
then there is ε > 0 such that X can not be covered by finitely many ε-balls.
Therefore, we can construct a sequence (xn)n∈N as follows. Take x1 ∈ X ar-
bitrarily. Given x1, . . . , xn−1 ∈ X, take xn ∈ X, such that xn /∈

⋃n−1
i=1 Bε(xi).

It follows, that for all m 6= n, d(xm, xn) ≥ ε. Hence, (xn)n∈N has no conver-
gent subsequence. A contradiction.

(c) ⇒ (a). Assume X is not compact, then there is a covering U of X
without finite subcovering. Since X is totally bounded, there is a finite set
Y ⊂ X such that X =

⋃
x∈Y B1(x). Therefore, there is x0 ∈ Y , such that

U0 := B1(x0) can not be covered by finitely many sets of U . Moreover,
B1(x0) is also totally bounded. Hence, we find x1 ∈ B1(x0) such that the
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ball U1 := B1/2(x1) can not be covered by finitely many sets of U . Thus, we
find inductively a sequence (xn)n∈N such that xn+1 ∈ B1/2n and such that
Un := B1/2n(xn) can not be covered by finitely many sets of U . In addition,
for m > n,

d(xm, xn) ≤
m−1∑
j=n

d(xj , xj+1) ≤
m−1∑
j=n

1

2j
≤ 1

2n−1
,

i.e. (xn)n∈N is a Cauchy-sequence. By assumption, (xn)nN is converging to
x ∈ X. Since U is a covering of X there is V ∈ U such that x ∈ V . We
take r > 0 such that U := Br(x) ⊂ V and n ∈ N such that

d(xn, x) <
r

2
and

1

2n
<
r

2
.

For y ∈ Un, then

d(x, y) ≤ d(x, xn) + d(xn, y) <
r

2
+

1

2n
< r,

i.e. Un ⊂ U ⊂ V . Note, that {V } ⊂ U is a finite subcovering of Un. A
contradiction.

Proposition 4.2. Let for all n ∈ N, (Xn, rn) be a Polish space. Then
X :=

∏
n∈NXn is Polish with respect to the product topology. In particular,

R(n2)
+ and R(N2)

+ are Polish.

Proof. First note, that the metric on X defined by

r(x, y) :=
∑
n∈N

1

2n
(rn(xn, yn) ∧ 1)

is complete and generates the product topology, where ∧ means the mini-
mum. Moreover, let Yn ⊂ Xn be a countable dense subset. Then the set

Y := {y ∈
∏
n∈N

Yn : yi 6= y′i for finitely many i ∈ N}

is countable and dense in X.

4.2 The space of compact metric spaces

We denote by Xc the space of (isometry classes of) compact metric spaces.
See [BBI01] for more details. For X = (X, rX),Y = (Y, rY ) ∈ Xc the
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Gromov-Hausdorff metric is given by

dGH(X ,Y) := inf
(ϕX ,ϕY ,Z)

d
(Z,rZ)
H (ϕX(X), ϕY (Y )),

where the infimum is taken over all isometric embeddings ϕX and ϕY from
X and Y , respectively, into some common metric spaces (Z, rZ).

The Hausdorff metric for closed subsets A,B of a metric space (Z, rZ) is
given by

d
(Z,rZ)
H (A,B) := inf{ε > 0 : A ⊂ Bε, B ⊂ Aε},

where Aε := {z ∈ Z : rZ(z,A) < ε} and Bε := {z ∈ Z : rZ(z,B) < ε} is the
ε-neighborhood of A and B, respectively.

Definition 4.3 (Correspondence, Distortion).

(a) A correspondence between two metric spaces (X, rX) and (Y, rY ) is a
subset R ⊂ X × Y such that for all x ∈ X, there is at least one y ∈ Y
with (x, y) ∈ R, and for all y′ ∈ Y , there exists at least one x′ ∈ X
with (x′, y′) ∈ R.

(b) The distortion dis(R) of a correspondence R is defined by

dis(R) := sup{| rX(x, x′)− rY (y, y′) | : (x, y), (x′, y′) ∈ R}.

Remark 4.4 (Extension of metrics via relations). Let (X1, rX1) and (X2, rX2)

be two metric spaces and R ⊂ X1 ×X2 a nonempty correspondence. Then
there is a extension to a metric rRX1tX2

on the disjoint union X1tX2 defined
by rRX1tX2

(x1, x2) := rXi(x1, x2) if x1, x2 ∈ Xi, i = 1, 2, and

rRX1tX2
(x1, x2) := inf{rX1(x1, x

′
1) +

1

2
dis(R) + rX2(x2, x

′
2) : (x′1, x

′
2) ∈ R}.

There is a statement analogous to Lemma 2.14, which concerns conver-
gence in the Gromov-Prohorov metric.

Lemma 4.5. Let X = (X, rX),X1 = (X1, rX1),X2 = (X2, rX2), . . . be in
Xc. Then

dGH(Xn,X )
n→∞−−−→ 0,

iff there is a compact metric space (Z, rZ) and isometric embeddings ϕ,ϕ1, ϕ2, . . .

of (X, r), (X1, r1), (X2, r2), . . . , respectively, into (Z, rZ) such that

d
(Z,rZ)
H (ϕn(Xn), ϕ(X))

n→∞−−−→ 0.
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Proof. First note, that there is an equivalent formulation of the Gromov-
Hausdorff metric based on correspondences. Indeed, by [BBI01, Theorem
7.3.25], we have

dGH((X, rX), (Y, rY )) =
1

2
inf
R

dis(R),

where the infimum is taken over all correspondences R between X and Y .
Therefore, if dGH(Xn, X)

n→∞−−−→ 0, we find correspondences Rn between
Xn and X such that dis(R)

n→∞−−−→ 0. We may define recursively metrics
rZn on Zn :=

⊔n
k=0Xk, where

⊔
means the disjoint union, based on this

correspondences. In the limit n → ∞, we obtain a metric space, which
completion is denoted by Z. Since X,X1, X2, . . . are compact, we have for
all ε > 0, finite ε-nets of X,X1, X2, . . . , respectively. Then for well chosen
εn, the union of this nets is a net for Z. Hence, Z is totally bounded, i.e.
compact. The converse it clear by definition, [GPW09, A1].

Lemma 4.6. Let X ,Y ∈ Xc and for ε > 0, SX = (xi)i≤N and SY = (yi)i≤N

be a ε-net for X and Y , respectively. If for all i, j ∈ {1, . . . , N},

| rX(xi, xj)− rY (yi, yj) | < ε,

then

dGH(X ,Y) < 3ε.

Proof. The correspondence {(xi, yi) : i ≤ N} between SX and SY has dis-
tortion less then ε. Hence, we find as in the proof of the last lemma, that

dGH(SX , SY) <
ε

2
.

Moreover, since SX and SY are ε-nets of X and Y , respectively, we have

dGH(X , SX ) ≤ ε and dGH(SY ,Y) ≤ ε.

By the triangle inequality for dGH , we are done, [BBI01, Proposition 7.4.11].

Proposition 4.7 (Criterion for relative compactness in Xc). A set Γ ⊂ Xc
is relatively compact if it is uniformly totally bounded, i.e.

(a) there is D > 0 such that supX∈Γ diam(X) ≤ D,



Chapter 4. Foundations 67

(b) for all ε > 0 there is Nε ∈ N such that every X ∈ Γ can be covered by
at most Nε balls of radius ε.

Proof. We define N(1) := N1 and inductively for k ≥ 2,

N(k) := N(k − 1) +N1/k.

Consider a sequence (Xn)n≥1 in Γ. For each n ∈ N, we define the union Sn
of (1/k)-nets in Xn, such that for every k ∈ N, the first N(k) points of Sn
form a (1/k)-net in Xn. We get Sn = (xi,n)i∈N.

Clearly, we have by assumption, that rXn(xi,n, xj,n) ≤ D, i.e. the dis-
tances belong to a compact interval. Therefore, we can use the Cantor
diagonal procedure to get a subsequence of (Xn)n≥1 in which rXn(xi,n, xj,n)

converges for all i, j ∈ N as n→∞.
We use a new countable space X̄ := (xi)i∈N to construct a limit object

X for our subsequence, which we denote also by (Xn)n≥1. Firstly, we define
a semi-metric rX̄ on X̄ by

rX̄(xi, xj) := lim
n→∞

rXn(xi,n, xj,n).

We define an equivalence relation on X̄ by xi ∼ xj iff rX̄(xi, xj) = 0. Then,
we denote by X the completion of the quotient space X̄/ ∼ with respect to
the induced metric rX̄/∼.

Finally, we have to show, that Xn
n→∞−−−→ X. Consider for all k ∈ N the

(1/k)-net in X given by S(k) = {[xi] : 1 ≤ i ≤ N(k)}. Indeed, each set
S

(k)
n = {xi,n : 1 ≤ i ≤ N(k)} is a (1/k)-net in Xn, respectively. Hence, for

all xi,n ∈ Sn there is j ≤ N(k), such that rXn(xi,n, xj,n) ≤ 1/k. Note, that
for every fixed i ∈ N, N(k) does not depend on n. Thus, there is jk ≤ N(k),
such that rXn(xi,n, xjk,n) ≤ 1/k for infinitely many n ∈ N. In addition, we
find rX([xi], [xjk ]) ≤ 1/k.

To get convergence, note that, S(k)
n

n→∞−−−→ S(k) in the Gromov-Hausdorff
topology. Indeed, by construction, the sets S(k)

n are finite and the distances
are converging. We conclude by Lemma 4.6, since for all k ∈ N we find
n ∈ N, such that dGH(Xn,X ) < 3/k, [BBI01, Theorem 7.4.15].

4.3 Measure and probability theory

In this section we recall some well known definitions and facts about general
measure and probability theory needed in various situations throughout this
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work. See [Kal02], [Dur05], [Bau02], [EK86] or [Els02], [Kle08]. We use a
metric space (E, r) or a (background) measure space (Ω,F , µ). We start
with the well known Chebyshev inequality.

Lemma 4.8 (Markov’s inequality, Chebyshev’s inequality). Let X be a ran-
dom variable and f : R+ → R+ increasing. For all ε > 0 such that f(ε) > 0

we have the Markov inequality, i.e.

P(| X |≥ ε) ≤ P[f(| X |)
f(ε)

.

In particular, for a square-integrable random variable X and f(x) = x2 we
get Chebyshev’s inequality .

Proof. We have

P[f(| X |)] ≥ P[f(| X |)1f(|X|)≥f(ε)] ≥ P[f(ε)1f(|X|)≥f(ε)]

≥ f(ε)P(| X |≥ ε),

[Kle08, Satz 5.11].

Proposition 4.9 (Monotone convergence theorem). Let (fn)n∈N be a se-
quence of measurable functions on (Ω,F , µ) with 0 ≤ fn ↑ f . Then we
have

µ[fn] ↑ µ[f ].

Proof. For each n ∈ N we approximate fn by some simple measurable func-
tions gn,k, i.e. 0 ≤ gn,k ↑ fn. Then the functions hn,k := g1,k∨· · ·∨gn,k, where
∨ denotes the maximum, have the same properties and are nondecreasing in
both indices. Then it follows,

f ≥ lim
k→∞

hk,k ≥ lim
k→∞

hn,k = fn ↑ f.

Hence, 0 ≤ hk,k ↑ f . Furthermore,

µ[f ] = lim
k→∞

µ[hk,k] ≤ lim
k→∞

µ[fk] ≤ µ[f ],

[Kal02, Theorem 1.19].

Lemma 4.10 (Fatou). Let (fn)n∈N be a sequence of nonnegative measurable
functions on (Ω,F , µ). Then we have

µ[lim inf
n→∞

fn] ≤ lim inf
n→∞

µ[fn].
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On weak convergence.

Definition 4.11 (Weak convergence). Let µ, µ1, µ2, . . . ∈M1(E). We say,
that the sequence (µn)n∈N converges weakly to µ if for all f ∈ Cb(E),∫

fdµn
n→∞−−−→

∫
fdµ.

We denote weak convergence in M1(E) by ⇒.

The weak convergence induces the weak topology on M1(E). If E is
separable the weak topology is metrizable by, for example, the Prohorov
metric, Definition 2.11.

The following theorem is used frequently.

Theorem 4.12 (Portmanteau Theorem). Let µ, µ1, µ2, . . . ∈M1(E). Then
it is equivalent.

(a) µn
n→∞
===⇒ µ.

(b) For all U ⊂ E open we have µ(U) ≤ lim infn→∞ µn(U).

(c) For all A ⊂ E closed we have lim supn→∞ µn(A) ≤ µ(A).

(d) For all B ⊂ E measurable with µ(∂B) = 0, where ∂B := B̄ \ B̊, we
have limn→∞ µn(B) = µ(B).

Proof. Assume (a) and let U ⊂ E be open. We consider a continuous func-
tion f such that 0 ≤ f ≤ 1U . Then we find µn[f ] ≤ µn(U) and obtain (b)

if we let n→∞ and then f ↑ 1U . We get the equivalence of (b) and (c) by
taking complements. Now assume (b) and (c) and let B ⊂ E be measurable.
We have

µ(B̊) ≤ lim inf
n→∞

µn(B) ≤ lim sup
n→∞

µn(B) ≤ µ(B̄).

Hence, we find (d), if µ(∂B) = 0.

Next, assume (d) and fix A ⊂ E closed. We consider the ε-neighborhood
Aε := {x ∈ E : r(x,A) ≤ ε}. Then the sets ∂Aε ⊂ {x ∈ E : r(x,A) = ε} are
disjoint and we find µ(∂Aε) = 0. Since µn(A) ≤ µ(Aε), it follows (c) as we
let n→∞ and then ε→ 0.
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Finally, assume (b) and let f ≥ 0 be a continuous function. By Fatou’s
Lemma, Lemma 4.10,

µ[f ] =

∫
R+

µ(f > t)dt ≤
∫
R+

lim inf
n→∞

µn(f > t)dt

≤ lim inf
n→∞

∫
R+

µn(f > t)dt = lim inf
n→∞

µn[f ].

Now take f ∈ Cb(E) with upper bound c <∞. Applying the above to c± f
yields to (a), [Kal02, Theorem 4.25].

Lemma 4.13.

(a) The set A := {ν ∈M1(R+) : ν([0, ε)) ≤ δ} is closed in M1(R+).

(b) The set {ν ∈M1(R+) : ν([0, ε]) < δ} is open in M1(R+).

Proof. For (a), let (νn)n∈N be a sequence in A which converges weakly to
ν ∈ M1(R+) as n → ∞. As [0, ε) ⊂ R+ is open, by the Portmanteau
Theorem, Theorem 4.12, we have

ν([0, ε)) ≤ lim inf
n→∞

µn([0, ε)) ≤ δ.

It follows (b) by similar argument. We omit the details.

Proposition 4.14 (Continuous Mapping Theorem). Let (E1, d1) and (E2, d2)

be two metric spaces, ϕ : E1 → E2 measurable and Uϕ the set consisting of all
points of discontinuity of ϕ. Let µ, µ1, µ2, ... ∈M1(E1) such that µ(Uϕ) = 0.
If µn ⇒ µ then ϕ∗µn ⇒ ϕ∗µ as n→∞.

On tightness and relative compactness in M1(E).

Definition 4.15. A family F ⊂M1(E) is called tight if for all ε > 0 there
is a compact set K ⊂ E such that

inf
µ∈F

µ(K) ≥ 1− ε.

Proposition 4.16 (Tightness and relative compactness, Prohorov). Let E
be Polish and F ⊂ M1(E). Then F is tight if and only if F is relatively
compact in M1(E) with respect to the weak topology.
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Proof. Let (µn)n∈N be a sequence in F . By assumption, there are compact
set K1 ⊂ K2 ⊂ . . . ⊂ E such that

inf
n∈N

µn(Kj) ≥ 1− 1

j
.

For a dense subset {x1, x2, . . . } ⊂ E, we consider the countable semiring
defined by

K :=
{ N⋃
k=1

Kjk ∩ B̄εk(xk) : N, jk ∈ N, εk ∈ Q
}
.

Note, that K is stable under intersections and generates B(E). Since K

is countable, we find a subsequence (µnk)k∈N of (µn)n∈N such that for all
K ∈ K , (µnk(K))k∈N is converging. We define our desired limit object on
the generator K by

µ(K) := lim
k→∞

µnk(K).

Then, by Proposition 4.30, we obtain a measure on B(E). Indeed, µ is a
probability measure, since

1 ≥ µ(E) = sup
j∈N

µ(Kj) = sup
j∈N

lim
k→∞

µnk(Kj) ≥ sup
j∈N

1− 1

j
= 1.

Moreover, for all U ⊂ E open, we have

µ(U) = sup
K∈K ,K⊂U

µ(K) = sup
K∈K ,K⊂U

lim
k→∞

µnk(K) ≤ lim inf
k→∞

µnk(U).

By the Portmanteau Theorem, Theorem 4.12, it follows µnk
k→∞
===⇒ µ.

Conversely, let again {x1, x2, . . . } ⊂ E be dense. If we define

An,N :=

N⋃
i=1

B1/n(xi),

then we have for all n ∈ N, that An,N ↑ E as N →∞. Now let

δ := sup
n∈N

inf
N∈N

sup
µ∈F

µ(Acn,N ).

Then, there is n ∈ N, such that for all N ∈ N there exists µN ∈ F with
µN (Acn,N ) ≥ δ/2. Since F is relatively compact, there is a subsequence
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(µNk)k≥1 of (µN )N≥1 which converges to µ ∈M≤1(E). By the Portmanteau
Theorem, Theorem 4.12, we find for all N ∈ N,

µ(Acn,N ) ≤ lim inf
k→∞

µNk(Acn,N ) ≤ lim inf
k→∞

µNk(Acn,Nk) ≤ δ

2
.

Further, Acn,N ↓ ∅ as N →∞. Hence, µ(Acn,N )
N→∞−−−−→ 0.

Let ε > 0. By the above, for all n ∈ N, there is N ′n ∈ N, such that for all
µ ∈ F ,

µ(Acn,N ′n) < ε/2n.

The set defined by

A :=
∞⋂
n=1

An,N ′n

is totally bounded by construction. Hence, relatively compact. Finally, we
find for all µ ∈ F ,

µ(Āc) ≤ µ(Ac) ≤
∞∑
n=1

µ(An,N ′n) ≤ ε,

i.e. F is tight, [Kle08, Satz 13.29].

On separating classes of functions.

Definition 4.17 (Algebra, separating classes of functions).

(a) A set A ⊂ C(E) is called an algebra if A is a vector space and there
is a bilinear map A ×A → A which is associative and distributive.

(b) A set A ⊂ Cb(E) separates points in E, if for all x.y ∈ E with x 6= y

there is f ∈ A such that f(x) 6= f(y).

(c) A set A ⊂ Cb(E) is separating in M1(E) if for µ, ν ∈ M1(E) with
µ[f ] = ν[f ] for all f ∈ A it follows that µ = ν.

Lemma 4.18. Let A := Cb(E). Then A separates points and is separating
inM1(E).
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Proof. Let x, y ∈ E with x 6= y. Then the function defined by

z 7→ (r(x, z) ∧ 1)

is continuous and bounded. Here ∧ means the minimum. Moreover, the
function separates x and y. Furthermore, let µ, ν ∈ M1(E) with µ 6= ν.
Then there is an open ball B ⊂ E such that µ(B) 6= ν(B). Now, we consider
a sequence (fn)n∈N in Cb(E) such that fn ↑ 1B. We argue by contradiction.
Hence, assume that for all n ∈ N, µ[fn] = ν[fn]. Then

µ(B) = lim
n→∞

µ[fn] = lim
n→∞

ν[fn] = ν(B).

Proposition 4.19 (Stone-Weierstrass). Let E be compact and A ⊂ Cb(E)

an algebra which separates points. Then A is dense in Cb(E) with respect to
the uniform norm ‖ f ‖:= supx∈E f(x).

Proposition 4.20. Let (E, r) be complete and separable and A an algebra
which separates points in E. Then A is separating inM1(E).

Proof. Take µ, ν ∈ M1(E) such that for all f ∈ A , µ[f ] = ν[f ]. Let
g ∈ Cb(E) and ε > 0. Note, that there is a compact set K = Kε ⊂ E such
that µ(K) > 1−ε and ν(K) > 1−ε. Then by Stone-Weierstrass, Proposition
4.19, there exists gε ∈ A such that

sup
x∈K
| g(x)− gε(x) | < ε.

Then by the triangle inequality, it follows

| µ[ge−εg
2
]− ν[ge−εg

2
] |≤ | µ[ge−εg

2
]− µ[ge−εg

2
,K] |

+ | µ[ge−εg
2
,K]− µ[gεe

−εg2ε ,K] |

+ | µ[gεe
−εg2ε ,K]− µ[gεe

−εg2ε ] |

+ | µ[gεe
−εg2ε ]− ν[gεe

−εg2ε ] |

+ | ν[gεe
−εg2ε ]− ν[gεe

−εg2ε ,K] |

+ | ν[gεe
−εg2ε ,K]− ν[ge−εg

2
,K] |

+ | ν[ge−εg
2
,K]− ν[ge−εg

2
] | .
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The four terms of the form |µ[ge−εg
2
]− µ[ge−εg

2
,K]| are bounded above by

|µ[ge−εg
2
]− µ[ge−εg

2
,K]| ≤ sup

x≥0
xe−εx

1√
ε
µ(Kc) ≤ sup

x≥0
xe−εx

√
ε,

since all mass expect of ε is put on K.
The two terms of the form |µ[ge−εg

2
,K] − µ[gεe

−εg2ε ,K]| converge to 0,
since gε approximates g on K. Moreover, the term |µ[gεe

−εg2ε ] − ν[gεe
−εg2ε ]|

is 0 by assumption. Finally, considering the limit ε→ 0, we find

| µ[g]− ν[g] |= lim
ε→0
| µ[ge−εg

2
]− ν[ge−εg

2
] |= 0.

By Lemma 4.18, Cb(E) is separating in M1(E) and we are done, [EK86,
Theorem 4.5].

On semi-continuity. In Section 2.2, Lemma 2.30, we consider a lower
semi-continuous function ξε. For a function f : E → R to be continuous at
a point a ∈ E it is necessary and sufficient that given h < f(a) there is a
neighborhood V of a such that for each b ∈ V , h < f(b) and given k > f(a)

there is a neighborhood W of a such that for each b ∈ V , k > f(b).

Definition 4.21 (Semi-continuity).

(a) A function f : E → R is called lower semi-continuous at a point a ∈ E,
if for each h < f(a) there is a neighborhood V of a such that for all
b ∈ V , h < f(b). A function f is called lower semi-continuous if it is
lower semi-continuous at each a ∈ E.

(b) A function f : E → R is called upper semi-continuous at a point a ∈ E,
if for each k > f(a) there is a neighborhood W of a such that for all
b ∈ W , k > f(b). A function f is called upper semi-continuous if it is
upper semi-continuous at each a ∈ E.

Lemma 4.22 (Characterization of lower semi-continuous functions). Let
f : E → R. Then it is equivalent.

(a) The map f is lower semi-continuous.

(b) For all h ∈ R, the set f−1((−∞, h]) is closed.

(c) For all a ∈ E, lim infx→a f(x) ≥ f(a).
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Proof. For the equivalence of (a) and (b) note that by definition, if f is
lower semi-continuous at a, for each h < f(a), the set f−1((h,∞)) must be
a neighborhood of a.

(a) ⇒ (c). Given any h < f(a), there is a neighborhood V of a such
that for all b ∈ V , h < f(b). Therefore, h ≤ infx∈V f(x) ≤ lim infx→a f(x).
Hence, f(a) ≤ lim infx→a f(x).

(c) ⇒ (a). For each h < f(a), there is a neighborhood V of a such that
h ≤ infx∈V f(x). Hence, f is lower semi-continuous at a, [Bou66, IV 6.2,
Proposition 1, 3].

Lemma 4.23. Let f : E → R be lower semi-continuous. Then f is measur-
able with respect to the Borel-σ-algebra B(E).

Proof. Note that sets of the form (−∞, y] generate the Borel-σ-algebra B(R).
Since {x ∈ E : f(x) ≤ y} = f−1((−∞, y]), f is measurable if the set
{x ∈ E : f(x) ≤ y} is closed. We conclude by Lemma 4.22.

On exchangeability. An important property of a Λ-coalescent process is
the exchangeability for all times. Therefore, we give here the most important
results on exchangeable random variable. Moreover, exchangeable random
parons are discussed is Section 3.1.

Definition 4.24 (Exchangeable random variables). A sequence of random
variables (Xn)n∈N is called exchangeable if for each n and permutation σ of
[n]

(X1, . . . , Xn)
d
= (Xσ(1), . . . , Xσ(n)),

where d
= means equality in distribution.

Definition 4.25 (Exchangeable σ-field). Let En be the σ-field generated by
events that are invariant under permutations that leaves n+ 1, n+ 2, . . . fix.
Then, E :=

⋂
n∈N En is called the exchangeable σ-field.

Theorem 4.26 (de Finetti). If the sequence (Xn)n∈N is exchangeable then
conditional on the exchangeable σ-field E, X1, X2, . . . are independent and
identically distributed.
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Proof. We define

An(ϕ) :=
1

(n)k

∑
i

ϕ(Xi1 , Xi2 , . . . , Xik),

where the sum is over all sequences of distinct integers 1 ≤ i1, . . . , ik ≤ n

and

(n)k := n(n− 1) · · · (n− k + 1)

is the number of such sequences. Since the sequence (Xn)n∈N is exchange-
able, all terms in the following sum are equal. Indeed, we find

An(ϕ) = P[An(ϕ) | En] =
1

(n)k

∑
i

P[ϕ(Xi1 , . . . , Xik) | En]

= P[ϕ(Xi1 , . . . , Xik) | En].

In Addition, En ↓ E . Hence,

An(ϕ) = P[ϕ(Xi1 , . . . , Xik) | En]
n→∞−−−→ P[ϕ(Xi1 , . . . , Xik) | E ].

Now, we consider two bounded functions f and g on Rk−1 and R, respectively.
Then

(n)k−1An(f) · nAn(g) =
∑
i

f(Xi1 , . . . , Xik−1
)
∑
m

g(Xm)

=
∑
i

f(Xi1 , . . . , Xik−1
)g(Xik) +

∑
i

k−1∑
j=1

f(Xi1 , . . . , Xik−1
)g(Xik)

Therefore, if we let

ϕ(x1, . . . , xk) = f(x1, . . . , xk−1)g(xk),

ϕj(x1, . . . , xk) = f(x1, . . . , xk−1)g(xj),

we find

An(ϕ) =
n

n− k + 1
An(f)An(g)− 1

n− k + 1

k−1∑
j=1

An(ϕj).

Then, applying the above to all functions ϕ, f , g and ϕj , we find

P[f(X1, . . . , Xk−1)g(Xk) | E ] = P[f(X1, . . . , Xk−1) | E ] P[g(Xk) | E ].
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We conclude inductively and find

P
[ k∏
j=1

fj(Xj) | E
]

=
k∏
j=1

P
[
fj(Xj) | E

]
,

[Dur05, (6.6)].

Theorem 4.27. Let (Xn)n∈N be a sequence of exchangeable random variables
taking only the values 0 and 1. Then there is a nonnegative finite measure
Λ on B([0, 1]) such that

P(X1 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn = 0) =

∫ 1

0
xk(1− x)n−kΛ(dx).

Proof. Define pk,n := P(X1 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn = 0). Then
we find

pn−1,n = pn−1,n−1 − pn,n,

and recursively

pn−2,n = pn−2,n−1 − pn−1,n,

pk,n = pk,n−1 − pk−1,n.

Finally, the sequence (pn,n)n∈N is nonnegative with p0,0 = 1. Therefore,
there is a nonnegative finite measure Λ with moment sequence (pn,n), [Fel71,
VII.4].

Theorem 4.28 (Glivenko-Cantelli). Let (Xn)n∈N be independent and identi-
cally distributed with distribution F and let Fn(x) := 1

n

∑n
m=1 1Xm≤x. Then

sup
x
| Fn(x)− F (x) | n→∞−−−→ 0 a.s.

Proof. We fix x ∈ R. Since (Xn)n∈N is i.i.d. the same is true for (1Xn<x)n∈N.
Moreover, P[1Xn<x] = P(Xn < x) = F (x−). By the strong law of large
numbers we have

Fn(x−) =
1

n

n∑
m=1

1Xm<x
n→∞−−−→ F (x−) a.s.
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For 1 ≤ j ≤ k − 1 we define xj,k := inf{y : F (y) ≥ j/k}. Note that
(Fn(x))n∈N and (Fn(x−))n∈N are converging pointwise. Therefore, we find
Nk(ω) ∈ N such that for all n ≥ Nk(ω),

| Fn(xj,k)− F (xj,k) |

| Fn(xj,k−)− F (xj,k−) |

 <
1

k
.

The same is true for j = 0, k if we define x0,k := −∞ and xk,k := ∞. For
1 ≤ j ≤ k and n ≥ Nk(ω) let x ∈ (xj−1,k, xj,k). By the monotonicity of Fn
and F and since F (xj,k−)− F (xj−1,k) ≤ 1/k, we have

Fn(x) ≤ Fn(xj,k−) ≤ F (xj,k−) + 1/k ≤ F (xj−1,k) + 2/k ≤ F (x) + 2/k,

Fn(x) ≥ Fn(xj−1,k) ≥ F (xj−1,k)− 1/k ≥ F (xj,k−)− 2/k ≥ F (x)− 2/k,

i.e.

sup
x
| Fn(x)− F (x) | ≤ 2

k
,

[Dur05, (7.4)].

On the existence of stochastic processes.

Definition 4.29 (Consistent measures). A family {PJ : J ⊂ I finite } of
measures is called consistent , if PJ is a probability measure on the product
σ-field F J and if for all H ⊂ J ,

PH = (ϑJH)∗PJ ,

where ϑJH : ΩJ → ΩH is the projection operator.

Proposition 4.30 (Carathéodory 1914). Let µ be a finitely additive and
countably subadditive set function on a semiring H such that µ(∅) = 0.
Then µ extends to a measure on the σ-algebra generated by H .

Proof. See for example [Kal02, Theorem 2.5].

Theorem 4.31 (Kolmogorov consistency theorem). Let (E, r) be Polish and
{PJ : J ⊂ I finite } a consistent family with respect to the Borel-σ-algebra
on E. Then there is a unique probability measure P on B(E)I such that
PJ is the marginal distribution for J ⊂ I finite. Moreover, there exists a
probability space and a stochastic process with state space E and distribution
P.
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Proof. We define CJ := ϑ−1
J (B(E)J) the σ-field of J−cylinder and

C :=
⋃

J⊂I finite

CJ .

Hence, C generates B(E)I . Therefore, if we assume there is such a measure
P, since for C = ϑ−1

J (B) where B ∈ B(E)J we have P(C) = PJ(B), the
measure P is unique.

For existence of P we use Proposition 4.30. We define

PI(C) := PJ(B),

where C = ϑ−1
J (B) and B ∈ B(E)J . By the consistency of the family of

measures, the set function PI is well defined. Then PI is finitely additive
and we have PI(∅) = 0. To get countable subadditivity, it can be shown,
that PI is regular (or alternatively continuous from above). We leave out
the long calculation. Finally, if we let Ω := EI , F := B(E)I , P := PI and
X : Ω → E, ω = (ωt)t∈I 7→ ωt, we find the desired process, [Bau02, 35.3
Satz] or [Dur05, (7,1)].

Definition 4.32 (Projective limit). The probability measure P in the above
theorem is called the projective limit of the family {PJ : J ⊂ I finite }. We
write

PI = lim←−
J⊂I finite

PJ .
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APPENDIX A

Compact metric measure spaces and Λ-coalescents coming

down from infinity

The following includes the essential results of the above theses. This paper is
a joint work with Peter Pfaffelhuber and is submitted to the Latin American
Journal of Probability and Mathematical Statistics, ALEA (2011).

Abstract. We study topological properties of random metric spaces which
arise by Λ-coalescents. These are stochastic processes, which start with
an infinite number of lines and evolve through multiple mergers in an ex-
changeable setting. We show that the resulting Λ-coalescent measure tree is
compact iff the Λ-coalescent comes down from infinity, i.e. only consists of
finitely many lines at any positive time. If the Λ-coalescent stays infinite,
the resulting metric measure space is not even locally compact.

Our results are based on general notions of compact and locally compact
(isometry classes of) metric measure spaces. In particular, we give character-
izations for general (random) metric measure spaces to be (locally) compact
using the Gromov-weak topology.
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A.1 Introduction

Metric structures arise frequently in probability theory. Prominent examples
are random trees (e.g. [Ald85] [EO94], [Gal99], [Ber09]) where the distance
between two points is given by the length of the shortest path connecting
the points. A class of random trees is given by coalescent processes, where
a subset of an infinite number of lines can merge and the distance of two
leaves is proportional to the coalescence time ([Kin82a], [Pit99], [Ald99],
[Sch00b], [Eva00]). The complexity of this class of processes is properly
described by the concepts of Λ-coalescent, where any set of lines can merge
to a single line (a multiple collision, [Pit99]) and Ξ-coalescents, where any
set of lines can merge to several lines at the same time (a simultaneous
multiple collision, [Sch00a]). The resulting metric space has so far mostly
been studied in the simplest case, where only binary mergers are allowed,
the Kingman-coalescent ([Kin00], [EO94]).

Analyzing metric structures requires geometrical and topological foun-
dations. In the context of Riemannian geometry, such foundations have
already been laid by Gromov, summarized in his book ([Gro99], see also
[Ver00], [BBI01]). These authors study convergence of (isometry classes of)
compact metric spaces by the notion of Gromov-Hausdorff convergence. In
addition, Gromov introduced a topology on the space of (isometry classes
of) metric measure spaces (mm-spaces, for short), which are metric spaces
equipped with a measure. We will call this the Gromov-weak topology in
the sequel (see also [GPW09]).

In probability theory, results on weak convergence and stochastic process
theory require that the underlying space is Polish. In addition, a character-
ization of the compact sets is required in order to show tightness. These
concepts have been worked out based on Gromov’s notions by [EPW06] and
[GPW09].

The goal of the present paper is as follows: we concentrate on the spaces
of locally compact and compact mm-spaces and give a characterization of
these (see Theorems A.11 and A.16). In addition, we apply these general
results to random mm-spaces (Λ-coalescent measure trees) which arise in
connection to Λ-coalescents. Recall that Λ-coalescents fall into one of two



Appendix A. Compact metric measure spaces and Λ-coalescents coming down
from infinity 83

categories, depending on Λ. Either a Λ-coalescent comes down from infinity,
meaning that it can be started with an infinite number of lines and only
finitely many are left at any positive time, or it stays infinite for all times
(see [Pit99, Proposition 23]). The proof of the following result is given in
Section A.3.

Theorem A.1 (Coming down from infinity and compactness). Let Λ be a
finite measure on [0, 1] and (Πt)t≥0 the corresponding Λ-coalescent. More-
over, L is the associated Λ-coalescent measure tree, taking values in the space
of mm-spaces. Then the following is equivalent.

(a) (Πt)t≥0 comes down from infinity, i.e. #Πt <∞ almost surely, for all
t > 0.

(b) L is compact, almost surely.

If (a) (or (b)) does not hold, L is not even locally compact.

We proceed as follows: In Section A.2 we develop our general theory on com-
pact and locally compact isometry classes of metric measure spaces. Section
A.3 contains a short introduction to Λ-coalescent measure trees. Finally, the
proof of Theorem A.1 is given in Section A.3. We remark that the applica-
tion of (locally) compact mm-spaces is not restricted to trees. For example,
it is possible to study large random planar maps, as given in [Gal07], or
random Graphs (e.g. the Erdős-Renyi random graph, [ABBG10]), by our
notions.

A.2 Metric measure spaces

We start with some notation. Our main results, the characterization of
compact and locally compact mm-spaces, is given in Theorems A.11 and
A.16.

Remark A.2 (Notation). As usual, given a topological space (X,OX), we de-
note by M1(X) the space of all probability measures on the Borel-σ-algebra
B(X). The support of µ ∈ M1(X), supp(µ), is the smallest closed set
X0 ⊆ X such that µ(X \X0) = 0. The push-forward of µ under a measur-
able map ϕ fromX into another topological space, (Z,OZ), is the probability
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measure ϕ∗µ ∈ M1(Z) defined for all A ∈ B(Z) by ϕ∗µ(A) := µ(ϕ−1(A)).

We denote weak convergence in M1(X) by =⇒.

Definition A.3 (Metric measure and mm-spaces).

(a) A metric measure space is a triple (X, r, µ) such that X ⊆ R and (X, r)

is a complete and separable metric space which is equipped with a
probability measure µ on B(X). We say that (X, r, µ) and (X ′, r′, µ′)

are measure-preserving isometric if there exists an isometry ϕ between
supp(µ) ⊆ X and supp(µ′) ⊆ X ′ such that µ′|supp(µ′) = ϕ∗(µ|supp(µ)).
It is clear that the property of being measure-preserving isometric is
an equivalence relation.

(b) The equivalence class of the metric measure space (X, r, µ) is called the
mm-space of (X, r, µ) and is denoted (X, r, µ). The set of mm-spaces
is denoted M and generic elements are X ,Y, ...

(c) An mm-space X ∈ M is (locally) compact if there is (X, r, µ) ∈ X
such that (X, r) is (locally) compact. The space of (locally) compact
mm-spaces is denoted Mc (Mlc).

Following [GPW09], we equip M with the Gromov-weak topology as follows.

Definition A.4 (Gromov-weak topology). For a metric space (X, r) define

R(X,r) :

XN → R(N2)
+

(xi)i∈N 7→ (r(xi, xj))1≤i<j

the map which sends a sequence of points in X to its distance matrix and
for an mm-space X = (X, r, µ) we define the distance matrix distribution by

νX := (R(X,r))∗µ
⊗N ∈M1(R(N2)

+ ),

where µ⊗N is the infinite product measure of µ, where R(N2)
+ is equipped

with the product σ-field. We say that a sequence X1,X2, ... ∈ M converges
Gromov-weakly to X ∈M if

νXn
n→∞
===⇒ νX .

Note that νX does not depend on the representative (X, r, µ) ∈ X , hence is
well-defined.
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Remark A.5 (When is a random mm-space compact?). Recall from Theorem
1 of [GPW09] that the space M, equipped with the Gromov-weak topology,
is Polish. Hence, M allows to use standard tools from probability, e.g. from
the theory of weak convergence.

In order to show that a random variable taking values in M is supported
by the space of locally compact or compact mm-spaces, there are two strate-
gies, formulated here in the case of compact mm-spaces:

Either, consider the Gromov-weak topology on Mc. Defining an approxi-
mating sequence in Mc and showing that the sequence is tight in Mc ensures
compactness of the limiting object. Note that any mm-space can be approx-
imated by finite (hence compact) mm-spaces, so Mc is not closed in M. So,
this approach amounts to knowing the compact sets in Mc. See Proposition
6.2 of [GPW10] for an example.

Our application to the Λ-coalescent measure tree in Section A.3 relies
on a different approach. It is possible to give handy characterizations of
compact mm-spaces; see Theorem A.11. Hence, if we are given a random
variable taking values in M through a sequence of mm-spaces, it is possible
to check directly if the limiting object is compact.

Definition A.6 (Distance distribution, Moduli of mass distribution). Let

X ∈M. We set r := (rij)1≤i<j ∈ R(N2)
+ .

(a) Let r : R(N2)
+ → R+ be given by r

(
r
)

:= r12. Then, the distance
distribution is given by wX := r∗ν

X , i.e.

wX (·) := νX
{
r : r12 ∈ ·

}
.

(b) For ε > 0, define sε : R(N2)
+ → R+ by

sε
(
r
)

:= lim
n→∞

1

n

n∑
j=1

1{r1j≤ε}

if the limit exists (and zero otherwise). Note that sε(r) exists for νX -
almost all r by exchangeability and de Finetti’s Theorem. For δ > 0,
the moduli of mass distribution are

vδ(X ) := inf{ε > 0 : νX
{
r : sε(r) ≤ δ

}
≤ ε}
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and

ṽδ(X ) := inf{ε > 0 : νX
{
r : sε(r) ≤ δ

}
= 0}.

Example A.7 (Representatives of X ). Let X = (X, r, µ). Without loss of
generality we assume that supp(µ) = X. Since νX = (R(X,r))∗µ

⊗N, we have
that

wX (·) = µ⊗2{(x, y) : r(x, y) ∈ ·}.

Moreover,

νX {r : sε(r) ∈ ·} = µ{x : µ(Bε(x)) ∈ ·} (A.1)

by construction, where Bε(x) is the closed ball of radius ε around x. This
implies that

vδ(X ) ≤ ε ⇐⇒ µ{x : µ(Bε(x)) ≤ δ} ≤ ε.

In particular, vδ(X ) ≤ εmeans, that thin points (in the sense that µ(Bε(x)) ≤
δ) are rare (i.e. carry mass at most ε). Moreover,

ṽδ(X ) ≤ ε ⇐⇒ µ{x : µ(Bε(x)) ≤ δ} = 0.

This means that there are µ-almost surely no points which are too thin (in
the sense that µ(Bε(x)) ≤ δ).

Definition A.8 (Size of ε-separated set). Let r ∈ R(N2)
+ . For ε > 0, define

the maximal size of an ε-separated set by

ξε(r) := sup
{
N ∈ N : ∃k1 < ... < kN : (rki,kj )1≤i<j≤N ∈ (ε,∞)(

N
2 )}.

Lemma A.9 (ξε is constant, νX -almost surely). Let X ∈ N and ε > 0.
Then, ξε is constant, νX -almost surely and equals

ξε(X ) := inf
{
N ∈ N : νX

(
ρ−1
N

(
(ε,∞)(

N
2 )) > 0

}
,

where ρN : R(N2) → R(N2 ) is the projection on the first
(
N
2

)
coordinates.

Proof. Assume X = (X, r, µ). Let x1, x2, ... ∈ X be such that

ξε((r(xi, xj))1≤i<j) = N.

Then, N is the maximal size of an ε-separated set in (X, r), µ⊗N-almost
surely. All results follow, since νX = (R(X,r))∗µ

⊗N and since νX is exchange-
able.
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Remark A.10 (Tightness in M). Recall from Theorem 2 in [GPW09] that
for any X ∈ M, it holds that vδ(X )

δ→0−−−→ 0. Moreover, a set Γ ⊆ M
is pre-compact iff {wX : X ∈ Γ} is tight (as a family in M1(R+)) and
supX∈Γ vδ(X )

δ→0−−−→ 0.
This leads to a characterization of tightness for a family of random mm-

spaces, see [GPW09], Theorem 3: Here, (the distributions of) a family {X :

X ∈ Γ} of M-valued random variables is tight iff {〈wX 〉 : X ∈ Γ} is tight
(where 〈wX 〉 is the first moment measure of (wX )∗P ∈ M1(M1(R+)) and
supX∈Γ E[vδ(X )]

δ→0−−−→ 0. Given a sequence of random mm-spaces, we can use
these results in order to obtain limiting objects, at least along subsequences.

Now we come to a characterization of compact mm-spaces.

Theorem A.11 (Compact mm-spaces). Let X ∈ M. The following condi-
tions are equivalent.

(a) The mm-space X is compact, i.e. X ∈Mc.

(b) For all ε > 0, it holds that ξε(X ) <∞.

(c) For all ε > 0, there is δ > 0 such that ṽδ(X ) ≤ ε.

The following characterization of random, almost surely compact mm-spaces
is immediate.

Corollary A.12 (Random compact mm-spaces). Let X be a random vari-
able taking values in M. The following conditions are equivalent.

(a) The mm-space X is compact, almost surely, i.e. P(X ∈Mc) = 1.

(b) For all ε > 0, it holds that P(ξε(X ) <∞) = 1.

(c) For all ε > 0, there is a random variable ∆ > 0 with

P(ṽ∆(X ) ≤ ε) = 1.

Remark A.13 (Size of ε-separated set and size of ε-covering). The following
observation will be used in the proof of Theorem A.11: Let (X, r) be a metric
space and ε > 0, let ξε be the maximal size of an ε-separated set and Nε be
the minimal number of ε-balls needed to cover (X, r). Then

Nε ≤ ξε ≤ Nε/2.
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In order to see this, let x1, ..., xξε be a maximal ε-separated set. Then,
X =

⋃ξε
i=1Bε(xi), since otherwise, we find x ∈ X \

(⋃ξε
i=1Bε(xi)

)
and hence,

the set is not maximal. This shows Nε ≤ ξε. For the second inequality, it
is clear that Bε/2(x1), ..., Bε/2(xξε) are disjoint. Hence, any set of centers
of ε/2-balls which cover (X, r) must hit each Bε/2(xi) at least once. As a
consequence, ξε ≤ Nε/2.

Proof of Theorem A.11. Let X = (X, r, µ). We use the notation laid out in
Remark A.7. In particular, recall (A.1).

(1)⇒ (2): Let X be compact and ε > 0. Then (X, r) is totally bounded
and there is Nε/2 ∈ N such that (X, r) can be covered by Nε/2 balls of radius
ε/2. Then we find ξε(X ) ≤ Nε/2 <∞ by the last remark.

(2) ⇒ (3): Let ε > 0. The space (X, r) can be covered by ξε/2(X ) < ∞
balls of radius ε/2, again by the last remark. Let x1, . . . , xξε/2 be centers of
such balls and δ := min{µ(Bε/2(xi)) : µ(Bε/2(xi)) > 0}. Then δ > 0. Now
take any x ∈ X and choose i ∈ {1, . . . , ξε/2} such that x ∈ Bε/2(xi). Then
we have

µ(Bε(x)) ≥ µ(Bε/2(xi)) ≥ δ.

Hence,
νX {r : sε(r) ≤ δ} = µ{x ∈ X : µ(Bε(x)) ≤ δ} = 0.

(3)⇒ (1): It suffices to show that (X, r) is totally bounded. Let ε > 0. By
assumption, there is δ > 0 such that

νX {r : sε(r) ≤ δ} = µ{x ∈ X : µ(Bε(x)) ≤ δ} = 0.

We show that there is a finite maximal 2ε-separated set in X. For this, take
a maximal 2ε-separated set S ⊆ X (and without loss of generality assume
that supp(µ) = X). Then, using the last remark,

1 = µ(X) = µ
( ⋃
x∈S

B2ε(x)
)
≥ µ

( ⋃
x∈S

Bε(x)
)

=
∑
x∈S

µ(Bε(x)) ≥ |S| · δ,

since µ(Bε(x)) > δ holds µ-almost surely by assumption. Now,

|S| ≤ 1/δ <∞

and ε > 0 was arbitrary, so (X, r) is totally bounded.
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Next, we come to a characterization of locally compact mm-spaces. Again
some notation is needed.

Definition A.14 (δ-restriction). Let r := (rij)1≤i<j ∈ R(N2)
+ . Set τ̂δ(0) := 1

and

τ̂δ(i+ 1) := inf{j > τ̂δ(i) : r1j ≤ δ}.

Then,

τδ(r) := (rτ̂δ(i),τ̂δ(j))1≤i<j

is called the δ-restriction of r.

Remark A.15 (δ-restriction for distance matrices.). Let X = (X, r, µ) ∈ M
and x1, x2, ... ∈ X. We note that xk ∈ τ̂δ(N) iff r(x1, xk) ≤ δ. Hence,
τδ((r(xi, xj))1≤i≤j) is the distance matrix distribution for points among
x2, x3, ... which have distance at most δ to x1. So,

(τδ)∗ν
X (·) = νX {τδ(r) ∈ ·} = νX {r ∈ ·|r12, r13, ... ≤ δ}

= µ⊗N{(r(xi, xj))1≤i<j ∈ ·|r(x1, xj) ≤ δ for all j = 2, 3, ...}

Clearly, (τδ)∗ν
X is exchangeable, since νX is exchangeable.

Theorem A.16 (Locally compact mm-spaces). Let X ∈ M. The following
conditions are equivalent.

(a) The mm-space X is locally compact, X ∈Mlc.

(b) It holds that

νX
( ⋂

0<η<δ

{
r : ξη(τδ(r)) <∞

})
δ→0−−−→ 1.

Proof. Let X = (X, r, µ). Then, X is locally compact iff for µ-almost all
x ∈ X there is δ > 0, such that the ball Bδ(x) can be covered by a finite
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number of balls with radius η, for all 0 < η < δ. Hence,

1 =µ
( ⋃
δ>0

⋂
0<η<δ

{
x : Bε(x) can be covered by finitely many balls of radius η

})
= lim
δ→0

µ
( ⋂

0<η<δ

{
x : the maximal η-separated set in Bδ(x) is finite

})
= lim
δ→0

µ⊗N
( ⋂

0<η<δ

{
(x1, x2, ...) : ξη((rxi,xj )2≤i<j) <∞|

r(x1, x2), r(x1, x3), ... < δ
})

= lim
δ→0

µ⊗N
( ⋂

0<η<δ

{
(x1, x2, ...) : ξη(τδ((rxi,xj )1≤i<j)) <∞}

)
= lim
δ→0

νX
( ⋂

0<η<δ

{
r : ξη(τδ(r)) <∞

})
.

A.3 Λ-coalescents

We come to the application of the general results from the last section to met-
ric spaces which arise in the context of coalescents which allow for multiple
mergers. The proof of Theorem A.1 is given in the next section. Introduced
by [Pit99], Λ-coalescents are usually described by Markov processes taking
values in partitions of N, which become coarser as time evolves, almost surely,
and are exchangeable. More exactly, we define (Πt)t≥0 = (ΠΛ

t )t≥0, starting
in the trivial partition of N. For a finite measure Λ on [0, 1], set

λb,k =

∫ 1

0
xk−2(1− x)b−kΛ(dx). (A.2)

Among any set of b partition elements in Πt, each subset of size k merges
to one partition element at rate λb,k. It is easy to check that such a process
is well-defined (i.e. the λb,k’s are consistent) and leads to an exchangeable
partition of N for all t ≥ 0. In our analysis we restrict ourselves to measures
Λ which do not have an atom at 1; see Example 20 in [Pit99] for a discussion
of this case.

One intuitive way to construct a Λ-coalescent (given Λ has no atom at 0)
is as follows: consider a Poisson-process with intensity measure Λ(dx)

x2
· dt on

[0, 1] × R+. At any Poisson point (x, t), mark all partition elements, which
are available by time t with probability x and merge all marked partition
elements.
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The set of Λ-coalescents falls into (at least) three classes. The class of
Λ-coalescents coming down from infinity (see Property 1 in Theorem A.1),
the larger class of processes having the dust-free-property, i.e. f(Π1

t ) > 0

for all t > 0, almost surely, where f(Πj
t ) is the frequency of the partition

element containing j at time t, j ∈ N. All other Λ-coalescents contain dust,
which is a positive frequency of natural numbers forming their own partition
element.

Starting with [Sch00b], sharp conditions for a Λ-coalescents coming down
from infinity have been given. Precisely, it was stated that a Λ-coalescent
comes down from infinity iff

∞∑
b=2

( b∑
k=2

k

(
b

k

)
λb,k

)−1
<∞. (A.3)

It has been shown by [BG06] that this is equivalent to∫ ∞
t

ψ(q)−1dq <∞.

for some t > 0 where

ψ(q) =

∫ 1

0
(e−qx − 1 + qx)x−2Λ(dx).

The larger class of coalescents having the dust-free property is characterized
by the requirement that ∫ 1

0
x−1Λ(dx) =∞, (A.4)

see Theorem 8 in [Pit99].

Let ΠΛ := Π = (Πt : t ≥ 0) be the Λ-coalescent. Then for almost all sample
paths of ΠΛ, there is a metric rΠ on N, associated to Π, defined by

rΠ(i, j) := inf{t ≥ 0 : i, j in the same partition element of Πt},

that is the time needed for i and j to coalesce. We denote by (LΠ, rΠ) the
completion of (N, rΠ). In order to equip (LΠ, rΠ) with a probability measure,
we use a limit procedure. Set

Hn(Π) :=
(
LΠ, rΠ, 1

n

n∑
i=1

δi

)
.
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Then, the family of M-valued random variables (Hn(Π))n=1,2,... converges in
distribution with respect to the Gromov-weak topology iff ΠΛ is dust-free,
i.e. (A.4) holds (see Theorem 5 in [GPW09]). Since coalescent processes
are associated with tree-like structures, we call the limiting mm-space L =

(LΠ, rΠ, µΠ) the Λ-coalescent measure tree.

Proof of Theorem A.1

Let N(t) := #Πt denote the number of blocks in the partition Πt and note
that ξε(L) ≤ N(ε) where ξε(L) < N(ε) is only possible if there are partition
elements in Πε which carry no mass in L.

(1) ⇒ (2): Using Corollary A.12, we must show that for all ε > 0, we
have ξε(L) < ∞ almost surely. This follows directly from the fact that
ξε(L) ≤ N(ε) and the assumption that Π comes down from infinity.

(2) ⇒ (1): The proof is by contradiction. Assume L is compact and Π

stays infinite for some time ε > 0. Since Πε contains no dust, we have that
f((Πj

ε)) > 0 for all j = 1, 2, ..., almost surely. Since there are infinitely many
lines up to time ε, we find partition elements of arbitrarily small mass. This
implies that νL{r : sε(r) ≤ δ} > 0 almost surely, for all δ > 0. On the
other hand, since L is compact, there is a random variable ∆ > 0 such that
νL{r : sε(r) ≤ ∆} = 0, almost surely by Corollary A.12. In particular, there
is δ > 0 such that

νL{r : sε(r) ≤ δ} = 0

with positive probability, which gives a contradiction.

Last, assume that L does not come down from infinity and recall that Λ

cannot have an atom at 0 in this case. It has been shown in Proposition 23
of [Pit99] that the total coalescence rate of all lines is infinite for all times,
almost surely. This is easy to see from the construction of Λ-coalescence using
the Poisson process with intensity Λ(dx)/x2, since the total coalescence rate
of the partition element containing 1, given that there are infinitely many
lines, is ∫ 1

0
x

Λ(dx)

x2
=

∫ 1

0
x−1Λ(dx) =∞,

since the dust-free property, (A.4), holds by assumption.
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Let 0 < η < δ and consider the δ-ball around 1 in LΠ. Since the coa-
lescence rate is infinite and an infinite number of lines coalesce to the line
containing 1 between times η and δ, there is an infinite η-separated set in
Bδ({1}). Hence,

νL{r : ξη(τδ(r)) <∞} = 0,

almost surely. Hence, for any sequences 0 < ηn < δn with δn
n→∞−−−→ 0, we

find that

νL(
⋂

0<η<δn

{r : ξη(τδn(r)) <∞} ≤ νL({r : ξηn(τδn(r)) <∞} = 0,

almost surely. By Theorem A.16, L cannot be locally compact.
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ηb rate more manageable and alternative to γb, page 49

γb rate at which the number of blocks is decreasing, page 49

µ̂X random distance distribution, page 14

M space of metric measure spaces, page 6

Mc space of compact metric measure spaces, page 21

Mlc space of locally compact metric measure spaces, page 21

P[·] expectation operator, page 6

S set of all partitions of N, page 34

Sn set of all partitions of {1, . . . , n}, page 34

Xc space of compact metric spaces, page 64

S := {(f0, f1, f2, . . . ) ∈ (0, 1)N : f1 ≥ f2 ≥ . . . ,
∑

i≥0 fi = 1}, page 36

E exchangeable σ-field, page 75

A algebra of all polynomials on M, page 8

B(X) Borel-σ-algebra on metric space X, page 6

Mf (X) space of finite measures on B(X), page 6
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