
1 Diskrete Wahrscheinlichkeitsräume

Die Stochastik unterscheidet sich in mancher Hinsicht von anderen Zweigen der Mathe-
matik. Viele ihrer Definitionen, Konzepte und Resultate sind ohne ihren Bezug auf Pro-
bleme des “täglichen Lebens”, oder andere Naturwissenschaften, etwa die theoretische
Physik, nur schwer zu verstehen. Andererseits ist die Wahrscheinlichkeitstheorie (im wei-
teren kurz:W.-Theorie) eine eigene, rigorose mathematische Theorie mit vielen Bezügen
zu anderen mathematischen Disziplinen.

So ist es nicht weiter verwunderlich, daß man mit dem Begriff der Wahrscheinlichkeit in
vielen Bereichen des täglichen und wissenschaftlichen Lebens konfrontiert ist:

1. In Wetterberichten heißt es, daß die Wahrscheinlichkeit für Regen bei 20% liegt.

2. Eine erste Hochrechnung nach einer Wahl besagt, daß wahrscheinlich ca. 9% der
Bevölkerung grün gewählt haben.

3. Die Leukämiewahrscheinlichkeit beträgt ca. 0.5 Promille.

4. Die Wahrscheinlichkeit beim Würfeln eine 6 zu werfen wird als 1
6

angenommen.

5. In der Quantenmechanik ist die Wahrscheinlichkeit gewisser Ereignisse proportional
zum Integral des Quadrats ihrer Wellenfunktion.

Hierbei fällt auf, daß wir es auf den ersten Blick mit unterschiedlichen Arten zu tun ha-
ben, den Begriff Wahrscheinlichkeit zu gebrauchen (z.B. wird er sowohl auf zukünftige als
auch auf vergangene Ereignisse angewandt). Um diese verschiedenen Arten unter einen
Hut zu bekommen, wollen wir unter der Wahrscheinlichkeit eines Ereignisses, dessen Aus-
gang uns unbekannt ist, zunächst einmal ein Maß für die Gewißheit seines Eintretens
(bzw. dafür, daß es eingetreten ist) verstehen. Diese Definition impliziert natürlich, daß
die Wahrscheinlichkeit eines Ereignisses von meinem (unseren) subjektiven Kenntnisstand
abhängt. Das ist auch durchaus sinnvoll. Beispielsweise kann in Beispiel (2) der Wahlleiter
schon die Information über den Ausgang der Wahl besitzen – das Ereignis “8-10% aller
Wähler haben grün gewählt” hat für ihn also Wahrscheinlichkeit 1 oder 0 – während man
als Fernsehzuschauer noch auf Hochrechnungen, d.h. auf unsichere Informationen, ange-
wiesen ist. Trotzdem ist es selbstverständlich aber so, daß jeder Beobachter glaubt mit der
von seinem Kenntnisstand aus bestmöglichen Approximation der ”wahren” Wahrschein-
lichkeit zu arbeiten. Es soll hier noch bemerkt werden, daß die W.-Theorie selber, sofern
wir uns erst einmal eine solche verschafft haben, unsensibel gegenüber dieser Subjektivität
der Wahl einer Wahrscheinlichkeit ist. Die W.-Theorie findet quasi zu “einem späteren
Zeitpunkt” statt: Zunächst bildet man ein Modell des Vorganges, den man analysieren
möchte (und hier findet die Festlegung der Wahrscheinlichkeit eines Ereignisses statt),
dann tritt die W.-Theorie auf den Plan und beschreibt, welches Verhalten das gewählte
Modell aufweisen sollte.

Dieser erste Versuch Wahrscheinlichkeit zu definieren erfüllt offenbar nicht die Kriterien,
die man an eine mathematisch saubere Definition stellen würde. Beispielsweise ist nicht
klar inwieweit eine Wahrscheinlichkeit von 50% ein kleineres Maß an Sicherheit bedeutet
als eine Wahrscheinlichkeit von 75%.
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Ein Versuch in diese Richtung würde die Wahrscheinlichkeit eines Ereignisses E als den
Erwartungswert der relativen Häufigkeit des Eintretens von E definieren, also als den
Quotienten aus der Zahl der Fälle in denen E eingetreten ist und der Gesamtlänge der
“Versuchsreihe”, den man bei einer sehr langen Reihe gleichartiger Situationen erwarten
würde. Diese Definition – obgleich sie auf einem “wahren” Sachverhalt beruht (gemeint
ist das Gesetz der großen Zahlen, das wir in einem späteren Kapitel kennenlernen wer-
den) – krankt aber an verschiedenen Defiziten. Sieht man einmal von dem praktischen
Einwand ab, daß es eventuell unmöglich oder nur schwer möglich ist, eine große Zahl in-
dentischer und unabhängiger Situationen herzustellen, so bleibt doch das schwerwiegende
Hindernis, daß man für eine vernünftige Definition eines Erwartungswertes zunächst eine
Definition der Wahrscheinlichkeit benötigt (wir werden dies im Lauf des dritten Kapitels
kennenlernen). Man hat versucht, dieses Problem durch Wahl von sogenannten zufälligen
Folgen von Ereignissen zu umgehen, doch stellte sich heraus, daß schon die Definition
des Begriffs einer zufälligen Folge von Ereignissen beinahe das komplette Problem einer
mathematischen Grundlegung der W.-Theorie beinhaltet.

Es waren grob gesprochen diese Gründe, die dazu führten, daß die mathematische Fun-
dierung der Wahrscheinlichkeitstheorie lange Zeit ein offenes Problem war (das sogar als
sechstes Problem Eingang in die berühmten Hilbertschen Probleme fand – genauer formu-
lierte Hilbert (1862-1943) in seiner berümt gewordenen Rede auf dem Weltkongress 1900
das sechste Problem als dasjenige die theoretische Physik und die Wahrscheinlichkeits-
theorie zu axiomatisieren), obschon die ersten wahrscheinlichkeitstheoretischen Resultate
schon sehr viel älter sind. Das Problem der Axiomatisierung wurde schließlich 1933 von
A.N. Kolmogoroff (1903-1987) gelöst.

Grundlage seiner Axiomatisierung bilden ein paar einfache Beobachtungen über relative
Häufigkeiten. Um diese zu formulieren, führen wir zunächst die Menge Ω aller mögli-
chen Ausgänge eines zufälligen Experiments ein (unter einem zufälligen Experiment oder
Zufallsexperiment wollen wir gerade einen Vorgang verstehen, dessen Ausgang uns unbe-
kannt ist). Um größere Schwierigkeiten, die bei beliebiger Wahl von Ω auftreten können,
aus dem Wege zu gehen, sei bis auf weiteres Ω eine abzählbare Menge. Teilmengen von Ω
heißen dann in der Wahrscheinlichkeitstheorie Ereignisse (events). Die üblichen Mengen-
operationen haben in der Wahrscheinlichkeitstheorie folgende Bedeutung:

Sprache der Ereignisse Mengenschreib- bzw. Sprechweise

A,B,C sind Ereignisse A,B,C sind Teilmengen von Ω

A und B A ∩B
A oder B A ∪B
nicht A Ac = Ω \ A
A und B sind unvereinbar A ∩B = ∅
A impliziert B A ⊂ B.

Grundlegend ist nun folgende

(1.1) Beobachtung. Es sei Ω eine abzählbare Menge und auf Ω führe man ein Zufallsex-
periment n mal durch. Für A ⊂ Ω sei die relative Häufigkeit r(A) definiert als die Anzahl
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der Fälle, in denen A eingetreten ist, geteilt durch n. Dann gilt für jedes n und jede
abzählbare Indexmenge I, so daß die Familie der Ereignisse (Ai)i∈I paarweise unvereinbar
ist

1. r(Ω) = 1

2. r(
⋃

i∈I Ai) =
∑

i∈I r(Ai).

Eine Wahrscheinlichkeit ist nun eine Mengenfunktion, die sich wie relative Häufigkeiten
verhält, genauer:

(1.2) Definition. Es sei Ω eine abzählbare Menge. Eine Wahrscheinlichkeit (probability)
auf Ω ist eine Mengenfunktion P : P(Ω) → [0, 1] von der Potenzmenge P(Ω) von Ω in
das Einheitsintervall mit

1. P (Ω) = 1

2. P (
⋃

i∈I Ai) =
∑

i∈I P (Ai) für jede abzählbare Indexmenge I und jede paarweise
unvereinbare Familie von Ereignissen (Ai)i∈I .

Das Paar (Ω, P ) heißt Wahrscheinlichkeitsraum (probability space).

(1.3) Beispiele.

1. Beim Würfeln mit 2 Würfeln besteht die Menge Ω offenbar aus allen möglichen
Kombinationen von Augenzahlen. Ω besteht in diesem Fall aus 36 Elementen: Ω =
{(1, 1), (1, 2), . . . , (6, 6)} = {1, 2, 3, 4, 5, 6}2. Wir setzen P ({(i, j)}) = 1/36 für jedes
sogenannte Elementarereignis (i, j). Für jedes Ereignis A ist daher P (A) = |A|/36,
wobei |A| die Anzahl der Elemente in A ist. Sei z. B. A = {(1, 1), (2, 2), . . . , (6, 6)}
das Ereignis, daß die Augenzahlen gleich sind. Dann ist P (A) = 6/36 = 1/6.

2. In einem Kartenspiel mit einer geraden Anzahl (= 2n) von Karten befinden sich 2
Joker. Nach guter Mischung werden die Karten in zwei gleich große Haufen aufge-
teilt. Wie groß ist die Wahrscheinlichkeit, daß beide Joker im gleichen Haufen sind?
Wir wählen Ω = { (i, j) ∈ {1, 2, . . . , 2n}2 : i 6= j}. Hierbei ist {(i, j)} ⊂ Ω das
Ereignis, daß sich der erste Joker am Platz i und der zweite am Platz j befindet.
Nach guter Mischung hat jedes dieser Ereignisse die Wahrscheinlichkeit P ({(i, j)}) =
1/|Ω| = 1/2n(2n− 1). Das uns interessierende Ereignis ist

A = { (i, j) ∈ {1, 2, . . . , n}2 : i 6= j} ∪ {(i, j) ∈ {n+ 1, . . . , 2n}2 : i 6= j}.

Dieses enthält 2 · n(n− 1) ”Elementarereignisse” (i, j). Somit ist

P (A) =
2n(n− 1)

2n(2n− 1)
=

n− 1

2n− 1
.
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3. Eine Münze wird n-mal geworfen. Ω sei die Menge der n-Tupel, bestehend aus
,,Zahl“ und ,,Kopf“. Somit ist |Ω| = 2n. Haben alle n-Tupel gleiche Wahrscheinlich-
keiten, so hat jedes Element von Ω Wahrscheinlichkeit 2−n. Es sei Ak das Ereignis,
daß k-mal ,,Zahl“ fällt. Es gilt also P (Ak) = |Ak|2−n. Die Anzahl |Ak| wird weiter
unten bestimmt.

4. Auto-Ziege Problem: Ein Spielleiter konfrontiert einen Spieler mit drei verschlosse-
nen Türen; hinter einer steht ein Auto, hinter den anderen je eine Ziege. Der Spieler
muß sich für eine Tür entscheiden und dies dem Leiter verkünden. Dieser öffnet
daraufhin eine der beiden anderen Türen und zeigt eine Ziege. Dann fragt er den
Spieler, ob er sich für die ungeöffnete Tür umentscheiden möchte, die der Spieler
nicht gewählt hatte. Ist es von Vorteil zu tauschen (angenommen, der Spieler hat
Interesse an dem Auto)? Auch der geübte Spieler neigt zu der falschen Antwort,
daß ein Tausch irrelevant ist. Wir werden dies im folgenden analysieren. Angenom-
men, der Spieler entscheidet sich, in jedem Fall zu tauschen. Die Tür mit dem Auto
dahinter sei mit 1 gekennzeichnet, die beiden anderen mit 2 und 3. Eine Möglich-
keit, ein Spiel zu beschreiben, ist die Angabe eines 4-Tupels (u, v, w, x), wobei u die
gewählte Tür des Spielers, v die des Spielleiters und w die Tür, zu der der Spieler
auf jeden Fall wechselt, beschreibt. x beschreibe dann den Ausgang des Spiels, also
den Gewinn (G) oder Verlust (V) des Autos. Der Stichprobenraum hat dann die
folgende Gestalt:

S = {(1, 2, 3, V ), (1, 3, 2, V ), (2, 3, 1, G), (3, 2, 1, G)}.

Natürlich nehmen wir an, daß alle drei Türen mit gleicher Wahrscheinlichkeit 1/3
gewählt werden können. Bei Wahl der Tür 1 mit Wahrscheinlichkeit 1/3 führt ein
Wechsel der Entscheidung natürlich zum Verlust des Spiels. Bei Wahl der Tür 2
oder 3 ergibt der Wechsel einen Gewinn. Also ist die Wahrscheinlichkeit, das Auto
zu gewinnen, 1/3 + 1/3 = 2/3. Unter der Annahme, der Spieler tausche generell
nicht, hat der Stichprobenraum die Gestalt:

S = {(1, 2, 1, G), (1, 3, 1, G), (2, 3, 2, V ), (3, 2, 3, V )}.

Hier ergibt sich eine Wahrscheinlichkeit von 2/3 zu verlieren.

Es sei an dieser Stelle erwähnt, daß es aufgrund der Eigenschaft (2) in der Definition von
P und der Abzählbarkeit von Ω natürlich genügt, die Wahrscheinlichkeit auf den einzel-
nen Elementen von Ω, den sogenannten Elementarereignissen (elementary events, sample
points) festzulegen (dies ist auch in einigen der Beispiele unter (1.3) so geschehen). Ge-
nauer gilt:

(1.4) Lemma. Es sei Ω eine abzählbare Menge (p(ω))ω∈Ω eine Folge positiver Zahlen mit
∑

ω∈Ω

p(ω) = 1.

Dann ist durch P ({ω}) := p(ω) eine Wahrscheinlichkeit auf Ω eindeutig definiert.

Ist umgekehrt P eine Wahrscheinlichkeit auf Ω, so induziert diese durch p(ω) := P ({ω})
eine Folge mit obigen Eigenschaften.
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Beweis. Man setze einfach für A ⊂ Ω

P (A) :=
∑

ω∈A

p(ω)

und sehe, daß dies eine Wahrscheinlichkeit auf Ω definiert. 2

Bemerkung. Da alle p(ω) ≥ 0 sind, spielt selbst im Fall, wo Ω unendlich ist, die Reihenfolge
der Summation in

∑
ω∈Ω p(ω) keine Rolle. Genau genommen handelt es sich dann um

einen Grenzwert. Man wählt zunächst eine Abzählung ω1, ω2, . . . der Elemente von Ω.
Dann ist

∑
ω∈Ω p(ω) = limn→∞

∑n
i=1 p(ωi), wobei der Grenzwert nicht von der gewählten

Abzählung abhängt, da die p(ω) ≥ 0 sind, die Summe also absolut konvergiert.

Wir haben also gesehen, daß eine Folge p := (p(ω))ω∈Ω mit
∑

ω∈Ω p(ω) = 1 eineindeutig
einer Wahrscheinlichkeit P auf Ω entspricht. Wir werden daher oft auch (Ω, p) synonym
für (Ω, P ) verwenden, wenn P durch p induziert ist.

In konkreten Situationen wählt man Ω oft so, daß die einzelnen Elementarereignisse ω ∈ Ω
gleich wahrscheinlich sind, was natürlich nur möglich ist, wenn Ω endlich ist. Man spricht
dann von einem Laplace-Experiment. Einige Beispiele dazu:

(1.5) Beispiele.

1. Beim Würfeln mit einem Würfel wählt man Ω = {1, 2, 3, 4, 5, 6}. Dabei ist i ∈ Ω
das Elementarereignis, daß die Zahl i geworfen wird. Ist der Würfel nicht gezinkt,
so wird man p(i) = 1/6 für alle i ∈ Ω setzen.

2. Als Elementarereignisse beim Würfeln mit 2 Würfeln fassen wir alle möglichen Kom-
binationen von Augenzahlen auf (siehe auch Beispiel 1.3 (1)). Ω besteht in diesem
Fall aus 36 Elementarereignissen: Ω = {(1, 1), (1, 2), . . . , (6, 6)} = {1, 2, 3, 4, 5, 6}2.
Wir setzen p((i, j)) = 1/36 für jedes Elementarereignis.

3. Ein Stapel mit n Karten wird gut gemischt. Wir denken uns die Karten von 1 bis n
durchnumeriert. Die Elementarereignisse sind die möglichen Reihenfolgen dieser n
Karten, etwa bei n = 3:

Ω = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}.

Bei guter Mischung wird man jede Reihenfolge als gleich wahrscheinlich betrachten
können. Jedes Elementarereignis hat dann Wahrscheinlichkeit 1

n!
.

4. Urnenmodell: In einer Schachtel (Urne) befinden sich r rote und s schwarze Kugeln.
Eine Kugel wird zufällig herausgenommen. Mit welcher Wahrscheinlichkeit ist sie
rot?
Wir denken uns die Kugeln von 1 bis r + s durchnumeriert. Die Kugeln mit den
Nummern 1 bis r sind rot; die anderen schwarz. Für Ω nehmen wir die Menge
{1, 2, . . . , r + s}. Dann ist i ∈ Ω das Elementarereignis, daß die Kugel i gezogen
wird. Diese Elementarereignisse sind nach guter Mischung gleich wahrscheinlich,
haben also Wahrscheinlichkeit 1

r+s
. Unser Ereignis enthält r Elementarereignisse.

Seine Wahrscheinlichkeit ist also r/(r + s).
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Wahrscheinlichkeiten genügen einigen einfachen Regeln, die untenstehend aufgelistet sind

(1.6) Satz. Es sei (Ω, p) ein W-̇Raum.

1. Für jedes Ereignis A gilt 0 ≤ P (A) ≤ 1.

2. P (∅) = 0, P (Ω) = 1.

3. Sind Ereignisse Ai für i ∈ N paarweise disjunkt (d.h. Ai ∩Aj = ∅ für i 6= j), so gilt
P (
⋃

i∈N
Ai) =

∑∞
i=1 P (Ai) (abzählbar additiv, countable additive).

4. In (3) ohne die Voraussetzung, daß die Ai paarweise disjunkt sind, gilt noch P (
⋃

i∈N
Ai) ≤∑∞

i=1 P (Ai) (abzählbar subadditiv, countable subadditive).

5. A ⊂ B ⇒ P (B) = P (A) + P (B \ A).

6. A ⊂ B ⇒ P (A) ≤ P (B) (monoton).

7. P (A ∪ B) = P (A) + P (B) − P (A ∩B).

Bemerkung. Gilt An+1 = An+2 = · · · = ∅ für ein n ≥ 1, so besagen (3) und (4)

P

( n⋃

i=1

Ai

)
=

n∑

i=1

P (Ai) bzw. P

( n⋃

i=1

Ai

)
≤

n∑

i=1

P (Ai)

(endlich additiv bzw. subadditiv).

Beweis. (1), (2) und (3) folgen sofort aus der Definition.

(4): Jedes ω ∈ ⋃∞
i=1Ai gehört zu mindestens einem der Ai. Demzufolge gilt

P

( ∞⋃

i=1

Ai

)
=

∑

ω∈
⋃∞

i=1 Ai

p(ω) ≤
∞∑

i=1

∑

ω∈Ai

p(ω) =
∞∑

i=1

P (Ai).

(5) Es gelten B = A ∪ (B \ A) und A ∩ (B \ A) = ∅. Somit ist nach (3) P (B) =
P (A) + P (B \ A).

(6) folgt aus (5) und P (B \ A) ≥ 0.

(7) Wir haben folgende Zerlegungen in disjunkte Teilmengen:

A ∪B = (A \B) ∪ B

und
A = (A \B) ∪ (A ∩B).

Nach (3) gilt:

P (A ∪ B) = P (A \B) + P (B),

P (A) = P (A \B) + P (A ∩ B).
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Subtrahiert man die zweite Gleichung von der ersten, so folgt (7). 2

Die Festlegung der Wahrscheinlichkeiten der Elementarereignisse ist ein außermathema-
tisches Problem. In den bisherigen Beispielen hatten die Elementarereignisse jeweils alle
die gleichen Wahrscheinlichkeiten. Dies ist vernünftig, wenn alle Elementarereignisse als
,,gleich möglich“ erscheinen, oder wenn kein Grund für eine Ungleichbehandlung der Ele-
mentarereignisse vorliegt. Tatsächlich wählt man die Zerlegung in Elementarereignisse oft
unter diesem Gesichtspunkt.

Ein Beispiel dazu: Jemand wirft zwei Würfel. Interessiert er sich nur für die Augen-
summe, so kann er als Elementarereignisse die möglichen Ergebnisse dafür nehmen: Ω =
{2, 3, 4, . . . , 12}. Es ist offensichtlich, daß diese Elementarereignisse nicht gleichwertig sind.
Deshalb nimmt man besser die Elementarereignisse aus (1.5 (2)).

In vielen Fällen wäre die Festlegung, daß alle Elementarereignisse gleich wahrscheinlich
sind, aber ganz unsinnig, beispielsweise wenn man die Wahrscheinlichkeit modelliert, daß
ein produziertes Werkstück defekt ist.

Nun ein Beispiel mit einem unendlichen W-̇Raum:

(1.7) Beispiel. Eine Münze wird so lange geworfen, bis zum erstenmal ,,Kopf“ fällt. Wir
wählen als Ω die natürlichen Zahlen N. Das Elementarereignis i ∈ N bedeutet, daß zum
erstenmal beim i-ten Wurf ,,Kopf“ fällt. Wie groß ist p(i)? Daß i eintritt, ist auch ein
Elementarereignis in unserem Beispiel (1.3 (3)), nämlich, daß zunächst (i−1)-mal ,,Zahl“
fällt und dann ,,Kopf“. Somit ist p(i) = 2−i. Die p(i) erfüllen die Bedingung in Lemma
(1.4):

∑
i∈N

p(i) = 1. Also ist (Ω, p) ein W-̇Raum.

In unserem Modell ist das Ereignis, daß ,,Kopf“ nie fällt, das unmögliche Ereignis. (Vor-
sicht: Es gibt in der Literatur andere Modelle – mit überabzählbarem W-̇Raum – wo
dieses Ereignis zwar Wahrscheinlichkeit 0 hat, aber nicht unmöglich ist.)

Die Bestimmung der Wahrscheinlichkeit von Durchschnitten ist in der Regel einfacher als
die von Vereinigungen. Eine Verallgemeinerung von (1.6 (7)) sieht wie folgt aus: A1, . . . , An

seien n Ereignisse. A1 ∪ · · · ∪ An ist das Ereignis, daß mindestens eines der Ai eintritt.

(1.8) Satz (Ein- und Ausschlußprinzip, inclusion-exclusion principle).
Für A1, . . . , An ⊂ Ω gilt

P (A1 ∪ . . . ∪ An) =
n∑

i=1

P (Ai) −
∑

i1<i2

P (Ai1 ∩ Ai2) +
∑

i1<i2<i3

P (Ai1 ∩ Ai2 ∩Ai3)

− . . .+ (−1)n−1P (A1 ∩ A2 ∩ . . . ∩An).

Beweis. Induktion nach n: Für n = 2 ist dies (1.6 (7)).

Induktionsschluß:

P (A1 ∪ . . . ∪ An+1) = P (A1 ∪ . . . ∪An) + P (An+1) − P ((A1 ∪ . . . ∪An) ∩An+1)
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nach (1.6 (7))

=

n+1∑

i=1

P (Ai) −
∑

1≤i1<i2≤n

P (Ai1 ∩ Ai2)

+
∑

1≤i1<i2<i3≤n

P (Ai1 ∩ Ai2 ∩ Ai3) − . . .

− P ((A1 ∩ An+1) ∪ (A2 ∩ An+1) ∪ · · · ∪ (An ∩An+1))

nach Induktionsvoraussetzung und dem Distributivgesetz für Mengenoperationen. Wendet
man auf den letzten Summanden nochmals die Induktionsvoraussetzung an, so folgt die
Behauptung. 2

Exkurs zu Abzählmethoden

Zur Berechnung der Wahrscheinlichkeiten in Laplace-Experimenten sind die folgenden
kombinatorischen Ergebnisse von Nutzen. In einer Urne seinen n Kugeln mit 1, 2, . . . , n
numeriert. Es werden k Kugeln zufällig gezogen. Können Kugeln mehrfach gezogen wer-
den (man legt also die gezogene Kugel jeweils zurück), spricht man von einer Stichprobe
mit Zurücklegen; kann jede Kugel nur einmal auftreten von einer Stichprobe ohne Zurück-
legen. Eine Ziehung kann durch ein k-Tupel (ω1, . . . , ωk) angegeben werden, wobei ωi die
Nummer der bei der i’ten Ziehung gezogenen Kugel ist. Es kommt hier auf die Reihenfolge
an, und man spricht von einer Stichprobe in Reihenfolge. Kommt es hingegen nur auf die
Anzahl der einzelnen Kugeln an, spricht man von einer Stichprobe ohne Reihenfolge und
notiert in gewöhnlichen Mengenklammern {ω1, . . . , ωk}.
Man kann nun 4 Stichprobenräume unterscheiden, deren Elemente gezählt werden sollen.
Sei A = {1, . . . , n}.

1. (Stichprobe in Reihenfolge mit Zurücklegen) Man wählt hier den Stichprobenraum

Ω1 = {ω = (ω1, . . . , ωk) : ωi ∈ A, i = 1, . . . , k} = Ak.

Offensichtlich gilt |Ω1| = nk.

2. (Stichprobe in Reihenfolge ohne Zurücklegen) Hier ist der Stichprobenraum

Ω2 = {ω = (ω1, . . . , ωk) : ωi ∈ A, ωi 6= ωj für i 6= j, 1 ≤ i, j ≤ k}.

Es dient uns nun ein vermutlich wohlbekanntes Abzählprinzip: Sei Ω die Menge von
k-Tupeln ω = (ω1, . . . , ωk), aufzufassen als Ergebnisse eines aus k Teilexperimenten
bestehenden zufälligen Experiments. Gibt es für das i’te Teilexperiment ri mögliche
Ausgänge, und ist für jedes i die Zahl ri unabhängig von den Ausgängen der früheren
Teilexperimente, dann ist

|Ω| = r1 r2 · · · rk.

Dies sieht man einfach via einer Induktion. Es folgt nun unmittelbar: |Ω2| = n(n−
1)(n− 2) · · · (n− k+ 1). Speziell für n = k besteht Ω2 aus der Menge der Permuta-
tionen von {1, . . . , n} und es gilt |Ω2| = n! := n(n− 1)(n− 2) · · ·2 · 1.
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3. (Stichprobe ohne Reihenfolge ohne Zurücklegen) Hier hat der Stichprobenraum die
Form

Ω3 = {{ω1, . . . , ωk} : ωi ∈ A, ωi 6= ωj, (i 6= j)}.
Dieser Raum läßt sich nun einfach beschreiben, indem man in Ω2 die folgende Äqui-
valenzrelation einführt: (ω1, . . . , ωk) ∼ (ω′

1, . . . , ω
′
k) genau dann, wenn es eine Per-

mutation π von {1, . . . , k} gibt mit ω′
i = ωπi für i = 1, . . . , k. Die Elemente von

Ω3 sind nun die Äquivalenzklassen. Da jede Äquivalenzklasse k! Elemente hat, folgt
|Ω2| = k!|Ω3|. Man schreibt

|Ω3| =

(
n

k

)
:=

n!

k!(n− k)!

(Binomialkoeffizient) für 1 ≤ k ≤ n.
(

n
k

)
ist die Anzahl der Teilmengen der Mächtig-

keit k von einer Menge der Mächtigkeit n. Da jede Menge genau eine Teilmenge der
Mächtigkeit 0 hat (die leere Menge), setzt man

(
n
0

)
= 1. Setzt man nun noch 0! = 1,

gilt die obige Definitionsgleichung des Binomialkoeffizienten auch für k = 0. Es sei
bemerkt, daß man jede obige Äquivalenzklasse zum Beispiel durch den Repräsen-
tanten (ω1, . . . , ωk) mit ω1 < ω2 < . . . < ωk beschreiben kann.

In Beispiel (1.5)(3) ist also |Ak| =
(

n
k

)
.

4. (Stichprobe ohne Reihenfolge mit Zurücklegen) Hier wählt man die Menge der
Äquivalenzklassen unter der oben eingeführten Relation im Stichprobenraum Ω1

als Stichprobenraum. Man wählt als Repräsentanten einer jeden Klasse ein Tupel
mit ω1 ≤ ω2 ≤ . . . ≤ ωk, so daß man die Darstellung

Ω4 = {ω = (ω1, . . . , ωk) ∈ Ak : ω1 ≤ ω2 ≤ . . . ≤ ωk}

erhält. Ordnet man jedem Element (ω1, . . . , ωk) der Menge Ω4 die Folge (ω′
1, . . . , ω

′
k)

mit ω′
i = ωi + i − 1 zu, so wird der Stichprobenraum bijektiv auf die Menge

{(ω′
1, . . . , ω

′
k) ∈ Bk : ω′

1 < ω′
2 < . . . ω′

k} mit B = {1, 2, . . . , n + k − 1} abgebil-
det, und nach Fall (3) folgt:

|Ω4| =

(
n+ k − 1

k

)
.

Eine erste Anwendung haben diese Abzählverfahren bei der Berechnungen gewisser Wahr-
scheinlichkeiten in wesentlichen physikalischen Verteilungen.

Die Maxwell–Boltzmannsche und die Bose–Einsteinsche Statistik Diese sogenannten Sta-
tistiken beschreiben Verteilungen in der statistischen Physik, genauer die Verteilungen
von n Teilchen in einem abstrakten Raum, dem sogenannten Phasenraum. Zerteilt man
diesen Raum in N Zellen, so ist die entsprechende Verteilung dadurch festgelegt, daß
man bestimmt, was die Wahrscheinlichkeit ist, in einer bestimmten Zelle k Teilchen zu
finden. Nimmt man an, daß die Teilchen unterscheidbar sind, so ergibt sich die Maxwell–
Boltzmann–Statistik, die jeder Verteilung die Wahrscheinlichkeit 1

Nn zurordnet. Für das
Ereignis in einer bestimmten Zelle genau k Teilchen vorzufinden haben wir dann

(
n
k

)
×

(N − 1)n−k Möglichkeiten, da es
(

n
k

)
Möglichkeiten gibt, die k Teilchen für die Zelle aus-

zuwählen und sich die restlichen n−k Teilchen auf (N−1)n−k verschiedene Möglichkeiten
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auf die N −1 restlichen Zellen verteilen lassen. Dies ergibt eine Wahrscheinlichkeit Pk des
Ereignisses genau k Teilchen in einer bestimmten Zelle vorzufinden von

Pk =

(
n

k

)( 1

N

)k(
1 − 1

N

)n−k
.

Diese Verteilung wird uns im Laufe der Vorlesung noch einige Male begegnen.

Die Maxwell–Boltzmann–Statistik hat sich beispielsweise für Gasmoleküle als der richtige
Ansatz erwiesen. Für einige Elementarteilchen, z.B. Photonen oder Elektronen hingegen
hat es bewährt, die Teilchen als ununterscheidbar anzunehmen. Wir können daher auch
nur noch zwei Verteilungen unterscheiden, wenn sie sich in der Besetzungszahl mindes-
tens einer (und damit mindestens zwei) Zelle(n) unterscheiden. Dies ist der Ansatz der
Einstein–Bose–Statistik. Man überlegt sich schnell, daß dies dem Ziehen mit Zurückle-
gen ohne Beachtung der Reihenfolge entspricht, man also

(
N+n−1

n

)
Elementarereignisse

hat. Die entsprechende Laplace–Wahrscheinlichkeit eines Elementarereignisses ist damit
gegeben durch 1

(N+n−1
n )

. Nun berechnen wir nach der Einstein–Bose–Statistik die Wahr-

scheinlichkeit dafür, daß in einer vorgegebenen Zelle k Teilchen liegen. Dafür genügt es, die
Anzahl der Möglichkeiten zu bestimmen, in denen dieses Ereignis eintritt. Diese Anzahl
ist gleich der Anzahl der Möglichkeiten, daß in den übrigen N − 1 Zellen n− k Teilchen
liegen, also gleich

(
N+n−k−2

n−k

)
; die gesuchte Wahrscheinlichkeit ist daher gegeben durch

(
N+n−k−2

n−k

)
(

N+n−1
n

) .

Es sei hier noch abschließend erwähnt, daß auch die Bose–Einstein–Statistik nicht allge-
mein gültig ist. Für einige Elementarteilchen wendet man daher noch das Pauli–Prinzip
an, um zur sogenannten Fermi–Dirac–Statistik zu gelangen.
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2 Bedingte Wahrscheinlichkeiten, Unabhängigkeit

Ein wichtiges Werkzeug in der Wahrscheinlichkeitstheorie ist die sogenannte ,,bedingte
Wahrscheinlichkeit“. Dazu ein Beispiel:

Sei Ω die Menge der Einwohner Bielefelds. Ein Reporter des WDR befragt einen rein
zufällig herausgegriffenen Bielefelder nach seiner Meinung zur Einführung von Studien-
gebühren. Wir nehmen an, daß jeder Einwohner die gleiche Chance hat, befragt zu werden.
Ist N die Anzahl der Einwohner, so ist die Wahrscheinlichkeit dafür, daß ein bestimmter
Einwohner befragt wird, 1/N . Natürlich ist es sehr wahrscheinlich, daß Studierende der
Einführung von Studiengebühren skeptischer gegenüberstehen als Nichtstudierende. Es sei
B die Menge der Bielefelder Studierenden. Es gilt daher P (B) = |B|/N . Sei A die Menge
der Bielefelder, die die Einführung befürwortet. Es gilt dann P (A) = |A|/N , während der
relative Anteil der Studierenden, die die Studiengebühren befürworten, sich berechnet als
|A∩B|/|B| = P (A∩B)/P (B). Man bezeichnet dies als bedingte Wahrscheinlichkeit von
A gegeben B. Sie unterscheidet sich für gewöhnlich von der ”unbedingten” Wahrschein-
lichkeit P (A).

Allgemein definieren wir:

(2.1) Definition. Sei B ⊂ Ω ein Ereignis mit P (B) > 0. Für jedes Ereignis A ⊂ Ω heißt
P (A|B) := P (A∩B)/P (B) die bedingte Wahrscheinlichkeit (conditional probability) für
A gegeben B .

Der nachfolgende Satz enthält einige einfache Eigenschaften, die zeigen, daß es sich bei
der bedingten Wahrscheinlichkeit in der Tat um eine Wahrscheinlichkeit handelt.

(2.2) Satz. Es seien A,B ⊂ Ω und P (B) > 0. Dann gilt:

1. A ⊃ B ⇒ P (A|B) = 1.

2. B ∩ A = ∅ ⇒ P (A|B) = 0.

3. Sind die Ereignisse Ai, i ∈ N, paarweise disjunkt, so gilt

P

( ∞⋃

i=1

Ai

∣∣∣∣B
)

=

∞∑

i=1

P (Ai|B).

4. P (Ac|B) = 1 − P (A|B).

Beweis. (1), (2) folgen sofort aus der Definition.

(3)

P

( ∞⋃

i=1

Ai

∣∣∣∣B
)

=
1

P (B)
P

(( ∞⋃

i=1

Ai

)
∩ B

)
=

1

P (B)
P

( ∞⋃

i=1

(Ai ∩ B)

)

=

∞∑

i=1

P (Ai ∩B)

P (B)
=

∞∑

i=1

P (Ai|B).
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(4) Wegen A ∩Ac = ∅ gilt nach (3)

P (A|B) + P (Ac|B) = P (A ∪ Ac|B) = P (Ω|B) = 1.

2

(2.3) Bemerkung. Sei (Ω, p) ein endlicher Wahrscheinlichkeitsraum, und alle Elementa-
rereignisse seien gleich wahrscheinlich (Laplace-Experiment). Dann gilt für A,B ⊂ Ω und
B 6= ∅

P (A|B) =
|A ∩B|
|B| ,

d.h,̇ die bedingten Wahrscheinlichkeiten lassen sich über die Mächtigkeiten der Ereignisse
bestimmen.

(2.4) Beispiele.

1. Wie groß ist die Wahrscheinlichkeit, daß beim Werfen mit zwei Würfeln einer der
beiden eine 2 zeigt, gegeben die Augensumme ist 6? Sei B das Ereignis ,,Die Au-
gensumme ist 6.“, also

B = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)},

und A das Ereignis ,,Mindestens einer der Würfel zeigt 2.“:

A = {(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (1, 2), (3, 2), (4, 2), (5, 2), (6, 2)}.

Dann gilt A∩B = {(2, 4), (4, 2)} und P (A|B) = 2/5. Zum Vergleich: Die unbedingte
Wahrscheinlichkeit ist P (A) = 11/36 < P (A|B).

2. Es seien drei Kästen mit je zwei Schubladen gegeben, in denen je eine Gold (G)- bzw.
eine Silbermünze (S) in der folgenden Aufteilung liege: Ω = {[G,G], [G, S], [S, S]}.
Zufällig wird ein Kasten gewählt, und dann zufällig eine Schublade geöffnet. In dieser
liege eine Goldmünze. Wie groß ist die Wahrscheinlichkeit dafür, daß in der anderen
Schublade dieses Kastens eine Silbermünze liegt? Die zufällige Wahl sei jeweils ein
Laplace-Experiment. Wir numerieren die Kästen und Schubladen und wählen als
Stichprobenraum Ω = {1, 2, 3} × {1, 2} und setzen P ({(i, j)}) = 1/3 · 1/2 = 1/6.
Dann ist die gesuchte Wahrscheinlichkeit P (A|B) mit B = {(1, 1), (1, 2), (2, 1)}
(Züge, so daß in der Schublade eine Goldmünze liegt) und A = {(2, 1), (3, 1), (3, 2)}
(Züge, so daß in der anderen Schublade eine Silbermünze liegt). Es gilt P (A|B) =
(1/6)/(1/2) = 1/3. Welchen Wert für die Wahrscheinlichkeit hätte man vor der
Rechnung erwartet?

In der bisherigen Diskussion haben wir die bedingten Wahrscheinlichkeiten auf die unbe-
dingten zurückgeführt. Es ist jedoch oft wichtiger, umgekehrt Wahrscheinlichkeiten aus
gewissen bedingten Wahrscheinlichkeiten zu berechnen. Die grundlegende Idee dabei ist
es den zugrunde liegenden W.-Raum mit Hilfe einer Bedingung in disjunkte Teilräume

12



zu zerlegen, auf diesen die bedingten Wahrscheinlichkeiten zu berechnen und diese dann
wieder mit geeigneten Gewichten zusammenzufügen. Ein Beispiel dazu:

(2.5) Beispiel. Ein Gesundheitslexikon sagt, daß es sich beim Auftreten eines Symptoms
S um 2 Krankheiten K oder Kc handeln kann. Diese sind insgesamt unterschiedlich
häufig: Sie treten im Verhältnis 7:93 auf. Andererseits zeigt sich das Symptom S, wenn
K vorliegt in 92% aller Fälle, bei Vorliegen von Kc nur in 8.5% aller Fälle. Mit welcher
Wahrscheinlichkeit ist nun eine Person, bei der S festgestellt wird, an K erkrankt ?

Zunächst einmal ist es plausibel, daß wir die Wahrscheinlichkeit für das Auftreten von S
berechnen können als

P (S) = P (K)P (S|K) + P (Kc)P (S|Kc).

Dem liegt der folgende allgemeine Satz zugrunde:

(2.6) Satz (Formel von der totalen Wahrscheinlichkeit). Es seien B1, . . . , Bn paarweise
disjunkte Ereignisse. Dann gilt für alle A ⊂ ⋃n

j=1Bj

P (A) =
n∑

j=1

P (A|Bj)P (Bj).

(Sollte P (Bj) = 0 sein, so wird der entsprechende Summand P (A|Bj)P (Bj) als Null
definiert.)

Beweis. Wegen A =
⋃n

j=1(A ∩Bj) und der Disjunktheit der A ∩ Bj gilt:

P (A) = P

( n⋃

j=1

(A ∩Bj)

)
=

n∑

j=1

P (A ∩ Bj) =

n∑

j=1

P (A|Bj)P (Bj).

2

Nun können wir auch das ursprüngliche Problem lösen. Gesucht ist P (K|S) bei gegebenem
P (K) = 0.07;P (Kc) = 0.93;P (S|K) = 0.92;P (S|Kc) = 0.085. Nun ist nach obigen Satz

P (K|S) =
P (K ∩ S)

P (S)
=

P (K)P (S|K)

P (K)P (S|K) + P (Kc)P (S|Kc)

=
0.92 × 0.07

0.92 × 0.07 + 0.085 × 0.93
= 0.4489.

Dies ist ein Spezialfall der sogenannten Bayes-Formel:

(2.7) Satz. Unter den Voraussetzungen von (2.6) und P (A) > 0 gilt

P (Bi|A) =
P (A|Bi)P (Bi)∑n

j=1 P (A|Bj)P (Bj)
.
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Die von Thomas Bayes (1702-1761) hergeleitete Formel wurde 1763 veröffentlicht.
Beweis.

P (Bi|A) =
P (Bi ∩A)

P (A)

=
P (A|Bi)P (Bi)

P (A)

=
P (A|Bi)P (Bi)∑n

j=1 P (A|Bj)P (Bj)

nach Satz (2.6). 2

Wird die Wahrscheinlichkeit für ein Ereignis A durch ein anderes Ereignis B mit P (B) > 0
nicht beeinflußt, im Sinne, daß P (A|B) = P (A) gilt, so heißen A und B unabhängig. Es
ist bequemer, dies symmetrisch in A und B zu definieren und auf die Voraussetzung
P (B) > 0 zu verzichten:

(2.8) Definition. Zwei Ereignisse A und B heißen unabhängig (independent) , wenn
P (A ∩B) = P (A)P (B) gilt.

Diese Definition spiegelt genau unsere intuitive Vorstellung von Unabhängigkeit wider. Es
gilt offensichtlich P (A|B) = P (A) dann und nur dann, wenn A und B unabhängig sind
(vorausgesetzt, daß P (B) > 0 ist).

Unabhängigkeit von endlichen vielen Ereignissen wird wie folgt definiert:

(2.9) Definition. Die Ereignisse A1, . . . , An heißen unabhängig, wenn für jede Auswahl
von Indizes {i1, . . . , ik} ⊂ {1, . . . , n} gilt:

P (Ai1 ∩ Ai2 ∩ · · · ∩Aik) = P (Ai1)P (Ai2) · · ·P (Aik).

(2.10) Bemerkungen.

1. Sind A1, . . . , An unabhängige Ereignisse und ist {i1, . . . , im} eine Teilmenge von
{1, . . . , n}, so sind offensichtlich Ai1 , Ai2 , . . . , Aim unabhängig.

2. Die Forderung P (A1 ∩ · · · ∩ An) = P (A1) · · ·P (An) allein ist keine befriedigende
Definition der Unabhängigkeit (für n ≥ 3), denn damit wäre die Eigenschaft in Teil
(1) nicht erfüllt. Dazu ein Beispiel: Es seien Ω = {1, 2} und p(1) = p(2) = 1/2
sowie A1 = {1}, A2 = {2} und A3 = ∅. Dann gilt P (A1 ∩ A2 ∩ A3) = P (∅) = 0 =
P (A1)P (A2)P (A3), aber natürlich ist P (A1 ∩ A2) 6= P (A1)P (A2).

3. Paarweise Unabhängigkeit, d.h. P (Ai∩Aj) = P (Ai)P (Aj) für i 6= j, impliziert nicht
Unabhängigkeit. Wieder ein künstliches Beispiel dazu: Es seien Ω = {1, 2, 3, 4} und
p(i) = 1/4 für jedes i ∈ Ω sowie A1 = {1, 2}, A2 = {2, 3} und A3 = {3, 1}. Dann
ist P (A1 ∩ A2 ∩ A3) = 0 6= P (A1)P (A2)P (A3); jedoch sind A1, A2, A3 paarweise
unabhängig.
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4. Die Ausdrucksweise ,,Die Ereignisse A1, . . . , An sind unabhängig“, die auch hier ver-
wendet wird, ist nicht ganz genau und führt in gewissen Situation zu Mißverständ-
nissen. Unabhängigkeit ist keine Eigenschaft von Mengen von Ereignissen, sondern
eine Eigenschaft von n-Tupeln von Ereignissen, die allerdings nicht von der Reihen-
folge dieser Ereignisse im Tupel abhängt. Für ein Ereignis A ist das 1-Tupel (A)
nach unserer Definition stets unabhängig, das Paar (A,A) jedoch nicht. (A,A) ist
genau dann unabhängig, wenn P (A) = P (A ∩ A) = P (A)P (A), d.h. P (A) ∈ {0, 1}
gilt.

Zur bequemen Formulierung des nachfolgenden Ergebnisses führen wir die Bezeichnung
A1 := A für A ⊂ Ω ein, Ac ist wie üblich das Komplement.

(2.11) Lemma. Die Ereignisse A1, . . . , An sind genau dann unabhängig, wenn für alle
(k1, . . . , kn) ∈ {1, c}n

P

( n⋂

j=1

A
kj

j

)
=

n∏

j=1

P (A
kj

j )

gilt. Hierbei ist {1, c}n die Menge der n-Tupel mit den Komponenten 1 und c.

Beweis (I). Unter der Voraussetzung der Unabhängigkeit zeigen wir die obige Gleichung
mit Induktion nach n:

n = 1: Offensichtlich gilt P (A1) = P (A1) und P (Ac) = P (Ac).

Induktionsschluß n→ n+1: Die Ereignisse A1, . . . , An+1 seien unabhängig. Wir beweisen
die obige Gleichung (für n+1) mit Induktion nach der Anzahl m der Komplementzeichen
in (k1, . . . , kn+1). Fürm = 0 folgt sie aus der Unabhängigkeit. Induktionsschluß m→ m+1
für 0 ≤ m < n + 1: Es seien m + 1 ≥ 1 Komplementzeichen in (k1, . . . , kn+1). Durch
Permutation der Ereignisse können wir annehmen, daß kn+1 = c ist.

P

(n+1⋂

j=1

A
kj

j

)
= P

( n⋂

j=1

A
kj

j ∩ Ac
n+1

)
= P

( n⋂

j=1

A
kj

j

)
− P

( n⋂

j=1

A
kj

j ∩An+1

)
.

Der erste Summand ist nach der Induktionsvoraussetzung an n gleich
∏n

j=1 P (A
kj

j ), der

zweite nach der Induktionsvoraussetzung an m gleich
(∏n

j=1 P (A
kj

j )
)
P (An+1). Damit

folgt, wie gewünscht,

P

(n+1⋂

j=1

A
kj

j

)
=

n+1∏

j=1

P (A
kj

j ).

(II) Wir zeigen die Umkehrung: Die obige Gleichung in (2.11) gelte für alle Tupel (k1, . . . , kn) ∈
{1, c}n. Wir zeigen die Unabhängigkeit von A1, . . . , An.

Sei {i1, . . . , ik} ⊂ {1, . . . , n} und {j1, . . . , jm} sei das Komplement dieser Menge in {1, . . . , n}.
Dann läßt sich Ai1∩· · ·∩Aik als Vereinigung paarweise disjunkter Mengen wie folgt schrei-
ben: ⋃

(k1,...,km)∈{1,c}m

Ai1 ∩ · · · ∩Aik ∩Ak1
j1
∩ · · · ∩ Akm

jm
.
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Die Wahrscheinlichkeit davon ist nach unserer Voraussetzung gleich
∑

(k1,...,km)∈{1,c}m

P (Ai1) · · ·P (Aik)P (Ak1
j1

) · · ·P (Akm
jm

) = P (Ai1) · · ·P (Aik).

2

Als Beispiel betrachten wir das übliche Modell für das n-malige Werfen einer Münze.

(2.12) Satz. Wir bezeichnen mit Bk das Ereignis, daß der k-te Wurf ,,Kopf“ ist. Die
Ereignisse B1, . . . , Bn sind unabhängig.

Beweis. Es gilt P (Bj) = P (Bc
j) = 1/2 für alle j ∈ {1, . . . , n}. Für jedes n-Tupel

(k1, . . . , kn) ∈ {1, c}n gilt P (Bk1
1 ∩ · · · ∩ Bkn

n ) = 2−n =
∏n

j=1 P (B
kj

j ). Nach (2.11) sind
B1, . . . , Bn unabhängig. 2

Offenbar ist der n–fache Münzwurf äquivalent zu einem Zufallsexperiment, welches mit
gleicher Wahrscheinlichkeit in Erfolg (abgekürzt durch E) oder Mißerfolg (abgekürzt durch
M) endet und das wir n Mal unabhängig durchführen. Dieses Modell ist allerdings – wie
schon in Kapitel 1 diskutiert – nicht immer realistisch. Die naheliegende Verallgemeine-
rung ist die, anzunehmen, daß E und M nicht notwendig gleich wahrscheinlich sind; das
Ereignis E tritt mit Wahrscheinlichkeit 0 ≤ p ≤ 1 auf. Der entsprechende W.-Raum ist
Ω = {E,M}n, d. h. die Menge der E-M-Folgen der Länge n. Die Wahrscheinlichkeiten
der Elementarereignisse ω = (ω1, . . . , ωn) ∈ Ω sind gegeben durch p(ω) = pk(1 − p)n−k,
wobei k die Anzahl der E’s in der Folge ω1, . . . , ωn bezeichnet (wir werden diesen Ansatz
im nächsten Satz rechtfertigen).

(2.13) Definition. Das durch diesen W-̇Raum beschriebene Zufallsexperiment heißt
Bernoulli-Experiment der Länge n mit ,,Erfolgswahrscheinlichkeit“ p.

Wir wollen die Wahrscheinlichkeit von einigen besonders wichtigen Ereignissen im Bernoulli-
Experiment berechnen. Für k ∈ {0, 1, . . . , n} sei Ak das Ereignis, daß insgesamt k Erfolge
eintreten. In unserer Beschreibung des Bernoulli-Experiments enthält Ak diejenigen Ele-
mentarereignisse, in denen k mal E vorkommt. Davon gibt es so viele, wie es Möglichkei-
ten gibt, die k erfolgreich ausgegangenen Experimente auszuwählen, also

(
n
k

)
. Jedes hat

Wahrscheinlichkeit pk(1 − p)n−k. Somit ist P (Ak) =
(

n
k

)
pk(1 − p)n−k.

Diese Wahrscheinlichkeit kürzt man meist mit b(k;n, p) ab. Die b(k;n, p) sind erwartungs-
gemäß am größten, wenn k in der Nähe von np liegt. Für großes n sind sie jedoch klein
(höchstens von der Größenordnung 1/

√
n). Eine ausführliche Analyse der Größen b(k;n, p)

wird später gegeben werden.

Beispiel: Ein Würfel wird n-mal geworfen. Die Wahrscheinlichkeit dafür, daß k-mal die
Sechs erscheint, ist b(k;n, 1/6).

Eine andere, äquivalente Möglichkeit die Binomialverteilung zu erhalten ist ein sogenann-
tes Urnenmodell.
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(2.14) Beispiel Ziehen mit Zurücklegen (sampling with replacement).
Eine Schachtel (Urne) enthält r rote und s schwarze Kugeln. Es werden n Kugeln nachein-
ander zufällig entnommen. Dabei wird jede sofort wieder zurückgelegt und die Schachtel
neu gemischt. Die Elementarereignisse seien die Rot-Schwarz-Folgen der Länge n. Es ist
klar, daß unter idealen Bedingungen die einzelnen Ziehungen unabhängig sind, daß dies
also ein Bernoulli-Experiment der Länge n mit Erfolgswahrscheinlichkeit p = r

r+s
ist. Die

Wahrscheinlichkeit des Ereignisses Ak, genau k-mal Rot zu ziehen, ist somit

P (Ak) =

(
n

k

)(
r

r + s

)k(
s

r + s

)n−k

.

Eine eingehendere Betrachtung der obigen Beispiele legt die Vermutung nahe, daß Unab-
hängigkeit eng mit den sogenannten Produkträumen zusammenhängt. Wir werden dies
gleich beweisen. Zunächst aber müssen wir sagen, was wir überhaupt unter einem Pro-
duktraum verstehen wollen. Dazu seien (Ω1, p1), . . . , (Ωn, pn) diskrete W-̇Räume. Wir
konstruieren daraus einen neuen W-̇Raum (Ω, p) mit Ω = Ω1 × · · · × Ωn. Für jedes
ω = (ω1, . . . , ωn) ∈ Ω definieren wir p(ω) = p1(ω1)p2(ω2) · · ·pn(ωn). Offensichtlich gilt∑

ω∈Ω p(ω) = 1.

(2.15) Definition. (Ω, p) heißt der Produktraum (product space) der W-̇Räume (Ωi, pi),
1 ≤ i ≤ n.

Zu A ⊂ Ωi definieren wir das Ereignis A(i) = {(ω1, . . . , ωn) ∈ Ω : ωi ∈ A} ⊂ Ω.

(2.16) Satz. Sind Ai ⊂ Ωi für 1 ≤ i ≤ n, so sind die Ereignisse A
(1)
1 , . . . , A

(n)
n im W.-

Raum (Ω, p) unabhängig.

Beweis. Es gilt A
(i)c
i = {ω ∈ Ω : ωi ∈ Ac

i} = A
c(i)
i . Die 2n Gleichungen in Lemma (2.11)

sind also nachgewiesen, wenn

P
(
A

(1)
1 ∩ · · · ∩A(n)

n

)
= P (A

(1)
1 ) · · ·P (A(n)

n )

für alle möglichen Ai ⊂ Ωi, 1 ≤ i ≤ n, gilt. Die linke Seite dieser Gleichung ist gleich

∑

ω∈A
(1)
1 ∩···∩A

(n)
n

p(ω) =
∑

ω1∈A1

· · ·
∑

ωn∈An

p1(ω1) · · ·pn(ωn)

=
n∏

j=1

∑

ωj∈Aj

pj(ωj) =
n∏

j=1

∑

ω∈A
(j)
j

p(ω) =
n∏

j=1

P (A
(j)
j ).

2

Der Produktraum liefert somit ein Modell für eine unabhängige Hintereinanderreihung
von n einzelnen Zufallsexperimenten, insbesondere ist offenbar die oben eingeführte Bi-
nomialverteilung das Resultat eines n-fachen (nicht notwendig fairen) Münzwurfes. Sie
spielt eine zentrale Rolle in der diskreten W.-Theorie.
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Natürlich mag man einwenden, daß das Ziehen mit Zurücklegen für einige Anwendungen
nicht besonders interessant ist. Beispielsweise wird man sich bei einer Meinungsumfrage
tunlichst hüten, dieselbe Person mehrfach zu befragen. Das mathematische Modell hierfür
liefert ein weiteres Urnenmodell:

(2.17) Beispiel Ziehen ohne Zurücklegen (sampling without replacement).
Wir betrachten dieselbe Situation wie in Beispiel (2.14) mit dem Unterschied, daß die
gezogenen Kugeln nicht wieder zurückgelegt werden. Es muß nun natürlich n ≤ r+s sein.
Die einzelnen Ziehungen sind nicht mehr unabhängig, da ihr Ausgang die Zusammenset-
zung der Schachtel und damit die nachfolgenden Ziehungen beeinflußt.

Sei Ak wieder das Ereignis, daß k rote Kugeln gezogen werden. Wir setzen voraus, daß
0 ≤ k ≤ r und 0 ≤ n − k ≤ s gilt, sonst ist Ak das unmögliche Ereignis. Um P (Ak)
zu bestimmen, muß ein geeigneter Wahrscheinlichkeitsraum festgelegt werden. Als Ele-
mentarereignis betrachten wir die Menge der n-elementigen Teilmengen der r+ s Kugeln.
Wie viele darunter gehören zu Ak? Es gibt

(
r
k

)
Möglichkeiten, die k Kugeln aus den roten

auszuwählen, und
(

s
n−k

)
Möglichkeiten für die schwarzen Kugeln, also enthält Ak genau(

r
k

)(
s

n−k

)
Elementarereignisse. Es gilt also

P (Ak) =

(
r

k

)(
s

n− k

)/(r + s

n

)
,

offensichtlich ein anderer Wert als im Modell mit Zurücklegen. Man nennt dies auch die
hypergeometrische Wahrscheinlichkeitsverteilung (hypergeometric probability distributi-
on).

Obschon die Binomialverteilung und die hypergeometrische Verteilung unterschiedliche
Wahrscheinlichkeiten für das Ereignis k Erfolge zu haben liefern, kann man mutmaßen, daß
der Unterschied klein ist, sofern r und s groß sind. Dies ist plausibel, denn in diesem Fall ist
die Wahrscheinlichkeit, eine Kugel doppelt zu ziehen klein (und dies ist ja die Ursache für
die Abhängigkeit der einzelnen Ziehungen bei der hypergeometrischen Verteilung). P (Ak)
(in der hypergeometrischen Verteilung) kann in der Tat durch die Wahrscheinlichkeit
b(k;n, p) mit p = r/(r + s) angenähert werden, sofern n = r + s groß ist. Genauer:

(2.18) Satz.

lim
r,s→∞

r/(r+s)→p

(
r

k

)(
s

n− k

)/(
r + s

n

)
=

(
n

k

)
pk(1 − p)n−k.

Beweis. Die Größen auf der linken Seite sind gleich

n!

k!(n− k)!

r(r − 1) · · · (r − k + 1)s(s− 1) · · · (s− n+ k + 1)

(r + s)(r + s− 1) · · · (r + s− n+ 1)

→
(
n

k

)
pk(1 − p)n−k für r, s→ ∞,

r

r + s
→ p.

2
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Wir schließen dieses Kapitel mit einer Anwendung der bedingten Wahrscheinlichkeiten
bei genetischen Modellen:

Hardy-Weinberg Theorem : Gene sogenannter ,,diploide“ Organismen treten paarweise
auf und sind die Träger der vererblichen Eigenschaften. In einem einfachen Fall nehmen
die Gene zwei Formen an, die man die Allele A und a nennt. Als Kombinationen sind
dann die Genotypen AA, Aa und aa möglich. Zu einem bestimmten Zeitpunkt sei nun
in einer Bevölkerung der Genotyp AA mit relativer Häufigkeit u > 0 vorhanden, der Ge-
notyp Aa mit der relativen Häufugkeit 2v > 0, und aa mit relativer Häufigkeit w > 0.
Dann ist u+2v+w = 1. Wir nehmen an, daß das Gen nicht geschlechtsgebunden ist. Bei
jeder Fortpflanzung überträgt jedes Elternteil ein Gen seines Genpaares, und zwar mit
Wahrscheinlichkeit 1/2 auf den Nachkommen und für beide Elternteile unabhängig von-
einander (zufällige Zeugung). Bei unabhängiger Auswahl von Mutter und Vater beträgt
die Wahrscheinlichkeit, daß beide Genotyp AA haben, dann u2. Die folgende Tabelle gibt
die möglichen Kombinationen der Genotypen sowie die Wahrscheinlichkeit PAA an, daß
diese Kombination von Genotypen zu einem Nachkommen vom Genotyp AA führt:

Vater Mutter relative Häufigkeit PAA

AA AA u2 1
AA Aa 2uv 1/2
Aa AA 2uv 1/2
Aa Aa 4v2 1/4

Mit der Formel von der totalen Wahrscheinlichkeit ergibt sich somit in der ersten Nach-
kommengeneration der Genotyp AA mit Wahrscheinlichkeit P1(AA) = (u + v)2. Analog
ergibt sich P1(aa) = (w+v)2 und somit P1(Aa) = 1−(u+v)2−(w+v)2 = 2(u+v)(v+w).
Wir fassen diese Wahrscheinlichkeiten als die relativen Häufigkeiten der nächsten Gene-
ration auf: u1 = (u + v)2, 2v1 = 2(u + v)(v + w), w1 = (v + w)2. Dann folgt für die
darauffolgende Generation u2 = (u1 + v1)

2, 2v2 = 2(u1 + v1)(v1 + w1), w2 = (v1 + w1)
2.

Durch Einsetzten sieht man u2 = ((u + v)2 + (u + v)(v + w))2 = (u + v)2 = u1 und aus
Symmetriegründen w2 = w1, und damit auch v2 = v1. Durch Induktion folgt für die k-te
Generation:

uk = (u+ v)2, 2vk = 2(u+ v)(v + w), wk = (v + w)2.

Die Häufigkeitsverteilung der Genotypen ist also in allen Nachkommengenerationen gleich.
Diese Aussage stammt von dem Mathematiker Godfrey Harold Hardy (1877-1947) und
dem Physiker Wilhelm Weinberg (1862-1937) aus dem Jahre 1908.
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3 Zufallsgrößen, Gesetz der großen Zahlen

Zu Beginn dieses Kapitels sei noch einmal daran erinnert, wie wir im vergangenen Ab-
schnitt vom Bernoulli-Experiment zur Binomialverteilung gekommen sind. Während das
Bernoulli-Experiment auf dem Wahrscheinlichkeitsraum (Ω, p̃) lebte, wobei Ω = {0, 1}N

und p̃(ω) = pk(1− p)n−k für ein ω mit k Einsen war, war die Binomialverteilung b(k;n, p)
eine Wahrscheinlichkeit auf der Menge {0, . . . , n}. Der Zusammenhang zwischen beiden ist
der, daß man für b(k;n, p) die Wahrscheinlichkeiten im Bernoulli-Experiment für sämtli-
che ω mit k Einsen quasi aufsammelt. Formal entspricht das einer Abbildung X : Ω → N,
wobei wir zusätzlich jedem n ∈ N die Summe der Wahrscheinlichkeiten seiner Urbilder
zuordnen. Dies ist das Konzept der Zufallsvariablen.

(3.1) Definition Sei (Ω, p) ein (diskreter) W.-Raum. Dann heißt eine Abbildung X :
Ω → R eine (diskrete) Zufallsvariable oder Zufallsgröße ((discrete) random variable).

Wir beobachten, daß für die formale Definition einer Zufallsvariablen p zunächst völlig be-
langlos ist. Eine Zufallsgröße ist einfach eine Abbildung und keine ,,zufällige“ Abbildung.
Natürlich werden wir jedoch nun die Eigenschaften von X im Zusammenhang mit p un-
tersuchen. Die zentrale Idee hierbei wird immer sein, daß eine Zufallsvariable “wesentliche
Eigenschaften” eines W.-Raumes herausfiltert.

Es bezeichne X(Ω) das Bild von Ω unter X, d. h. die höchstens abzählbare Menge reeller
Zahlen {X(ω) : ω ∈ Ω }. Für A ⊂ R ist X−1(A) = {ω ∈ Ω : X(ω) ∈ A } eine Teilmenge
von Ω, d. h. ein Ereignis. Wir nennen dies das Ereignis, ,,daßX einen Wert in A annimmt“.
Wir benutzen die folgenden Kurzschreibweisen:

{X ∈ A} := {ω ∈ Ω : X(ω) ∈ A } = X−1(A),

{X = z} := {ω ∈ Ω : X(ω) = z } = X−1({z}),
{X ≤ z} := {ω ∈ Ω : X(ω) ≤ z } = X−1((−∞, z]), etc.

Statt P ({X ∈ A}), P ({X = z}) schreiben wir einfach P (X ∈ A), P (X = z), etc.
Wir schreiben meistens ein Komma anstelle von ,,und“ bzw. des mengentheoretischen
Durchschnitts innerhalb der Klammer in P ( ). Sind etwa X, Y Zufallsgrößen und A,B ⊂
R, so schreiben wir P (X ∈ A, Y ∈ B) für P ({X ∈ A}∩{Y ∈ B}) oder noch ausführlicher
P ({ω : X(ω) ∈ A und Y (ω) ∈ B }).

(3.2) Beispiele.

1. Es sei X die Augensumme beim zweimaligen Werfen eines Würfels. Zur forma-
len Beschreibung dieses Versuchs betrachten wir den W.-Raum (Ω, p) mit Ω =
{1, 2, 3, 4, 5, 6}2 und der Gleichverteilung p, also p((i, j)) = 1/36 für alle (i, j) ∈ Ω.
Die Zufallsgröße X : Ω → R mit X((i, j)) = i+ j für alle (i, j) ∈ Ω beschreibt dann
die Augensumme, und es gilt z. B.

P (X = 3) = P ({(1, 2), (2, 1)}) = 1/18

und
P (X ≤ 4) = P ({(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1)}) = 1/6.
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2. Es bezeichne X die Anzahl der Erfolge in einem Bernoulli-Experiment der Länge n.
Setzen wir Xi = 1, falls der i-te Versuch ein Erfolg ist, und Xi = 0 sonst (1 ≤ i ≤ n),
so folgt X =

∑n
i=1Xi.

3. Für eine beliebige Teilmenge A ⊂ Ω definieren wir die Indikatorfunktion 1A von A
durch

1A(ω) =

{
1 falls ω ∈ A,
0 falls ω /∈ A.

Sei X : Ω → R eine Zufallsgröße. Für z ∈ X(Ω) sei f(z) := P (X = z). Da die Ereignisse
{X = z} für verschiedene z ∈ X(Ω) sich gegenseitig ausschließen und

Ω =
⋃

z∈X(Ω)

{X = z}

gilt, folgt ∑

z∈X(Ω)

f(z) = 1.

(X(Ω), f) ist somit ein W.-Raum (dies entspricht der eingangs gemachten Beobachtung
für die Binomialverteilung).

(3.3) Definition. f heißt die Verteilung (distribution) der Zufallsgröße X.

Aus der Verteilung einer Zufallsgröße läßt sich P (X ∈ A) für jede Teilmenge A von R

berechnen:
P (X ∈ A) =

∑

z∈A∩X(Ω)

f(z).

Verteilungen sind jedoch oft kompliziert und in vielen praktisch wichtigen Beispielen nicht
explizit berechenbar. Zunächst einige Beispiele, bei denen die Verteilung einfach angege-
ben werden kann:

Beispiel (3.2 (1)) (Augensumme beim zweimaligen Würfeln): X(Ω) = {2, 3, 4, . . . , 12},

f(2) = f(12) = 1
36
, f(5) = f(9) = 1

9
,

f(3) = f(11) = 1
18
, f(6) = f(8) = 5

36
,

f(4) = f(10) = 1
12
, f(7) = 1

6
.

Binomialverteilte Zufallsgrößen:

Sei X die Anzahl der Erfolge in einem Bernoulli-Experiment der Länge n und Erfolgs-
wahrscheinlichkeit p. Dann ist, wie wir schon in Kapitel 2 berechnet haben:

P (X = k) =

(
n

k

)
pk(1 − p)n−k = b(k;n, p) für k ∈ {0, 1, . . . , n}.

(3.4) Definition. Eine Zufallsgröße mit obiger Verteilung heißt binomialverteilt mit Pa-

rametern p und n.
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Diese Zufallsvariablen werden im weiteren Verlauf der Vorlesung noch eine zentrale Rolle
einnehmen.

Offensichtlich kann man auf einem W.-Raum (Ω, p) sehr viele verschiedene Zufallsvaria-
blen definieren. Um diese zu unterscheiden, muß man ihre Verteilungen unterscheiden.
Da sich die exakte Verteilung in vielen Beispielen nur schwer oder gar nicht explizit be-
rechnen läßt, ist es wichtig, daß es gewisse Kenngrößen von Zufallsgrößen gibt, die oft
einfacher zu berechnen oder abzuschätzen sind, und die wichtige Informationen über die
Zufallsgröße enthalten. Die wichtigste dieser Größen ist der Erwartungswert, der angibt,
wo die Zufallsgröße “im Mittel” liegt.

(3.5) Definition. Sei X eine Zufallsgröße. Man sagt, daß der Erwartungswert (expected
value, expectation) von X existiert, falls

∑
z∈X(Ω) |z|P (X = z) <∞ ist. Der Erwartungs-

wert von X ist dann definiert durch

E(X) =
∑

z∈X(Ω)

zP (X = z).

Wir definieren also E(X) nur, wenn die Reihe absolut konvergiert. Der Wert der Reihe∑
z∈X(Ω) zP (X = z) hängt dann nicht von der Reihenfolge der Summation ab. Es muß her-

vorgehoben werden, daß der Erwartungswert einer Zufallsgröße nur von deren Verteilung
abhängt. Zwei verschiedene Zufallsgrößen mit derselben Verteilung haben also denselben
Erwartungswert – unabhängig von ihrem Startraum (Ω, p). Wir lassen die Klammern oft
weg und schreiben EX statt E(X).

Man kann statt über X(Ω) auch über Ω summieren:

(3.6) Lemma. Der Erwartungswert von X existiert genau dann, wenn die Reihe∑
ω∈Ω p(ω)X(ω) absolut konvergiert. In diesem Falle gilt E(X) =

∑
ω∈Ω p(ω)X(ω).

Beweis.
∑

z∈X(Ω)

|z|P (X = z) =
∑

z∈X(Ω)

|z|
∑

ω:X(ω)=z

p(ω)

=
∑

(z,ω):X(ω)=z

|z|p(ω) =
∑

ω∈Ω

|X(ω)|p(ω).

Somit folgt der erste Teil der Behauptung; der zweite ergibt sich mit einer Wiederholung
der obigen Rechnung ohne Absolutzeichen. 2

(3.7) Satz.

1. Ist c ∈ R und X die konstante Abbildung nach c (d. h. X(ω) = c für alle ω ∈ Ω),
so gilt EX = c.

2. X1, . . . , Xn seien (auf einem gemeinsamen W.-Raum definierte) Zufallsgrößen, deren
Erwartungswerte existieren, und a1, . . . , an seien reelle Zahlen. Ferner sei a1X1 +
a2X2 + · · ·+anXn die Zufallsgröße, deren Wert an der Stelle ω ∈ Ω gleich a1X1(ω)+
a2X2(ω) + · · · + anXn(ω) ist. Dann existiert E(a1X1 + · · · + anXn) und ist gleich
a1EX1 + · · ·+ anEXn. (”Der Erwartungswert ist linear”.)
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3. X, Y seien Zufallsgrößen. Gilt X ≤ Y und existiert der Erwartungswert von Y , so
gilt EX ≤ EY . (”Der Erwartungswert ist monoton”.)

Beweis.
(1) und (3) sind nach der Definition des Erwartungswertes evident.
(2) Wir benutzen (3.6):

∑

ω

p(ω)|a1X1(ω) + . . .+ anXn(ω)|

≤ |a1|
∑

ω

p(ω)|X1(ω)| + . . .+ |an|
∑

ω

p(ω)|Xn(ω)| <∞.

Somit existiert der Erwartungswert und es gilt

E(a1X1 + · · ·+ anXn) =
∑

ω

p(ω)(a1X1(ω) + · · ·+ anXn(ω))

= a1

∑

ω

p(ω)X1(ω) + . . .+ an

∑

ω

p(ω)Xn(ω)

= a1EX1 + . . .+ anEXn.

2

Bemerkung. Die Menge aller Zufallsgrößen, die auf Ω definiert sind, ist einfach R
Ω und in

natürlicher Weise ein R-Vektorraum. Die Menge der Zufallsgrößen, deren Erwartungswert
existiert, ist nach (3.7 (2)) ein Unterraum von R

Ω. Man bezeichnet ihn oft als L1(Ω, p).
Der Erwartungswert ist eine lineare Abbildung von L1(Ω, p) nach R, also ein Element des
Dualraumes von L1(Ω, p).

(3.8) Beispiele.

1. Der Erwartungswert der Indikatorfunktion 1A von A ⊂ Ω ist E(1A) = P (A), denn
A = {ω : 1A(ω) = 1} und also E(1A) = 0 · P (Ac) + 1 · P (A).

2. X binomialverteilt mit Parametern p, n:
Wir schreiben X als X1 + · · · + Xn, wobei Xi = 1 ist, wenn der i-te Versuch von
Erfolg gekrönt war, und andernfalls Xi = 0. Es gilt E(Xi) = P (Xi = 1) = p und
somit E(X) = np.

Die alleinige Kenntnis von Erwartungswerten ist im allgemeinen wenig nützlich, wenn
nicht gleichzeitig bekannt ist, daß die Zufallsgröße mit hoher Wahrscheinlichkeit ,,nahe“
beim Erwartungswert liegt.

Dazu ein Beispiel: Ist P (X = 0) = P (X = 1) = 1/2, so ist EX = 1/2, aber dies gibt im
Grunde wenig Information über X. Anderseits: Sei X die mittlere Anzahl der Kopfwürfe
bei einem Münzwurf-Experiment der Länge 1000, d. h. die Anzahl der Kopfwürfe / 1000.
Aus Beispiel (3.8 (2)) wissen wir, daß ebenfalls EX = 1/2 gilt. Jedermann ,,ist bekannt“,
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daß X mit großer Wahrscheinlichkeit nahe bei 1/2 liegt. Dies ist der Inhalt des Geset-
zes der großen Zahlen, das wir weiter unten gleich diskutieren und beweisen werden. Die
Verteilung von X ist hier ziemlich scharf um EX konzentriert. Ohne solche ,,Maßkonzen-
trationsphänomene“ wäre jede statistische Umfrage beispielsweise sinnlos.

Ein Maß für die Abweichung, die eine Zufallsgröße von ihrem Erwartungswert hat, ist die
sogenannte Varianz:

(3.9) Definition. Es sei X eine Zufallsgröße mit existierendem Erwartungswert EX.
Dann heißt

V (X) :=
∑

z∈X(Ω)

(z − EX)2P (X = z)

die Varianz (variance) von X und S(X) := +
√
V (X) die Standardabweichung (standard

deviation) von X, falls die auftretende (möglicherweise unendliche) Reihe konvergiert. Die

Varianz ist stets nicht negativ, da die Glieder in der obigen Reihe alle größer oder gleich
Null sind. Man sagt oft auch, die Varianz sei unendlich, wenn die Reihe divergiert.

Für die Diskussion der Varianz und auch in anderen Zusammenhängen ist die nachste-
hende Folgerung aus (3.6) nützlich:

(3.10) Lemma. X1, . . . , Xk seien (auf einem gemeinsamen W.-Raum definierte) Zu-
fallsgrößen, und g sei eine Abbildung von X1(Ω) × · · · × Xk(Ω) nach R. Dann ist X :=
g(X1, . . . , Xk) = g ◦ (X1, . . . , Xk) eine Zufallsgröße, deren Erwartungswert genau dann
existiert, wenn

∑

x1∈X1(Ω)

. . .
∑

xk∈Xk(Ω)

|g(x1, . . . , xk)|P (X1 = x1, . . . , Xk = xk) <∞

gilt. In diesem Fall gilt

E(X) =
∑

x1∈X1(Ω)

. . .
∑

xk∈Xk(Ω)

g(x1, . . . , xk)P (X1 = x1, . . . , Xk = xk).

Beweis. Wir betrachten den neuen W.-Raum (Ω′, p′) mit Ω′ = X1(Ω) × · · · × Xk(Ω)

und p′(x1, . . . , xk) = P (X1 = x1, . . . , Xk = xk). Auf diesem W.-Raum definieren wir die
Zufallsgröße g : Ω′ → R. Für z ∈ g(Ω′) = X(Ω) gilt

P ′(g = z) =
∑

(x1,...,xk)∈Ω′

g(x1,...,xk)=z

p′(x1, . . . , xk) =
∑

ω∈Ω
X(ω)=z

p(ω) = P (X = z).

g und X haben also dieselbe Verteilung. Unser Lemma folgt nun sofort aus (3.6). 2

(3.11) Lemma.

1. V (X) ist der Erwartungswert der Zufallsgröße ω 7→ (X(ω) −EX)2.
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2. V (X) existiert genau dann, wenn E(X2) existiert.

3. Existiert V (X), so gibt V (X) = E(X2) − (EX)2.

4. Für a, b ∈ R gilt V (a+ bX) = b2V (X).

5. Sind X und Y Zufallsgrößen, deren Varianzen existieren, so existiert die Varianz
von X + Y .

Beweis.

1. folgt aus (3.10) mit k = 1 und g(x) = (x− EX)2.

2. Falls V (X) existiert, so existiert EX (per Definition).
Wegen z2 ≤ 2(EX)2 + 2(z −EX)2 für z ∈ R folgt

∑

z∈X(Ω)

z2P (X = z) ≤ 2(EX)2 + 2
∑

z∈X(Ω)

(z − EX)2P (X = z) <∞.

Nach (3.10) existiert dann E(X2).
Falls E(X2) existiert, so folgt

∑

z∈X(Ω)

|z|P (X = z) =
∑

z∈X(Ω)
|z|≤1

|z|P (X = z) +
∑

z∈X(Ω)
|z|>1

|z|P (X = z)

≤ 1 +
∑

z∈X(Ω)

z2P (X = z) <∞.

Somit existiert EX. Wegen (z−EX)2 ≤ 2(EX)2 +2z2 folgt die Existenz von V (X)
wie oben.

3. V (X) = E((X − EX)2) = E(X2 − 2(EX)X + (EX)2) =
E(X2) − 2EX × EX + (EX)2 = E(X2) − (EX)2.

4. folgt sofort aus (1) und der Linearität des Erwartungswertes.

5. Es gilt (X(ω) + Y (ω))2 ≤ 2X(ω)2 + 2Y (ω)2 für alle ω ∈ Ω. Nach (2) folgt dann die
Existenz von V (X + Y ).

2

Im allgemeinen gilt V (X + Y ) 6= V (X) + V (Y ) (die Varianz ist also nicht linear). Eine
einfache Rechnung ergibt nämlich

V (X + Y ) = E
(
((X + Y ) −E(X + Y ))2

)
(3.1)

= E
(
(X − EX)2

)
+ E

(
(Y − EY )2

)
+ 2E

(
(X −EX)(Y − EY )

)

= V (X) + V (Y ) + 2E
(
(X − EX)(Y − EY )

)
,
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und der letzte Summand ist in vielen Fällen ungleich Null, z. B. für X = Y , V (X) 6= 0.
Dennoch ist der Fall, wo für zwei Zufallsgrößen X und Y die Gleichung V (X + Y ) =
V (X) + V (Y ) gilt, von besonderem Interesse. Wir werden dies weiter unten diskutieren.

(3.12) Definition. Sind X und Y zwei Zufallsgrößen, so wird die Kovarianz (covariance)
zwischen X und Y definiert durch cov(X, Y ) = E((X − EX)(Y − EY )), falls alle in
diesem Ausdruck vorkommenden Erwartungswerte existieren.

(3.13) Bemerkung. Eine analoge Überlegung wie im Beweis von (3.11 (2)) zeigt, daß
cov(X, Y ) genau dann existiert, wenn E(X), E(Y ) und E(XY ) existieren. In diesem Fall
gilt

cov(X, Y ) = E(XY ) −E(X)E(Y ).

(3.14) Lemma. Seien X und Y Zufallsgrößen, für die cov(X, Y ) existiert. Dann gelten
cov(X, Y ) = cov(Y,X) und cov(λX, µY ) = λµ cov(X, Y ) für alle λ, µ ∈ R.

Beweis. Definition und Linearität des Erwartungswerts. 2

Die Gleichung (3.1) kann wie folgt verallgemeinert werden:

(3.15) Satz. Seien X1, . . . , Xn Zufallsgrößen mit existierenden Varianzen und Kovarian-
zen. Dann gilt

V

( n∑

i=1

Xi

)
=

n∑

i=1

V (Xi) +

n∑

i,j=1
i6=j

cov(Xi, Xj).

Beweis.

V

( n∑

i=1

Xi

)
= E

(( n∑

i=1

Xi − E

( n∑

i=1

Xi

))2)
= E

(( n∑

i=1

(Xi − EXi)

)2)

=
n∑

i,j=1

E
(
(Xi − EXi)(Xj −EXj)

)
=

n∑

i=1

V (Xi) +
n∑

i,j=1
i6=j

cov(Xi, Xj).

2

(3.16) Satz. Existieren V (X) und V (Y ), so existiert cov(X, Y ) und es gilt

| cov(X, Y )| ≤ S(X)S(Y ) (S(X) := +
√
V (X)).

Beweis. Für alle ω ∈ Ω gilt 2|X(ω)Y (ω)| ≤ X2(ω) + Y 2(ω). Daraus und aus (3.11 (2))
folgt die Existenz von E(XY ) und nach der Bemerkung (3.13) auch die von cov(X, Y ).
Für λ, µ ∈ R folgt aus (3.14) und (3.15):

0 ≤ V (λX + µY ) = λ2V (X) + 2λµ cov(X, Y ) + µ2V (Y ).
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Als Funktion von (λ, µ) ∈ R
2 definiert dies also eine positiv semidefinite quadratische

Form. Demzufolge ist

det

(
V (X) cov(X, Y )

cov(X, Y ) V (Y )

)
≥ 0.

Dies impliziert die Aussage. 2

(3.17) Bemerkung. Der Vollständigkeit halber sei auf den folgenden Sachverhalt hin-
gewiesen. Die Existenz von cov(X, Y ) setzt nach (3.13) die Existenz von EX, EY und
E(XY ) voraus und folgt nach dem obigen Satz aus der Existenz von V (X) und V (Y ).
Letzteres ist jedoch dafür nicht notwendig: Es gibt Zufallsgrößen mit existierender Kova-
rianz, deren Varianzen nicht existieren.

(3.18) Definition. Die Zufallsgrößen X und Y heißen unkorreliert (uncorrelated), wenn
cov(X, Y ) existiert und gleich null ist. Sind die Zufallsgrößen X1, . . . , Xn paarweise un-

korreliert und existeren die Varianzen, so gilt nach (3.15)

V

( n∑

i=1

Xi

)
=

n∑

i=1

V (Xi)

(Gleichheit nach Irénée Jules Bienaymé (1796-1878)). Die für uns zunächst wichtigste

Klasse von unkorrelierten Zufallsgrößen sind unabhängige:

(3.19) Definition. n diskrete Zufallsgrößen X1, . . . , Xn heißen unabhängig , wenn

P (X1 = z1, . . . , Xn = zn) = P (X1 = z1) · · ·P (Xn = zn)

für alle zi ∈ Xi(Ω), i ∈ {1, . . . , n} gilt.

Der folgende Satz stellt einen Zusammenhang zwischen der Unabhängigkeit von Zufalls-
variablen und der Unabhängigkeit von Ereignissen her.

(3.20) Satz. Die folgenden vier Aussagen über die diskreten Zufallsgrößen
X1, X2, . . . , Xn sind äquivalent

(a) X1, . . . , Xn sind unabhängig.

(b) Für alle A1, . . . , An ⊂ R gilt

P (X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An) = P (X1 ∈ A1) × · · · × P (Xn ∈ An).

(c) Für alle A1, . . . , An ⊂ R sind die Ereignisse {X1 ∈ A1}, . . . , {Xn ∈ An} unabhängig.

(d) Für z1 ∈ X1(Ω), . . . , zn ∈ Xn(Ω) sind die Ereignisse {X1 = z1}, . . . , {Xn = zn}
unabhängig.
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Beweis. (a)⇒(b): Summation der Gleichung in (3.20) über (z1, . . . , zn) ∈ A1×A2×· · ·×An.

(b)⇒(c): Nach (2.11) ist zu zeigen, daß für (i1, . . . , in) ∈ {1, c}n die Gleichung

P

( n⋂

j=1

{Xj ∈ Aj}ij

)
=

n∏

j=1

P ({Xj ∈ Aj}ij)

gilt, wobei {Xj ∈ Aj}1 := {Xj ∈ Aj} ist. Nun ist jedoch {Xj ∈ Aj}c = {Xj ∈ Ac
j}. Wir

können deshalb einfach (b) mit Aj oder Ac
j anstelle von Aj anwenden.

(c)⇒(d) ist trivial und (d)⇒(a) ergibt sich aus der Definition. 2

(3.21) Satz. Sind die Zufallsgrößen X1, . . . , Xn unabhängig, und sind fi : R → R für
i = 1, . . . , n beliebige Funktionen, so sind die Zufallsgrößen Yi = fi ◦ Xi, i = 1, . . . , n,
unabhängig.

Beweis. Für beliebige y1, . . . , yn ∈ R sei Ai = {xi ∈ R : fi(xi) = yi}. Dann ist {Yi = yi} =
{Xi ∈ Ai}. Die Aussage folgt somit aus Satz (3.20). 2

(3.22) Satz. Zwei unabhängige Zufallsgrößen, deren Erwartungswerte existieren, sind
unkorreliert.

Beweis. Sind X und Y unabhängig, so folgt
∑

x∈X(Ω)

∑

y∈Y (Ω)

|xy|P (X = x, Y = y) =
∑

x

∑

y

|x| |y|P (X = x)P (Y = y)

=

(∑

x

|x|P (X = x)

)(∑

y

|y|P (Y = y)

)
<∞.

Nach (3.10) mit k = 2 und g(x, y) = xy folgt die Existenz von E(XY ). Eine Wiederho-
lung der obigen Rechnung ohne Absolutzeichen ergibt E(XY ) = E(X)E(Y ). Nach (3.13)
folgt daraus die Unkorreliertheit von X und Y . 2

(3.23) Bemerkung. Derselbe Beweis ergibt für n Zufallsgrößen X1, . . . , Xn, die un-
abhängig sind und deren Erwartungswerte existieren, daß der Erwartungswert von

∏n
i=1Xi

existiert und gleich
∏n

i=1EXi ist.

(3.24) Beispiele.

1. Wir betrachten ein Bernoulli-Experiment mit Parametern n, p und setzen Xi = 1,
falls der i-te Versuch ein Erfolg ist, und Xi = 0 sonst (1 ≤ i ≤ n). Dann gilt
V (Xi) = E(X2

i )− (EXi)
2 = p− p2 = p(1− p). Die Unabhängigkeit von X1, . . . , Xn

folgt aus der Definition. Nach (3.22) sind die Xi paarweise unkorreliert. Nach (3.15)
folgt für die Anzahl X =

∑n
i=1Xi der Erfolge

V (X) =

n∑

i=1

V (Xi) = np(1 − p)

28



und somit S(X) =
√
np(1 − p).

2. Um an einem Beispiel zu zeigen, daß die Umkehrung von (3.22) nicht gilt, wählen
wir Ω = {−1, 0, 1} mit der Gleichverteilung und definieren die Zufallsgröße X durch
X(ω) = ω für alle ω ∈ Ω. Dann gelten E(X) = 0, E(|X|) = 2/3 und E(X|X|) = 0,
also sind X und |X| nach (3.13) unkorreliert. Offensichtlich sind X und |X| aber
abhängig, denn zum Beispiel ist {X = 1, |X| = 0} das unmögliche Ereignis, aber
P (X = 1)P (|X| = 0) ist gleich 1/9.

3. Ein Stapel mit n numerierten Karten wird zufällig in eine Reihe gelegt. Alle n!
Möglichkeiten mögen gleich wahrscheinlich sein. Sn bezeichne nun die Anzahl der
Karten, die in Bezug auf die natürliche Anordnung an ,,ihrem“ Platz liegen. Sn

nimmt also Werte in {0, 1, . . . , n} an. In einer Übungsaufgabe wird die Verteilung
von Sn bestimmt. Von ihr kann man Erwartungwert und Varianz ableiten. Wir
berechnen diese Werte hier direkt: Dazu sei Xk die Zufallsgröße mit Werten 1 oder
0 je nachdem, ob die Karte mit der Nummer k am k-ten Platz liegt oder nicht.
Dann ist Sn = X1 + X2 + · · · + Xn. Jede Karte ist mit Wahrscheinlichkeit 1/n
am k-ten Platz, also ist P (Xk = 1) = 1/n und P (Xk = 0) = (n − 1)/n und
somit E(Xk) = 1/n. Damit folgt E(Sn) = 1. Im Durchschnitt liegt also eine Karte
an ihrem Platz. Weiter ist V (Xk) = 1/n − (1/n)2 = (n − 1)/n2. Das Produkt
XjXk nimmt die Werte 0 und 1 an. Der Wert 1 entspricht dem Ereignis, daß die
Karten mit Nummer j und k an ihrem Platz liegen, was mit Wahrscheinlichkeit
1/n(n − 1) geschieht. Daher ist E(XjXk) = 1/(n(n− 1)). Nach Bemerkung (3.13)
ist cov(Xj, Xk) = 1/(n(n−1))−1/n2 = 1/(n2(n−1)). Nach Satz (3.15) folgt damit

V (Sn) = n
n− 1

n2
+ 2

(
n

2

)
1

n2(n− 1)
= 1.

Die Standardabweichung ist ein Maß dafür, wie weit X von E(X) mit nicht zu kleiner
Wahrscheinlichkeit abweichen kann. Diese sehr vage Aussage wird durch die sogenannte
Tschebyscheff-Ungleichung präzisiert. Pafnuty Lwowitsch Tschebyscheff (1821-1894) be-
wies diese Ungleichung 1867. Wir beweisen zunächst eine etas allgemeinere Version dieser
Ungleichung, die später noch nützlich sein wird:

(3.25) Satz. (Markoff-Ungleichung, Markov-inequality) Es sei φ eine auf [0,∞) definier-
te, nichtnegative monoton wachsende Funktion. Es sei X eine Zufallsgröße, für die der
Erwartungswert E(φ(|X|)) existiert. Dann gilt für jedes a > 0 mit
φ(a) > 0

P (|X| ≥ a) ≤ E(φ(|X|))
φ(a)

.

Beweis.

P (|X| ≥ a) =
∑

x∈X(Ω)
|x|≥a

P (X = x) ≤
∑

x∈X(Ω)
φ(|x|)≥φ(a)

φ(|x|)
φ(a)

P (X = x)

≤
∑

x∈X(Ω)

φ(|x|)
φ(a)

P (X = x) =
E(φ(|X|))
φ(a)

.
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2

(3.26) Satz. (Tschebyscheff-Ungleichung, Chebyshev-inequality) Sei X eine Zufallsgröße,
deren Erwartungswert EX und Varianz V (X) existieren. Dann gilt für jedes a > 0

P (|X −EX| ≥ a) ≤ V (X)

a2
.

Beweis. Mit φ(x) = x2 folgt aus Satz (3.25)

P (|X − EX| ≥ a) = P ((X − EX)2 ≥ a2) ≤ 1

a2
E((X −EX)2) =

V (X)

a2
.

2

Beispiel: Sei a > 0 und X eine Zufallsgröße, die als Werte −a, +a und 0 annimmt
und deren Verteilung gegeben ist durch P (X = −a) = P (X = +a) = 1/(2a2) und
P (X = 0) = 1 − 1/a2. Wir erhalten E(X) = 0 und V (X) = 1 und damit

P (|X − E(X)| ≥ a) = P (|X| ≥ a) = P (X = −a) + P (X = +a) =
1

a2
.

Dieses Beispiel zeigt, daß die Tschebyscheff-Ungleichung im allgemeinen nicht verbessert
werden kann. Dennoch ist sie in vielen Fällen keine sehr gute Abschätzung. Für viele
Zufallsgrößen können Abweichungen vom Erwartungswert sehr viel besser als mit der
Tschebyscheff-Ungleichung abgeschätzt werden. Wir werden dies in einem der nächsten
Kapitel intensiver diskutieren.

Die Tschebyscheff-Ungleichung ist gut genug, um das nachfolgende Gesetz der großen
Zahlen zu beweisen. Es wurde vermutlich bereits im Jahre 1689 von Jakob Bernoulli
(1654-1705) für den Fall des n-maligen Münzwurfes bewiesen. Dieses Theorem steht in
der Ars conjectandi, welche erst acht Jahre nach Bernoullis Tod, mit einem Vorwort seines
Neffen Nikolaus versehen, 1713 in Basel erschien:

(3.27) Satz. (Schwaches Gesetz der großen Zahlen, weak law of large numbers) Es seien
für jedes n ∈ N auf einem diskreten Wahrscheinlichkeitsraum paarweise unkorrelierte Zu-
fallsgrößen X1, X2, . . . , Xn gegeben, die von n abhängen dürfen, die aber alle den gleichen
Erwartungswert E und die gleiche Varianz V besitzen. Sei Sn := X1 + · · · + Xn, und
S̄n = Sn

n
sei die Folge der Mittelwerte. Dann gilt für jedes ε > 0

lim
n→∞

P (|S̄n − E| ≥ ε) = 0.

Beweis. Aus (3.26), (3.11 (4)) und (3.15) folgt

P (|S̄n − E| ≥ ε) ≤ 1

ε2
V (S̄n) =

1

n2ε2
V (Sn) =

1

n2ε2
nV → 0 für n→ ∞.

2
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Interpretation. Falls wir beliebig oft ein Experiment wiederholen und annehmen, daß die
Ergebnisse (Zufallsgrößen) paarweise voneinander unabhängig oder mindestens unkorre-
liert sind, so ist die Wahrscheinlichkeit für ein Abweichen der Mittelwerte der ersten n
Experimente vom Erwartungswert schließlich (d. h. für hinreichend große n) beliebig klein.

(3.28) Bemerkung. Die Voraussetzungen des Satzes muten etwas umständlich an. Wie-
so setzen wir nicht einfach voraus, daß (Xi)i∈N eine Folge von unkorrelierten Zufallsgrößen
ist? Die Antwort ist einfach, daß wir (im Moment) keine Möglichkeiten haben, eine derarti-
ge unendliche Folge auf einem abzählbaren Wahrscheinlichkeitsraum zu definieren (außer
im ganz trivialen Fall, wo die Xi alle konstant sind). Im Satz (3.27) setzen wir jedoch
nur voraus, daß für jedes n ein W.-Raum Ω(n) existiert, auf dem die X1, . . . , Xn existie-
ren. Wenn wir ganz pedantisch wären, sollten wir deshalb X

(n)
1 , . . . , X

(n)
n schreiben. Es

macht keine Schwierigkeiten, eine solche Folge von W.-Räumen und die dazugehörenden
Zufallsgrößen als mathematisch präzis definierte Objekte zu konstruieren:

Es seien f1, . . . , fn beliebige W.-Verteilungen auf abzählbaren Teilmengen Ai von R (d. h.
fi : Ai → [0, 1] mit

∑
x∈Ai

fi(x) = 1). Wir konstruieren einen W.-Raum (Ω, p) und
unabhängige Zufallsgrößen Xi mit Xi(Ω) = Ai und Verteilungen fi wie folgt:

Sei Ω = A1 × · · · × An. Für ω = (ω1, . . . , ωn) ∈ Ω setzen wir Xi(ω) = ωi für alle i
in {1, . . . , n} und p(ω) = f1(ω1)f2(ω2) · · · fn(ωn). Per Konstruktion sind X1, . . . , Xn un-
abhängig, also auch unkorreliert. Haben die fi alle denselben Erwartungswert und dieselbe
Varianz (z. B. wenn sie alle gleich sind), so haben die Xi alle denselben Erwartungswert
und dieselbe Varianz. Diese Konstruktion können wir für jedes n durchführen.

Der Satz (3.27) läßt sich natürlich auf binomialverteilte Zufallsgrößen anwenden, denn die-
se lassen sich ja in der Form X1 + · · ·+Xn schreiben, wobei die X1, . . . , Xn unabhängig,
also auch unkorreliert sind. Es ist instruktiv, sich die Aussage für diesen Fall zu veran-
schaulichen: Seien also die Xi unabhängig mit P (Xi = 1) = p, P (Xi = 0) = 1−p, und sei
Sn = X1 + · · · +Xn also binomialverteilt mit Parametern n, p. Dann ist E(Xi) = p und
V (Xi) = p(1 − p). Aus (3.27) folgt also, daß für jedes ε > 0

P
(∣∣∣
Sn

n
− p
∣∣∣ ≥ ε

)
= P (|Sn − np| ≥ nε)

=
∑

k:|k−np|≥nε

P (Sn = k) =
∑

k:|k−np|≥nε

(
n

k

)
pk(1 − p)n−k

mit n→ ∞ gegen 0 konvergiert.

Man muß sich jedoch darüber im klaren sein, daß keineswegs etwa P (Sn 6= np) gegen null
konvergiert. In der Tat konvergiert P (|Sn − np| ≥ r) gegen 1 für jede Zahl r > 0. Nicht
Sn liegt mit großer Wahrscheinlichkeit (für große n) in der Nähe von np, sondern Sn/n in
der Nähe von p. Wir werden diese Sachverhalte in einem späteren Kapitel präzisieren.

Der Satz (3.27) heißt schwaches Gesetz der großen Zahlen, um es vom sogenannten starken
Gesetz der großen Zahlen (strong law of large numbers) zu unterscheiden. Dieses besagt

P
(

lim
n→∞

Sn

n
existiert und ist = E

)
= 1. (3.2)
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Die Gleichung (3.2) macht jedoch nur Sinn, wenn alle Xi, i ∈ N, auf einem W.-Raum defi-
niert sind. Die Konstruktion eines solchen W.-Raumes macht aber, vielleicht unerwartet,
erhebliche Probleme.

Eine Anwendung des schwachen Gesetzes der großen Zahlen führt zu der folgenden von
Sergej Natanowitsch Bernstein (1880-1968) gegebenen Beweisvariante des Approximati-
onssatzes von Karl Weierstrass (1815-1897). Dieser Satz besagt ja, daß man jede stetige
reelle Funktion f auf dem Einheitsintervall [0, 1] durch Polynome, definiert auf [0, 1],
gleichmäßig approximieren kann. Wir betrachten nun das sogenannte Bernstein-Polynom
zu f :

Bf
n(x) :=

n∑

k=0

f
(k
n

)(n
k

)
xk(1 − x)n−k.

Wenn Sn eine binomialverteilte Zufallsgröße mit Parametern x und n bezeichnet, so folgt
mit S̄n := Sn/n unmittelbar E(f(S̄n)) = Bf

n(x). Da jedes obige f auf [0, 1] gleichmäßig
stetig ist, gibt es zu jedem ε > 0 ein δ(ε) > 0 derart, daß für alle x, y ∈ [0, 1] gilt:
|x− y| < δ(ε) ⇒ |f(x) − f(y)| < ε. Nach der Tschebyscheff-Ungleichung folgt

P (|S̄n − x| ≥ δ) ≤ x(1 − x)

nδ2
≤ 1

4nδ2
,

denn 4x(1 − x) = 1 − (2x− 1)2 ≤ 1. Es folgt somit die Abschätzung

|Bf
n(x) − f(x)| = |E(f(S̄n) − f(x))| ≤ E(|f(S̄n) − f(x)|)

≤ 2 sup
u

|f(u)|P (|S̄n − x| > δ) + sup
|u−v|≤δ

|f(u) − f(v)|P (|S̄n − x| ≤ δ).

Der erste Term ist durch 1
2nδ2 supu |f(u)| beschränkt, der zweite Term durch ε für δ ≤ δ(ε),

da f gleichmäßig stetig ist. Indem man also zunächst δ = δ(ε) und dann n = n(δ, ε) wählt,
erhält man supx |Bf

n(x)− f(x)| ≤ ε. Somit ist gezeigt, daß für jede stetige reelle Funktion
auf [0, 1] die Folge (Bf

n)n∈N der zugehörigen Bernstein-Polynome gleichmäßig auf [0, 1]
gegen f konvergiert. Die Bedeutung dieses probabilistischen Ansatzes für einen Beweis
des Approximationssatzes von Weierstrass liegt im kanonischen Auffinden der explizit
angebbaren Polynomfolge (Bf

n)n∈N.

Wir betrachten zwei weitere Anwendung des schwachen Gesetzes der großen Zahlen:

vorteilhaftes Spiel, bei dem man auf Dauer verliert:
Ein Spiel heißt fair, wenn in jeder Runde der erwartete Verlust gleich dem erwarteten Ge-
winn ist. Ist der erwartete Gewinn jeweils größer, heißt das Spiel vorteilhaft. Überraschend
mag nun sein, daß es vorteilhafte Spiele gibt, bei denen man auf Dauer verliert. Ein ers-
tes Beispiel wurde bereits 1945 von William Feller (1906-1970) gegeben. Wir betrachten
hier ein von Ulrich Krengel ausgearbeitetes Beispiel. Sei X0 = 1 das Startkapital. Man
wirft in jeder Runde eine Münze. Da Kapital Xn nach der n-ten Runde sei Xn−1/2, wenn
Kopf im n-ten Wurf fällt, sonst 5Xn−1/3. Somit ist das Spiel vorteilhaft. Mit Yn = 1/2
bei Kopf im n-ten Wurf und Yn = 5/3 sonst folgt die Darstellung Xn = Y1 · Y2 · · ·Yn.
Aus der Unabhängigkeit der Yi folgt mit E(Yi) = (1/2)(1/2) + (1/2)(5/3) = 13/12:

32



E(Xn) = (13/12)n → ∞. Wenn nun µ den Erwartungwert von logYi bezeichnet, besagt
das Gesetz der großen Zahlen

P

(∣∣∣
1

n
(log Y1 + · · · + log Yn) − µ

∣∣∣ ≤ ε

)
→ 1.

Dies gilt insbesondere für ε = −µ/2, denn µ = (log(1/2) + log(5/3))/2 < 0, also
P (1/n logXn − µ ≤ −µ/2) → 1. Also ist mit großer Wahrscheinlichleit Xn ≤ exp(µn/2),
was wegen µ < 0 gegen Null strebt. Der Kapitalstand strebt also auf lange Sicht ziemlich
schnell gegen Null.

Normale Zahlen: Wir betrachten das Intervall [0, 1] und stellen jede Zahl x ∈ [0, 1] mit Hil-
fe ihrer Dezimalentwicklung x = 0.a1a2a3 . . ., mit ai ∈ {0, . . . , 9} dar. Hält man die ersten
n Ziffern a1, . . . , an fest, so ergeben die Zahlen, die mit 0.a1a2 . . . an beginnen, ein Inter-
vall der Länge 10−n. Diese Intervalle sind für unterschiedliche Wahlen von a1, a2, . . . , an

disjunkt. Wir betrachten nun ein Zufallsexperiment, das solche Intervalle mit Wahrschein-
lichkeit 10−n konstruiert. Zu diesem Zweck ziehen wir für jedes i die Ziffer ai mit Wahr-
scheinlichkeit 1/10. Dann hat in der Tat jedes der obigen Intervalle Wahrscheinlichkeit

10−n. Wir bezeichnen für j ∈ {0, . . . , 9} mit ν
(j)
n (x) die absolute Häufigkeit des Auftretens

der Ziffer j in den ersten n Stellen der Ziffer x. Für ein festes δ > 0 besagt nun das schwa-
che Gesetz der großen Zahlen, daß für jedes δ > 0 die Menge der obigen Intervalle für die
gilt |ν(j)

n (x) − 1/10| ≤ δ für alle 0 ≤ j ≤ 9 eine Länge hat die asymptotisch für n → ∞
gegen 1 konvergiert. Die relative Häufigkeit der Ziffern in der Dezimalentwicklung solcher
Zahlen ist also annähernd gleich. Solche Zahlen heißen normale Zahlen. Das Gesetz der
großen Zahlen besagt also, daß die normalen Zahlen in einer Vereinigung von Intervallen
liegen, die asymptotisch Länge 1 haben.
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4 Normalapproximation der Binomialverteilung

Es sei daran erinnert, daß eine Zufallsgröße X mit der Verteilung

P (X = k) = b(k;n, p) =

(
n

k

)
pkqn−k (q = 1 − p) für k = 0, 1, . . . , n

binomialverteilt heißt.

Die exakten Werte für b(k;n, p) lassen sich bei festem p allerdings nur für moderat große
n und k (n = 100 und k = 50 ist z.B. schon nicht mehr so leicht) berechnen. Im Falle
großer n hilft uns aber eine Version des Zentralen Grenzwertsatzes, einer Art Naturgesetz,
das die asymptotische Verteilung einer großen Klasse von Variablen angibt.

Die Basis für diese Approximation ist die Stirlingsche Formel, die von James Stirling
(1692-1770) bewiesen wurde:

(4.1) Satz.
lim

n→∞
n!/(

√
2πnn+1/2e−n) = 1.

Für einen Beweis: Siehe etwa O. Forster: Analysis 1 §20 Satz 6.

Man bemerke, daß die Stirlingsche Formel nicht bedeutet, daß |n!−
√

2πnn+1/2e−n| gegen
0 konvergiert, im Gegenteil. Es gilt

lim
n→∞

|n! −
√

2πnn+1/2e−n| = ∞.

Die erste Frage, die man sich stellen sollte ist die, in welchem Sinne man eigentlich einen
Limes von b(k;n, p) sinnvoll definieren kann. Dazu bemerken wir zunächst, daß

b(k + 1;n, p)

b(k;n, p)
=

(n− k)p

(k + 1)(1 − p)

ist und daher
b(k + 1;n, p)

b(k;n, p)
< 1 ⇔ k + 1 > (n+ 1)p.

Die Funktion k 7→ b(k;n, p) nimmt also ihr Maximum genau bei k = [n+ 1]p an. Nun ist
aber mit Hilfe der Stirlingschen Formal sofort klar, daß

b([n + 1(p)];n, p) ≃ b(np;n, p) ≃ (n
e
)n
√

2πnpnp(1 − p)n−np

(np
e

)np
√

2πnp(n−np
e

)n−np
√

2π(n− np)

=

√
1

2πnp(1 − p)
,

wobei wir für zwei Folgen an und bn schreiben an ≃ bn, falls limn→∞
an

bn
= 1. Also ist

für jedes k und p limn→∞ b(k;n, p) = 0. Diese Aussage ist eben so wahr wie unnütz. Im
wesentlichen bedeutet sie, daß man, um einen ”vernünftigen Grenzwert” zu erhalten, nicht
einzelne Wahrscheinlichkeiten b(k;n, p) anschauen sollte, sondern die Wahrscheinlichkeit
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für ganze Bereiche, also:
∑

αna+cn≤k≤αnb+cn
b(k;n, p), wobei a, b ∈ R reelle Zahlen sind und

αn, cn Funktionen von n sind. Wie aber soll man αn, cn wählen? Zunächst ist klar, daß
die Binomialverteilung b(·;n, p) den Erwartungswert np hat, es also ratsam ist, cn = np
zu wählen, damit die obige Summe für reelle a, b von einer relevanten Größenordnung ist.

Andererseits zeigt die obige Rechnung, daß maxk b(k;n, p) ≃
√

1
2πnp(1−p)

ist. Nimmt man

an, daß die Terme b(k;n, p) für k nahe bei np von derselben Ordnung sind, so liegt es
nahe αn =

√
n oder besser αn = p(1− p)

√
n zu wählen (um ein Resultat zu erhalten, das

von p nicht abhängt). Letzteres wird in der Tat unsere Wahl sein.

Der erste Schritt zur Herleitung eines Grenzwertsatzes für die Binomialverteilung wird
sein, daß wir zunächst die b(k;n, p) einzeln genauer unter die Lupe nehmen. Wir werden
sehen, daß diese für relevante k tatsächlich von der Ordnung 1/

√
n sind und darüber

hinaus zeigt sich, daß dann b(k;n, p) durch eine schöne Funktion approximiert werden
kann. Dazu setzen wir

xk := xk(n, p) :=
k − np√
np(1 − p)

.

xk hängt natürlich von n und p ab, was wir in der Notation jedoch nicht gesondert betonen.
Wir kürzen 1 − p meist durch q ab.

(4.2) Satz. (lokaler Grenzwertsatz, local limit theorem) Es seien 0 < p < 1, q = 1 − p
und (an)n∈N > 0 eine Folge reeller Zahlen mit limn→∞ a3

n/
√
n = 0. Dann gilt

lim
n→∞

sup
k;|xk|≤an

∣∣∣
√

2πnpq b(k;n, p)

e−x2
k/2

− 1
∣∣∣ = 0.

(4.3) Bemerkungen.

1. Ist an = A eine beliebige, aber feste positive Konstante, so folgt aus dem obigen
Satz unmittelbar

lim
n→∞

sup
k:|xk|≤A

∣∣∣
√

2πnpq b(k;n, p)

e−x2
k/2

− 1
∣∣∣ = 0.

2. Wir schreiben nachfolgend stets b(k;n, p) ∼ 1√
2πnpq

e−x2
k/2 für die obige gleichmä-

ßige Konvergenz. Allgemeiner: Sind α(k, n), β(k, n) > 0 für n ∈ N0, 0 ≤ k ≤ n,
so bedeutet (während des untenstehenden Beweises) α(k, n) ∼ β(k, n), daß für die
obige Folge (an)n∈N > 0

lim
n→∞

sup
k:|xk|≤an

∣∣∣
α(k, n)

β(k, n)
− 1
∣∣∣ = 0

gilt.

3. Wir überzeugen uns vom folgenden Sachverhalt, der im Beweis von (4.2) mehrfach
verwendet wird:

α(k, n) ∼ β(k, n), α′(k, n) ∼ β ′(k, n) ⇒ α(k, n)α′(k, n) ∼ β(k, n)β ′(k, n).
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Beweis.
∣∣∣∣
α(k, n)α′(k, n)

β(k, n)β ′(k, n)
− 1

∣∣∣∣ ≤ α′(k, n)

β ′(k, n)

∣∣∣∣
α(k, n)

β(k, n)
− 1

∣∣∣∣+
∣∣∣∣
α′(k, n)

β ′(k, n)
− 1

∣∣∣∣

≤
∣∣∣∣
α′(k, n)

β ′(k, n)
− 1

∣∣∣∣
∣∣∣∣
α(k, n)

β(k, n)
− 1

∣∣∣∣+
∣∣∣∣
α′(k, n)

β ′(k, n)
− 1

∣∣∣∣+
∣∣∣∣
α(k, n)

β(k, n)
− 1

∣∣∣∣.

Daraus folgt die Aussage sofort. 2

Beweis von Satz (4.2). Es gilt

k = np+
√
npq xk, n− k = nq −√

npq xk,

also
k ∼ np, n− k ∼ nq.

Mit Hilfe der Stirlingschen Formel folgt:

b(k;n, p) ∼ (n
e
)n
√

2πnpkqn−k

(k
e
)k
√

2πk(n−k
e

)n−k
√

2π(n− k)

=

√
n

2πk(n− k)
ϕ(n, k) ∼ 1√

2πnpq
ϕ(n, k),

wobei wir ϕ(n, k) für (np
k

)k( nq
n−k

)n−k schreiben. Es ist nun

− logϕ(n, k) = nH(k/n| p),

wobei

H(x| p) = x log
(x
p

)
+ (1 − x) log

(1 − x

1 − p

)

(diese Funktion heißt relative Entropie von x bezüglich p; sie wird im Rahmen des
Studiums der großen Abweichungen (Kapitel 6) eine zentrale Rolle spielen). Wir wol-
len diese Funktion nun um den Wert p Taylor entwickeln. Es ist H ′(p| p) = 0 und
H ′′(p| p) = 1/p+ 1/q = 1/(pq). Damit folgt

H(x| p) =
(x− p)2

2pq
+ ψ(x− p),

wobei ψ das Restglied in der Taylorentwicklung bezeichnet. Insbesondere gilt in jedem
endlichen Intervall, das p enthält eine Abschätzung

|ψ(x− p)| ≤ c|x− p|3

mit einer geeigneten Konstanten c. Wir erhalten somit
∣∣∣∣∣− logϕ(n, k) − n

(
k
n
− p
)2

2pq

∣∣∣∣∣ ≤ cn
∣∣∣
k

n
− p
∣∣∣
3

.

Aus der Definition der xk erhält man für eine geeignete Konstante 0 < c′ <∞ folgt

|k − np|3
n2

= c′
|xk|3√
n
.
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Wählen wir nun ein k mit |xk| ≤ an, so konvergiert aufgrund der Bedingung an die Folge
(an)n∈N die rechte Seite der Ungleichung gegen 0. Da nun aber

n
(

k
n
− p
)2

2pq
=
x2

k

2
,

erhalten wir

lim
n→∞

sup
k:|xk|≤an

∣∣∣
ϕ(n, k)

e−x2
k/2

− 1
∣∣∣ = 0.

Damit ist der Satz gezeigt. 2

Ein Rechenbeispiel dazu:
Jemand wirft 1200-mal einen Würfel. Mit welcher Wahrscheinlichkeit hat er genau 200-
mal eine 6? Mit welcher Wahrscheinlichkeit 250-mal?

Wir berechnen xk für k = 200, 250, n = 1200, p = 1/6.

x200 = 0, x250 =
5
√

6√
10

= 3.873

b(200; 1200, 1/6) ∼= 0.0309019

b(250; 1200, 1/6) ∼= 0.0000170913.

Wie üblich muß hier bemerkt werden, daß ein reines Limesresultat für die Güte einer Ap-
proximation wie in obigem Rechenbeispiel zunächst natürlich gar nichts aussagt. Gefragt
sind konkrete Abschätzungen des Fehlers. Dies ist ein technisch aufwendiges Feld, in das
wir in dieser Vorlesung nicht eintreten werden.

Nachfolgend ist eine numerische Illustration von (4.19) angegeben:

Die sechs Bilder illustrieren die Konvergenz der Binomialverteilung gegen die Funktion
ϕ(x) = (2π)−1/2 exp(−x2/2). Hier ist jeweils die Funktion ϕ(x) zusammen mit dem ska-
lierten Histogramm

fn,p(x) =

{ √
np(1 − p)b(k;n, p), falls k ∈ {0, 1, . . . , n}mit |x− xk| < 1

2
√

np(1−p)
,

0 andernfalls,

der Binomialverteilung b(· ;n, p) gezeichnet; in der linken Spalte der symmetrische Fall
mit p = 1/2, in der rechten Spalte der asymmetrische Fall p = 1/5.

37



-3 -2 -1 0 1 2 3

0.1

0.2

0.3

0.4

-3 -2 -1 0 1 2 3

0.1

0.2

0.3

0.4

-3 -2 -1 0 1 2 3

0.1

0.2

0.3

0.4

-3 -2 -1 0 1 2 3

0.1

0.2

0.3

0.4

-3 -2 -1 0 1 2 3

0.1

0.2

0.3

0.4

-3 -2 -1 0 1 2 3

0.1

0.2

0.3

0.4

n = 10

n = 40

n = 160

p = 1/2 p = 1/5

Nun kommen wir dazu, die schon eingangs diskutierten ”Bereichswahrscheinlichkeiten”
zu approximieren.

(4.4) Satz. (von de Moivre-Laplace) Für beliebige reelle Zahlen a und b mit a < b gilt:

lim
n→∞

P

(
a ≤ Sn − np√

npq
≤ b

)
=

1√
2π

∫ b

a

e−x2/2dx. (4.1)

Beweis. Die zentrale Idee des Beweises ist es für die einzelnen Summanden der linken Seite
von (4.1) die Approximation aus dem lokalen Grenzwertsatz einzusetzen und zu sehen,
daß dies eine Riemannsumme für das Integral auf der rechten Seite von (4.1) liefert.
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Sei also k ∈ {0, . . . , n}. Dann ist {Sn = k} = {(Sn − np)/
√
npq = xk}. Also ist die links

stehende Wahrscheinlichkeit gleich

∑

k:a≤xk≤b

P (Sn = k) =
∑

k:a≤xk≤b

b(k;n, p).

Wir setzen nun für jeden Summanden auf der rechten Seite seinen in Satz (4.2) angegebe-
nen asymptotischen Wert ein und berücksichtigen, daß xk+1 − xk = 1√

npq
ist. Die Summe

dieser Größen nennen wir Rn:

Rn =
1√
2π

∑

k:a≤xk≤b

e−x2
k/2(xk+1 − xk).

Unter Verwendung der Gleichmäßigkeit der Konvergenz in Satz (4.2) sieht man sofort,
daß der Quotient von P (a ≤ Sn−np√

npq
≤ b) und dem obenstehenden Ausdruck gegen 1

konvergiert, das heißt, es existiert eine Nullfolge (εn)n∈N, εn > 0 mit

Rn(1 − εn) ≤ P

(
a ≤ Sn − np√

npq
≤ b

)
≤ Rn(1 + εn). (4.2)

k und xk entsprechen einander bikjektiv, und wenn k von 0 bis n läuft, dann variiert xk

im Intervall [−
√
np/q,

√
nq/p] mit der Schrittweite xk+1−xk = 1/

√
npq. Für hinreichend

große n umfaßt dieses Intervall das gegebene Intervall [a, b], und die in [a, b] fallenden
Punkte xk teilen dieses in Teilintervalle derselben Länge 1/

√
npq. Wenn nun der kleinste

und der größte Wert von k mit a ≤ xk ≤ b gleich j bzw. l ist, dann ist

xj−1 < a ≤ xj < xj+1 < . . . < xl−1 < xl ≤ b < xl+1

und die obige Summe läßt sich schreiben als

l∑

k=j

ϕ(xk)(xk+1 − xk),

wobei ϕ(x) = 1√
2π
e−x2/2 ist. Das ist eine Riemannsche Summe für das bestimmte Integral

∫ b

a
ϕ(x)dx. Somit konvergiert Rn mit n → ∞ gegen das Integral in der Behauptung des

Satzes. Dieser folgt nun sofort mit (4.2). 2

Abraham de Moivre (1667–1754) veröffentlichte dieses Ergebnis in seiner ,,Doctrine of
Chances“ 1714. Pierre Simon Marquis de Laplace (1749-1827) erweiterte das Ergebnis
und wies dessen Bedeutung in seiner ,,Théorie analytique des probabilités“ 1812 nach.
Es handelt sich um den zuerst bekanntgewordenen Spezialfall des sogenannten Zentralen
Grenzwertsatzes (central limit theorem).

Die Funktion x → ϕ(x) = 1√
2π
e−x2/2 heißt auch Gaußsche Glockenkurve, wegen des

glockenförmigen Verlaufs ihres Graphen.
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Die Verteilung, die durch das Integral unter der Glockenkurve gegeben ist, heißt auch
Standard–Normalverteilung und wird oft mir N (0, 1) abgekürzt.

Die Integrale
∫ b

a
ϕ(x)dx sind leider nicht in geschlossener Form mit Hilfe von Polynomen,

rationalen Funktionen, Wurzelausdrücken oder elementaren transzendenten Funktionen
(wie sin, cos, exp, etc.) darstellbar.

Es gilt offenbar für a < b

∫ b

a

ϕ(x)dx =

∫ b

−∞
ϕ(x)dx−

∫ a

−∞
ϕ(x)dx = Φ(b) − Φ(a),

wobei wir Φ(y) :=
∫ y

−∞ ϕ(x)dx gesetzt haben. Wie nicht anders zu erwarten ist, gilt

∫ ∞

−∞
ϕ(x)dx = 1. (4.3)

Der Beweis, den man üblicherweise in der Analysis für diese Tatsache gibt, benutzt Po-
larkoordinaten. Wir geben hier einen Beweis, der sich darauf stützt, daß wir den Satz von
de-Moivre-Laplace schon kennen: Wir verwenden (4.4) und setzen S∗

n := Sn−np√
npq

. (Für das

Argument hier spielt p keine Rolle; wir können z.B. p = 1/2 nehmen.) Sei a > 0. Dann ist

1 = P (−a ≤ S∗
n ≤ a) + P (|S∗

n| > a).

Nach der Tschebyscheff-Ungleichung gilt:

P (|S∗
n| > a) ≤ 1

a2
Var(S∗

n) =
1

a2
.

Nach (4.4) gilt

lim
n→∞

P (−a ≤ S∗
n ≤ a) =

∫ a

−a

ϕ(x)dx.

Demzufolge ist

1 − 1

a2
≤
∫ a

−a

ϕ(x)dx ≤ 1
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für jedes a > 0, womit (4.6) bewiesen ist.

(4.7) Bemerkung. (a) Wegen limn→∞ supk P (Sn = k) = 0 ist es natürlich gleichgültig,
ob in der Aussage von (4.21) ≤ oder < steht.

(b) Es gilt für a ∈ R:

lim
n→∞

P

(
Sn − np√

npq
≤ a

)
= Φ(a) =

1√
2π

∫ a

−∞
e−x2/2dx,

lim
n→∞

P

(
Sn − np√

npq
≥ a

)
= 1 − Φ(a).

Beweis von (b). Wir beweisen die erste Gleichung; die zweite folgt analog. Wegen der
Symmetrie von ϕ und (4.6) gilt:

Φ(x) =

∫ x

−∞
ϕ(u)du = 1 −

∫ ∞

x

ϕ(u)du = 1 −
∫ −x

−∞
ϕ(u)du = 1 − Φ(−x).

Wir setzen wieder S∗
n = Sn−np√

npq
und wählen b > 0 so groß, daß −b < a gilt. Dann ist

nach (4.4)

lim sup
n→∞

P (S∗
n ≤ a) = lim sup

n→∞
(P (−b ≤ S∗

n ≤ a) + P (S∗
n < −b))

= lim sup
n→∞

(P (−b ≤ S∗
n ≤ a) + (1 − P (S∗

n ≥ −b)))

≤ lim sup
n→∞

(P (−b ≤ S∗
n ≤ a) + (1 − P (−b ≤ S∗

n ≤ b)))

= Φ(a) − Φ(−b) + (1 − Φ(b) + Φ(−b))
= Φ(a) + Φ(−b)

lim inf
n→∞

P (S∗
n ≤ a) ≥ lim inf

n→∞
P (−b ≤ S∗

n ≤ a)

= Φ(a) − Φ(−b).

Wegen Φ(−b) → 0 für b→ ∞ folgt die gewünschte Aussage. 2

Der Satz (4.4) ist eine Präzisierung des Gesetzes der großen Zahlen, welches besagt, daß
für jedes ε > 0 limn→∞ P (

∣∣Sn

n
−p
∣∣ ≥ ε) = 0 ist. Letzteres können wir sofort auch aus (4.4)

herleiten:

P

(∣∣∣
Sn

n
− p
∣∣∣ ≤ ε

)
= P

(
−ε ≤ Sn

n
− p ≤ ε

)

= P

(
−
√
nε√
pq

≤ Sn − np√
npq

≤
√
nε√
pq

)
≥ P

(
a ≤ Sn − np√

npq
≤ b

)
,

sofern n so groß ist, daß
√
nε/

√
pq ≥ b und −√

nε/
√
pq ≤ a sind. Für beliebige Zahlen

a, b ∈ R ist dies aber für genügend große n der Fall. Somit ist limn→∞ P (|Sn

n
− p| ≤ ε) = 1

für jedes ε > 0.
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Dieser Beweis ist natürlich insgesamt wesentlich aufwendiger als der in Kapitel 3 angege-
bene. (4.4) ist jedoch sehr viel informativer als das Gesetz der großen Zahlen.

Tabelle der Verteilungsfunktion Φ(x) =
∫ x

−∞
1√
2π
e−u2/2du für x ≥ 0. Wir hatten bereits

gesehen, daß für x ≤ 0 gilt: Φ(x) = 1 − Φ(−x).

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7356 0.7389 0.7421 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7793 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8364 0.8389
1.0 0.8413 0.8437 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8687 0.8708 0.8728 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8906 0.8925 0.8943 0.8962 0.8979 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9146 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9278 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9624 0.9633
1.8 0.9641 0.9648 0.9656 0.9664 0.9671 0.9678 0.9685 0.9692 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9761 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9874 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9895 0.9898 0.9901 0.9903 0.9906 0.9908 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9924 0.9926 0.9928 0.9930 0.9932 0.9934 0.9936
2.5 0.9938 0.9939 0.9941 0.9943 0.9944 0.9946 0.9947 0.9949 0.9950 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9958 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9973
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986
3.0 0.9986 0.9987 0.9987 0.9988 0.9988 0.9988 0.9989 0.9990 0.9989 0.9990

Wir wollen nun sehen, dass das Grenzwertverhalten des Satzes von de Moivre/Laplace
ein Spezialfall eines viel allgemeineren Phänomens ist, eines Satzes, der neben dem Gesetz
der großen Zahlen ein zweites “Naturgesetz” der Stochastik darstellt. Wie wir dies schon
im Satz von de Moivre/Laplace kennengelernt haben, befasst sich dieser Satz mit der
Konvergenz von Verteilungen Pn(•) = P [Xn ∈ •] für geeignete Zufallsvariablen Xn. Es
läge sicherlich nahe davon zu sprechen, dass eine Folge von Verteilungen Pn gegen eine
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Grenzverteilung P0 konvergiert, falls

Pn({x}) −→
n→∞

P0({x}) ∀ x ∈ R

bzw.
Fn(x) := Pn((−∞, x]) =

∑

y≤x

Pn(y) → F0(x)

für eine geeignete (Verteilungs-) Funktion F0 gilt.

Das folgende Beispiel zeigt, dass diese Begriffsbildung nicht das Gewünschte liefert.

(4.8) Beispiel. Seien Xn Zufallsvariablen die im Punkt 1
n

konzentriert sind, d. h. für alle
n ∈ N gelte

P (Xn =
1

n
) = 1.

Die Pn sind entsprechend Deltafunktionen in 1
n
:

Pn({x}) = δx− 1
n
.

Es ist anschaulich klar, dass die Pn gegen die Dirac-Verteilung in der 0 konvergieren. Dies
würde der obige Konvergenzbegriff aber nicht leisten, denn

lim
n→∞

Pn({0}) = 0 6= 1 = P0({0}),

wenn P0 gerade die Dirac-Verteilung in der 0 ist. Entsprechend gilt auch

lim
n→∞

Fn(0) = 0 6= 1 = F0(0).

Die Schwierigkeit ist hierbei offenbar, dass, der Limes F0 gerade im Punkt 0 unstetig ist.
Um diese Schwierigkeit zu umgehen, verlangt man für den neuen Konvergenzbegriff nur
das Folgende:

(4.9) Definition. Eine Folge von Verteilungsfunktionen Fn von Wahrscheilichkeiten Pn

auf R heißt verteilungskonvergent gegen F0, falls F0 eine Verteilungsfunktion ist, d. h.
falls gilt

a) F0 ist monoton wachsend;

b) F0 ist rechtsseitig stetig;

c) limx→−∞ F (x) = 0 und limx→∞ F (x) = 1

und falls
Fn(x) → F0(x)

für alle x, in denen F0 stetig ist, gilt. Ist F0 die Verteilungsfunktion einer Wahrscheinlich-
keit P0 auf R, so schreiben wir

Pn
D−→ P0.

43



(4.10) Beispiel. Für die Funktion Fn, F0 aus dem Eingangsbeispiel gilt

Fn(x) =

{
1 x ≥ 1/n
0 x < 1/n

also lim
n→∞

Fn(x) =

{
1 x > 0
0 x ≤ 0

Dies impliziert die Verteilungskonvergenz von Fn gegen F0.

Es ist interessant, diesen neuen Begriff zu vergleichen mit der Konvergenz von Zufallsva-
riaben Xn gegen eine Zufallsvariable X0 in Wahrscheinlichkeit. Letzteres bedeutet, dass
analog zum Gesetz der großen Zahlen gilt

P (|Xn −X0| ≥ ε) → 0 ∀ ε > 0.

Wir werden sehen, dass der Begriff der Verteilungskonvergenz schwächer ist als der Begriff
der Konvergenz in Wahrscheinlichkeit:

(4.11) Satz. Es seien (Xn)n Zufallsvariablen mit

Xn → X0 in Wahrscheinlichkeit.

Dann konvergiert PXn, die Verteilung von Xn, in Verteilung gegen PX0.

Beweis: Wir schreiben
Fn := PXn bzw. F0 := PX0.

Es sei x ein Stetigkeitspunkt von F0 und ε > 0. Dann gibt es ein δ > 0 mit

F0(x) − ε ≤ F0(x− δ) = P (X0 ≤ x− δ)

und
F0(x+ δ) ≤ F0(x) + ε.

Nun gilt aber für alle n ∈ N:

{X0 ≤ x− δ} ⊆ {Xn < x} ∪ {|Xn − x| ≥ δ},

da Xn ≥ x und |Xn −X0| < δ folgt

X0 = (X0 −Xn) +Xn > x− δ.

Hieraus folgt

F0(x) ≤ F0(x− δ) + ε ≤ Fn(x) + P (|Xn −X0| ≥ δ) + ε.

Analog gilt
{Xn ≤ x} ⊂ {X0 < x+ δ} ∪ {|Xn −X0| ≥ δ},

also auch
Fn(x) ≤ F0(x) + P (|Xn −X0| ≥ δ) + ε.

Insgesamt erhält man:

|Fn(x) − F0(x)| ≤ ε+ P (|Xn −X0| ≥ δ).
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Da der letzte Term für n→ ∞ verschwindet, folgt die Behauptung. 2

(4.12) Bemerkung. Die Umkehrung des vorhergehenden Satzes gilt in der Regel nicht,
wie dieses Beispiel zeigt. X sei eine Zufallsvariable mit

P (X = 1) = P (X = −1) =
1

2
.

(Xn) sei eine Folge von Zufallsvariablen mit

X2n = X und X2n+1 = −X ∀ n ∈ N.

Da PXn = PX für alle n ∈ N gilt, ist Xn natürlich verteilungskovnergent gegen X.
Andererseits gilt

P (|X2n+1 −X| ≥ 1) = 1 ∀ n ∈ N.

Wir werden diesen Begriff in der Wahrscheinlichkeitstheorie noch genauer betrachten. Für
den Moment begnügen wir uns mit einer hinreichenden Bedingung für die Verteilungs-
konvergenz.

(4.13) Satz. Es seien Pn diskrete Wahrscheinlichkeitsverteilungen über R und F0 : R → R

differenzierbar, monoton wachsend mit

lim
x→−∞

F0(x) = 0 und lim
x→∞

F0(x) = 1.

Gilt dann

lim
n→∞

∑

x∈R

f(x)Pn({x}) =

∫ ∞

−∞
f(x)F ′

0(x)dx,

so für alle stetigen Funktionen f : R → R mit existenten Limiten limx→±∞ f(x), so ist Pn

verteilungskonvergent und es gilt

Fn → F0 in Verteilung.

Beweis. Sei g : R → R definiert durch

g(x) = 1(−∞,0](x) + (1 − x)1(0,1)(x).

g ist stetig und es gilt limx→∞ g(x) = 0, limx→−∞ g(x) = 1. Selbiges gilt für die Funktionen

fk(x) := g(kx).

Für die zu Pn gehörigen Verteilungsfunktion Fn gilt dann zum einen für alle x ∈ R und
k ∈ N

lim sup
n→∞

Fn(x) = lim sup
n→∞

∑

y≤x

Pn({y})

≤ lim sup
n→∞

∑

y

fk(y − x)Pn({y})

=

∫ ∞

−∞
fk(y − x)F ′

0(y)dy

≤
∫ x+ 1

k

−∞
F ′

0(y)dy = F0(x+
1

k
).
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Hierbei haben wir zunächst verwendet, dass g auf R
− gleich 1 ist, dann die Voraussetzung

eingesetzt und schließlich nochmals die Definition von fk. Andererseits gilt

lim inf
n→∞

Fn(x) = lim inf
n→∞

∑

y≤x

Pn({y})

≥ lim inf
n→∞

∑

y

fk(y − x+
1

k
)Pn({y})

=

∫ ∞

−∞
fk(y − x+

1

k
)F ′

0(y)dy

≥
∫ x− 1

k

−∞
F ′

0(y)dy = F0(x−
1

k
).

Da F0 insbesondere überall stetig ist, folgt

lim
k→∞

F0(x+
1

k
) = lim

x→∞
F0(x−

1

k
) = F0(x),

also insgesamt
lim

n→∞
Fn(x) = F0(x) ∀ x ∈ R.

2

Mit diesem Hilfsmittel an der Hand können wir nun die folgende, allgemeinere Version
des Satzes von de Moivre/Laplace beweisen:

(4.14) Satz. (Satz von Lindeberg-Levy/Spezialfall) Es seien für alle n X1, X2, . . . , Xn

stochastisch unabhängige Zufallsvariablen, die alle dieselbe diskrete Verteilung besitzen
und deren Erwartungswerte EX1 und Varianzen V(X1) > 0 existieren. Dann gilt

lim
n→∞

P (−∞ <

∑n
i=1(Xi − EX1)√

nV(X1)
≤ x) =

∫ x

−∞

1√
2π
e−t2/2dt,

d. h. die Variablen
∑n

i=1(Xi − EX1)/
√
nV(X1) sind verteiungskonvergent mit Limes

F0(x) :=
1√
2π

∫ x

−∞
e−t2/2dt.

(4.15) Bemerkungen.

a) Da e−y2/2 schneller fällt als jede Potenz, ist
∫ x

−∞
1√
2π
e−y2/2dy existent.

b) F0 ist monoton wachsend, stetig und limx→−∞ F0(x) = 0. Außerdem ist F0 differen-
zierbar und nach dem Hauptsatz der Infinitesimalrechnung gilt

F ′
0(x) =

1√
2π
e−x2/2.

Schließlich lernt man auch in der Analysis, dass

1√
2π

∫ ∞

−∞
e−t2/2dt = 1 also lim

x→∞
F0(x) = 1

gilt.
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c) Man beachte, dass die Aussage des Satzes unabhängig ist von der Gestalt der Ver-
teilung von X1.

Beweis des Satzes. Setze

Yi :=
Xi − EX1√

VX1

.

Die Yi sind mit den Xi unabhängig und identisch verteilt. Es gilt

EYi = 0 und V(Yi) = 1.

Setzen wir weiter

Ȳn =
1

n

n∑

i=1

Yi,

so ist √
nȲn =

∑n
i=1(Xi − EX1)√

nVX1

.

Mit

ϕ(x) =
1√
2π
e−x2/2

wollen wir also für jede stetige Funktion f : R → R mit existenten Limiten limx→±∞ f(x)
beweisen, dass

lim
n→∞

∑

y

f(y)P (
√
nȲn = y) =

∫ ∞

−∞
f(y)ϕ(y)dy =: I(f).

Da man von f immer die Konstante I(f) subtrahieren kann, können wir o.B.d.A. I(f) = 0
annehmen. Betrachte

h(x) =
1

ϕ(x)

∫ x

−∞
f(y)ϕ(y)dy.

Da f konstruktionsgemäß gleichmäßig stetig und beschränkt ist, ist h wohldefiniert und
als Quotient stetiger Funktionen stetig. Da

ϕ′(x) = − x√
2π
e−x2/2 = −xϕ(x)

gilt, folgt

h′(x) =
f(x)ϕ2(x) −

∫ x

−∞ f(y)ϕ(y)dyϕ′(x)

ϕ2(x)
= f(x) + xh(x),

für alle x ∈ R. Natürlich ist auch xh(x) stetig und mit l’Hospital folgt

lim
x→±∞

xh(x) = lim
x→±∞

∫ x

−∞ f(y)ϕ(y)dy
ϕ(x)

x

= lim
x→±∞

f(x)ϕ(x)
−x2ϕ(x)−ϕ(x)

x2

= lim
x→±∞

f(x)ϕ(x)

−ϕ(x)(1 + 1
x2 )

= − lim
x→±∞

f(x).
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Dies wenden wir folgendermaßen an:

∑

y

f(y)P (
√
nȲn = y) = E[f(

√
nȲn)]

= E[h′(
√
nȲn)] − E[

√
nȲnh(

√
nȲn)]

= E[h′(
√
nȲn)] − 1√

n

n∑

j=1

E[Yjh(
√
nȲn)].

Aufgrund der Unabhängigkeit und identischen Verteilung der Yj ist dies gleich

= E[h′(
√
nȲn)] −√

nE[Y1h(
√
nȲn)].

Nun betrachten wir die Taylor-Entwicklung von h um

Zn :=
1√
n

n∑

j=2

Yj.

Dies ergibt:

h(
√
nȲn) = h(Zn) + h′(Zn)

Y1√
n

+
Y1√
n
Rn

mit

Rn = h′(Zn + ϑ
Y1√
n

) − h′(Zn) für ein ϑ ∈ [0, 1).

Nun sind konstruktionsgemäß Y1 und Zn stochastisch unabhängig. Daraus folgt

E[Y1h(
√
nȲn)] = E(Y1)E(h(Zn)) + E(Y 2

1 )
1√
n

E[h′(Zn)] +
1√
n

E[Y 2
1 Rn]

=
E[h′(Zn)]√

n
+

E[Y 2
1 Rn]√
n

.

Insgesamt ergibt dies:

E[f(
√
nȲn)] = E[h′(Zn +

Y1√
n

) − h′(Zn)] − E[Y 2
1 · (h′(Zn +

ϑY1√
n

) − h′(Zn)].

Da h′ gleichmäßig stetig ist, konvergieren für festes ω wegen

lim
Y1(w)√

n
= 0

die Summanden unter beiden Erwartungswerten gegen 0. Da außerdem h′ beschränkt ist,
konvergieren auch die zugehörigen Erwartungswerte gegen 0. Dies ergibt

lim
n→∞

E[f(
√
nȲn)] = lim

n→∞

∑
f(y)P [

√
nYn = y] = 0.

Das war zu zeigen. 2
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Ein Anwendungsbeispiel (Außersinnliche Wahrnehmung (ASW))
1973 machte C. Tert (Univ. California, Davis) ein Experiment zu ASW. Eine Aquarius
genannte Maschine wählte zufällig ein Symbol von A,B,C,D und die Versuchsperson sollte
erraten, welches. Tert nahm 15 Personen mit vermuteten “hellseherischen Fähigkeiten”
und testete jede 500 Mal. Von den entstandenen 7500 Versuchen waren 2006 Treffer. Bei
rein zufälligem Raten wären 7500 : 4 = 1875 Treffer zu erwarten gewesen. Frage: Können
die restlichen 2006 − 1875 = 131 Treffer durch Zufallsschwankungen erklärt werden ?

Zur Beantwortung dieser Frage bezeichnen wir mit X die Anzahl der Treffer unter der
Annahme, daß diese rein zufällig zustande kommen. Wir verwenden den Satz von de
Moivre und Laplace mit

n = 7500; p =
1

4
; (1 − p) =

3

4
und erhalten

P (X ≥ 2006) = P


 X − 1875√

7500 × 1
4
× 3

4

≥ 131√
7500 × 1

4
× 3

4


 .

Nach dem Satz von de Moivre und Laplace ist die Größe auf der rechten Seite der Glei-
chung annähernd normalverteilt, d. h. gemäß N (0, 1). Also

P (X ≥ 2006) ≈ P (X∗ ≥ 3.5) ≈ 0.00023,

wobei X∗ eine standardnormalverteilte Zufallsvariable bezeichnet. Die Wahrscheinlich-
keit dafür, daß die auftretende Differenz das Produkt einer Zufallsschwankung ist, liegt
also bei 2.3 Promille und ist damit extrem klein. Trotzdem beweist dieses Experiment
nicht mit Sicherheit, daß es ASW gibt, da z.B. im Nachhinein festgestellt wurde, daß
der Zufallsgenerator nicht besonders zuverlässig war. (Quellen: C. Tert; Learning to use
extrasensory perception, Chicago Univ. Press (1976); M. Gardner; ESP at random, New
York book reviews (1977))

Eine weitere Anwendungsmöglichkeit des Satzes von de Moivre und Laplace ist die, aus-
zurechnen, wie groß eine Stichprobe sein muß, um Aussagen über den Parameter p einer
Binomialverteilung mit einer gewissen Sicherheit und Genauigkeit machen zu können.
Obwohl diese Fragestellung eigentlich in die Statistik gehört, wollen wir uns hierzu schon
einmal ein Beispiel anschauen:

Beispiel: In einer Population will man den Anteil an Linkshändern mit 95% Sicherheit
auf 1% Genauigkeit bestimmen. Wie viele Personen sollte man dazu (mit Zurücklegen)
befragen?

Wir wollen die Wkeit mit Hilfe der Approximation durch die Normalverteilung berechnen.
Dazu sei X die Anzahl der Linkshänder in der Stichprobe, X

n
ist dann der geschätzte Pro-

zentsatz an Linkshändern in der Gesamtpopulation (warum das eine sinnvolle Schätzung
ist, werden wir in dem Kapitel über Statistik diskutieren). Wir wollen, daß

|X
n

− p| ≤ ε = 0.01

und das mit 95% Sicherheit, also

P (|X
n

− p| ≤ 0.01) ≥ 0.95. (4.4)
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Bringt man die Wahrscheinlichkeit auf die Form im Satz von de Moivre und Laplace so
ergibt sich:

P (|X
n

− p| ≤ 0.01) = P (−0.01 ≤ X

n
− p ≤ 0.01)

= P

(
−0.01

√
n√

p(1 − p)
≤ X − np√

np(1 − p)
≤ 0.01

√
n√

p(1 − p)

)
.

Nun kennen wir p dummerweise nicht; aber es gilt stets p(1− p) ≤ 1
4
. Setzen wir dies ein,

erhalten wir

P

(
−0.01

√
n√

p(1 − p)
≤ X

−np
√
np(1 − p) ≤ −0.01

√
n√

p(1 − p)

)

≥ P

(
−0.01 × 2

√
n ≤ X − np√

np(1 − p)
≤ 0.01 × 2

√
n

)
.

Nach dem Satz von de Moivre und Laplace ergibt sich

P

(
−0.01 × 2

√
n ≤ X − np√

np(1 − p)
≤ 0.01 × 2

√
n

)
≈ Φ(z) − Φ(−z) = 2Φ(z) − 1,

da Φ(−z) = 1 − Φ(z), wobei
z := 0.02

√
n.

Um nun (4.8) zu erfüllen, bestimmen wir aus einer N (0, 1)-Tafel z so, daß

2Φ(z) − 1 = 0.95 ⇔ Φ(z) = 0.975.

Dies ergibt (ungefähr) z ≈ 2. Setzen wir die Definition von z wieder ein, erhalten wir

z = 0.02
√
n = 2, d.h.: n = 10000.

Zu bemerken ist noch, daß der benötigte Umfang n der Stichprobe n quadratisch von der
Approximationsgenauigkeit ε abhängt. Benötigt man beispielsweise nur eine Genauigkeit
von 2% (oder 5%), so genügt eine Stichprobe vom Umfang 2500 (400), um das Ziel mit
95% Sicherheit zu erreichen.

Desweiteren bietet sich noch die Möglichkeit, den Stichprobenumfang durch eine Vorab-
information, wo ungefähr p liegen könnte, zu verkleinern.
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5 Die Poisson-Approximation

Im vierten Kapitel hatten wir mit der Normalverteilung die sicherlich wichtigste und
meiststudierte Verteilung der W.-Theorie kennengelernt und gesehen, daß man diese als
Limes eine geeignet skalierten Binomialverteilung erhalten kann. In diesem Kapitel wer-
den wir eine weitere zentrale Verteilung kennenlernen, die sich ebenfalls als Limes einer
(natürlich anders skalierten) Binomialverteilung schreiben läßt.

Wir wollen diese Verteilung an einem Beispiel kennenlernen.
Das Experiment von Rutherford und Geiger
In einem bekannten Experiment beobachteten die Physiker Rutherford und Geiger den
Zerfall einer radioaktiven Substanz. Genauer studierten sie die Emission von α-Teilchen
eines radioaktiven Präparates in n = 2608 Zeitabschnitten von 7.5 Sekunden. Die folgende
Tabelle gibt die Versuchsergebnisse wieder. Hierbei steht ni für jedes natürliche i für die
Anzahl der Zeitabschnitte, in denen genau i α-Teilchen emittiert wurden, ri bezeichnet
die relativen Häufigkeiten dieser Zeitabschnitte.

i ni ri

0 57 0.02186
1 203 0.0778
2 383 0.1469
3 525 0.2013
4 532 0.2040
5 408 0.1564
6 273 0.1047
7 139 0.0533
8 45 0.0173
9 27 0.0103

10 10 0.0038
11 4 0.0015
12 0 0
13 1 0.0004
14 1 0.0004

Offensichtlich sind diese Daten weit davon entfernt von einer Normalverteilung zu stam-
men. Wir benötigen vielmehr eine Verteilung, die die ”Enden”, d.h. die großen Zahlen
mit einem sehr viel kleineren Gewicht versieht. Eine solche Verteilung ist die Poisson-
Verteilung.

(5.1) Definition. Sei λ > 0 eine reelle Zahl. Eine Zufallsgröße X mit X(Ω) = N0 und
der Verteilung πλ gegeben durch

πλ(k) =
e−λ

k!
λk, k ∈ N0,

heißt Poisson-verteilt mit Parameter λ > 0.
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Zunächst bemerken wir, daß die Poisson-Verteilung auf den natürlichen Zahlen, incl. der
Null N0 konzentriert ist. Desweiteren überzeugt man sich rasch, daß

∞∑

k=0

πλ(k) = e−λ
∞∑

k=0

λk

k!
= e−λeλ = 1

ist. πλ ist also tatsächlich eine Wahrscheinlichkeit.

Der Erwartungswert dieser Verteilung ist leicht zu berechnen:

∞∑

k=0

kπλ(k) = e−λ
∞∑

k=0

k
λk

k!
= e−λλ

∞∑

k=1

λk−1

(k − 1)!
= e−λλ

∞∑

k=0

λk

k!
= e−λλe+λ = λ.

Eine Poisson-verteilte Zufallsgröße hat also Erwartungswert λ.

Als nächstes wollen wir die Varianz ausrechnen:

E(X2) =
∞∑

k=0

k2πλ(k) = e−λ
∞∑

k=1

k2λ
k

k!

= e−λ

∞∑

k=1

(k(k − 1) + k)
λk

k!
= e−λ

∞∑

k=0

λk+2

k!
+ λ = λ2 + λ.

Somit gilt
V (X) = E(X2) − (EX)2 = λ2 + λ− λ2 = λ.

Wir fassen diese beiden Feststellungen noch einmal in folgendem Lemma zusammen.

(5.2) Lemma. Erwartungswert und Varianz einer Poisson-verteilten Zufallsgröße sind
gleich dem Parameter λ.

Wir wollen nun einmal die eingangs gezeigten Daten aus Rutherford’s Experiment mit de-
nen einer Poissonverteilung vergleichen. Dabei stellt sich die Frage, wie wir den Parameter
λ am geschicktesten wählen. Vor dem Hintergrund des Gesetzes der großen Zahlen, nach
dem man eine mittlere Zahl emittierter Teilchen erwarten kann, die nahe am Erwartungs-
wert liegt und Lemma (5.2) ist eine gute Wahl die, λ als die durchschnittliche Anzahl der
Emissionen zu wählen. Diese betrug im Experiment von Rutherford und Geiger

a =
10097

2608
∼ 3.87.

Die nächste Tabelle zeigt den Vergleich der relativen Häufigkeiten rk aus dem Experiment
von Rutherford und Geiger mit den Wahrscheinlichkeiten πλ(k) einer Poissonverteilung
zum Parameter λ = 3.87.
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k rk πλ(k)
0 0.0219 0.0208
1 0.0778 0.0807
2 0.1469 0.1561
3 0.2013 0.2015
4 0.2040 0.1949
5 0.1564 0.1509
6 0.1047 0.0973
7 0.0533 0.0538
8 0.0173 0.0260
9 0.0103 0.0112

10 0.0038 0.0043
11 0.0015 0.0015
12 0 0.0005
13 0.0004 0.0002
14 0.0004 4 ×10−5

Die beobachteten relativen Häufigkeiten differieren also von den durch die entsprechende
Poisson-Verteilung vorhergesagten Werten nur um wenige Tausendstel. Warum dies ein
plausibles Ergebnis ist, soll am Ende dieses Kapitels in einem Satz geklärt werden, der
zeigen wird, daß viele Prozesse, die einer Reihe von Anforderungen genügen, eine Poisson-
Approximation erlauben. Grundlage dieses Satzes ist eine Festellung darüber, wie genau
sich die Binomialverteilung b(·;n, p) für kleine Parameter p und große n durch die Pois-
sonverteilung πλ(k) approximieren läßt. Wieder bleibt das Problem, λ zu wählen. Wir
lösen es so, daß wir λ so bestimmen, daß die Erwartungswerte der Binomialverteilung
und der Poissonverteilung übereinstimmen, daß also λ = np ist. Wir wollen also zeigen:
b(k;n, p) liegt nahe bei πλ(k) für λ = np.

Um das zu präzisieren, benötigen wir ein Maß für den Abstand zweier Wahrscheinlichkei-
ten. Dies wird in unserem Fall gegeben sein durch

∆(n, p) :=

∞∑

k=0

|b(k;n, p) − πnp(k)|.

∆(n, p) läßt sich ähnlich auf für den Abstand beliebiger anderer Wahrscheinlichkeiten
definieren und heißt Abstand der totalen Variation.

Wir zeigen das folgende Resultat, das sogar noch wesentlich weitreichender ist als unser
oben gestecktes Ziel:

(5.3) Satz. Es seien X1, . . . , Xn unabhängige Zufallsvariablen, definiert auf einem ge-
meinsamen Wahrscheinlichkeitsraum, mit P (Xi = 1) = pi und P (Xi = 0) = 1 − pi mit
0 < pi < 1 für alle i = 1, . . . , n. Sei X = X1 + · · · +Xn und λ = p1 + · · ·+ pn, dann gilt:

∞∑

k=0

|P (X = k) − πλ(k)| ≤ 2
n∑

i=1

p2
i .

Es folgt also im Fall p = p1 = · · · = pn:
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(5.4) Satz. Für alle n ∈ N und p ∈ (0, 1) gilt ∆(n, p) ≤ 2np2.

Die Schranken in den Sätzen (5.3) und (5.4) sind natürlich nur interessant, falls
∑n

i=1 p
2
i

klein wird bzw. p2 klein wird gegen n. Offenbar benötigt man in Satz (5.4) dazu mindestens
p ≪ 1√

n
, d.h. die Wahrscheinlichkeit eines Einzelerfolges wird klein mit n. Aus diesem

Grund heißt die Poisson-Verteilung auch Verteilung seltener Ereignisse. Insbesondere folgt
der sogenannte Poissonsche Grenzwertsatz, der von Siméon Denis Poisson (1781-1840) im
Jahre 1832 entdeckt wurde:

(5.5) Satz. (Grenzwertsatz von Poisson) Ist λ > 0 und gilt npn → λ > 0 für n → ∞, so
gilt für jedes k ∈ N0:

lim
n→∞

b(k;n, pn) = πλ(k).

(5.5) folgt sofort aus (5.4): Aus npn → λ folgt pn → 0 für n → ∞ und np2
n → 0. Ferner

ist |b(k;n, p) − πnp(k)| ≤ ∆(n, p) für jedes k ∈ N0. Demzufolge gilt

lim
n→∞

|b(k;n, pn) − πnpn(k)| = 0.

Wegen πnpn(k) → πλ(k) folgt (5.5).

Offenbar unterscheidet sich (5.4) von (5.5) dadurch, daß die Aussage von (5.4) auch im
Fall, wo np2

n → 0, npn → ∞ gilt, von Interesse ist (z.B. pn = 1/n2/3). Der wichtigste
Vorzug von (5.3) und (5.4) im Vergleich zu (5.5) ist jedoch, daß eine ganz konkrete Ap-
proximationsschranke vorliegt. Dafür ist Satz (5.3) auch schwieriger zu beweisen als (5.5)
(den wir hier allerdings nur als Korollar aus Satz (5.4) ableiten wollen).

Bevor wir den Beweis von Satz (5.3) geben, stellen wir einen wichtigen Aspekt der Pois-
sonverteilung bereit:

(5.6) Proposition. X und Y seien unabhängig und Poisson-verteilt mit Parametern λ
beziehungsweise µ > 0. Dann ist X + Y Poisson-verteilt mit Parameter λ+ µ.

Beweis. Für n ∈ N0 gilt:

P (X + Y = n) =
n∑

k=0

P (X = k, Y = n− k)

=

n∑

k=0

P (X = k)P (Y = n− k) (Unabhängigkeit)

=

n∑

k=0

λk

k!

µn−k

(n− k)!
e−λe−µ =

1

n!

( n∑

k=0

(
n

k

)
λkµn−k

)
e−(λ+µ)

=
1

n!
(λ+ µ)ne−(λ+µ) = πλ+µ(n).

2
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(5.7) Bemerkung. Per Induktion folgt sofort, daß die Summe von endlich vielen un-
abhängigen Poisson-verteilten Zufallsgrößen wieder Poisson-verteilt ist, wobei der Para-
meter sich als Summe der Einzelparameter ergibt.

Beweis von Satz 5.3.
Der Beweis des Satzes (5.3) verwendet eine Technik, die man Kopplung (coupling) nennt.

Dabei verwenden wir wesentlich, daß bei der Berechnung des Abstands∑∞
k=0 |P (X = k) − πλ(k)| die Größen P (X = k) bzw. πλ(k) zwar die Verteilungen von

Zufallsvariablen sind, daß aber in die Berechnung der zugrunde liegende W.-Raum nicht
eingeht. Wir können also einen W.-Raum und Zufallsvariablen mit den gegebenen Vertei-
lungen so wählen, daß sie für unsere Zwecke besonders geeignet sind und das bedeutet,
daß sie sich bei gegebener Verteilung möglichst wenig unterscheiden. Konkret konstruieren
wir:

Sei Ωi = {−1, 0, 1, 2, . . .}, Pi(0) = 1 − pi und Pi(k) = e−pi

k!
pk

i für k ≥ 1 sowie Pi(−1) =
1−Pi(0)−∑k≥1 Pi(k) = e−pi−(1−pi). Nach Konstruktion sind somit (Ωi, Pi) W.-Räume.
Betrachte dann den Produktraum (Ω, P ) der (Ωi, Pi) im Sinne der Definition (2.13). Wir
setzen für ω ∈ Ω

Xi(ω) :=

{
0, falls ωi = 0,
1, sonst,

und

Yi(ω) :=

{
k, falls ωi = k, k ≥ 1,
0, sonst.

Dann haben nach Definition die Zufallsgrößen Xi die geforderte Verteilung: P (Xi = 1) =
pi und P (Xi = 0) = 1−pi. Sie sind weiter nach Definition des Produktraumes unabhängig.
Die Yi sind nach Definition Poisson-verteilt zum Parameter pi und ebenfalls unabhängig.
Also folgt mit Proposition (5.6), daß Y = Y1 + · · ·+Yn Poisson-verteilt ist zum Parameter
λ. Nun stimmen die Zufallsgrößen in den Werten 0 und 1 überein, und es ist P (Xi =
Yi) = Pi(0) + Pi(1) = (1 − pi) + e−pipi, und somit

P (Xi 6= Yi) = pi(1 − e−pi) ≤ p2
i ,

denn für x > 0 gilt 1 − e−x ≤ x. Damit folgt

∞∑

k=0

|P (X = k) − πλ(k)| =

∞∑

k=0

|P (X = k) − P (Y = k)|

=

∞∑

k=0

|P (X = k = Y ) + P (X = k 6= Y ) − (P (X = k = Y ) + P (X 6= k = Y ))|

≤
∞∑

k=0

P (X = k 6= Y ) + P (X 6= k = Y )

= 2P (X 6= Y ) ≤ 2
n∑

i=1

P (Xi 6= Yi) ≤ 2
n∑

i=1

p2
i .

Das beweist Satz (5.3). 2
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Nun können wir auch klären, warum die Ergebnisse im Experiment von Rutherford und
Geiger so erstaunlich nahe an den Vorhersagen einer Poisson–Verteilung lagen. Dies ge-
schieht im Rahmen des sogenannten Poissonschen Punktprozesses.

Der Poissonsche Punktprozeß (Poisson point process)
Wir konstruieren ein mathematisches Modell für auf einer Zeitachse zufällig eintretende
Vorkommnisse. Beispiele sind etwa: Ankommende Anrufe in einer Telefonzentrale, Regis-
trierung radioaktiver Teilchen in einem Geigerzähler, Impulse in einer Nervenfaser etc.

Die Zeitachse sei (0,∞), und die ,,Vorkommnisse“ seien einfach zufällige Punkte auf dieser
Achse. Die Konstruktion eines unterliegenden Wahrscheinlichkeitsraumes ist leider etwas
aufwendig und soll hier einfach weggelassen werden (wir glauben hier einfach mal, daß
man das kann).

Ist I = (t, t + s] ein halboffenes Intervall, so bezeichnen wir mit NI die zufällige Anzahl
der Punkte in I. NI ist also eine Zufallsgröße mit Werten in N0. Statt N(0,t] schreiben wir
auch einfach Nt.

0

zufällige Punkte

An unser Modell stellen wir eine Anzahl von Bedingungen (P1) bis (P5), die für Anwen-
dungen oft nur teilweise realistisch sind.

(P1) Die Verteilung von NI hängt nur von der Länge des Intervalls I ab. Anders ausge-
drückt: Haben die beiden Intervalle I, I ′ dieselbe Länge, so haben die Zufallsgrößen
NI und NI′ dieselbe Verteilung. Man bezeichnet das auch als (zeitliche) Homogenität
des Punktprozesses.

(P2) Sind I1, I2, . . . , Ik paarweise disjunkte Intervalle, so sindNI1 , NI2, . . . , NIk
unabhängi-

ge Zufallsgrößen.

(P3) Für alle I (stets mit endlicher Länge) existiert ENI . Um Trivialitäten zu vermeiden,

fordern wir:

(P4) Es existiert ein Intervall I mit P (NI > 0) > 0.

Aus (P1), (P3), (P4) lassen sich schon einige Schlüsse ziehen: Sei

λ(t) = ENt ≥ 0.

Offensichtlich gilt λ(0) = 0, denn N0 setzen wir natürlich 0. Die Anzahl der Punkte in
einer Vereinigung disjunkter Intervalle ist natürlich die Summe für die Einzelintervalle.
Insbesondere gilt:

Nt+s = Nt +N(t,t+s].

Demzufolge:
λ(t+ s) = λ(t) + EN(t,t+s],
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was wegen (P1)
= λ(t) + λ(s)

ist.

Nach einem Satz aus der Analysis, der hier nicht bewiesen werden soll, muß eine derartige
Funktion linear sein, das heißt, es existiert λ ≥ 0 mit λ(s) = λs. λ = 0 können wir wegen
(P4) sofort ausschließen. In diesem Fall müßte nach (P1) ENI = 0 für jedes Intervall
gelten. Dies widerspricht offensichtlich (P4).

Für kleine Intervalle ist die Wahrscheinlichkeit dafür, daß überhaupt ein Punkt in diesem
Intervall liegt, klein. Es gilt nämlich:

P (NI ≥ 1) =

∞∑

k=1

P (NI = k) ≤
∞∑

k=1

kP (NI = k) = ENI

und demzufolge
P (N(t,t+ε] ≥ 1) ≤ λε für alle t, ε ≥ 0.

Unsere letzte Forderung besagt im wesentlichen, daß sich je zwei Punkte separieren lassen,
es also keine Mehrfachpunkte gibt. Dazu sei für T > 0

DT (ω) := inf
t,s≤T

{|t− s| : |Nt −Ns| ≥ 1}

dann besagt unsere Forderung (P5):

(P5) P (DT ≤ αn) −→
n→∞

0

für jede Nullfolge αn und jedes endliche T .

Natürlich haben wir in keiner Weise belegt, daß eine Familie von Zufallsgrößen NI mit
den Eigenschaften (P1)–(P5) als mathematisches Objekt existiert. Wir können dies im
Rahmen dieser Vorlesung nicht tun. Wir können jedoch nachweisen, daß für einen Punkt-
prozeß, der (P1) bis (P5) erfüllt, die NI alle Poisson-verteilt sein müssen:

(5.8) Satz. Sind (P1) bis (P5) erfüllt, so sind für alle t, s ≥ 0 die Zufallsgrößen N(t,t+s]

Poisson-verteilt mit Parameter λs.

Beweis. Wegen (P1) genügt es, Ns = N(0,s] zu betrachten. Wir halten s > 0 fest. Für
k ∈ N, 1 ≤ j ≤ k, definieren wir

X
(k)
j := N(s(j−1)/k,sj/k]

X̄
(k)
j :=

{
1, falls X

(k)
j ≥ 1,

0, falls X
(k)
j = 0.

Für jedes feste k sind die X
(k)
j nach (P2) unabhängig und die X̄

(k)
j damit ebenfalls.

Wir stellen einige einfach zu verifizierende Eigenschaften dieser Zufallsgrößen zusammen:

Ns =

k∑

j=1

X
(k)
j .
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Sei N̄
(k)
s :=

∑k
j=1 X̄

(k)
j . Dann gilt für jede mögliche Konfiguration der Punkte:

N̄ (k)
s ≤ Ns.

Demzufolge gilt für jedes m ∈ N:

P (N̄ (k)
s ≥ m) ≤ P (Ns ≥ m). (5.1)

Sei pk = P (X̄
(k)
i = 1) = P (X

(k)
i ≥ 1) = P (Ns/k ≥ 1).

N̄ (k)
s ist binomialverteilt mit Parameterk, pk. (5.2)

Wir verwenden nun (P5), um nachzuweisen, daß sich für große k N̄
(k)
s nur wenig von Ns

unterscheidet. In der Tat bedeutet ja N̄
(k)
s 6= Ns, daß es mindestens ein Intervall der Länge

1/k gibt, in dem 2 Punkte liegen, also

{N̄ (k)
s 6= Ns} ⊆ {Ds ≤ 1/k}.

Wegen (P5) folgt
P (N̄ (k)

s 6= Ns) ≤ P (Ds ≤ 1/k) → 0 (5.3)

für k → ∞. Für m ∈ N und k ∈ N gilt:

P (Ns = m) ≥ P (N̄ (k)
s = m, N̄ (k)

s = Ns)

≥ P (N̄ (k)
s = m) − P (N̄ (k)

s 6= Ns)

P (Ns = m) ≤ P (N̄ (k)
s = m, N̄ (k)

s = Ns) + P (N̄ (k)
s 6= Ns)

≤ P (N̄ (k)
s = m) + P (N̄ (k)

s 6= Ns).

Unter Benutzung von (5.2) und (5.3) folgt:

P (Ns = m) = lim
k→∞

P (N̄ (k)
s = m) = lim

k→∞
b(m; k, pk) (5.4)

und analog
P (Ns ≥ m) = lim

k→∞
P (N̄ (k)

s ≥ m). (5.5)

Wir zeigen nun:
lim
k→∞

kpk = λs. (5.6)

kpk = EN̄ (k)
s =

∞∑

j=1

jP (N̄ (k)
s = j) =

∞∑

l=1

P (N̄ (k)
s ≥ l).

P (N̄
(k)
s ≥ l) ist nach (5.1) nicht größer als P (Ns ≥ l) und strebt nach (5.5) für k → ∞

gegen diese obere Grenze. Nach einem Satz über reelle Zahlenfolgen (falls nicht bekannt
oder vergessen: Übungsaufgabe!) folgt daraus

lim
k→∞

kpk = lim
k→∞

∞∑

l=1

P (N̄ (k)
s ≥ l) =

∞∑

l=1

P (Ns ≥ l) = ENs = λs.

Damit ist (5.6) gezeigt. Unser Satz folgt nun aus (5.4), (5.6) und dem Satz (5.5). 2

58



Der Poissonsche Punktprozeß wird oft verwendet um etwa eintreffende Anrufe in einer
Telefonzentrale, ankommende Jobs in einem Computernetzwerk etc. zu modellieren. Man
überlegt sich etwa, daß auch das eingangs geschilderte Rutherford-Experiment in diesen
Rahmen paßt, wenn man sich die radioaktive Substanz als aus sehr vielen Atomen auf-
gebaut vorstellt, von denen jedes eine innere Uhr trägt. Diese Uhren laufen unabhängig
voneinander und ist die Uhr eines Teilchens abgelaufen, so zerfällt es unter Emission eines
α-Teilchens. Man überlegt sich schnell, das in der Regel (P1)–(P5) erfüllt sind, wobei (P2)
natürlich nur dann eine Chance hat zu gelten, wenn die Halbwertzeit des Materials sehr
groß ist gegenüber der Beobachtungsdauer, während (P5) bedeutet, daß keine zwei Uhren
gleichzeitig ablaufen.

Allgemein sind die Annahmen (P1)–(P5) natürlich nicht immer sehr realistisch oder nur
näherungsweise richtig. Problematisch in Anwendungen sind oft (P1) und (P2).

Wir wollen das Kapitel abschließen mit einem weiteren Beispiel der Poisson–Approxi-
mation in der Physik.

Das Ideale Gas
Ein Ideales Gas in einem Volumen V besteht aus einem System von N nicht–inter-
agierenden Teilchen (den Molekülen). Wir nehmen an, daß V der d-dimensionale Würfel
mit Zentrum 0 und Kantenlänge R ist. Wir wollen nun R und N gegen ∞ gehen lassen
und zwar so, daß die mittlere Teilchendichte konstant bleibt, d.h. N/Rd → λ > 0, wenn
N,R→ ∞. Dies heißt manchmal auch thermodynamischer Limes. Das Hinschreiben eines
zugrunde liegenden W.-Raumes bereitet ähnliche Schwierigkeiten wie im Falle des Pois-
sonschen Punktprozesses. Eine gute Wahl für die Zustandmenge wäre beispielsweise die
Menge aller Punkte, die die N Teilchen einnehmen können, also das N -fache Produkt des
Würfels mit sich selbst. Dieser Raum hat allerdings für uns den Nachteil, nicht abzählbar
zu sein.

Wenn wir für den Moment annehmen, daß man diese Schwierigkeiten tatsächlich über-
winden kann, so ist es vernünftig anzunehmen, daß die Wahrscheinlichkeit, ein Teilchen,
in einer Teilmenge Q ⊂ V zu finden, proportional ist zum Volumen von Q. Genauer
wählen wir die Wahrscheinlichkeit als p(Q) = vol(Q)

Rd . Die Annahme, die Teilchen mögen
nicht interagieren, drückt sich in der Unabhängigkeit der Orte der einzelnen Teilchen aus,
d. h. insbesondere, ob ein Teilchen sich im Volumen Q befindet, hängt nur von Q, nicht
aber von den anderen Teilchen ab. Sei nun für festes Q die Größe νQ(ω) die Anzahl der
Teilchen, die sich bei einer zufälligen Verteilung der Teilchen in V in Q einfinden. Dann gilt

Satz 5.9.

limP (νQ(ω) = k) =
(λvol(Q))k

k!
e−λvol(Q).

Beweis. Der Beweis folgt einer Überlegung, die wir schon kurz bei der Maxwell–Boltzmann–
Statistik kennengelernt hatten. Es seien i1, . . . , ik die Indizes der Teilchen, die in Q liegen
und Ci1,...,ik := {ω : xis ∈ Q, 1 ≤ s ≤ k, xj /∈ Q, j 6= i1, . . . ik}. Dann ist offenbar

P (νQ(ω) = k) =
∑

P (Ci1,...,ik).
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Weiter gilt wegen des obigen Ansatzes für P

P (Ci1,...,ik) =
(vol(Q)

Rd

)k(
1 − vol(Q)

Rd

)N−k
.

Und daher

P (νQ(ω) = k)

(
N

k

)(vol(Q)

Rd

)k(
1 − vol(Q)

Rd

)N−k
,

d.h. P (νQ(ω) = k) ist binomialverteilt zu den Parametern N und pN = vol(Q)
rd . Nun ist

aber pNN = Nvol(Q)
Rd → λvol(Q) und daher folgt die Behauptung aus Satz (5.5). 2

Dieses Beispiel ist gewissermaßen die d-dimensionale Verallgemeinerung des vorher vor-
gestellten Poissonschen Punktprozesses. Dieser ist auch in der aktuellen Forschung ein oft
verwandtes Modell des Idealen Gases.
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6 Große und moderate Abweichungen

In diesem Kapitel wollen wir noch einmal auf das Gesetz der großen Zahlen (Satz (3.30))
eingehen. Wir werden Verschärfungen dieses Gesetzes kennenlernen, die zum einen von
theoretischem Interesse sind, zum anderen aber auch von praktischem Nutzen, da sie
beispielsweise die Konvergenzgeschwindigkeit im Gesetz der großen Zahlen angeben und
somit die Frage klären, wie groß eine Stichprobe, die (3.30) genügt, sein muß, damit der
Mittelwert der Stichprobe eine gute Approximation für den Erwartungswert der einzelnen
Zufallsvariablen ist (eine wesentliche Fragestellung in der Statistik). Desweiteren werden
wir sehen, daß einer der in diesem Kapitel formulierten Sätze einem zentralen und wohl-
bekannten physikalischen Sachverhalt entspricht.

Wir werden uns zunächst mit der Binomialverteilung beschäftigen. Sei also Sn eine bino-
mialverteilte Zufallsgröße zu den Parametern n und p, d.h.

Sn =
n∑

i=1

Xi,

wobei die Xi unabhängige Zufallvariablen sind, die mit Wahrscheinlichkeit p den Wert 1
annehmen und mit Wahrscheinlichkeit 1 − p den Wert 0.

Unser erster Satz beruht auf der Beobachtung, daß wir im Gesetz der großen Zahlen ge-
sehen hatten, daß die Zufallsvariable Sn − np, wenn man sie durch n dividiert, gegen 0
konvergiert (und zwar mit einer Wahrscheinlichkeit, die selber gegen 1 strebt). Normiert
man hingegen Sn − np, indem man durch

√
n dividiert, so ergibt sich nach dem Satz von

de Moivre und Laplace eine Normalverteilung (die in diesem Fall nicht notwendig Varianz
1 hat). Eine berechtigte Frage ist, was eigentlich “dazwischen” geschieht, d.h., wenn wir
Sn − np mit nα, 1/2 < α < 1 normieren.

(6.1) Satz. Sei Sn binomialverteilt zu den Parametern n und p. Dann gilt für jedes
1/2 < α ≤ 1 und jedes ε > 0

P

(∣∣∣∣
Sn − np

nα

∣∣∣∣ > ε

)
→ 0

wenn n→ ∞.

Beweis. Der Beweis folgt dem Beweis des gewöhnlichen Gesetzes der großen Zahlen (Satz
(3.30)). Nach der Tschebyscheff–Ungleichung ist

P

(∣∣∣∣
Sn − np

nα

∣∣∣∣ > ε

)
≤ V (Sn−np

nα )

ε2
=
np(1 − p)

n2αε2
→ 0.

da α > 1/2. Das beweist den Satz. 2

Satz (6.1) besagt also, daß das Gesetz der großen Zahlen auch dann erhalten bleibt, wenn
wir statt mit n mit nα, 1/2 < α < 1, skalieren.
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Die nächste Frage, mit der wir uns beschäftigen wollen, ist die nach der Konvergenzge-
schwindigkeit im Gesetz der großen Zahlen. Betrachtet man den Beweis von Satz (3.30)
noch einmal, so sieht man, daß man mit der üblichen Abschätzung durch die Tchebyscheff–
Ungleichung für eine b(·;n, p)-verteilte Zufallsvariable Sn eine Schranke der Form

P
(∣∣∣
Sn

n
− p
∣∣∣ ≥ ε

)
≤ 1

ε2
V
(Sn

n

)
=
p(1 − p)

nε2
,

erhält. Dies ergibt zum Beispiel für den symmetrischen Münzwurf (p = 1/2)und ε = 1/10
und n = 1000

P
(∣∣∣
S1000

1000
− 1

2

∣∣∣ ≥ 1

10

)
≤ 1

40
.

Diese Abschätzung liegt jedoch um Größenordnungen über der richtigen Wahrscheinlich-
keit. Dies sieht man am leichtesten ein, indem man statt der üblichen Tschebyscheff–
Ungleichung eine andere From der Markoff–Ungleichung anwendet. Benutzt man diese
nämlich mit der monotonen Funktion R ∋ x 7→ eλx, λ > 0, wobei λ zunächst beliebig ist,
so erhält man

P
(
Sn ≥ αn

)
≤ e−nαλE

(
eλSn

)
,

wobei der Erwartungswert auf der rechten Seite existiert, da Sn nur endlich viele Wer-
te annimmt. Dieser Ansatz geht auf S.N.Bernstein zurück. Um diesen Erwartungswert
auszuwerten, schreiben wir λSn =

∑n
i=1 λXi, wobei X1, . . . , Xn die unabhängigen Zufalls-

größen mit P (Xi = 1) = p und P (Xi = 0) = (1−p) sind, die die Ergebnisse der einzelnen
Würfe beschreiben. Da die Xi unabhängig sind, folgt die Unabhängigkeit der eλXi aus
Satz (3.24). Demnach folgt aus der Bemerkung (3.26) für jedes λ > 0

P
(
Sn ≥ α

)
≤ e−nαλ

n∏

i=1

E
(
eλXi

)
= e−nαλ

(
E
(
eλXi

))n

.

Dies berechnen wir als

P
(
Sn ≥ αn

)
≤ e−αnλ

(
peλ + (1 − p)

)n

= exp
(
n{−αλ + logM(λ)}

)
,

wobei M(λ) = peλ+(1−p) ist. Es bezeichne f(λ) den Ausdruck in den geschweiften Klam-
mern. Wir wollen nun λ > 0 so wählen, daß wir eine möglichst gute obere Abschätzung
erhalten, d. h., wir bestimmen das Minimum von f . Zunächst bemerken wir, daß

f ′′(λ) =
M ′′(λ)

M(λ)
−
(
M ′(λ)

M(λ)

)2

=
p(1 − p)eλ

M(λ)2
> 0

für alle λ > 0 und 0 < p < 1 ist. Demzufolge ist f ′(λ) streng monoton steigend. Es
existiert also höchstens eine Nullstelle λ0 von f ′, und in dieser muß die Funktion f ihr
absolutes Minimum annehmen. Ist α ∈ (p, 1), so ergibt sich aus f ′(λ0) = 0 nach einer
kleinen Rechnung die Nullstelle

λ0 = log
α(1 − p)

p(1 − α)
> 0.

Einsetzen in f liefert

f(λ0) = −α log
(α
p

)
− (1 − α) log

(1 − α

1 − p

)
=: −H(α|p).

62



Die Funktion H(α|p) heiß relative Entropie von α bezüglich p und hat die folgenden
schönen Eigenschaften:

(6.2) Lemma. Für 0 < p < 1 ist H(·|p) ≥ 0 und H(α|p) = 0 genau dann wenn α = p.
Für ein Intervall I = (a, b) ist infα∈I H(α|p) = 0, falls p ∈ Ī. H(·|p) ist stetig und strikt
konvex.

Beweis. Wir betrachten die folgende Hilfsfunktion ψ(t) := t log t − t + 1 für t > 0 und
ψ(0) := 1. Dann gilt: ψ ist nicht negativ, strikt konvex und ψ(t) = 0 genau dann wenn
t = 1. Es gilt weiter

H(α|p) = pψ
(α
p

)
+ (1 − p)ψ

(1 − α

1 − p

)
.

Somit folgen die Eigenschaften jeweils aus den Eigenschaften der Funktion ψ. Wir be-
trachten exemplarisch den Beweis der Konvexität: seien α1, α2 ∈ (0, 1) und 0 ≤ µ ≤ 1.
Dann gilt mittels der Konvexität von ψ

H(µα1 + (1 − µ)α2|p) ≤ pµψ
(α1

p

)
+ p(1 − µ)ψ

(α2

p

)

+ (1 − p)µψ
(1 − α1

1 − p

)
+ (1 − p)(1 − µ)ψ

(1 − α2

1 − p

)

= µH(α1|p) + (1 − µ)H(α2|p).

2

Zusammenfassend haben wir also gezeigt, daß für die Anzahl Sn der ,,Kopf“-Würfe die
Abschätzung

P

(
S̄n ≥ α

)
≤ exp(−nH(α|p))

für alle α ∈ (p, 1) gilt (wobei wir S̄n für Sn

n
schreiben). Wir wollen uns fragen, was uns

diese Anstrengung gebracht hat. Für den symmetrischen Münzwurf gilt

P
(∣∣∣S̄n − 1

2

∣∣∣ ≥ α
)

= 2P
(
S̄n ≥ α + 1/2

)
≤ 2 exp

(
−nH(α + 1/2|1/2)

)

für alle α ∈ (0, 1/2). Der Graph von I(α) := H(α + 1/2|1/2) ist:
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Für α = 1/10 und n = 1000 erhalten wir zum Beispiel

P
(∣∣∣
S1000

1000
− 1

2

∣∣∣ ≥ 1

10

)
≤ 2
(5

6

)600(5

4

)400

≤ 3, 6 · 10−9,

was phantastisch viel besser ist als 1/40 aus der Tschebyscheff-Ungleichung.

Interessanterweise ist diese Abschätzung “auf einer logarithmischen Skala” schon optimal.
Genauer gilt:

(6.3) Satz. (Prinzip großer Abweichungen von Cramér, large deviation principle)
Bezeichnet Sn die Anzahl der Erfolge bei einem Bernoulli-Experiment zu den Parametern
n und p und ist S̄n = Sn

n
, so gilt für alle 0 ≤ a < b ≤ 1:

lim
n→∞

1

n
logP

(
S̄n ∈ (a, b)

)
= − inf

x∈(a,b)
H(x|p).

Beweis. Unser wesentliches Hilfsmittel wird wieder einmal die Stirling–Formel sein. Setzt
man (a, b) =: I so gilt:

P (S̄n ∈ I) =
∑

na<k<nb

b(k;n, p),

wobei b(k;n, p) die Binomialverteilung bezeichnet.
Mit An := (na, nb) ist dann

max
k∈An

b(k;n, p) ≤ P (Sn ∈ I) ≤ (n+ 1) max
k∈An

b(k;n, p).

Das asymptotische Verhalten der Wahrscheinlichkeit ist also durch den größten Summan-
den bestimmt. Die Monotonie der Logarithmusfunktion liefert:

max
k∈An

[
1

n
log b(k;n, p)] ≤ 1

n
logP (S̄n ∈ I)

≤ 1

n
log(n+ 1) + max

k∈An

[
1

n
log b(k;n, p)].
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Wir betrachten nun den entscheidenden Term mit Hilfe der Stirlingschen Formel genauer:

1

n
log b(k;n, p) =

1

n
log [

(
n

k

)
pk(1 − p)n−k]

=
1

n
log

(
n

k

)
+
k

n
log p+

n− k

n
log(1 − p) und

1

n
log

(
n

k

)
= logn− k

n
log k − n− k

n
log(n− k) +

1

n
Rk

n

mit lim
n→∞

1

n
Rk

n = 0 ∀k.

Hierbei haben wir in dem Term Rk
n sowohl die Logarithmen der

√
2πn,

√
2πk bzw.√

2π(n− k) als auch die Logarithmen der Quotienten aus den Fakultäten und ihren
Stirling-Approximationen gesammelt. Da letztere persönlich gegen 0 konvergieren und

die Konvergenz von (log n)β

nγ → 0 für alle β, γ > 0 die ersten Terme gegen 0 streben läßt,
gilt in der Tat limn→∞

1
n
Rk

n = 0 ∀k.

Da logn = − k
n

log 1
n
− n−k

n
log 1

n
, folgt insgesamt:

1

n
log b(k;n, p) = −k

n
log

k
n

p
− (1 − k

n
) log

(1 − k
n
)

(1 − p)
+

1

n
Rk

n.

Erinnern wir uns an die Definition von H(·|p), so erhalten wir

1

n
log b(n; k; p) = −H(

k

n
|p) +

1

n
Rk

n.

Nun ist Ī = [a, b] eine kompakte Menge, und daher nimmt H(·|p) als stetige Funktion
sein Minimum auf [a, b] an. Eine kleine Rechnung ergibt, daß die Stetigkeit von H(·|p)
zusammen mit der Tatsache, daß sich jedes x ∈ [a, b] durch eine Folge k/n, k ∈ An,
approximieren läßt, dann impliziert, daß

lim
n→∞

max
k∈An

−H(
k

n
|p) = max

x∈[a,b]
−H(x|p) = − inf

x∈(a,b)
H(x|p).

Insgesamt ergibt sich also

lim
n→∞

1

n
logP (S̄n ∈ I) = − inf

x∈(a,b)
H(x|p).

2

In der Sprache der Wahrscheinlichkeitstheorie haben wir damit für den Münzwurf ein
Prinzip großer Abweichungen mit Geschwindigkeit n und Rate H(·|p) bewiesen. Symbo-
lisch schreibt man hierfür:

P (S̄n ∈ I) ≈ exp(−n inf
x∈I

H(x|p)).

Das bedeutet, daß die Wahrscheinlichkeit für ein untypisches Verhalten des empirischen
Mittelwertes der Anzahl der Erfolge exponentiell klein wird. Untypisch sind hierbei offen-
bar alle Werte p′ für die H(p′|p) > 0 ist und somit alle p′ 6= p. Die Wahrscheinlichkeit
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dafür, daß der empirische Mittelwert in einer Menge I liegt, wird gesteuert durch den
Wert p′ ∈ I mit minimaler relativer Entropie bzgl. p und das ist aufgrund der Konvexität
von H(·|p) dasjenige p′ mit geringstem Abstand zu p. Dies ist eine deutliche Verschärfung
des Gesetzes der großen Zahlen.

Man kann sich nun natürlich fragen, ob es nicht eine Aussage gibt, die sich zu der eingangs
in Satz (6.1) bewiesenen Konvergenzaussage verhält wie das Prinzip großer Abweichun-
gen zum Gesetz der großen Zahlen, eine Aussage, die die Konvergenzgeschwindigkeit in
Satz (6.1) angibt. Schon bei der Betrachtung des Beweises von Satz (6.1) kann man den
Verdacht hegen, daß die Konvergenzgeschwindigkeit von Sn−np

nα gegen 0 ganz entscheidend
vom gewählten 1/2 < α < 1 abhängt. Dies ist in der Tat wahr und wird durch den fol-
genden Satz präzisiert:

(6.4) Satz. ( Prinzip moderater Abweichungen, moderate deviation principle)
Bezeichnet Sn die Anzahl der Erfolge bei einem Bernoulli-Experiment zu den Parametern
n und p, so gilt für alle −∞ < a < b <∞ und alle 1/2 < α < 1:

lim
n→∞

1

n2α−1
logP

(Sn − np

nα
∈ (a, b)

)
= − inf

x∈(a,b)

x2

2p(1 − p)
.

Beweis. Die Tatsache, daß die Aussage des Satzes das Verhalten der Sn “zwischen dem Satz
von de Moivre und Laplace und dem Prinzip großer Abweichungen” analysiert, spiegelt
sich auch im Beweis wieder. Zunächst benutzen wir die schon im Beweis des Prinzips
großer Abweichungen verwendeten Abschätzungen

P

(
Sn − np

nα
∈ (a, b)

)
=

∑

nαa+np<k<nαb+np

b(k;n, p),

und

max
k∈An

b(k;n, p) ≤ P

(
Sn − np

nα
∈ (a, b)

)
≤ (n + 1) max

k∈An

b(k;n, p),

wobei wir jetzt An := (nαa + np, nαb + np) wählen. Folgen wir dem obigen Beweis des
Prinzips der großen Abweichungen, so erhalten wir wieder

log b(k;n, p) = −nH(
k

n
|p) +Rk

n.

wobei analog zu obigen Überlegungen Rk
n

nβ → 0 für jedes β > 0. Da nun die k
n
→ p für

alle k ∈ An und H(p|p) = 0, können wir nicht ohne weiteres den Beweis des Prinzips der
großen Abweichungen “fortführen”. Stattdessen fahren wir fort wie im Beweis des Satzes
von de Moivre/Laplace und entwickeln die Funktion H(·|p). Wir erhalten

H(x| p) =
(x− p)2

2p(1 − p)
+ O(|x− p|3),

wobei wir für zwei Funktionen f, g (in diesem Fall von n) f = O(g) schreiben, falls es
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eine Konstante C gibt, so daß f ≤ Cg ist. Insbesondere ist

nH(
k

n
|p) = n

( k
n
− p)2

2p(1 − p)
+ nO(|k

n
− p|3)

=
1

2p(1 − p)

(
k − np

nα

)2

n2α−1 + O
(∣∣∣∣
k − np

nα

∣∣∣∣
3)
n3α−2.

Somit gilt

1

n2α−1
log b(k;n, p) = − 1

2p(1 − p)

(
k − np

nα

)2

+ O
(∣∣∣∣
k − np

nα

∣∣∣∣
3)
nα−1

→ − 1

2p(1 − p)

(
k − np

nα

)2

,

da aufgrund der Defintion von An der Term

∣∣∣∣
k−np
nα

∣∣∣∣
3

beschränkt ist. Dies ergibt

lim
n→∞

1

n2α−1
P (
Sn − np

nα
∈ (a, b)) = − lim

n→∞
max
k∈An

(
k − np

2p(1 − p)nα

)2

.

Benutzt man nun wie im Beweis des Prinzips der großen Abweichungen die Tatsache, daß
[a, b] eine kompakte Menge ist, daß zu jedem x ∈ [a, b] eine Folge an = k−np

nα mit k ∈ An

existiert, die gegen x konvergiert und die Stetigkeit der Quadratfunktion, so erhält man

lim
n→∞

max
k∈An

1

2p(1 − p)

(
k − np

nα

)2

= max
x∈[a,b]

1

2p(1 − p)
x2 = sup

x∈(a,b)

1

2p(1 − p)
x2

und damit folgt die Aussage des Satzes sofort. 2

Als eine Anwendung und Ausweitung des Prinzips der großen Abweichungen auf die Mul-
tinomialverteilung wollen wir ein Grundprinzip der statistischen Mechanik betrachten.

Boltzmanns Gesetz
Zunächst wollen wir in wenigen Worten die Herkunft des Begriffs der Entropie in der
Physik klären (dieser hatte námlich ursprünglich wenig mit userem Begriff zu tun).

In der klassischen Mechanik wird der Zustand eines Systems mehrer Teilchen durch Punk-
te im Phasenraum beschrieben, in dem man die Orts- und Impulskoordinaten aufgeführt
hat. Die Bewegung des Systems wird durch ein System gewöhnlicher Differentialgleichun-
gen (Lagrange, Hamilton) beschrieben. Schon Avogadro wußte, daß die Teilchenzahl pro
Mol in der Größenordnung von 1023 Partikeln liegt. Dies führt zu einem Differentialglei-
chungssystem, das keiner vernünftigen Behandlung mehr zugänglich ist.

Die Thermodynamik, die in der Mittel des letzten Jahrhunderts entstand, hat das Ziel,
das Verhalten eines Systems mit Hilfe makroskopischer Variablen, sogenannte Zustands-
größen, z.B. Druck, Volumen, Temperatur, innere Energie, oder die 1865 von R. Clausius
eingeführte Entropie, zu beschreiben.

Die grundlegende Beobachtung von Clausius, gestützt auf Arbeiten Carnots, war, daß für
einen reversiblen, d.h. zeitlich umkehrbaren, thermodynamischen Kreisprozeß das (not-
wendigerweise entlang einer geschlossenen Kurve verlaufende) Integral über die Änderung
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der Wärme dQ pro Temperatur T verschwindet, also in Formeln
∮

dQ
T

= 0. Mathematisch
impliziert das (über eine Form des Hauptsatzes der Integral- und Differentialrechnung
für Vektorfelder) die Existenz einer Stamm- oder Potentialfunktion für den Integranden,
die eine Zustandsfunktion des zugrunde liegenden Systems ist. Diese Zustandsfunktion
nannte Clausius nach dem griechischen εντ̺oπη (Umkehr) Entropie. Eine wesentliche Ei-
genschaft der Entropie ist, daß sie für nicht reversible Prozesse stets positiv ist (und für
reversible Prozesse – wie oben erwähnt – verschwindet). Diese Beobachtung führte zur
Formulierung des zweiten Hauptsatzes der Thermodynamik:

Prozesse in einem abgeschlossenen thermodynamischen System verlaufen stets so, daß
sich die Entropie des Systems vergrößert.

Eine Begründung der thermodynamischen Gesetze auf der Basis der Atomhypothese lie-
fert die statistische Mechanik. Deren Wurzeln wurden mit Hilfe der sich entwickelnden
Wahrscheinlichkeitstheorie von L. Boltzmann und J.W. Gibbs gelegt.

Betrachten wir dazu eine Teilchenkonstellation zu einem festen Zeitpunkt, eine soge-
nannte Konfiguration. Boltzmann ordnete jeder Konfiguration eine Wahrscheinlichkeit
zu (und zwar jeder Konfiguration die gleiche) und fragte wieviele Konfigurationen das-
selbe makroskopische Bild liefern, also denselben Zustand beschreiben. Er erkannte, daß
die wesentlichen Zustände, also diejenigen die man beobachtet, diejenigen mit maximaler
Wahrscheinlichkeit sind, sogenannte Gleichgewichtszustände. Ein System tendiert stets
zu seinem wahrscheinlichsten Zustand hin, um dann um ihn zu fluktuieren. Bereits 1872
beschrieb er das Verhältnis von Wahrscheinlichkeitstheorie und Mechanik mit den Worten:

“Lediglich dem Umstand, daß selbst die regellosesten Vorgänge, wenn sie unter denselben
Verhältnissen vor sich gehen, doch jedes Mal dieselben Durchschnittswerte liefern, ist
es zuzuschreiben, daß wir auch im Verhalten warmer Körper ganz bestimmte Gesetze
wahrnehmen. Denn die Moleküle der Körper sind ja so zahlreich und ihre Bewegungen
so rasch, daß uns nie etwas anderes als jene Durchschnittswerte wahrnehmbar sind. Die
Bestimmung der Durchschnittswerte ist Aufgabe der Wahrscheinlichkeitsrechnung.”

Boltzmanns wichtigster neuer Gedanke ist also die Idee, daß man für gewönlich Zustände
maximaler Wahrscheinlichkeit beobachtet. Andererseits sollten dies nach dem 2. Haupt-
satz auch Zustände maximaler Entropie sein. Es liegt also nahe, einen Zusammenhang
zwischen Wahrscheinlichkeit und der Entropie herzustellen. Da die Entropie von zwei
Systemen gleich der Summe der einzelnen Entropien ist, und die Wahrscheinlichkeit der
beiden Systeme im Falle der Unabhängigkeit multiplikativ ist, sollte der Zusammenhang
zwischen Entropie und Wahrscheinlichkeit logarithmisch sein:

S = k logW,

wobei S die Entropie des Systems ist, W seine Wahrscheinlichkeit und k schließlich ein
Proportionalitätsfaktor, die sogenannte Boltzmannkonstante. Boltzmann bestimmte k an-
hand eines idealen Gases und erhielt den Wert k = 1, 38 · 10−23J/K. Die Boltzmannkon-
stante k ist eine fundamentale Naturkonstante.

Dieses Boltzmannsche Gesetz wollen wir im folgenden auf der Basis der großen Abwei-
chungen für das Ideale Gas nachvollziehen. Gegeben sei also ein endliches Volumen V , das
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unser Gasbehälter sein soll. In V wollen wir unabhängig n Teilchen realisieren. Wir hat-
ten schon im vorangegangenen Kapitel gesehen, daß der mehrdimensionale Poissonsche
Punktprozeß ein gutes Modell für das Ideale Gas darstellt; wir hatten aber auch gesehen,
daß wir noch nicht das mathematische Werkzeug besitzen, diesen wirklich zu behandeln.
Um diese Probleme zu umgehen, unterteilen wir V in r Zellen Z1 bis Zr mit relativen
Volumina (in Bezug auf V ), π1 := vol(Z1)

vol(V )
bis πr := vol(Zr)

vol(V )
. Die Wahrscheinlichkeit in den

Zellen Z1, . . . , Zr Teilchenzahlen k1, . . . , kr zu haben (man sagt auch man Besetzungszah-
len k1, . . . , kr ), ist dann gegeben durch die Multinomialverteilung zu den Parametern n
und π1, . . . , πr, i.e.

n!

k1! · · ·kr!
πk1

1 · · ·πkr
r .

Sei nun M(X) die Menge der Wahrscheinlichkeiten auf X := {1, . . . , r}, versehen mit
der Supremumsnorm ‖ ‖sup. Um dies besser zu verstehen, identifizieren wir dabei M(X)
mit {(ρ1, . . . , ρr) ; ρi ≥ 0;

∑r
i=1 ρi = 1} ⊂ R

r. M(X) ist daher offenbar kompakt und
konvex.
Auf dieser Menge definieren wir eine Entropie–Funktion in Analogie zum Fall r = 2:

H(ρ|π) :=
r∑

i=1

ρi log
ρi

πi

mit ρ, π ∈ M(X) und πi > 0 ∀i.

Man beachte, daß diese Defintion konsistent ist mit der Defintion von H(·|p) im Falle
r = 2. Wieder heißt H(ρ|π) die relative Entropie von ρ bezüglich π.
Ebenfalls analog zum Fall r = 2 zeigt man: H(·|π) ist stetig und konvex und mißt den
Abstand zwischen ρ und π in dem Sinne, daß H(ρ|π) ≥ 0 und H(ρ|π) = 0 ⇔ ρ = π (
siehe r = 2 ).

Wir wollen nun die Wahrscheinlichkeit berechnen, daß untypische Besetzungszahlen vor-
liegen. Dazu sei ki für festes n und eine feste Beobachtung ω definiert als die Zahl der
Teilchen in der Zelle Zi, und Ln(ω, ·) sei der Vektor der relativen Häufigkeiten der Teil-
chenzahlen in den verschiedenen Zellen, also Ln(ω, i) = ki

n
, i = 1, . . . , r.

Weiter sei Pπ das durch π gebildete n-fache Produktmaß (definiert wie in Kapitel 3). Wir
interessieren uns nun für die Größenordnung von Pπ(Ln(ω, ·) ∈ A) für ein A ⊂ M(X),
das ein untypisches Verhalten beschreibt, d.h. für die Wahrscheinlichkeit in einer Zelle
wesentlich mehr oder weniger Teilchen vorzufinden als erwartet. Wir wählen fortan

A := {ν ∈ M(X) : ‖ν − π‖sup ≥ ε}

mit ε > 0 (bemerke, daß A abgeschlossen und beschränkt und damit kompakt ist). A
ist also die Menge aller Konfigurationen, bei denen die Besetzungszahl mindestens einer
Zelle i um mindestens nε von der zu erwartenden Zahl nπi abweicht.

Aufgrund der Multinomialverteilung von Ln gilt:

Pπ(Ln(ω, ·) ∈ A) =
∑

k=(k1,...,kr)∈En

n!

k1! · · · kr!
πk1

1 · · ·πkr
r
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mit

En = {(k1, . . . , kr) :

r∑

i=1

ki = n; ki ∈ {0, . . . , n} und ‖k
n
− π‖sup ≥ ε}.

Wieder erhalten wir

max
k∈En

1

n
log(m(n, k) πk) ≤ 1

n
logPπ(Ln(ω, ·) ∈ A)

≤ 1

n
log(n + 1)r + max

k∈En

1

n
log(m(n, k) πk)

mit m(n, k) := n!
k1!···kr!

und πk := πk1
1 · · ·πkr

r . Mit der Stirlingschen Formel folgt:

1

n
logm(n, k) = log n−

r∑

j=1

kj

n
log kj + O

(
log n

n

)

= −
r∑

j=1

kj

n
log

kj

n
+ O

(
log n

n

)
,

da log n = −∑r
j=1

kj

n
log 1

n
. Somit ist

1

n
log(m(n, k) πk) =

r∑

j=1

kj

n
(log πj − log

kj

n
) + O

(
log n

n

)

= −H(ρ k
n
|π) + O

(
logn

n

)
,

wobei ρ k
n

der (Wahrscheinlichkeits-)Vektor ist mit Einträgen ki

n
ist. Eingesetzt ergibt das

max
k∈En

−H(ρ k
n
|π) −O

(
logn

n

)
≤ max

k∈En

1

n
log(m(n, k) πk)

≤ max
k∈En

−H(ρ k
n
|π) + O

(
logn

n

)
,

Nun ist {ρ ∈ M(X) : ρ = ρ k
n
, k ∈ En} kompakt und steigt für wachsendes n auf gegen

A. Da H(·|π) stetig ist, folgt wieder

max
k∈En

−H(ρ k
n
|π) →n→∞ max

ρ∈A
−H(ρ|π).

Also erhalten wir insgesamt:

lim
n→∞

1

n
logPπ(Ln(ω, ·) ∈ A) = max

ρ∈A
−H(ρ|π) = − inf

ρ∈A
H(ρ|π).

Formal haben wir somit ein Prinzip großer Abweichungen mit Geschwindigkeit n und
Rate H(·|π) für die Multinomialverteilung gezeigt.

Inhaltlich bedeutet dies, daß in dem oben konstruierten Modell eines Idealen Gases un-
typische Besetzungszahlen exponentiell unwahrscheinlich sind mit einer Rate, die durch
die Entropie der so entstandenen Konfiguration gebildet wird. Dies rechtfertigt die Boltz-
mannsche Formel, daß die Entropie der Logarithmus der Wahrscheinlichkeit ist.
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7 Allgemeine Wahrscheinlichkeitsräume und

Zufallsgrößen mit Dichten

In Kapitel 4 sind wir auf Wahrscheinlichkeiten gestoßen, die sich durch Integrale ap-
proximieren lassen. Wir hatten gesehen, daß für Sn, die Anzahl der Erfolge in einem
Bernoulli-Experiment mit Erfolgswahrscheinlichkeit p,

lim
n→∞

P

(
a <

Sn − np√
np(1 − p)

≤ b

)
=

∫ b

a

1√
2π
e−x2/2 dx

gilt. Es ist naheliegend, Zufallsgrößen einzuführen, für die sich P (a < X ≤ b) durch ein
Integral ausdrücken läßt. Gibt es so etwas?

Zunächst sei bemerkt, daß diese Frage für die Ergebnisse von Kapitel 4 irrelevant ist,
denn dort ist nur von (diskreten) Zufallsgrößen die Rede, für die sich die entsprechenden
Wahrscheinlichkeiten durch Integrale approximieren lassen. Dennoch ist es eine bequeme
mathematische Idealisierung, etwa von normalverteilten Zufallsgrößen zu sprechen, d. h.
von Zufallsgrößen X mit

P (a < X ≤ b) =

∫ b

a

ϕ(x) dx, ϕ(x) =
1√
2π
e−x2/2.

Eine derartige Zufallsgröße hätte eine erstaunliche Eigenschaft: Ist a ∈ R beliebig, so gilt

P (X = a) ≤ P
(
a− 1

n
< X ≤ a

)
=

∫ a

a− 1
n

ϕ(x) dx

für alle n ∈ N, und die rechte Seite konvergiert gegen null für n→ ∞. Somit gilt P (X =
a) = 0 für jedes a ∈ R. Es ist evident, daß eine Zufallsgröße, wie sie in Kapitel 3 definiert
wurde, diese Eigenschaft nicht haben kann. Ist nämlich p(ω) > 0 für ein ω ∈ Ω, so gilt
P (X = a) ≥ p(ω) > 0 für a = X(ω).

Um z.B. normalverteilte Zufallsgrößen exakt zu definieren, muß der Begriff des W.-
Raumes erweitert werden. Offenbar funktioniert unsere bisherige Definition nicht, da
Ω = R überabzählbar ist. Andererseits gibt es Beispiele (die man beispielsweise in der
Analysis III kennenlernt), dafür, daß man nicht mit jedem Maß jede beliebige Teilmenge
eines überabzählbaren Ω messen kann. Man beschränkt sich daher auf Mengensysteme,
die mit dem Begriff der Wahrscheinlichkeit konsistent sind. Und zwar ist es plausibel, daß,
kennt man die Wahrscheinlichkeit zweier Ereignisse A und B, man auch an der Wahr-
scheinlichkeit des Eintretens von A oder B oder von A und B interessiert ist, oder auch
daran, daß A nicht eintritt. Dies führt zu folgender

(7.1) Definition. Sei Ω eine Menge. Eine nichtleere Familie F von Teilmengen von Ω
heißt Algebra, falls für alle A,B ∈ F auch Ac, A ∩B und A ∪B in F sind. Eine Algebra
heißt σ-Algebra, wenn zusätzlich für jede Folge (An)n∈N aus F auch

⋃∞
n=1An in F ist.

Jede Algebra enthält ∅ und Ω, weil ∅ = A∩Ac für A ∈ F und Ω = ∅c gelten. Die einfachste
σ-Algebra, die man bilden kann besteht daher aus F = {∅,Ω}.
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(7.2) Bemerkung. Ein Mengensystem F ist genau dann eine σ-Algebra, wenn die fol-
genden drei Eigenschaften erfüllt sind:

1. Ω ∈ F ,

2. A ∈ F ⇒ Ac ∈ F ,

3. Ist (An)n∈N eine Folge in F , so gilt
⋃∞

n=1An ∈ F .

Der Beweis ist eine einfache Übungsaufgabe.

Eine σ-Algebra F sollte man sich als ein hinreichend reichhaltiges Mengensystem vorstel-
len. Alle abzählbaren Mengenoperationen in F führen nicht aus F heraus.

(7.3) Bemerkung. Zu jedem Mengensystem C in Ω gibt es eine kleinste σ-Algebra σ(C),
die C enthält. Dies ist einfach der Durchschnitt aller σ-Algebren, die C enthalten (und
dies ist als unmittelbare Folgerung aus der Definition wieder eine σ-Algebra). Mindestens
eine σ-Algebra, nämlich P(Ω) (die Potenzmenge), umfaßt C.

(7.4) Beispiel. Das für uns wichtigste Beispiel ist Ω = R
n. Sei C die Familie aller nach

links halboffenen Intervall. Dabei ist für a = (a1, . . . , an), b = (b1, . . . , bn) ∈ R
n mit a ≤ b

(d.h. ai ≤ bi für alle i) ein nach links halboffenes Intervall definiert durch

]a, b] = { x = (x1, . . . , xn) ∈ R
n : ai < xi ≤ bi für i = 1, . . . , n}.

Dann heißt Bn := σ(C) die Borelsche σ-Algebra in R
n, und die zu Bn gehörigen Mengen

heißen Borelsche Mengen (Borel sets). Da sich jede offene Teilmenge des R
n als abzählbare

Vereinigung von Intervallen schreiben läßt, ist jede offene Menge (und damit auch jede
abgeschlossene Menge) in R

n Borelsch.

Wie definieren nun einen allgemeinen Wahrscheinlichkeitsraum:

(7.5) Definition. Sei Ω eine Menge und F eine σ-Algebra von Teilmengen von Ω. Ein
Wahrscheinlichkeitsmaß (probability measure) ist eine auf F definierte Funktion P mit
Werten in [0, 1], welche den folgenden Bedingungen genügt:

1. P (A) ≥ 0 für alle A ∈ F ,

2. P (Ω) = 1,

3. P ist σ-additiv , d.h., für disjunkte A1, A2, . . . ∈ F gilt

P

(∞⋃

i=1

Ai

)
=

∞∑

i=1

P (Ai).

(Ω,F , P ) heißt dann Wahrscheinlichkeitsraum (probability space), P Wahrscheinlichkeit
(probability).

Im diskreten Fall hatten wir jede Abbildung X von Ω nach R Zufallsgröße genannt. Für
einen allgemeinen Wahrscheinlichkeitsraum ist dies nicht zweckmäßig. Wir wollen Wahr-
scheinlichkeiten von Ereignissen der Form {a < X ≤ b} bestimmen. Für unsere Zwecke
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genügt die folgende Definition:

(7.6) Definition. Sei (Ω,F , P ) ein W.-Raum und X : Ω → R eine Abbildung. X heißt
Zufallsgröße (random variable) (oder Zufallsvariable), wenn für alle a ∈ R gilt:

X−1(] −∞, a]) ∈ F .

(7.7) Bemerkungen. Der Begriff Zufallsgröße hat zunächst nichts mit der Wahrschein-
lichkeit P zu tun. Liegt keine Wahrscheinlichkeit vor, so spricht man von einer meßba-
ren (measurable) Abbildung auf (Ω,F). Die Familie FX := {A ⊂ R : X−1(A) ∈ F}
ist eine σ-Algebra. Dies ist eine einfache Übung. Ist X eine Zufallsgröße, so gilt nach
Definition ] − ∞, a] ∈ FX für jedes a ∈ R. Somit liegt auch jedes Intervall der Form
]a, b] =]−∞, b]∩ (]−∞, a])c in FX . Da B1 von Intervallen dieser Form erzeugt wird, liegt
somit (unmittelbare Folgerung der Definition (7.6)) das Urbild jeder Borelschen Menge
in F . Eine äquivalente Definition einer Zufallsgröße ist also durch die Forderung gegeben,
daß das Urbild jeder Borelschen Menge in der vorgegebenen σ-Algebra F ,,landet“.

Schließlich bemerken wir auch noch, daß unser “neuer” Begriff einer Zufallsgröße konsis-
tent ist mit dem Begriff, den wir für diskrete Ω geprägt hatten. Dort benutzt man ja die
Potenzmenge P(C) als F . Somit ist

X−1(] −∞, a]) ∈ F .

trivialerweise immer erfüllt.

Wir führen nun den Begriff der Dichte ein.

(7.8) Definition. Eine Lebesgue-integrierbare Funktion f : R → [0,∞) heißt Dichte
(density), wenn

∫∞
−∞ f(x) dx = 1 gilt. (

∫
. . . dx bezeichne das Lebesgue-Integral.)

Falls das Lebesgue-Integral nicht bekannt ist, so setze man voraus, daß f Riemann-
integrierbar ist und das uneigentliche Riemann-Integral

∫∞
−∞ f(x) dx existiert und gleich

1 ist.

(7.9) Beispiele.

1. Die Dichte der Standard-Normalverteilung (standard normal distribution) ist defi-
niert durch

ϕ(x) =
1√
2π
e−x2/2, x ∈ R.

Wir hatten schon in (6.22) gesehen, daß
∫∞
−∞ ϕ(x) dx = 1 ist.

2. Die Dichte der Normalverteilung (normal distribution) mit Mittel µ ∈ R und Varianz
σ2 > 0 ist definiert durch

ϕ(x;µ, σ2) =
1√
2πσ

e−(x−µ)2/(2σ2), x ∈ R,

wobei die Namensgebung der Parameter µ ∈ R und σ > 0 im Beispiel (7.14 (2)) klar
werden wird. Durch die Transformation y = (x − µ)/σ geht die Dichte ϕ( · ;µ, σ2)
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in die Dichte ϕ( · ; 0, 1) der Standard-Normalverteilung aus Beispiel (1) über, und es
gilt ∫ ∞

−∞
ϕ(x;µ, σ2) dx =

∫ ∞

−∞

1√
2π
e−y2/2 dy = 1

gemäß (6.22).

Normalverteilungen

-6 -4 -2 0 2 4 6
x

0.1

0.2

0.3

0.4 ϕ(x; 0, σ2)

σ = 1

σ = 2

σ = 5

3. Für a < b ist die Dichte der gleichförmigen Verteilung (uniform distribution) auf
[a, b] definiert durch

f(x) =

{
1/(b− a) für x ∈ [a, b],
0 für x ∈ R \ [a, b].

4. Die Dichte der Exponentialverteilung (exponential distribution) zum Parameter λ >
0 ist definiert durch

f(x) =

{
λe−λx für x ≥ 0,
0 für x < 0.

5. Die Dichte der Cauchy-Verteilung zum Parameter c > 0 ist definiert durch

f(x) =
c

π

1

x2 + c2
, x ∈ R.

Cauchy-Verteilungen
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(7.10) Definition. Eine Funktion F : R → [0, 1] heißt Verteilungsfunktion (distribution
function), wenn die folgenden Eigenschaften gelten: (i) F ist monoton steigend (nonde-

creasing), d. h. für alle s ≤ t gilt F (s) ≤ F (t).

(ii) F ist rechtsseitig stetig (right-continuous), d. h. für jedes t ∈ R und jede gegen t
konvergente Folge {tn}n∈N mit tn ≥ t für alle n ∈ N gilt limn→∞ F (tn) = F (t).

(iii) limt→∞ F (t) = 1 und limt→−∞ F (t) = 0.

Bemerkung. Für jede Dichte f ist natürlich
∫ t

−∞ f(s) ds eine Verteilungsfunktion, die nicht
nur (ii) erfüllt, sondern sogar stetig ist. Wir nennen eine stetige Funktion F : R → [0, 1],
die (i) und (iii) erfüllt, eine stetige Verteilungsfunktion. Nicht jede stetige Verteilungs-
funktion hat eine Dichte, was hier nicht gezeigt wird.

(7.11) Definition. Es seien (Ω,F , P ) ein Wahrscheinlichkeitsraum und X eine Zufalls-
größe, dann heißt die Funktion FX(t) := P (X ≤ t), t ∈ R, die Verteilungsfunktion von
X.

Für eine Zufallsgröße X, wie sie in Kapitel 3 definiert wurde, läßt sich die Verteilungsfunk-
tion leicht beschreiben: In den (höchstens abzählbar vielen) Punkten t ∈ X(Ω) hat FX

einen Sprung der Höhe P (X = t) und ist in diesem Punkt rechtsseitig stetig. Ansonsten
ist sie konstant. Offensichtlich erfüllt FX dann (i)–(iii) der Definition (7.10).

(7.12) Definition. Es seien (Ω,F , P ) ein Wahrscheinlichkeitsraum und f eine
Dichte. Eine Zufallsgröße X heißt absolutstetig mit Dichte f , falls

FX(t) =

∫ t

−∞
f(s) ds

für alle t ∈ R gilt. Ist X absolutstetig mit Verteilungsfunktion FX so nennt man auch FX

absolutstetig.

Eine Dichte ist nicht ganz eindeutig durch die Zufallsgröße bzw. deren Verteilungsfunktion
bestimmt. Hat zum Beispiel X die in (7.9 (3)) angegebene Dichte, so ist

f̃(x) =

{
1/(b− a) für x ∈ (a, b),
0 für x ∈ R \ (a, b),
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ebensogut eine Dichte für X. Änderungen einer Dichte in abzählbar vielen Punkten (oder
allgemeiner: auf einer Nullmenge bezüglich des Lebesgue-Maßes) ändern an den Integralen
nichts.

Eine absolutstetige Zufallsvariable braucht natürlich keine stetige Dichte zu besitzen. Ist
jedoch eine Dichte f in einem Punkt a stetig, so gilt nach dem Fundamentalsatz der
Differential- und Integralrechnung

f(a) =
dF (x)

dx

∣∣∣
x=a

;

also hat eine Verteilungsfunktion F genau dann eine stetige Dichte, wenn sie stetig diffe-
renzierbar ist. Diese stetige Dichte ist, wenn sie existiert, eindeutig durch F bestimmt.

Hat eine Zufallsgröße X eine Dichte f , so gilt für alle a < b

P (a < X ≤ b) = P (X ≤ b) − P (X ≤ a) =

∫ b

a

f(x) dx.

Mit dem zu Beginn des Kapitels vorgestellten Argument folgt, daß P (X = x) = 0 für alle
x ∈ R ist, wenn X eine Dichte besitzt. Demzufolge gilt

P (a < X ≤ b) = P (a ≤ X ≤ b) = P (a ≤ X < b) = P (a < X < b).

Wir nennen eine Zufallsgröße normalverteilt, gleichförmig verteilt, exponentialverteilt
bzw. Cauchy-verteilt, wenn sie eine Dichte gemäß Beispiel (7.9 (2)), (3), (4) bzw. (5)
hat.

(7.13) Definition. Die Zufallsgröße X auf einem W.-Raum (Ω,F , P ) habe eine Dichte
f . Sei g : R → R eine meßbare Abbildung bezüglich der Borelschen Mengen auf R.

(a) Ist die Funktion R ∋ x 7→ g(x)f(x) Lebesgue-integrierbar, so sagen wir, daß der
Erwartungswert von g(X) existiert. Er ist dann definiert durch

E(g(X)) =

∫ ∞

−∞
g(x)f(x) dx.

(b) Ist g(x) = x und R ∋ x 7→ xf(x) Lebesgue-integrierbar, so sagen wir, daß der
Erwartungswert von X existiert. Er ist dann definiert durch

E(X) =

∫ ∞

−∞
xf(x) dx.

(c) Es existiere E(X) und es sei g(x) = (x − E(X))2. Ist R ∋ x 7→ (x − E(X))2f(x)
Lebesgue-integrierbar, so ist die Varianz von X definiert durch

V (X) =

∫ ∞

−∞
(x− E(X))2f(x) dx.

Bemerkung. Die eigentliche Idee hinter dieser Konstruktion ist die folgende: Für eine
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diskrete Zufallsvariable X ist wohlbekannt, daß man den Erwartungswert als
∑

ai∈X(Ω)

aiP (X = ai)

definiert ist. Eine beliebige Zufallsvariable X “diskretisiert” man, indem man für k ∈ Z

und n ∈ N die Mengen
Ank := {k/n ≤ X ≤ (k + 1)/n}

und neue Zufallsvariablen

Xn :=

∞∑

k=−∞
(k/n)1Ank

definiert. Die Xn steigen gegen X auf und es ist X1 ≤ X < X1 + 1. Daher definiert man
den Erwartungswert von X, falls EX1

lim
n
EXn

existiert und setzt ihn in diesem Fall gleich dem obigen Limes.

Vor dem Hintergrund dieser Konstruktion und der entsprechenden des Lebesgue-Integrals,
wird man schnell für sich klären können, daß die Definition des Erwartungswertes und
der Varianz mit den Definitionen dieser Größen in Kapitel 3 im Fall diskreter W.-Räume
zusammenfällt. Man muß natürlich wichtige Eigenschaften wie zum Beispiel die Linearität
des Erwartungswertes erneut beweisen. Wir wollen uns diese Arbeit hier ersparen.

(7.14) Beispiele.

(1) Sei X standardnormalverteilt. Dann ist

∫ ∞

−∞
|x| 1√

2π
e−x2/2 dx =

2√
2π

∫ ∞

0

xe−x2/2 dx =
2√
2π

(
−e−x2/2

)∣∣∣
∞

0
=

√
2

π
<∞,

also existiert der Erwartungswert von X, und es gilt

E(X) =

∫ ∞

−∞
x

1√
2π
e−x2/2 dx = 0,

da der Integrand eine ungerade Funktion ist. Die Varianz berechnet sich wie folgt: Es gilt

V (X) =
1√
2π

∫ ∞

−∞
x2e−x2/2 dx = lim

N→∞

1√
2π

∫ N

−N

x(xe−x2/2) dx,

und mittels partieller Integration folgt

V (X) = lim
N→∞

1√
2π

(−xe−x2/2)
∣∣∣
N

−N
+

1√
2π

∫ ∞

−∞
e−x2/2 dx = 0 + 1 = 1.

(2) Sei X normalverteilt mit den Parametern µ ∈ R und σ > 0. Mit der Transformation
y = (x− µ)/σ folgt unter Verwendung von Beispiel (1)

∫ ∞

−∞
|x| 1√

2πσ
e−(x−µ)2/2σ2

dx =

∫ ∞

−∞
|µ+ σy| 1√

2π
e−y2/2 dy

≤ |µ| + σ

∫ ∞

−∞
|y| 1√

2π
e−y2/2 dy <∞,
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also existiert der Erwartungswert, und es gilt

E(X) =

∫ ∞

−∞
x

1√
2πσ

e−(x−µ)2/2σ2

dx =
1√
2π

∫ ∞

−∞
(yσ + µ)e−y2/2 dy = µ.

Mit der gleichen Transformation und dem Ergebnis aus Beispiel (1) folgt

V (X) =

∫ ∞

−∞
(x− µ)2 1√

2πσ
e−(x−µ)2/2σ2

dx =
σ2

√
2π

∫ ∞

−∞
y2e−y2/2 dy = σ2.

Eine Zufallsgröße X ist genau dann normalverteilt mit Erwartungswert µ und Varianz σ2,
wenn (X − µ)/σ standardnormalverteilt ist. Etwas allgemeiner: Ist X normalverteilt mit
Erwartungswert µ und Varianz σ2, und sind a, b ∈ R, a 6= 0, so ist aX + b normalverteilt
mit Erwartungswert aµ + b und Varianz a2σ2. Dies ergibt sich im Fall a > 0 aus der
Tatsache, daß sowohl P (X ≤ t) = P (aX+b ≤ at+b) als auch (mittels der Transformation
y = ax+ b)

∫ t

−∞

1√
2πσ

e−(x−µ)2/2σ2

dx =

∫ at+b

−∞

1√
2πaσ

e−(y−aµ−b)2/2a2σ2

dy

für alle t ∈ R gelten, also ϕ( · ; aµ+ b, a2σ2) eine Dichte von aX + b ist.

(3) Sei X exponentialverteilt mit Parameter λ > 0. Partielle Integration ergibt

E(X) =

∫ ∞

0

λxe−λx dx = −xe−λx
∣∣∣
∞

0
+

∫ ∞

0

e−λxdx = 0 +
(
−1

λ
e−λx

)∣∣∣
∞

0
=

1

λ
,

insbesondere existiert der Erwartungswert. Ausmultiplizieren von (x− 1/λ)2, Verwenden
von E(X) = 1/λ und zweimalige partielle Integration liefern

V (X) =

∫ ∞

0

(
x− 1

λ

)2

λe−λx dx =

∫ ∞

0

λx2e−λx dx− 2

λ
E(X) +

1

λ2
=

1

λ2
.

Als nächstes wollen wir gemeinsame Eigenschaften von mehreren ZufallsgrößenX1, . . . , Xn,
definiert auf einem gemeinsamen W.Raum (Ω,F , P ), betrachten.

(7.15) Definition.

a) Eine Lebesgue-integrierbare Funktion f : R
n → [0,∞) heißt n-dimensionale Dichte,

wenn ∫

Rn

f(x) dx = 1

ist, wobei x ein n-Tupel (x1, . . . , xn) aus dem R
n bezeichnet.

b) Die Funktion f sei eine n-dimensionale Dichte, undX1, . . . , Xn seien n Zufallsgrößen.
Man sagt, daß sie die gemeinsame Dichte (joint density) f haben, wenn

P (X1 ≤ a1, X2 ≤ a2, . . . , Xn ≤ an) =

∫

(−∞,a1]×···×(−∞,an]

f(x) dx

für alle a1, . . . , an ∈ R gilt.
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(7.16) Definition. X1, . . . , Xn seien n Zufallsgrößen, definiert auf einem gemeinsamen
W.-Raum (Ω,F , P ). Sie heißen unabhängig, wenn für alle a1, . . . , an ∈ R gilt:

P (X1 ≤ a1, . . . , Xn ≤ an) = P (X1 ≤ a1) · · ·P (Xn ≤ an).

Bemerkung. Man prüft leicht nach, daß diese Definition für diskrete Zufallsgrößen äqui-
valent zu der in Kapitel 3 gegebenen ist.

(7.17) Satz. X1, . . . , Xn seien n Zufallsgrößen, definiert auf einem gemeinsamen W.-
Raum (Ω,F , P ). Jedes der Xj habe eine Dichte fj . (Wir setzen nicht voraus, daß eine
gemeinsame Dichte existiert.) Dann sind die Zufallsgrößen X1, . . . , Xn genau dann un-
abhängig, wenn eine gemeinsame Dichte für X1, . . . , Xn durch R

n ∋ (x1, x2, . . . , xn) 7→
f1(x1)f2(x2) . . . fn(xn) gegeben ist.

Beweis. Ist R
n ∋ (x1, x2, . . . , xn) 7→ f1(x1)f2(x2) . . . fn(xn) eine gemeinsame Dichte, so

ergibt sich für alle a1, . . . , an ∈ R

P (X1 ≤ a1, . . . , Xn ≤ an) =

∫ a1

−∞
. . .

∫ an

−∞
f1(x1) . . . fn(xn) dxn . . . dx1

=
n∏

j=1

∫ aj

−∞
fj(xj) dxj =

n∏

j=1

P (Xj ≤ aj).

Somit sind X1, . . . , Xn unabhängig. Gilt umgekehrt letzteres, so folgt

P (X1 ≤ a1, . . . , Xn ≤ an) =

n∏

j=1

P (Xj ≤ aj)

=

n∏

j=1

∫ aj

−∞
fj(xj) dxj

=

∫ a1

−∞
. . .

∫ an

−∞
f1(x1) . . . fn(xn) dxn . . . dx1,

und somit ist R
n ∋ (x1, . . . , xn) 7→ f1(x1) . . . fn(xn) eine gemeinsame Dichte. 2

Wir wollen nun die Dichte von X + Y berechnen, wenn X und Y unabhängig sind,
und ihre Verteilungen durch die Dichten f und g gegeben sind. Wir bemerken zunächst,
daß X + Y nach einer Übung wieder eine Zufallsgröße ist. Wir wollen P (X + Y ≤ a)
für alle a ∈ R bestimmen. Mit Ca := {(x, y) ∈ R

2 : x + y ≤ a} können wir dies als
P ((X, Y ) ∈ Ca) schreiben. Wichtig ist die Tatsache, daß aus der definierenden Eigenschaft
(7.15(b)) folgt, daß für Teilmengen C ⊂ R

n, für die die Funktion R
n ∋ x 7→ 1C(x)f(x)

Lebesgue-integrierbar ist,

P ((X1, . . . , Xn) ∈ C) =

∫

C

f(x) dx
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gilt. Wir wollen dies hier nicht beweisen. Es sei auf eine Vorlesung ,,Wahrscheinlichkeits-
theorie“ verwiesen. Es gilt mit der Substitution u = x+ y und v = y nach Satz (7.17):

P (X + Y ≤ a) =

∫

Ca

f(x)g(y) dx dy

=

∫ a

−∞

∫ ∞

−∞
f(u− v)g(v) dv du.

Somit gilt:

(7.18) Satz. Es seien X und Y unabhängige Zufallsgrößen. X habe die Dichte f und Y
die Dichte g. Dann hat X + Y die Dichte

h(x) =

∫ ∞

−∞
f(x− y)g(y) dy, x ∈ R. (7.1)

Sind f und g zwei Dichten, so definiert (*) eine neue Dichte h, die man als die Faltung
(convolution) von f und g bezeichnet und meist als f ∗ g schreibt.

Als Anwendung von (7.18) können wir eine wichtige Eigenschaft von normalverteilten
Zufallsgrößen zeigen:

(7.19) Satz. Es seien Xi, 1 ≤ i ≤ n, unabhängige und normalverteilte Zufallsgrößen
mit Erwartungswerten µi und Varianzen σ2

i . Dann ist
∑n

i=1Xi normalverteilt mit Erwar-
tungswert

∑n
i=1 µi und Varianz

∑n
i=1 σ

2
i .

Beweis. SindX1, . . . , Xn unabhängig, so sind X1+· · ·+Xn−1 undXn ebenfalls unabhängig
(warum?). Der Satz folgt also mit Induktion nach n aus dem Fall n = 2.

Die Zufallsgrößen Y1 = X1−µ1 und Y2 = X2−µ2 sind normalverteilt mit Erwartungswert
0. Nach (7.18) ist die Dichte h von Y1 + Y2 gegeben durch

h(x) =
1

2πσ1σ2

∫ ∞

−∞
exp

(
−1

2

[
(x− y)2

σ2
1

+
y2

σ2
2

])
dy

für alle x ∈ R. Schreibt man den Term in der eckigen Klammer in der Form

(x− y)2

σ2
1

+
y2

σ2
2

=

(√
σ2

1 + σ2
2

σ1σ2
y − σ2

σ1

√
σ2

1 + σ2
2

x

)2

+
x2

σ2
1 + σ2

2

.

und benutzt die Transformation

z(y) =

√
σ2

1 + σ2
2

σ1σ2
y − σ2

σ1

√
σ2

1 + σ2
2

x,

so ergibt sich

h(x) =
1√

2π(σ2
1 + σ2

2)
exp

(
−1

2

x2

σ2
1 + σ2

2

)∫ ∞

−∞

1√
2π
e−z2/2 dz = ϕ(x; 0, σ2

1 + σ2
2).

Also ist Y1 + Y2 normalverteilt mit Erwartungswert 0 und Varianz σ2
1 + σ2

2. Demzufolge
ist X1 +X2 normalverteilt mit Erwartungswert µ1 + µ2 und Varianz σ2

1 + σ2
2 . 2
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8 Grundlagen der Statistik

In diesem Kapitel wollen wir einen kurzen Einblick in die mathematische Statistik geben.
Die Statistik ist ein sehr reichhaltiges Teilgebiet der Stochastik, die oft in mehreren Vor-
lesungen gesondert behandelt wird; wir können daher hier nur einige zentrale Ideen und
Konzepte betrachten. Man unterteilt die mathematische Statistik in die beschreibende
Statistik und die schließende Statistik. Die beschreibende Statistik faßt Datensätze zu-
sammen und macht deren Besonderheiten mit Hilfe von Kennzahlen und Grafiken sichtbar.
Wir wollen uns damit hier nicht befassen.

Die Fragestellung der schließenden Statistik ist gewissermaßen dual zu der Fragestellung
der Wahrscheinlichkeitstheorie. Während man in der Wahrscheinlichkeitstheorie von ei-
nem festen Modell ausgeht und analysiert, was man an Beobachtungen erwarten kann,
sind in der schließenden Statistik die Beobachtungen gegeben und man versucht Rück-
schlüsse auf das zugrunde liegende Modell zu ziehen. Man hat also in der mathematischen
Statistik a priori eine ganze Klasse von möglichen Modellen und das bedeutet von mögli-
chen Wahrscheinlichkeits–Verteilungen zur Verfügung. In den einfacheren Fällen – und
das sind u.a. alle hier behandelten – lassen sich diese Wahrscheinlichkeits–Verteilungen
durch einen strukturellen Parameter klassifizieren, der meist reellwertig ist und direkt
mit der ursprünglichen Fragestellung zusammenhängt. Beispielsweise kann von einer Be-
obachtung bekannt sein (woher auch immer), daß sie von einer Poisson-Verteilung zum
Parameter λ > 0 stammt, bloß kennt man das λ nicht und möchte wissen, welches λ am
besten zu der Beobachtung paßt. In diesem Fall wäre also die Klasse der möglichen Mo-
delle, die Menge aller Poisson–Verteilungen {πλ : λ > 0}. In solchen Fällen spricht man
auch von parametrischen Modellen. Die schwierigere (aber auch interessantere) Proble-
matik der sogenannten nichtparametrische Modelle, die wesentlich reichhaltigere Klassen
von Wahrscheinlichkeits–Verteilungen zuläßt, kann hier nicht behandelt werden.

Man unterscheidet drei verschiedene Problemstellungen: man möchte den Parameter durch
einen Schätzwert beschreiben, man möchte ein Prüfverfahren entwickeln, mit dem getes-
tet werden kann, ob vorgegebene Hypothesen über den Parameterwert mit den Daten
verträglich sind (statistische Tests), und man möchte Schranken berechnen, die einen
unbekannten Parameter mit vorgegebener Wahrscheinlichkeit einfangen (Konfidenzinter-
valle).

Der allgemeine Rahmen dieser Probleme hat immer folgende Zutaten:

1. eine nichtleere Menge X , der sogenannte Stichprobenraum (so heißt häufig der zu-
grunde liegende Raum in der Statistik, im Gegensatz zu Ω in der Wahrscheinlich-
keitstheorie) versehen mit einer σ-Algebra F

2. eine Familie {Pθ : θ ∈ Θ} von Wahrscheinlichkeiten auf X ; hierbei nehmen wir an,
daß Θ ⊆ R

d für ein d ist und daß Θ ein verallgemeinertes Intervall ist.

Schätzprobleme
Das Problem in diesem Abschnitt ist das folgende: Man möchte aus vorliegenden Beob-
achtungen (Realisierungen von Zufallsgrößen), die nach Pθ verteilt sind, den tatsächlich
zugrunde liegenden Parameter θ schätzen, oder allgemeiner eine Funktion g : Θ → R

k
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(ist der Parameter selbst zu schätzen, so ist g(θ) = θ). Der Vorteil der allgemeineren
Formulierung liegt darin, daß auch einfache Fälle, in denen g etwas komplizierter aus-
sieht, eingeschlossen sind. So könnte man die Varianz np(1− p) einer Binomialverteilung
schätzen wollen. Dann ist θ = p und g(p) = np(1 − p). Im Falle der Normalverteilung ist
der Parameterbereich zweidimensional, also θ = (µ, σ2), eine zu schätzende Funktion ist
zum Beispiel g(θ) = µ.

Zunächst müssen wir natürlich klären, was ein Schätzer überhaupt sein soll. Hierzu neh-
men wir an, daß wir n Beobachtungen X1, . . . , Xn ∈ X gegeben haben. Die Großbuch-
staben sollen hierbei andeuten, daß es sich bei X1, . . . , Xn um Zufallveriablen handelt,
von denen wir annehmen wollen, daß sie unabhängig sind und alle nach Pθ verteilt. Ein
Schätzer für g(θ) ist dann sinnvollerweise eine Funktion der Zufallsgrößen X1, . . . , Xn,
d.h. eine Funktion ĝ : X n → R

k (im dem Falle, daß g(θ) = θ ist, werden anstatt ĝ oft
auch θ̂ schreiben). Damit ist natürlich ĝ selbst wieder eine Zufallsvariable.

Nun, da wir wissen, was Schätzer eigentlich sind, stellt sich die Frage nach der Güte von
Schätzern. Wir wollen hier zwei Kriterien vorstellen:

(8.1) Definition. Es sei X = (X1, . . . , Xn) ∈ X n eine Beobachtung und ĝ ein Schätzer
für das unbekannte g. ĝ heißt erwartungstreu (unbiased) für g(θ), wenn für alle θ ∈ Θ die
Gleichung

Eθĝ = g(θ)

gilt.
ĝ heißt konsistent (consistent) für g(θ), wenn für alle θ ∈ Θ und alle δ > 0

lim
n→∞

Pθ

(
|ĝ(X1, . . . , Xn) − g(θ)| > δ

)
= 0.

Ein konsistenter Schätzer genügt also dem Gesetz der großen Zahlen und wird somit für
große Datenmengen immer besser.

Nun haben wir zwar zwei sinnvolle Kriterien zur Beurteilung von Schätzern aufgestellt.
Eine für die Praxis relevante Frage ist allerdings die, wie man eigentlich solche Schätzer
findet. Wir werden in der folgenden Definition das Konzept eines Maximum-Likelihood-
Schätzers vorstellen, der in vielen Fällen obigen Güte–Kriterien genügt. Die Idee hinter
der Konstruktion ist die, daß man – kennt man θ nicht – am plausibelsten annimmt, daß
man einen für Pθ typischen Wert beobachtet hat. Typisch soll hier der Pθ(x) bzw. eine
Dichte f(x|θ) maximierende Wert für θ sein. Da Θ ein Intervall in R

d ist, kann dann ein
Maximum-Likelihood-Schätzer durch Differentiation gefunden werden.

(8.2) Definition

(a) Ist X eine endliche oder abzählbare Menge, so heißt die Funktion θ 7→ Lx(θ) = Pθ(x)
mit x ∈ X n Likelihood-Funktion. Es seien X eine Zufallsvariable, definiert auf einem
allgemeinen W.-Raum, mit Werten in X n = R

n und {Pθ : θ ∈ Θ} eine Familie von
Verteilungen von X. Ist Pθ verteilt mit einer n-dimensionalen Dichte f(·|θ), so heißt
hier die Funktion θ 7→ Lx(θ) = f(x|θ) die Likelihood-Funktion.
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(b) Nimmt Lx(·) einen Maximalwert in θ̂(x) an, ist also

Lx(θ̂(x)) = sup{Lx(θ) : θ ∈ Θ},

so nennen wir θ̂(x) eine Maximum-Likelihood-Schätzung (Schätzer, estimator) von
θ und g(θ̂(x)) eine Maximum-Likelihood-Schätzung von g(θ).

(8.3) Bemerkung. Lx(θ) gibt also an, wie wahrscheinlich die gemachte Beobachtung x
ist, wenn die zugrunde liegende Verteilung Pθ ist.

Wir wollen nun den Maximum-Likelihood-Schätzer in einigen gut bekannten Situationen
kennenlernen.

(8.4) Beispiele. (a) Bernoulli-Experiment:
In einem Bernoulli-Experiment zu den Parametern n und p soll p aus der Anzahl x der
Erfolge geschätzt werden. Es ist also Θ = [0, 1] und Lx(p) = b(x;n, p). Aufgrund der
Monotonie der Logarithmus–Funktion hat logLx(p) dieselben Maxima wie Lx(p). Es ist
(logLx(p))

′ = x
p
− n−x

1−p
, womit man (logLx(p))

′ = 0 bei p̂(x) = x
n

findet. Es ist leicht

zu sehen, daß es sich bei p̂(x) um ein Maximum von logLx(p) handelt. x
n

ist also der
Maximum-Likelihood-Schätzer für p. Dies entspricht der naiven Mittelwertbildung, die

man üblicherweise durchführen würde (es ist nämlich p̂ =
∑n

i=1 Xi

n
).

Aufgrund der Linearität des Erwartungswertes gilt außerdem Ep(p̂) = Ep(
∑n

i=1 Xi

n
) = np

n
=

p, p̂ ist also erwartungstreu. Schließlich liefert das Gesetz der großen Zahlen (Satz 3.30)
die Konsistenz von p̂.

Wir haben also im Falle der Binomialverteilung gesehen, daß der Maximum-Likelihood-
Schätzer der naiven Vorgehensweise entspricht und diesem Falle auch unsere Gütekriterien
an eine Schätzung erfüllt. Interessanterweise ist der Maximum-Likelihood-Schätzer im Fal-
le der Binomialverteilung sogar der einzige Schätzer, der dies tut.

(8.5) Satz. Ist in obiger Situation S ein erwartungstreuer Schätzer für p so gilt S = p̂.

Beweis. Sei T := S − p̂. Da sowohl S also auch p̂ erwartungstreu sind gilt für alle p

Ep(T ) = Ep(S − p̂) = Ep(S) − Ep(p̂) = p− p = 0.

Also ist für alle p

0 = Ep(T ) =
n∑

k=0

T (k)

(
n

k

)
pk(1 − p)n−k = (1 − p)n

n∑

k=0

T (k)

(
n

k

)(
p

1 − p

)k

.

Setzt man s := p
1−p

, so läuft s von 0 bis ∞, wenn p das Einheitsintervall durchläuft und
es ist

f(s) := (1 − p)n

n∑

k=0

T (k)

(
n

k

)
sk
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konstant gleich 0. Andererseits ist f(s) ein Polynom, so daß alle Koeffizienten von f schon
0 sein müssen, was impliziert, daß T (k) = 0 für alle k und somit S = p̂. 2

Um ein weiteres Qualitätsmerkmal des oben gewonnenen Schätzers zu diskutieren, defi-
nieren wir den Abstand eines Schätzers zu seiner erwartungstreuen Variante.

(8.6) Definition. Der Bias eines Schätzers T eines Parameters p ist als

b(p, T ) = Ep[T − p]

definiert.

Die Qualität eines Schätzers messen wir durch seinen quadratischen Abstand zum zu
schätzenden Wert.

(8.7) Definition. Das quadratische Risiko eines Schätzers T eines Parameters p ist de-
finiert als

R(p, T ) = Ep[(T − p)2].

Den Zusammenhang dieser beiden Definitionen klärt die folgende Proposition.

(8.8) Proposition. Sei T ein Schätzer für p. Dann gilt

R(p, T ) = Vp(T ) + b2(p, T ).

Beweis. Es gilt

R(p, T ) = Ep[(T − p)2]

= Ep[(T − EpT ) + (EpT − p))2]

= Ep[(T − EpT )2] + 2Ep(T −EpT )(EpT − p) + (Ep[T − p])2

= Ep[(T − EpT )2] + (Ep[T − p])2

= Vp(T ) + b2(p, T ).

2

Wir werden nun die Qualität des oben hergeleiteten Schätzers p̂ = 1
n

∑n
i=1Xi für p un-

tersuchen. Sei U die Klasse aller erwartungstreuen Schätzer p̃ von p, d. h. die Klasse aller
Schätzer, für die b(p, p̃) = 0 gilt.

(8.9) Satz. Für den Schätzer p̂ = 1
n

∑n
i=1Xi und jeden erwartungstreuen Schätzer p̃ ∈ U

gilt

Vp(p̃) ≥
p(1 − p)

n
= Vp(p̂)

für alle p ∈ (0, 1). Da b(p, p̃) = b(p, p̂) = 0 impliziert dies

R(p, p̃) ≥ R(p, p̂)
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für alle p ∈ (0, 1) und alle p̃ ∈ U .

Für den Beweis benötigen wir einen neuen Begriff.

(8.10) Definition. Für x ∈ {0, 1}n sei

Lx(p) = Pp(x)

und
Lx(p) = logPp(x).

Dann ist

L′
x(p) =

L′
x(p)

Lx(p)
.

Mit
I(p) := Ep[(L′

x(p))
2]

bezeichnen wir die Fisher Information von p.

Beweis von Satz 8.9. Sei p̃ ∈ U . Da p̃ erwartungstreu ist, gilt

p = Epp̃ =
∑

x∈{0,1}n

p̃(x)Pp(x).

Dies impliziert

1 = p′ =
∑

x∈{0,1}n

p̃(x)
d

dp
Pp(x) =

∑

x∈{0,1}n

p̃(x)L′
x(p)Pp(x) = Ep[p̃L′

x(p)].

Andererseits gilt

EpL′
x(p) =

∑

x∈{0,1}n

L′
x(p)Pp(x) =

∑

x∈{0,1}n

d

dp
Pp(x) =

d

dp
1 = 0.

Daher gilt auch
Epp̃EpL′

x(p) = 0.

Subtrahiert man die vorherige Gleichung, erhält man

1 = Ep((p̃−Epp̃)L′
x(p)).

Mit Cauchy-Schwarz folgt

1 = 12 ≤ E(p̃− Epp̃)
2Ep[(L′

x(p))
2] = Vp(p̃)I(p)

nach Definition von I(·). Da I(p) > 0 (was wir im Anschluss beweisen), folgt

Vp(p̃) ≥
1

I(p)
.
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Dies heißt auch die Cramér-Rao Ungleichung. In einem letzten Schritt berechnen wir I(·).

I(p) = Ep

[(
d

dp
logPp(x)

)2
]

= Ep

[(
d

dp
log p

∑
i xi(1 − p)n−∑i xi

)2
]

= Ep




(
d

dp

n∑

i=1

log Pp(xi)

)2


 .

Nun gilt für jedes i

Ep

[
d

dp
logPp(xi)

]
=

d

dp

[
1

p
p− (1 − p)

1

1 − p
(1 − p)

]
= 0.

Daher erhalten wir

I(p) = Ep



(
d

dp

∑

i=1

¬n logPp(xi)

)2



=
∑

i6=j

EWp
d

dp
logPp(xi)Ep

d

dp
logPp(xj) +

n∑

i=1

Ep

[(
d

dp
logPp(xi)

)2
]

= 0 + np
1

p2
+ n(1 − p)

1

(1 − p)2

= n

(
1

p
+

1

1 − p

)

=
n

p(1 − p)
.

Daher gilt für p̃ ∈ U
R(p, p̃) = Vp(p̃) ≥

p(1 − p)

n
.

Wählen wir für p̃ = p̂ = 1
n

∑n
i=1Xi

R(p, p̂) = Vp(p̂) = Vp

(
1

n

n∑

i=1

Xi

)
=

1

n
p(1 − p).

Dies beweist den Satz. 2

Nun wenden wir die Konzepte auf den Fall normalverteilter Zufallsvariablen an.

(8.4) Beispiele fortgesetzt. (b) Normalverteilung:
Hier leiten wir nur den Maximum–Likelihood–Schätzer für die verschiedenen Fälle normal-
verteilter Zufallsvariablen her; ihre Güte zu diskutieren erfordert ein wenig Extraarbeit,
die wir im Anschluß erledigen werden. Seien X1, X2, . . . , Xn unabhängig und normalver-
teilt zu den Parametern µ und σ2 (wir schreiben im folgenden N (µ, σ2)-verteilt). Dann
ist θ = (µ, σ2). Die Dichte von X = (X1, . . . , Xn) an der Stelle x = (x1, . . . , xn) ergibt
sich nach Satz (7.17) zu

f(x|θ) =
( 1√

2πσ

)n

exp
(
− 1

2σ2

n∑

i=1

(xi − µ)2
)
.
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Wir betrachten wieder

log f(x|θ) = −n log(
√

2πσ) − 1

2σ2

n∑

i=1

(xi − µ)2

und unterscheiden die folgenden Fälle:

(1) (Varianz bekannt, Schätzung des Erwartungswertes)
Sei µ unbekannt und σ2 = σ2

0 bekannt. Dann ist Θ = {(µ, σ2) : µ ∈ R, σ2 = σ2
0}. Nun

ist d
dµ

log f(x|θ) = 0 genau dann, wenn
∑n

i=1(xi − µ) = 0 ist. Daraus ergibt sich der
Maximun-Likelihood-Schätzer zu

µ̂ =
1

n

n∑

i=1

xi.

Dies ist erneut die naive Mittelwertbildung. Man muß natürlich noch durch Bildung der
zweiten Ableitung überprüfen, daß wirklich ein Maximum in µ̂ vorliegt. Dies sei dem Leser
überlassen.

(2) (Erwartungswert bekannt, Schätzung der Varianz)
Sei µ = µ0 bekannt und σ2 > 0 unbekannt. Hier ist Θ = {(µ, σ2) : µ = µ0, σ

2 > 0}. Nun
ist d

dσ
log f(x|θ) = 0 genau dann, wenn

−n
σ

+
1

σ3

n∑

i=1

(xi − µ0)
2 = 0

ist. Daraus ergibt sich für σ2 der Maximun-Likelihood-Schätzer zu

σ̃2 =
1

n

n∑

i=1

(xi − µ0)
2.

Auch dieser Schätzer entspricht dem naiven Ansatz, aus den Daten die mittlere quadra-
tische Abweichung zu bestimmen.

(3) (beide Parameter unbekannt)
Seien nun beide Parameter µ und σ2 unbekannt. Die Gleichungen

d

dµ
log f(x|θ) = 0 und

d

d(σ2)
log f(x|θ) = 0

liefern (simultan gelöst) die Maximum-Likelihood-Schätzer µ̂ für µ und

σ̂2 =
1

n

n∑

i=1

(xi − µ̂)2

für σ2. Hier muß man allerdings mit Hilfe der Hesseschen Matrix überprüfen, ob es sich
um ein Maximum handelt. Dazu beachte, daß

d2

dµ2
log f(x|θ) = − n

σ2
und

d2

d(σ2)2
log f(x|θ) =

n

2σ4
− 1

σ6

n∑

i=1

(xi − µ)2
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sowie
d2

dµ d(σ2)
log f(x|θ) = − 1

σ4

n∑

i=1

(xi − µ).

Somit ist die Determinante der Hesseschen Matrix an der Stelle (µ̂, σ̂2) identisch gleich
n2

2(σ2)3
> 0 und d2

dµ2 log f(x|θ) < 0, also ist die Hessesche Matrix an dieser Stelle negativ

definit, und somit liegt an der Stelle (µ̂, σ̂2) ein isoliertes Maximum vor.

Die Diskussion der Güte obiger Maximum–Likelihood–Schätzer ist ein wenig aufwendig
und muß durch ein Lemma vorbereitet werden.

(8.11) Lemma. Die Verteilung der Summe der Quadrate von n unabhängigen N (0, 1)-
verteilten Zufallsgrößen nennt man eine χ2

n-Verteilung (χ2-Verteilung mit n Freiheitsgra-
den, χ2-distribution with n degrees of freedom). Ihre Dichte ist gegeben durch

gn(x) =
1

2n/2Γ(n/2)
x(n/2)−1 e−x/2, x > 0.

Hierbei ist

Γ(t) =

∫ ∞

0

xt−1e−xdx

die Γ-Funktion.
Der Erwartungswert einer χ2

n-verteilten Zufallsgröße ist n, die Varianz 2n.

Beweis. Wir beweisen den ersten Teil des Satzes via Induktion über die Anzahl der Va-
riablen n. Der zweite Teil ist eine Übung.
n = 1: Es ist für eine N (0, 1)-verteilte Zufallsgröße X1

P (X2
1 ≤ x) = P (−√

x < X1 <
√
x) = 2

∫ x

0

1√
2π
e−

t2

2 dt

=

∫ x

0

1√
2π
z−

1
2e−

z
2dz

mittles der Substitution t =
√
z. Das – zusammen mit Γ(1/2) =

√
π – beweist den

Induktionsanfang.

Aufgrund der Unabhängigkeit der gegebenen Zufallsvariablen und gemäß der Definition
der Faltung ist nach Induktionsvoraussetzung

gn(z) =

∫ ∞

−∞
gn−1(x)g1(z − x)dx

=

∫ z

0

1

2(n−1)/2Γ((n− 1)/2)
x((n−1)/2)−1 e−x/2 1√

2π
(z − x)−1/2 exp

(
−z − x

2

)
dx.
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Substituiert man y = z
x

ergibt sich

gn(z) =
e−z/2

√
2π2(n−1)/2Γ((n− 1)/2)

∫ 1

0

z(n−1)/2−1y(n−1)/2−1z−1/2(1 − y)−1/2zdy

=
zn/2−1e−z/2

√
2π2(n−1)/2Γ((n− 1)/2)

∫ 1

0

y(n−1)/2−1(1 − y)−1/2dy

=
zn/2−1e−z/2

Γ(1/2)2(n−1)/2Γ((n− 1)/2)

Γ((n− 1)/2)Γ(1/2)

Γ(n/2)

=
zn/2−1e−z/2

2(n−1)/2Γ(n/2)
.

2

Dieses Lemma hilft uns die Frage nach der Güte der oben vorgeschlagenen Maximum–
Likelihood-Schätzer im wesentlichen zu klären.

(8.4) Beispiel, 2. Fortsetzung. (b) Zunächst wollen wir hier wieder die Güte von

µ̂ überprüfen. Nach Satz (7.19) ist
∑n

i=1Xi normalverteilt mit Erwartungswert nµ und
Varianz nσ2

0 . Dann ist nach den Ausführungen in Beispiel (7.14)(2) der Erwartungswert
von S1 = 1

n

∑n
i=1Xi gleich µ, also ist S1 erwartungstreu für g(θ) = µ. Das schwache

Gesetz der großen Zahlen war in Kapitel 3 nur für diskrete W.-Räume formuliert worden.
Aber die Markoff-Ungleichung (Satz (3.28)) erhalten wir analog für absolutstetig verteilte
Zufallsgrößen X mit Dichte f (verwende E(|X|) =

∫
R
|x|f(x)dx; dieser Erwartungswert

existiert, hier nach Beispiel (7.14)(2)). Da nun nach (7.14)(2) die Varianz von S1 gleich
σ2

0/n ist, erhalten wir hier ebenfalls ein schwaches Gesetz und damit die Konsistenz des
Schätzers S1 für µ.

Die Güte des Schätzers für σ2 bei bekanntem µ diskutieren wir ähnlich wie oben. Wir
schreiben dazu σ̃2 als:

σ̃2 =
σ2

n

n∑

i=1

(Xi − µ0

σ

)2

.

Nach Beispiel (7.14)(2) sind die Zufallsgrößen X∗
i := (Xi −µ0)/σ standardnormalverteilt.

Nach Lemma (8.6) ist dann
∑n

i=1(X
∗
i )2 χ2

n-verteilt mit Erwartungswert n und Varianz 2n.

Also ist nach Definition (7.13) E(σ̃2) = σ2 und V (S2) = 2σ4

n
. Damit ist σ̃2 erwartungstreu

für σ2, und wir erhalten entsprechend der Diskussion im Fall (1) die Konsistenz von S2

für σ2.

Schließlich wollen wir noch verstehen, daß der Schätzers für σ2 bei unbekanntem µ nicht
erwartungstreu ist. Dazu betrachten wir σ̂2 + µ̂2 und berechnen zum einen

Eµ,σ2(σ̂2 + µ̂2) = Eµ,σ2(
1

n

n∑

i=1

X2
i − µ̂2 + µ̂2)

=
1

n

n∑

i=1

Eµ,σ2X2
i = Vµ,σ2(X2

i ) + (Eµ,σ2Xi)
2 = σ2 + µ2.
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Andererseits ist

Eµ,σ2(σ̂2 + µ̂2) = Eµ,σ2(σ̂2) + Eµ,σ2(µ̂2)

= Eµ,σ2(σ̂2) + Vµ,σ2(µ̂2) + Eµ,σ2(µ̂)2 = Eµ,σ2(σ̂2) +
σ2

n
+ µ2.

Löst man diese beiden Gleichungen nach Eµ,σ2(σ̂2) auf, so ergibt sich

Eµ,σ2(σ̂2) =
n− 1

n
σ2.

Somit ist σ̂2 nicht erwartungstreu für σ2, wohl aber

S2 :=
n

n− 1
σ̂2 =

1

n− 1

n∑

i=1

(Xi − µ̂)2.

Ob S2 auch konsistent ist für σ2, kann erst geklärt werden, wenn wir die Verteilung
von S2 kennen. Da wir diese im Abschnitt über das Testen sowieso berechnen müssen,
verschieben wir den Beweis der Konsistenz nach dort. Hier sei nur vorab bemerkt, daß
S2 in der Tat konsistent ist und daß man diese Konsistenz im wesentlichen wie oben zeigt.

Statistische Tests
Die Zutaten in diesem Abschitt sind die gleichen wie die im vorangegangenen mit der
zusätzlichen Ingrediens, daß nun noch eine Teilmenge H ⊂ Θ gegeben ist. H nennen wir
Hypothese, K := Θ \H heißt Alternative. Das Problem besteht nun darin, festzustellen,
ob ein gegebener Datensatz nahelegt, daß der zugrunde liegende Parameter in H ist oder
in K. Betrachten wir ein Beispiel, das wir weniger wegen seiner praktischen Relevanz als
aufgrund dessen gewählt haben, daß es Grundlage einer historischen Diskussion zwischen
den Statistikern R.A. Fisher und J. Neyman über die Konstruktion von Tests war.

(8.12) Beispiel. Eine englische Lady trinkt ihren Tee stets mit etwas Milch. Eines Tages
verblüfft sie ihre Teerunde mit der Behauptung, sie könne allein am Geschmack unter-
scheiden, ob zuerst die Milch oder zuerst der Tee eingegossen wurde. Dabei sei ihr Ge-
schmack zwar nicht unfehlbar, aber sie würde häufiger die richtige Eingieß-Reihenfolge
erschmecken, als dies durch blindes Raten möglich wäre.

Um der Lady eine Chance zu geben, ihre Behauptung unter Beweis zu stellen, könnte
man sich folgenden Versuch vorstellen: der Lady werden jeweils n mal 2 Tassen gereicht,
von denen jeweils eine vom Typ “Milch vor Tee”, die andere vom Typ “Tee vor Milch” ist;
ihre Reihenfolge wird jeweils zufällig ausgewürfelt. Die Lady soll nun durch Schmecken
erkennen, welche Tasse von welchem Typ ist.

Aufgrund dieses Experiments modellieren wir die n Geschmacksproben als unabhängi-
ge Erfolg/Mißerfolg-Experiment mit Erfolgswahrscheinlichkeit p, also als n-stufiges Ber-
noulli-Experiment. Der Parameter p variiert dabei im Intervall [1/2, 1] (da p = 1/2 schon
die Erfolgswahrscheinlichkeit bei purem Raten ist und daher p < 1/2 unrealistisch ist).
Es liegt nun nahe H = 1/2 und K = (1/2, 1] zu wählen, d.h. wir testen die Hypothese
“die Lady rät” gegen die Alternative “die Lady schmeckt den Unterschied”. Natürlich
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könnten wir auch K = 1/2 und H = (1/2, 1] wählen, denn bislang scheint die Situation
zwischen H und K komplett symmetrisch zu sein. Daß es tatsächlich einen Unterschied
macht, was man als welche Hypothese wählt, versteht man, wenn man die möglichen
Fehler betrachtet, die eine Entscheidung θ ∈ H bzw. θ ∈ K mit sich bringen kann.

Offenbar gibt es zwei mögliche Fehler: Ist θ ∈ H und wird die Hypothese verworfen, so
spricht man von einem Fehler erster Art (type I error), ist θ ∈ K und wird die Hypothese
angenommen, so spricht man von einem Fehler zweiter Art (type II error). Ein Test ist
beschrieben durch die Angabe der Menge R derjenigen x, für die die Hypothese verwor-
fen wird. R heißt auch Verwerfungsbereich (rejection region). Um sich den Unterschied
zwischen den beiden Fehlern deutlich zu machen, stelle man sich vor ein Angeklagter
solle verurteilt werden. Offenbar gibt es auch hier zwei Möglichkeiten: den Angeklagten
unschuldig zu verurteilen oder einen Schuldigen freizusprechen. Dem Rechtsgrundsatz “in
dubio pro reo” würde es dann entsprechen, den ersten Fehler so klein wie möglich zu
halten.

Bei einem statistischen Test beide Fehler gleichzeitig zu minimieren ist offenbar schwer
möglich (es sei denn man verschafft sich über eine große Stichprobe eine große Sicherheit
über den zugrunde liegenden Parameter); eine Minimierung des Fehlers erster Art würde
in letzter Konsequenz bedeuten, die Hypothese stets zu akzeptieren, während man den
Fehler zweiter Art dadurch klein halten könnte, indem man stets die Hypothese verwirft.
Man hat sich darauf geeinigt, bei einem Test immer den Fehler erster Art zu kontrollieren,
indem man gewährleistet, daß er kleiner ist als eine vorgegebene Irrtumswahrscheinlichkeit
α. Unter dieser Randbedingung versucht man den Fehler 2. Art möglichst klein zu halten
(trotzdem kann es passieren, daß dieser besonders bei sehr kleinen Stichproben sehr groß
wird). Diese Konstruktion beeinflußt auch die Wahl von H bzw. K.

Wie soll man nun zu einem gegebenen Testproblem einen Test konstruieren? In der ma-
thematischen Statistik gibt es verschiedene Ansätze optimale Tests theoretisch zu kon-
struieren. Wir werden an dieser Stelle darauf verzichten ein solch theoretisches Fundament
zu legen und nur eine heuristisch sinnvolle Konstruktion anführen, die in den nachfolgend
diskutierten Beispielen in der Tat zu Tests führt, die in gewissem Sinne optimal sind (was
wir allerdings nicht beweisen werden).

Nehmen wir also an, wir wollen die Hypothese H mit einer Fehlerwahrscheinlichkeit (er-
ror probability) (man sagt oft auch zum Signifikanzniveau (level of significance)) α > 0
testen. Es ist sinnvoll, dazu zunächst eine Stichprobe vom (möglichst großen) Umfang n
aufzunehmen. Aufgrund dieser Stichprobe schätzen wir dann θ möglichst gut durch θ̂n.
Sieht θ̂n nicht signifikant anders aus als man es unter Vorliegen von H erwarten würde,
so entscheidet man sich für H ansonsten für K. Genauer bedeutet das, man wählt ein
Intervall Ĥ = Ĥ(α, n) möglichst klein, so daß

Pθ(θ̂n /∈ Ĥ) ≤ α ∀θ ∈ H

und entscheidet sich H zu akzeptieren, falls θ̂n ∈ Ĥ und ansonsten H abzulehnen. Die
Wahrscheinlichkeit eines Fehlers erster Art ist also maximal α.

Da wir im vergangenen Abschnitt schon gesehen haben, wie man in einigen Fällen gute
Schätzer konstruiert, können wir uns jetzt einmal die obige Methode in Aktion betrachten.
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(8.12 a) Beispiel. Zunächst behandeln wir das eingangs gestellte Problem der Tea-
testing Lady. Wie wir sehen werden, ist dies der allgemeine Fall des Testens im Falle der
Binomialverteilung. Nehmen wir an, die Lady testet 20 Mal, wir führen also 20 unabhängi-
ge 0-1 Experimente mit unbekanntem Erfolgsparameter p durch. Wir hatten Θ = [1/2, 1]
angenommen; wir werden aber gleich sehen, daß wir ebenso gut Θ = [0, 1] nehmen können,
ohne das Testergebnis zu beeinflussen. Die Anzahl der Erfolge X ist b(k; 20, p)-verteilt.
Sei die Hypothese H = {1/2} (bzw. H = [0, 1/2] im Falle von Θ = [0, 1]), d.h. die Lady
rät. Wir suchen den Verwerfungsbereich R = {c, c+ 1, . . . , n = 20} in Abhängigkeit vom
Niveau α (entsprechend versuchen wir den Fehler zu entscheiden, die Lady habe die be-
hauptete geschmackliche Fähigkeit, obwohl sie in Wahrheit rät, kleiner als das gegebene
α zu bekommen). Aus dem vorigen Abschnitt ist bekannt, daß p̂ = X

n
ein guter Schätzer

für p ist. Wir werden also Ĥ so wählen, daß

Pp(
X

n
∈ Ĥ) ≤ α ∀p ∈ H

und so, daß dabei Ĥ dabei möglichst klein ist. R := nĤ ist dann der Verwerfungsbereich.
Um diesen zu berechnen bemerken wir, daß

Pp(X ∈ R) =
20∑

k=c

(
20

k

)
pk(1 − p)20−k

gilt. Da dies in p monoton wachsend ist, das Supremum über alle p ∈ H also bei p = 1/2
angenommen wird, ist es offenbar egal, ob wir Θ = [1/2, 1] und H = {1/2} oder Θ = [0, 1]
und H = [0, 1/2] wählen. Wir können nun c als Funktion von α einfach als Lösung der
folgenden Ungleichung bestimmen: 2−20

∑20
k=c

(
20
k

)
≤ α < 2−20

∑20
k=c−1

(
20
k

)
. Insbesondere

ist für α ∈ [0.021, 0.058] das entsprechende c = 15 (also für zulässige Fehler zwischen 2%
und 5%). Wir können noch den Fehler 2. Art diskutieren. Es gilt:

p 0.6 0.7 0.8 0.9
Fehler 2. Art 0.874 0.584 0.196 0.011

Dies bedeutet zum Beispiel für den Wert p = 0.7, daß die Wahrscheinlichkeit einer An-
nahme der Hypothese, obwohl sie falsch ist, bei 0.6 liegt. Eine Verkleinerung des Fehlers
2.Art, ohne dabei das Niveau des Tests zu vergrößern, ist also hier allein durch eine größer
gewählte Stichprobe möglich.

Wir wollen nun die Qualität der benutzten Testmethode theoretisch untersuchen. Dazu
sollten wir zunächst eine mathematische Definition des Begriffs “Test” geben.

8.13 Definition. Zu testen sei die Hypothese H ⊂ Θ gegen die Alternative K 6= ∅. Ein
Test ist eine Abbildung

φ : {0, 1}n → {0, 1}.
φ(x) = 0 soll bedeuten, daß wir uns für H entscheiden, während φ(x) = 1 bedeutet, wir
entscheiden uns für K (wir lehnen die Hypothese ab). Ein Test ist vollständig festgelegt
durch das Gebiet R ⊆ Θ, auf dem wir die Hypothese verwerfen (R ist das Verwerfungs-
gebiet von φ), d. h. φ(x) = 1 ⇔ x ∈ R.
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Neben gewöhnlichen Tests betrachten wir auch randomisierte Tests: Ein randomisierter
Test ist eine Abbildung.

φ : {0, 1}n → [0, 1].

φ(x) ist die Wahrscheinlichkeit H abzulehnen.

Natürlich will man zwei gegebene Tests der gleichen Hypothese und Alternative verglei-
chen. Dies geht einerseits über das Niveau des Tests

max
p∈H

Pp(x ∈ R)

(dies möchte man i. a. durch die gegebene Schranke α > 0 kontrollieren). Sind zwei Tests
zu einem Niveau α vorgelegt, so bietet sich der Fehler zweiter Art als Vergleichskriterium
an. Man definiert daher (äquivalent)

β(p) = Pp(x ∈ R)

als die Macht eines Tests mit Verwerfungsbereich R in p ∈ K.

Wir werden nun eine Untersuchung der Güte der oben diskutierten Tests im einfachst
möglichen Fall präsentieren, dem Fall, in dem sowohl die Hypothese H als auch die Al-
ternative K aus einem einzigen Punkt bestehen. Im Fall einer Folge von i.i.d. Bernoulli-
Variablen mit unbekanntem Erfolgsparameter p testen wir also die einfache Hypothese

H : {p = p0}

gegen die einfache Alternative
K : {p = p1}.

Da wir uns in diesem Fall auch mit randomisierten Tests befassen wollen, verallgemeinern
wir die Begriffe des Niveaus und der Macht rasch auf diesen Fall: Für einen randomisierten
φ ist

EH(φ) =
∑

x

φ(x)PH(x)

das Niveau des Tests.
EK(φ) =

∑

x

φ(x)PK(x)

ist seine Macht. Bemerke, daß diese Definitionen konsistent sind mit den Definitionen für
nicht-randomisierte Tests.

Wir interessieren uns nun dafür, unter allen Tests {φ : EH(φ) ≤ α} denjenigen Test φ∗

mit maximaler Macht zu finden.

(8.14) Definition. Ein Test φ∗ heißt Neyman-Pearson Test, falls es eine Konstante
c∗, 0 ≤ c∗ ≤ ∞ gibt, so daß φ∗(x) = 1 falls PK(x) > c∗PH(x) und φ∗(x) = 0 falls
PK(x) < c∗PH(x). Auf {PK(x) = c∗PH(x)} darf der Test φ∗ beliebige Werte 0 ≤ γ(x) ≤ 1
annehmen.

Wir werden im folgenden einen Test φ1 schärfer nennen als einen Test φ2, falls

EK(φ1) > EK(φ2)
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gilt, die Chance H zu verwerfen, wenn K vorliegt bei φ1 somit größer ist als bei φ2.

Wir wenden uns nun der speziellen Situation des n-fachen Münzwurfs zu. Offensichtlich
gilt für alle x ∈ {0, 1}n

PH(x) +KK(x) > 0.

Der folgende Satz ist zentral für das gesamte Gebiet der Test-Theorie.

(8.15) Satz [Neyman-Pearson-Lemma]. In der Situation des n-fachen Münzwurfs mit
Parameter p sei die Hypothese

H : {p = p0}
gegen die Alternative

K : {p = p1}
zu testen. Dann gilt

• Falls φ∗ ein Neyman-Pearson Test ist, dann ist φ∗ schärfer als jeder andere Test φ
mit

EH(φ) ≤ EH(φ∗).

• Für jedes 0 ≤ α ≤ 1 gibt es einen (randomisierten) Neyman-Pearson Test φ∗ zum
Niveau α, also mit EH(φ∗) = α.

Beweis. Sei φ∗ ein Neyman-Pearson Test und φ ein beliebiger Test zum Niveau kleiner
oder gleich EH(φ∗). Auf

A := {x ∈ {0, 1}n : φ∗(x) > φ(x)}

gilt φ∗(x) > 0 und daher
PK(x) ≥ c∗PH(x).

Umgekehrt ist auf
B := {x ∈ {0, 1}n : φ∗(x) < φ(x)}

φ∗(x) < 1 und daher
PK(x) ≤ c∗PH(x).

Dies bedeutet

EK(φ∗) − EK(φ) =
∑

x∈{0,1}n

(φ∗(x) − φ(x))PK(x)

=
∑

x∈A

(φ∗(x) − φ(x))PK(x) +
∑

x∈B

(φ∗(x) − φ(x))PK(x)

≥
∑

x∈A

(φ∗(x) − φ(x))c∗PH(x) +
∑

x∈B

(φ∗(x) − φ(x))c∗PH(x)

= c∗
∑

x∈{0,1}n

(φ∗(x) − φ(x))PH(x)

= c∗(EH(φ∗) − EH(φ)) ≥ 0.

Nun beweisen wir den zweiten Teil des Satzes und konstruieren den zugehörigen Neyman-
Pearson Test.
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Für α = 0 setzen wir c∗ = ∞. Dann gilt immer

PK(x) < c∗PH(x).

Daher ist φ ≡ 0 und somit EHφ = 0.

Nun sei α > 0. Für c ≥ 0 setzen wir q(x) := PK(x)/PH(x) und

α(c) = PH(q(X) > c) und

α(c− 0) = PH(q(X) ≥ c).

Offensichtlich gilt

α(0 − 0) = PH(q(X) ≥ 0) = PH

(
PK(X)

PH(X)
≥ 0

)
= 1.

Desweiteren setzen wir
Cn = {x ∈ {0, 1}n : q(x) > cn}

für eine strikt wachsende Folge (cn). (Cn) ist fallend, d. h. Cn+1 ⊆ Cn für alle n und falls
cn ↑↑ ∞ erhalten wir

C :=
⋂

n≥0

Cn = ∅.

Daher gilt
α(cn) = PH(q(X) > cn) = PH(Cn) → 0

(da P stetig ist). Falls umgekehrt cn ↑↑ c > 0, definieren wir

C :=
⋂

n≥0

CN = {x : q(x) ≥ c}.

Daher konvergiert α(cn) → PH(C) = α(c− 0). Umgekehrt, falls bn ↓↓ b, so ist

Bn{x : q(x) > bn}

wachsend und
B :=

⋃

n≥0

Bn = {x : q(x) > b}.

Das bedeutet, daß unser α(·) eine rechts-stetige Funktion ist. Definieren wir

c∗ = inf{c : α(c) ≤ α},

so erhalten wir
α(c∗) ≤ α ≤ α(c∗ − 0).

Falls a(c∗) < a(c∗ − 0) gilt, so setzen wir

γ∗ =
α− α(c∗)

α(c∗ − 0) − α(c∗)
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und schließlich φ(x) = 1 falls PK(x) > c∗PH(x), φ∗(x) = 0, falls PK(x) < c∗PH(x) und
φ∗(x) = γ∗, falls PK(x) = c∗PH(x). Offenbar ist dies ein Neyman-Pearson Test mit

EH(φ∗) = PH(q(X) > c∗) + γ∗PH(q(X) = c∗)

= α(c∗) + γ∗(α(c∗ − 0) − α(c∗))

= α(c∗) + α− α(c∗)

= α.

2

Dies zeigt die Optimalität des im Beispiel der Tea-testing lady eingeführten Test-Verfahrens
für den Fall einfacher Hypothesen und Alternativen. Für einseitige Tests, d. h. Tests ei-
ner Hypothese H die komplett links (oder komplett rechts) von der Alternative K liegt,
überträgt sich die Optimalität mit Hilfe des folgenden

(8.16) Lemma. Sei X Binomial-verteilt zu den Parametern n und p und x < n. Dann
ist

p 7→ Pp(X ≤ x)

stetig und strikt fallend in p und

P0(X ≤ x) = 1 und P1(X ≤ x) = 0.

Beweis. Alles bis auf die Monotonie ist trivial. Sei daher p1 > p2. Wir müssen zeigen, dass

Pp1(X ≤ x) > Pp2(X ≤ x).

Dies machen wir wieder mit Hilfe eines Kopplungsarguments. Wir wählen p3 ∈ (0, 1)
als p3 := p1

p2
und (Xi) als i.i.d. Bernoulli Variablen zum Parameter p2. Desgleichen seien

(Yi) i.i.d. Bernoulli Variablen zum Parameter p3 die auch unabhängig von den (Xi) sind.
Definiert man Zi = XiYi, so nimmt auch Zi nur die Werte 0 und 1 an und die Zi sind
unabhängig. Daher sind die (Zi) i.i.d. Bernoulli Variablen mit Erfolgswahrscheinlichkeit

P (Zi = 1) = P (Xi = 1)P (Yi = 1) = p2p3 = p1.

Offensichtlich gilt {Xi = 0} ⊆ {Zi = 0} woraus wir

{X1 + . . .+Xn ≤ x} ⊆ {Z1 + . . .+ Zn ≤ x}

erhalten. Dies bedeutet

Pp2(X ≤ x) = P ({X1 + . . .+Xn ≤ x}) < P ({Z1 + . . .+ Zn ≤ x}) = Pp1(X ≤ x).

Die Ungleichung ist strikt, da die Inklusion strikt ist und die Differenz der beiden Mengen
positive Wahrscheinlichkeit besitzt. 2

Es soll hier erwähnt werden, dass neben einseitigen Tests auch zweiseitige Tests der Form

H : {p = p0}
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gegen
K : {p 6= p0}

(aber nie umgekehrt – warum?) existieren. Das Testverfahren ist analog zum einseitigen

Fall. Man konstruiert sich ein Intervall I ∈ p0, so dass PH(
∑n

i=1 Xi

n
∈ I) ≥ 1−α und I da-

bei möglichst klein und entschließt sich H anzunehmen, falls
∑n

i=1 Xi

n
∈ I und entscheidet

sich für K, falls
∑n

i=1 Xi

n
/∈ I.

(b) Normalverteilung:
(i) Testen auf µ bei bekanntem σ2

Es seien X1, X2, . . . , Xn unabhängig und N (µ, σ2)-verteilt. σ2 sei bekannt und es sei die
Hypothese H : µ ≤ µ0 gegen die Alternative K : µ > µ0 zu testen. Aus dem Abschnitt

über das Schätzen wissen wir schon, daß µ̂ =
∑n

i=1 Xi

n
das unbekannte µ gut schätzt.

Wir konstruieren unseren Test also so, daß wir H verwerfen, falls µ̂ ≥ η für ein noch zu
bestimmendes η, das von der gegebenen Irrtumswahrscheinlichkeit α abhängt. Um η zu
bestimmen, bedenken wir daß

Pµ,σ2(µ̂ ≥ η) ≤ α ∀µ ≤ µ0

gelten soll. Wir wissen schon, daß µ̂ als normierte Summe von normalverteilten Zufalls-
größen N (µ, σ2/n)-verteilt ist. Also ist

Pµ,σ2(µ̂ ≥ η) = Pµ,σ2

(√
n(µ̂− µ)

σ
≥

√
n(η − µ)

σ

)
= 1 − Φ

(√
n(η − µ)

σ

)
.

Da die rechte Seite dieser Gleichung wiederum monoton wachsend in µ ist genügt es η
aus einer N (0, 1)-Tafel so zu bestimmen, daß

1 − Φ

(√
n(η − µ0)

σ

)
= α,

um den gewünschten Test zu konstruieren.

(ii) Testen auf σ2 bei bekanntem µ
Wieder seien X1, X2, . . . , Xn unabhängig und N (µ, σ2)-verteilt. Diesmal sei µ bekannt
und wir testen H : σ ≥ σ0 gegen die Alternative K : σ < σ0. Aus dem Abschnitt über
das Schätzen wissen wir, daß σ̂2 = 1

n

∑n
i=1(Xi − µ)2 ein guter Schätzer für σ2 ist. Nach

Lemma 8.6 wissen wir schon, daß n
σ2 σ̃

2 verteilt ist gemäß der χ2
n-Verteilung. Wollen wir

also z.B. auf dem Signifikanzniveau α > 0 die Hypothese H : σ2 ≥ σ2
0 gegen K : σ2 < σ2

0

testen (der umgekehrte Test H : σ2 < σ2
0 gegen K : σ2 ≥ σ2

0 geht analog), so müssen wir
also ein η so finden, daß

Pµ,σ2(σ̃2 < η) ≤ α

für alle σ2 ≥ σ2
0 gilt (und dabei η möglichst klein). Wir werden dann H annehmen, falls

σ̃2 ≥ η und andernfalls werden wir H ablehnen. Nun ist

Pµ,σ2(σ̃2 < η) = Pµ,σ2(
n

σ2
σ̃2 <

n

σ2
η)

=

∫ nη/σ2

0

gn(z)dz ≤
∫ nη/σ2

0

0

gn(z)dz,
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wobei gn(z) die Dichte der χ2
n-Verteilung bezeichnet. Wir bestimmen also η so aus einer

χ2
n-Tabelle, daß ∫ nη/σ2

0

0

gn(z)dz = α,

haben wir unseren Test konstruiert.

Prinzipiell underscheiden sich im Falle der Normalverteilung die Tests auf µ bzw. σ2 bei
unbekanntem anderen Parameter nicht von den oben gezeigten Verfahren, wenn der andere
Parameter bekannt ist. Es gibt allerdings ein technisches Problem. Seien wiederX1, . . . , Xn

unabhängige, identisch nach N (µ, σ2) verteilte Zufallsvariablen und seien µ und σ2 unbe-
kannt. Wie wir schon gesehen haben, sind µ̂ = 1

n

∑
Xi bzw. S2 = 1

n−1

∑n
i=1(Xi− µ̂)2 dann

gute Schätzer für die unbekannten Parameter, auf die getestet werden soll, aber das nüzt
uns relativ wenig, denn wir haben Probleme, die Verteilung der Schätzer zu bestimmen.
Zwar wissen wir, daß µ̂ N (µ, σ2/n)-verteilt ist, doch kennen wir σ2 nicht (daß wir µ nicht
kennen, können wir ggf. verschmerzen, da wir ja gerade auf µ testen wollen) und von
S2 kennen wir die Verteilung überhaupt nicht. Diese Problem wollen wir im folgenden
lösen. Aus technischen Gründen werden wir uns dazu zunächst um die Verteilung von S2

kümmern. Dies geschieht mit Hilfe des folgenden Lemma:

(8.17) Lemma. Es seien A eine orthogonale n× n-Matrix, Y = (Y1, . . . , Yn) ein Vektor
aus unabhängigen N (0, 1)-verteilten Zufallsvariablen und Z = (Z1, . . . , Zn) der Vektor
A(Y ). Dann sind Z1, . . . , Zn unabhängig und N (0, 1)-verteilt.

Beweis. Es bezeichne g(y1, . . . , yn) die Dichte von Y . Für jedes n-dimensionale Rechteck
[a, b[ gilt nach der Transformationsformel für orthogonale Transformationen:

P
(
A(Y ) ∈ [a, b[

)
= P

(
Y ∈ A−1([a, b[)

)
=

∫

A−1([a,b[)

g(y1, . . . , yn)dy1 · · · dyn

=

∫

[a,b[

g(y1, . . . , yn)dy1 · · · dyn = P
(
Y ∈ [a, b[

)
.

2

Wir wenden dieses Lemma auf die spezielle orthogonale Matrix A an, die in der ersten
Zeile den Vektor (1/

√
n, . . . , 1/

√
n) als Eintrag hat. Diese Vorgabe kann nach dem Gram-

Schmidtschen Orthonormalisierungs-Verfahren zu einer orthogonalen Matrix aufgefüllt
werden. Weiter sei Yi = Xi−µ

σ
und Ȳ = 1

n

∑n
i=1 Yi Hier ist dann

Z1 =
1√
n

(Y1 + · · ·Yn) =
√
nȲ =

√
n

(
µ̂− µ

σ

)
.

Es bezeichne 〈·, ·〉 das gewöhnliche Skalarprodukt in R
n. Dann gilt wegen der Orthogona-

lität von A

Z2
2 + · · · + Z2

n = 〈Z,Z〉 − Z2
1 = 〈Y, Y 〉 − n(Ȳ )2

=

n∑

i=1

(Yi − Ȳ )2 =

n∑

i=1

(
Xi − µ̂

σ

)2

=
(n− 1)

σ2
S2
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Da die Zi unabhängig sind, ist Z1 von Z2
2 + · · · + Z2

n unabhängig, und somit µ̂ von S2.

Ferner ist (n−1)
σ2 S2 verteilt wie Z2

1 + . . .+ Z2
n, was nach Lemma 8.6 χ2

n−1-verteilt ist. (Wir

bemerken hier, daß dies insbesondere die Konsistenz von S2 impliziert, da V (S2) = σ4

n−1

folgt.) Damit ist das Problem der Verteilung von S2 geklärt.

Für das Problem des Testens auf µ bei unbekanntem σ2 erinnern wir noch einmal, daß
µ̂ eine gute Schätzung von µ war und, daß

√
n µ̂−µ

σ
gemäß N (0, 1) verteilt war. Da uns

das aufgrund des unbekannten σ2 nicht weiterhilft, ersetzen wir einfach das unbekannte
σ2 durch seine gute Schätzung S2. Dies fürt zu folgender Statistik:

T := T (X) :=
√
n
µ̂− µ

S
=

√
n µ̂µ

σ√
S2(n−1)

σ2

√
n− 1,

wobei wir die 2. Schreibweise gewählt haben, um anzudeuten, daß T der Quotient aus
einer N (0, 1)-verteilten und einer (nach dem vorigen Schritt davon unabhängigen) χ2

n−1-
verteilten Variablen ist. Welche Verteilung hat nun T ? Dazu beweisen wir folgenden Satz:

(8.18) Satz. Sind W und Un unabhängige Zufallsvariable, und ist W N (0, 1)-verteilt und
Un χ

2
n-verteilt, so nennt man die Verteilung von

Tn =
W√
Un/n

eine tn-Verteilung oder auch eine t-Verteilung mit n Freiheitsgraden (t-distribution with
n degrees of freedom). Die Dichte von Tn berechnet sich zu

hn(x) =
Γ
(

n+1
2

)

Γ
(

n
2

)
Γ
(

1
2

)
(
1 +

x2

n

)−(n+1)/2

.

Die t1-Verteilung ist uns schon begegnet: Hier ist die Dichte h1(x) = 1/(π(1 + x2)).
Dies ist die Cauchy-Verteilung zu c = 1, siehe Beispiel (7.9)(5). Man spricht auch von
der Standard-Cauchy-Verteilung . Die allgemeine t-Verteilung stammt von William Sealy
Gosset (1876–1937), der unter der Pseudonym ,,Student“ publizierte. Dies tat er, da er als
Angestellter der Guiness-Brauerei nicht publizieren durfte. Die t-Verteilung heißt daher
auch Studentsche Verteilung .

Beweis. Da Un χ2
n-verteilt ist, ist P (Un > 0) = 1, also ist Tn mit Wahrscheinlichkeit 1

wohldefiniert. Weiter sei λ > 0. Dann ist nach Satz (7.17)

P (Tn < λ) = P (
√
nW < λ

√
Un)

=

∫ ∞

0

∫ λ
√

y/n

−∞

1√
2π

exp(−x2/2)gn(y) dx dy.

Wir substituieren mit ϕ(t) = t
√
y/n und verwenden Γ(1/2) =

√
π:

P (Tn < λ) =

∫ ∞

0

∫ λ

−∞

1
√
n2

n+1
2 Γ(n/2)Γ(1/2)

exp

(
−1

2

(
y +

y + t2

n

))
y

n+1
2

−1 dt dy.
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Eine erneute Substitution ϕ(z) = 2z
1+t2/n

liefert

P (Tn < λ) =

∫ ∞

0

∫ λ

−∞

1√
nΓ(n/2)Γ(1/2)

exp(−z)z n+1
2

−1(1 + t2/n)−
n+1

2 dz dt

=

∫ λ

−∞

1√
nΓ(n/2)Γ(1/2)

(1 + t2/n)−
n+1

2

(∫ ∞

0

exp(−z)z n+1
2

−1 dz
)
dt.

Mit der Definition der Gammafunktion ist das innere Integral nach z gleich Γ(n+1
2

). Da
nun noch hn(λ) = hn(−λ) gilt, ist das Lemma bewiesen. 2

Mit W =
√
n Ȳ und Un−1 = Z2

2 + · · · + Z2
n ist somit T (X) tn−1 verteilt. Wir fassen also

für unsere Situation zusammen:

(8.19) Satz. Sind X1, . . . , Xn unabhängige N (µ0, σ
2)-verteilte Zufallsgrößen, dann ist

T (X) tn−1-verteilt.

Das Testen im Falle der Normalverteilung auf µ bzw. σ2 bei jeweils unbekanntem anderen
Parameter gestaltet sich nun genauso wie in Beispiel (8.8) (b). Die dort verwendeten
Schätzer µ̂ und σ̃2 für die unbekannten µ und σ2 ersetzt man – wie oben gesehen – durch T
bzw. S2. Analog muß man die in den Tests unter Beispiel (8.8) (b) die Normalverteilung für
µ̂ durch die tn−1-Verteilung für T bzw. die χ2

n-Verteilung von σ̃2 durch die χ2
n−1-Verteilung

von S2 ersetzen. Mit diesen Veränderungen bleiben alle weiteren Rechenschritte dieselben.

Bei genauerem Hinsehen haben wir bislang nur sogenannte einseitige Tests studiert; das
sind solche Tests, bei denen der Parameterbereich in zwei Teilintervalle zerfällt, von denen
einer die Hypothese und der andere die Alternative ist. Dies führt dazu, daß die Hypothese
entweder verworfen wird, wenn der Schätzer des Parameters, auf den getestet werden soll,
zu groß ist, oder wenn er zu klein ist (aber nicht beides), je nachdem, ob die Hypothese nun
das “linke” oder das “rechte” Teilintervall von Θ ist. Dem gegenüber stehen zweiseitige
Tests, bei denen Θ in drei Intervalle zerfällt. Dabei steht das mittlere Intervall für die
Hypothese, die beiden anderen Intervalle bilden die Alternative. Dementsprechend wird
H verworfen, wenn der Schätzer des zu testenden Parameters zu klein ist und dann, wenn
er zu groß ist (natürlich nicht gleichzeitig !).

Die prinzipielle Testidee ändert sich nicht. Wieder approximiert man den zu testenden
Parameter durch seinen guten Schätzer (die wir in den von uns betrachteten Situationen
nun schon hinlänglich kennengelernt haben) und konstruiert zu gegebener Signifikanz α
den Verwerfungsbereich des Tests. Wir wollen das an einem Beispiel studieren.

(8.20) Beispiel. Es seien X1, . . . , Xn n gemäß N (µ, σ2) verteilte Zufallsvariablen und es
seien µ und σ2 unbekannt. Für ein gegebenes festes µ0 wollen wir die Hypothese µ = µ0

gegen die Alternative µ 6= µ0 testen. Es sei also

H = {(µ, σ2) : µ = µ0, σ
2 > 0}

und
K = {(µ, σ2) : µ 6= µ0, σ

2 > 0}.
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Schließlich sei Θ = H ∪ K. Da σ2 unbekannt ist, arbeiten wir mit der Statistik T (und
nicht mit µ̂). Wir bemerken, daß unter H die Statistik T =

√
n µ̂−µ0

S
t-verteilt ist, also

insbesondere Erwartungswert 0 hat. Wir werden alsoH akzeptieren, wenn T betragsmäßig
nicht zu groß ist, ansonsten lehnen wir H ab.
Sei also α > 0 gegeben. Gesucht ist ein k (möglichst klein), so daß

Pµ0,σ2(|T | > k) ≤ α.

Man nennt den Wert tn−1,β mit P (T ≤ tn−1,β) = β das β-Quantil der tn−1-Verteilung. Um
einen Test zum Niveau α zu erhalten, bestimmt man aus Tabellen der tn−1-Verteilung die
Zahl k = tn−1,1−α/2 (das 1 − α/2-Quantil). Wegen der Symmetrie der tn−1-Verteilung ist
dann P (|T (X)| > k) = α. Es folgt die Entscheidungsregel: die Hypothese wird verworfen,
wenn

|µ̂− µ0| > tn−1,1−α/2
S√
n
.

Ein Beispiel: es mögen 15 unabhängige zufällige Variable mit derselben Normalverteilung
N(µ, σ2) die folgenden Werte angenommen haben: 0.78, 0.78, 1.27, 1.21, 0.78, 0.71, 0.68,
0.64, 0.63, 1.10, 0.62, 0.55, 0.55, 1.08, 0.52. Teste H : µ = µ0 = 0.9 gegen K : µ 6= 0.9. Bei
welchem Niveau α wird H verworfen? Aus den Daten ermittelt man µ̂ zu 0.7934 und S
zu 0.2409. Dann muß man mit Hilfe einer Tabelle der t14-Verteilung α so bestimmen, daß
das 1−α/2-Quantil unterhalb des Wertes (0.9−0.7934)

√
15/0.2409 liegt. Dies liefert den

kritischen Wert α ≈ 0.1, womit für dieses Niveau und alle besseren Niveaus die Hypothese
H verworfen wird.

Anschließend wollen wir noch ein Schätzproblem diskutieren, das von großer praktischer
Relevanz ist. Die dort verwendeten Schätzer bzw. deren Verteilung sollen hier nicht her-
geleitet werden. Die auftretenden Verteilungen haben wir allerdings schon kennengelernt.
Die Testsituation tritt häufig beim Vergleich zweier Verfahren auf. Beispielsweise stelle
man sich vor, ein neu den Markt kommendes Medikament B soll getestet werden. Man
möchte freilich wissen, ob dieses Medikament besser ist als das bisher übliche A. Dazu
wird man sinnvollerweise zwei (möglichst große) Versuchsgruppen bilden, von denen eine
Medikament A, die andere Medikament B nimmt. Ist die durschnittliche Krankheitsdauer
der Gruppe die Medikament B genommen hat, signifikant kürzer als die der anderen Grup-
pe, wird man die Hypothese, das neue Medikament bringt keine Verbesserung verwerfen,
ansonsten wird man die Hypothese akzeptieren.

Prinzipiell unterscheidet man bei dieser Art Problemen zwei verschiedene Modelle. Zum
einen hat man die Fälle, in denen man Medikament A und Medikament B an der glei-
chen Person ausprobieren kann (hir ist das Beispiel von Medikamenten auch eher schlecht
gewählt; solche Tests findet man beispielsweise beim Vergleich zweier Typen Schuhsohlen,
in dem man jedem Probanden unter jeden Schuh eine der beiden Sohlen nageln kann).
Hat man nun n Versuchspersonen, so bekommt man für Medikament A eine Versuchsrei-
he Y1, . . . , Yn, von denen wir annehmen wollen, dass die Yi ∼ N (µ2, σ

2) unabhängig und
unabhängig von den Xi sind. Das Paar (Xi, Yi) beschreibt somit die Messung der Wir-
kungen von A und B an Person i. Man spricht daher in diesem Fall auch von sogenannten
gepaarten Stichproben. Wir betrachten nun die Differenz der beiden Wirkungen

Di := Xi − Yi.
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Unter der Hypothese
H : µ1 = µ2

sind die Di unabhängig und N (0, σ2)-verteilt. Bei unbekanntem σ2 können wir also den
oben hergeleiteten t-Test benutzen, um H gegen die Alternative

K : µ1 6= µ2

zu testen.

(8.21) Beispiel. Wir verabreichen 10 Patienten zunächst eine Nacht Schlafmittel A und
dann eine Nacht Schlafmittel B. Die folgende Tabelle gibt die Werte für Di wieder.

Patient 1 2 3 4 5 6 7 8 9 10
Di 1.2 2.4 1.3 1.3 0.0 1.0 1.8 0.8 4.6 1.4

Wir wollen nun H : die beiden Mittel sind gleich wirksam, also µ1 = µ2 auf dem Niveau
α = 0.01 testen. Aus dem Datenvektor ermitteln wir T = 1.58

√
10/1.513 = 4.06. Da wir

einen zweiseitigen Test betrachten, müssen wir dies vergleichen mit dem 0.995-Quantil der
t9-Verteilung. Dieses ist 3.25. Somit verferfen wir H aufgrund der Daten. Wir entscheiden
uns also dafür, das eine Schlafmittel wir wirksamer zu erklären.

Die Modellierung durch verbundene Stichproben ist nicht immer realistisch. Meist hat
man eine Gruppe, die mit Methode A behandelt wird, und eine andere, der man Methode
B angedeihen läßt. Um dies zu mathematisieren seien zwei Folgen von Zufallsvariablen
X1, . . . , Xn und Y1, . . . , Ym gegeben, die alle unabhängig seien. Die Zufallsvariablen Xi

seien alle gemäß N (µ1, σ
2
1), die Yi gemäß N (µ2, σ

2
2) verteilt. Getestet werden soll die

Hypothese H : µ1 = µ2 gegen die Alternative K : µ1 6= µ2. Ist σ2
1 6= σ2

2 so bekommen wir
ziemlich große Probleme, die hier nicht behandelt werden sollen. Im Falle von σ2

1 = σ2
2 =:

σ2 schätzen wir dieses (unbekannte) σ2 durch

S̃2 :=
1

m+ n− 2

( m∑

i=1

(Xi − X̄)2 +

n∑

i=1

(Yi − Ȳ )2

)
,

wobei die X̄ = 1
m

∑m
i=1Xi und Ȳ = 1

n

∑n
i=1 Yi die Mittelwerte der Stichproben sind. Unter

der Hypothese H : µ1 = µ2 ist dann die Statistik

T̃ :=
X̄ − Ȳ

S̃
√

1
m

+ 1
n

verteilt gemäß einer tm+n−2-Verteilung (insbesondere hat sie den Erwartungswert 0). Wir
werden also H verwerfen, wenn T̃ betragsmäßig zu groß wird. Ist genauer eine Signifikanz
α > 0 gegeben, so verwerfen wir H, falls

|T̃ | > tm+n−1,1−α/2,

sonst akzeptieren wir H . Das Problem, das wir somit gelöst haben, heißt auch Zweistich-
probeproblem mit unverbundenen Stichproben.
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Es sei abschließend noch erwähnt, daß man für die entsprechende nicht-parametrische
Fragestellung, wenn man also nicht voraussetzt, daß die Xi und Yj eine bestimmte Ver-
teilung haben (z. B. eine Normalverteilung), einen anderen Test entwickelt hat. Dieser
ist unter dem Namen Mann-Whinteny U-test oder Wilkoxon Zweistichproben Rangsum-
mentest in der Literatur bekannt. Er basiert auf der ganz einfachen Idee, daß, wenn beide
Stichproben X1, . . . , Xn und Y1, . . . , Yn den gleichen Mittelwert haben und man die Stich-
probenelemente der Xi und Yi der Größe nach ordnet, dann auch die Summe der “Plätze”
(der Statistiker sagt Ränge), an denen ein X-Stichprobenwert vorkommt, ungefähr gleich
der Summe der Ränge der Y -Stichprobe sein sollte. Um so einen Test allerdings sinnvoll
durchzuführen, muss man mehr über die Verteilung der Rangstatistik wissen. Das würde
uns an dieser Stelle zu weit führen, wird aber in einer Vorlesung über Statistik behandelt.

Konfidenzintervalle
Das dritte Problem der Statistik (das hier nur kurz angerissen werden soll) ist das der
sogenannten Konfidenzintervalle. Hierbei geht es darum Intervalle anzugeben, die den un-
bekannten vorgegebenen Parameter mit einer vorgegebenen Wahrscheinlichkeit einfangen.
Um genau zu sein, sind wir natürlich weniger an einem einzigen Intervall interessiert, als
an der Prozedur ein solches zu finden. Unter den allgemeinen Rahmenbedingugen der
Statistik definieren wir

(8.22) Definition. Ein Konfidenzintervall für den unbekannten Parameter θ ∈ Θ ba-
sierend auf dem Schätzer θ̂ ist ein Berechnungsschema, daß aus θ̂ ein Intervall I(θ̂) kon-
struiert, so daß θ̂ ∈ I(θ̂) ist. Ein Konfidenzintervall heißt γ-Konfidenzintervall (wobei
0 ≤ γ ≤ 1), falls

Pθ(θ ∈ I(θ̂)) ≥ γ (8.1)

für alle θ ∈ Θ.

Es ist im allgemeinen natürlich nicht schwer einen Bereich zu finden, in dem das unbe-
kannte θ mit großer Wahrscheinlichkeit liegt, nämlich Θ persönlich. Offenbar kann die
Angabe von Θ nicht der Sinn der Konstruktion eines Konfidenzintervalls sein. Wir schlie-
ßen dies aus, in dem wir fordern, daß das Konfidenzintervall in einem geeigneten Sinne
möglichst klein ist (genauer, daß es kein Intervall gibt, daß echt in I(θ̂) enthalten ist und
das auch noch die Bedingung (8.1) erfüllt).

Hat man nun einen guten Schätzer θ̂ für θ so bedeutet die Defintion von Konfidenzinter-
vall, daß dies ein Intervall der Form [θ̂ − κ1, θ̂ + κ2] für κ1, κ2 > 0 ist. Kennt man zudem
die Verteilung, so läßt sich damit prinzipiell (nicht immer leicht) κ1 und κ2 berechnen.
Wir werden dies an drei Beispielen sehen.

(8.23) Beispiele. a) Binomialverteilung
Hier wollen wir ein Konfidenzintervall für den unbekannten Parameter p konstruieren. Sei-
en X1, . . . , Xn n Beobachtungen. Dann wissen wir, daß X̄ = X1+...+Xn

n
ein guter Schätzer

für p ist. Damit ist
I(X̄) := [X̄ − κ1, X̄ + κ2]

ein Konfidenzintervall für p. Um κ1 und κ2 zu berechnen, erinnern wir, daß nX̄ binomi-
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alverteilt ist zu den Parametern n und p. Um also zu gegegenem γ > 0 zu garantieren,
daß

Pp(p ∈ I(X̄)) ≥ γ d.h. Pp(p /∈ I(X̄)) ≤ 1 − γ

überlegen wir, daß

Pp(p /∈ I(X̄)) = Pp(X̄ > p+ κ1) + Pp(X̄ < p− κ2).

Wir wollen nun κ1 und κ2 so wählen, daß die beiden Summanden auf der rechten Seite
jeweils 1−γ

2
sind. Unbefriedigenderweise lassen sich die entsprechenden Werte für κ1 und

κ2 allgemein nicht gut ausrechnen. Für den Fall, daß man berechtigterweise annehmen
kann, daß X̄ dem Satz von de Moivre und Laplace genügt hatten wir schon in Kapitel 4
gesehen, wie man die entsprechenden Konfidenzintervalle konstruiert.

b) Normalverteilung
i) Konfidenzintervall für µ, σ2 bekannt
Wieder sei aufgrund von n Beobachtungen X1, . . . , Xn, die diesmal N (µ, σ2)-verteilt seien,
ein Konfidenzintervall I(µ̂) für das unbekannte µ zu konstruieren, wobei µ̂ = X1+...+Xn

n

der gute Schätzer für µ ist. Bekanntlich ist µ̂ N (µ, σ2/n)-verteilt. Unser Ansatz für das
Konfidenzintervall ist aufgrund der Symmetrie der Normalverteilung

I(µ̂) = [µ̂− η
σ√
n
, µ̂+ η

σ√
n

]

für ein zu berechnendes η. Wie oben rechnen wir für gegebenes γ < 1

Pµ,σ2(µ /∈ I(µ̂)) = Pµ,σ2(µ̂ > µ+ η
σ√
n

) + Pµ,σ2(µ̂ < µ− η
σ√
n

)

= Pµ,σ2(
√
n
µ̂− µ

σ
> η) + Pµ,σ2(

√
n
µ̂− µ

σ
< −η)

= 1 − Φ(η) + Φ(−η) = 2(1 − Φ(η)).

Bestimmt man daher η aus einer N (0, 1)-Tafel so, daß

Φ(η) =
γ

2
+

1

2

so ist

1 − Φ(η) = −γ
2

+
1

2

und somit
Pµ,σ2(µ /∈ I(µ̂)) = 1 − γ;

das Konfidenzintervall ist also konstruiert.

ii) Konfidenzintervall für σ2, µ bekannt
Wir erinnern daran, daß in dieser Situation σ̃2 := 1

n

∑n
i=1(Xi − µ)2 ein guter Schätzer für

σ2 ist. Weiter ist n
σ2 σ̂

2 verteilt gemäß der χ2
n-Verteilung. Wir machen folgenden Ansatz

für das Konfidenzintervall

I(σ̃2) = [
nσ̃2

η1
,
nσ̃2

η2
].
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Ist nun wieder γ gegeben, so ist

Pµ,σ2(σ̃2 ∈ I(σ̃2) = Pµ,σ2(
nσ̃2

η1
≤ σ2 ≤ nσ̃2

η2
)

= Pµ,σ2(η2 ≤
n

σ2
σ̃2 ≤ η1)

= 1 − Pµ,σ2(
n

σ2
σ̃2 < η2) − (1 − Pµ,σ2(

n

σ2
σ̃2 ≤ η1).

Wir wählen nun η1 und η2 so aus einer χ2
n-Tabelle, daß

Pµ,σ2(
n

σ2
σ̃2 ≤ η1) − Pµ,σ2(

n

σ2
σ̃2 < η2) = γ.

Hierbei gibt es viele Möglichkeiten – und anders als im Falle i) ist eine symmetrische Lage
des Intervalls um den unbekannten Parameter nicht besonders nahliegend, da auch die
χ2

n-Verteilung nicht symmetrisch ist. Man könnnte z.B. η1 = ∞ wählen und erhielte ein
einseitges Konfidenzintervall der Form [0, nσ̃2

η2
], wobei η2 so gewählt ist, daß

Pµ,σ2(
n

σ2
σ̃2 < η2) = 1 − γ

gilt; anderseits kann man auch η2 = 0 setzen und erhält ein Intervall der Form [nσ̃2

η1
,∞),

wobei dann η1 die Gleichung

Pµ,σ2(
n

σ2
σ̃2 ≤ η1) = γ

erfüllt. Und selbstverständlich sind auch viele Wahlen von 2-seitigen Konfidenzintervallen
denkbar, beispielsweise η1, η2 so, daß

Pµ,σ2(
n

σ2
σ̃2 ≤ η1) =

1

2
+
γ

2

und

Pµ,σ2(
n

σ2
σ̃2 < η2) =

1

2
− γ

2

(in gewisser Weise eine symmetrische Wahl).

Konfidenzintervalle für den Fall, daß beide Parameter unbekannt sind lassen sich in ähn-
licher Weise konstruieren.
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9 Markoff-Ketten

Bisher haben wir uns hauptsächlich mit unabhängigen Ereignissen und unabhängigen Zu-
fallsgrößen beschäftigt. Andrej Andrejewitsch Markoff (1856–1922) hat erstmalig in einer
Arbeit 1906 Zufallsexperimente analysiert, bei denen die einfachste Verallgemeinerung
der unabhängigen Versuchsfolge betrachtet wurde. Man spricht bei diesen Versuchsfolgen
heute von Markoff-Ketten. Wir werden sehen, daß sehr viele Modelle Markoff-Ketten sind.
Man kann sie anschaulich wie folgt beschreiben: Ein Teilchen bewegt sich in diskreter Zeit
auf einer höchstens abzählbaren Menge I. Befindet es sich auf einem Platz i ∈ I, so wech-
selt es mit gewissen Wahrscheinlichkeiten (die von i abhängen) zu einem anderen Platz
j ∈ I. Diese Übergangswahrscheinlichkeiten hängen aber nicht weiter von der ,,Vorge-
schichte“ ab, das heißt von dem Weg, auf dem das Teilchen zum Platz i gekommen ist.

(9.1) Definition. Es sei I eine nichtleere, höchstens abzählbare Menge. Eine Matrix
P = (pij)i,j∈I heißt stochastische Matrix (stochastic matrix), wenn pij ∈ [0, 1] für alle
i, j ∈ I und

∑
j∈I pij = 1 für alle i ∈ I gelten. Die Komponenten pij heißen Über-

gangswahrscheinlichkeiten (transition probabilities). Eine stochastische Matrix wird im
Zusammenhang mit Markoff-Ketten auch Übergangsmatrix (transition matrix) genannt.
Eine auf einem Grundraum (Ω,F , P ) definierte Zufallsgröße X : Ω → I nennt man I-
wertige Zufallsgröße.

(9.2) Definition. Eine endlich oder unendlich lange Folge X0, X1, X2, . . . I-wertiger Zu-
fallsgrößen heißt (zeitlich homogene, time homogeneous) Markoff-Kette (Markov chain)
mit stochastischer Matrix P, wenn für alle n ≥ 0 und alle i0, i1, . . . , in, in+1 ∈ I mit
P (X0 = i0, . . . , Xn = in) > 0

P (Xn+1 = in+1 | X0 = i0, X1 = i1, . . . , Xn = in ) = pinin+1

gilt. Die Startverteilung (initial distribution) ν einer Markoff-Kette ist definiert durch

ν(i) = P (X0 = i) für alle i ∈ I. Oft schreibt man Pν , um die Startverteilung zu betonen.
Ist die Startverteilung auf einen Punkt konzentriert, d. h. gilt ν(i) = 1 für ein i ∈ I, so
schreiben wir meist Pi anstelle von Pν .

(9.3) Satz. Sei {Xn}n∈N0 eine Markoff-Kette mit Startverteilung ν.

a) Für alle n ∈ N0 und i0, i1, . . . , in ∈ I gilt

P (X0 = i0, X1 = i1, . . . , Xn = in) = ν(i0)pi0i1pi1i2 . . . pin−1in.

b) Es seien n < m und in ∈ I sowie A ⊂ I{0,1,...,n−1} und B ⊂ I{n+1,...,m}. Falls
P ((X0, X1, . . . , Xn−1) ∈ A, Xn = in) > 0 ist, so gilt

P ( (Xn+1, . . . , Xm) ∈ B | (X0, . . . , Xn−1) ∈ A, Xn = in )

= P ( (Xn+1, . . . , Xm) ∈ B | Xn = in ).
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Beweis. (a) folgt durch Induktion nach n: Definitionsgemäß gilt die Behauptung für n = 0.
Gelte die Behauptung für ein n ∈ N0 und seien i0, i1, . . . , in+1 ∈ I. Ist P (X0 = i0, . . . , Xn =
in) = 0, so gilt die behauptete Formel ebenfalls für n+1: Ist P (X0 = i0, . . . , Xn = in) > 0,
so folgt aus Definition 9.2

P (X0 = i0, . . . , Xn = in, Xn+1 = in+1) = P (Xn+1 = in+1 | X0 = i0, . . . , Xn = in)

×P (X0 = i0, . . . , Xn = in)

= ν(i0)pi0i1 . . . pin−1inpinin+1 .

(b) Sei P ((X0, X1, . . . , Xn−1) ∈ A, Xn = in) > 0. Mit der Definition der bedingten
Wahrscheinlichkeit und Teil (a) folgt

P ( (Xn+1, . . . , Xm) ∈ B | (X0, . . . , Xn−1) ∈ A, Xn = in )

=
P ( (Xn+1, . . . , Xm) ∈ B, Xn = in, (X0, . . . , Xn−1) ∈ A )

P ( (X0, . . . , Xn−1) ∈ A, Xn = in )

=

∑
(in+1,...,im)∈B

∑
(i0,...,in−1)∈A ν(i0)pi0i1 . . . pim−1im∑

(i0,...,in−1)∈A ν(i0)pi0i1 . . . pin−1in

=
∑

(in+1,...,im)∈B

pinin+1pin+1in+2 . . . pim−1im .

Dieser Ausdruck hängt nicht von A ab, insbesondere führt also die obige Rechnung für
A = I{0,1,...,n−1} zum gleichen Resultat. Aber für A = I{0,1,...,n−1} gilt die in (b) behauptete
Formel. 2

(9.4) Bemerkung. Die Aussage von (b) heißt Markoff-Eigenschaft (Markov property).
Sie spiegelt genau die eingangs erwähnte Eigenschaft wieder, daß in einer Markoff-Kette
die Wahrscheinlichkeit, zur Zeit n + 1 in einen beliebigen Zustand zu gelangen, nur vom
Zustand zur Zeit n abhängt, aber nicht davon, in welchem Zustand die Kette früher war.
Nicht jede Folge von I-wertigen Zufallsgrößen mit dieser Eigenschaft ist eine homogene
Markoff-Kette in unserem Sinn: Die Übergangswahrscheinlichkeiten können nämlich noch
von der Zeit abhängen. Genauer: Sei X0, X1, . . . eine Folge I-wertiger Zufallsgrößen, die
die Eigenschaft aus Satz (9.3 (b)) hat. Dann existiert eine Folge {Pn}n∈N0 von stochasti-
schen Matrizen Pn = (pn(i, j))i,j∈I mit

P (X0 = i0, . . . , Xn = in) = ν(i0)p0(i0, i1) . . . pn−1(in−1, in)

für alle n ∈ N0 und i0, . . . , in ∈ I. Der Beweis sei dem Leser überlassen. Man spricht
dann von einer (zeitlich) inhomogenen Markoff-Kette. Wir werden jedoch nur (zeitlich)
homogene Ketten betrachten, ohne dies jedesmal besonders zu betonen.

(9.5) Satz. Es seien P = (pij)i,j∈I eine stochastische Matrix, ν eine Verteilung auf I und
N ∈ N0. Dann gibt es eine abzählbare Menge Ω, eine Wahrscheinlichkeitsverteilung p
auf Ω und Abbildungen Xi : Ω → I für alle i ∈ {0, 1, . . . , N}, so daß X0, . . . , XN eine
homogene Markoff-Kette mit Startverteilung ν und Übergangsmatrix P ist.

Beweis. Es sei Ω := I{0,...,N} und p(i0, . . . , iN ) := ν(i0)pi0i1 . . . piN−1iN sowieXn(i0, . . . , iN) =
in für alle n ∈ {0, 1, . . . , N} und (i0, . . . , iN ) ∈ Ω. Da die Summe der Komponenten der
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stochastischen Matrix P in jeder Zeile gleich eins ist, gilt für alle n ∈ {0, 1, . . . , N} und
(i0, . . . , in) ∈ I{0,...,n}

P (X0 = i0, . . . , Xn = in) =
∑

(in+1,...,iN )∈I{n+1,...,N}

P (X0 = i0, . . . , XN = iN )

=
∑

(in+1,...,iN )∈I{n+1,...,N}

ν(i0)pi0i1 . . . piN−1iN

= ν(i0)pi0i1 . . . pin−1in .

Dieses Produkt ist größer als Null genau dann, wenn jeder Faktor größer als Null ist. Ist
dies der Fall, so ist offenbar

P (Xn+1 = in+1 | X0 = i0, . . . , Xn = in ) = pinin+1 .

2

Bemerkung. Nachfolgend soll stets von einer unendlich langen Markoff-Kette ausgegangen
werden, dies jedoch nur wegen einer bequemeren Notation. Alle nachfolgenden Überlegun-
gen benötigen die Konstruktion einer unendlichen Markoff-Kette nicht, sondern kommen
damit aus, daß für jedes N eine Kette gemäß Satz (9.5) konstruiert werden kann.

(9.6) Beispiele.

a) Sei pij = qj für alle i, j ∈ I, wobei
∑

j∈I qj = 1 ist. Dann gilt

P (X0 = i0, X1 = i1, . . . , Xn = in) = ν(i0)qi1 . . . qin .

Man sieht leicht, daß qj = P (Xm = j) für m ≥ 1 ist. Somit gilt

P (X0 = i0, . . . , Xn = in) = P (X0 = i0)P (X1 = i1) . . . P (Xn = in),

d. h., die X0, X1, . . . , Xn sind unabhängig. Satz (9.5) liefert also als Spezialfall die
Konstruktion von unabhängigen, I-wertigen Zufallsgrößen.

b) Irrfahrt auf Z: Es sei Y1, Y2, . . . eine Folge unabhängiger, {1,−1}-wertiger Zufalls-
größen mit P (Yj = 1) = p und P (Yj = −1) = 1− p, wobei p ∈ [0, 1] ist. Sei X0 := 0
und Xn :=

∑n
j=1 Yj für n ≥ 1. Dann ist X0, X1, . . . eine Markoff-Kette auf Z. Die

Übergangsmatrix P = (pij)i,j∈Z ist durch pi,i+1 = p und pi,i−1 = 1 − p eindeutig
festgelegt, und die Startverteilung ist in 0 konzentriert.

c) Symmetrische Irrfahrt auf Z
d: Hier ist I = Z

d und p(i1,...,id),(j1,...,jd) = 1/(2d), falls
ik = jk für alle bis auf genau ein k ∈ {1, 2, . . . , d}, für das |ik − jk| = 1 ist. Alle
anderen Übergangswahrscheinlichkeiten müssen dann gleich Null sein.

d) Ehrenfests Modell der Wärmebewegung: Es seien n Kugeln auf zwei Schachteln
verteilt. Zu einem bestimmten Zeitpunkt seien r Kugeln in der rechten Schachtel
und l := n − r in der linken. Mit Wahrscheinlichkeit 1/2 tun wir nun überhaupt
nichts (daß diese auf den ersten Blick unsinnige Annahme begründet ist, werden
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wir zu einem späteren erkennen). Im anderen Fall wird mit Wahrscheinlichkeit 1/2
eine der n Kugeln nun zufällig ausgewählt, wobei jede dieselbe Chance hat, und
in die andere Schachtel gelegt. Wir können für I die Anzahl der Kugeln in der
rechten Schachtel nehmen, also I = {0, . . . , n}. Die Übergangswahrscheinlichkeiten
sind gegeben durch

pr,r−1 = r/2n, r ∈ {1, 2, . . . , n},
pr,r+1 = 1/2 − r/2n, r ∈ {0, 1, . . . , n− 1}.

e) Irrfahrt auf I = {0, . . . , n} mit Absorption ( random walk with absorbing barriers):
0 und n seien absorbierend, also p00 = 1 und pnn = 1. Für i ∈ {1, 2, . . . , n − 1}
geschehe ein Schritt nach rechts mit Wahrscheinlichkeit p ∈ (0, 1) und ein Schritt
nach links mit Wahrscheinlichkeit q := 1 − p, also pi,i+1 = p und pi,i−1 = q. Die
stochastische Matrix hat somit die Form

P =




1 0 0
q 0 p

. . .
. . .

. . .

q 0 p
0 0 1



.

f) Irrfahrt mit Reflexion (reflecting barriers): Das gleiche Modell wie in Beispiel (e)
mit der Änderung, daß p01 = pn,n−1 = 1 sein soll.

g) Wettervorhersage: Wenn wir annehmen, daß die Wahrscheinlichkeit für Regen am
folgenden Tag nur von Bedingungen von heute abhängt und unbeeinflußt ist vom
Wetter der vergangenen Tage, so liefert dies eine ganz einfache Markoff-Kette. Ist
α die Wahrscheinlichkeit, daß es morgen regnet, wenn es heute geregnet hat, und β
die Wahrscheinlichkeit, daß es morgen regnet, wenn es heute nicht geregnet hat, so
hat die stochastische Matrix die Form

P =

(
α 1 − α
β 1 − β

)
.

Auf Grund der Vielzahl von Beispielen für Markoff-Ketten könnte man vermuten, daß
Markoff selbst aus angewandten Fragestellungen heraus die Ketten analysiert hat. Mar-
koff hatte jedoch bei seinen Untersuchungen primär im Sinn, Gesetze der großen Zahlen
und zentrale Grenzwertsätze für die Ketten zu studieren. Er hatte nur ein Beispiel vor
Augen: er analysierte die möglichen Zustände ,,Konsonant“ und ,,Vokal“ bei der Buch-
stabenfolge des Romans ,,Eugen Onegin“ von Puschkin. Die Zufallsgröße Xn soll hier den
n-ten Buchstaben des Textes angeben.

Eine stochastische Matrix P = (pij)i,j∈I kann man stets ohne Probleme potenzieren: Für

n ∈ N0 definiert man die n-te Potenz P
n = (p

(n)
ij )i,j∈I rekursiv durch p

(0)
ij = δij und

p
(n+1)
ij =

∑

k∈I

p
(n)
ik pkj
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für alle i, j ∈ I, das heißt, P
n ist das n-fache Matrixprodukt von P mit sich selbst. Aus

der rekursiven Definition folgt, daß P
n selbst eine stochastische Matrix ist. Es gelten die

aus der linearen Algebra bekannten Rechenregeln für Matrizen, insbesondere gilt P
m

P
n =

P
m+n, das heißt ∑

k∈I

p
(m)
ik p

(n)
kj = p

(m+n)
ij , i, j ∈ I.

Diese Gleichungen nennt man auch Chapman-Kolmogoroff-Gleichungen.

(9.7) Definition. Die Komponenten p
(n)
ij der Übergangsmatrix P

n = (p
(n)
ij )i,j∈I heißen

n-stufige Übergangswahrscheinlichkeiten (n th order transition probabilities).

(9.8) Bemerkung. Sei X0, X1, X2, . . . eine Markoff-Kette mit stochastischer Matrix P =
(pij)i,j∈I . Sind m,n ∈ N0 und i, j ∈ I mit P (Xm = i) > 0, so gilt

P (Xm+n = j | Xm = i) = p
(n)
ij .

Beweis. Es gilt

P (Xm+n = j | Xm = i )

=
∑

im+1,...,im+n−1∈I

P (Xm+1 = im+1, . . . ,

Xm+n−1 = im+n−1, Xm+n = j | Xm = i )

und mit der Definition (9.2) folgt

P (Xm+1 = im+1, . . . , Xm+n−1 = im+n−1, Xm+n = j | Xm = i )

= P (Xm+n = j | Xm = i, Xm+1 = im+1, . . . , Xm+n−1 = im+n−1 )

×
n−1∏

k=1

P (Xm+k = im+k | Xm = i, Xm+1 = im+1, . . . , Xm+k−1 = im+k−1)

= piim+1pim+1im+2 . . . pim+n−1j.

Somit gilt

P (Xm+n = j | Xm = i ) =
∑

im+1,...,im+n−1∈I

piim+1 . . . pim+n−1j = p
(n)
ij .

2

(9.9) Lemma. Für alle m,n ∈ N0 und i, j, k ∈ I gilt p
(m+n)
ij ≥ p

(m)
ik p

(n)
kj .

Beweis. Dies ergibt sich sofort aus den Chapman-Kolmogoroff-Gleichungen. 2

(9.10) Lemma. Es sei X0, X1, X2, . . . eine Markoff-Kette mit Startverteilung ν und Über-
gangsmatrix P. Dann gilt

Pν(Xn = j) =
∑

i∈I

ν(i)p
(n)
ij
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für alle n ∈ N0 und j ∈ I. Ist die Startverteilung ν auf i ∈ I konzentriert, so gilt
Pi(Xn = j) = p

(n)
ij .

Beweis. Aus Satz (9.3 (a)) folgt

Pν(Xn = j) =
∑

i0,...,in−1∈I

Pν(X0 = i0, . . . , Xn−1 = in−1, Xn = j)

=
∑

i0,...,in−1∈I

ν(i0)pi0i1 . . . pin−1j =
∑

i∈I

ν(i)p
(n)
ij .

2

(9.11) Definition. Es sei P = (pij)i,j∈I eine stochastische Matrix. Man sagt, j ∈ I sei

von i ∈ I aus erreichbar (can be reached from), wenn ein n ∈ N0 existiert mit p
(n)
ij > 0.

Notation: i j.

Die in (9.11) definierte Relation auf I ist reflexiv und transitiv. Wegen p
(0)
ii = 1 > 0 gilt

i i für alle i ∈ I. Falls i j und j  k gelten, so gibt es m,n ∈ N0 mit p
(m)
ij > 0 und

p
(n)
jk > 0, und dann ist p

(m+n)
ik ≥ p

(m)
ij p

(n)
jk > 0 nach Lemma (9.9).

Die durch i ∼ j ⇔ (i j und j  i) für alle i, j ∈ I definierte Relation ist offenbar eine
Äquivalenzrelation auf I. Wir werden i ∼ j für den Rest dieses Kapitels stets in diesem
Sinne verwenden.

Sind A,B ⊂ I zwei Äquivalenzklassen der obigen Äquivalenzrelation, so sagen wir, B ist
von A aus erreichbar und schreiben A B, wenn i ∈ A und j ∈ B existieren mit i j.
Offensichtlich hängt dies nicht von den gewählten Repräsentanten in A und B ab.

(9.12) Definition. Es sei P eine stochastische Matrix.

a) Eine Teilmenge I ′ von I heißt abgeschlossen (closed), wenn keine i ∈ I ′ und j ∈ I \I ′
existieren mit i j.

b) Die Matrix P und auch eine Markoff-Kette mit Übergangsmatrix P heißen irreduzibel
(irreducible), wenn je zwei Elemente aus I äquivalent sind.

Bemerkung. Es sei P = (pij)i,j∈I eine stochastische Matrix.

a) Ist I ′ ⊂ I abgeschlossen, so ist die zu I ′ gehörige Untermatrix P
′ := (pij)i,j∈I′ eine

stochastische Matrix für I ′.

b) Ist P irreduzibel, so existieren keine abgeschlossenen echten Teilmengen von I.

(9.13) Beispiele.

a) Die symmetrische Irrfahrt auf Z
d ist irreduzibel.
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b) Bei der Irrfahrt auf {0, . . . , n} mit absorbierenden Rändern gibt es drei Äquiva-
lenzklassen, nämlich {0}, {1, . . . , n − 1} und {n}. Die Mengen {0} und {n} sind
abgeschlossen, und es gelten {1, . . . , n− 1} {n} und {1, . . . , n− 1} {0}.

c) Es sei I = {0, 1, 2} und die stochastische Matrix gegeben durch

P =




1/2 1/2 0
1/2 1/4 1/4
0 1/3 2/3


 .

Dann ist die Markoff-Kette irreduzibel.

d) Es sei I = {0, 1, 2, 3} und die stochastische Matrix gegeben durch

P =




1/2 1/2 0 0
1/2 1/2 0 0
1/4 1/4 1/4 1/4
0 0 0 1


 .

Dann gibt es drei Äquivalenzklassen: {0, 1}, {2} und {3}. Der Wert 0 ist von 2 aus
erreichbar, aber nicht umgekehrt. Der Wert 3 hat absorbierendes Verhalten; kein
anderer Wert ist von 3 aus erreichbar.

Es sei X0, X1, X2, . . . eine Markoff-Kette mit Übergangsmatrix P = (pij)i,j∈I und Start-
verteilung ν. Die wichtigste Frage, die uns für einen Großteils des Kapitels beschäftigen
wird, ist die Diskussion der Verteilung von Xn für große n, also

Pν(Xn = j) =
∑

i∈I

ν(i)p
(n)
ij , j ∈ I.

Zu diesem Zwecke werden wir annehmen, daß der Zustandsraum I endlich ist. Aus obi-
gen Überlegungen erhält man dann, daß die Frage der asymptotischen Verteilung von Xn

äquivalent ist zur Frage, wie sich große Potenzen von stochastischen Matrizen verhalten.
Im dem Falle, in dem I nur aus zwei Elementen besteht, kann man sich das noch recht
leicht überlegen.

(9.14) Beispiel. Sei |I| = 2 und

P =

(
1 − α α
β 1 − β

)
.

Dann ist für α = β = 0 P
n = Id für jedes n (wobei Id bei uns immer die Identität

bezeichnet, egal auf welchem Raum sie lebt). Im Falle von α = β = 1 ist offenbar P
n = P

für jedes ungerade n und P
n = Id für alle geraden n.

Im Falle von 0 < α + β < 2 (dem interessanten Fall) diagonalisieren wir P, um seine
Potenzen zu berechnen. Es ist

P = RDR−1,

wobei

R =

(
1 α
1 −β

)
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und

D =

(
1 0
0 1 − α− β

)

ist. Daher ist
P

n = RDnR−1.

Nun konvergiert aber

Dn =

(
1 0
0 (1 − α− β)n

)
−→
n→∞

(
1 0
0 0

)
.

Eingesetzt ergibt das

lim
n→∞

P
n = R

(
1 0
0 0

)
R−1 =

(
π1 π2

π1 π2

)
,

mit

π1 =
β

α + β
π2 =

α

α+ β
.

Im allgemeinen, d.h. für |I| > 2 sind wir leider ziemlich schnell am Ende unserer Weisheit,
wenn es um die Berechnung der Eigenwerte von P und damit um das Diagonalisieren von
P geht. Die obige Methode taugt also nicht, um allgemein Erkenntnisse über das Langzeit-
verhalten von Markoff-Ketten zu gewinnen. Der Effekt, den wir aber im Beispiel (9.14)
gesehen haben, daß nämlich die Limesmatrix aus lauter identischen Zeilen besteht – und
das bedeutet, daß die Markoff-Kette asymptotisch ihren Startort “vergißt” – werden wir in
dem allgemeinen Limesresultat wiederfinden. Um dieses zu beweisen, müssen wir zunächst
den Begriff der Entropie, den wir schon in Kapitel 4 und 6 für zweielementige Grundräume
kennengelernt haben, auf größere Räume übertragen.

(9.15) Definition. Es sei I eine endliche, mindestens zweielementige Menge und ν, ̺
seinen Wahrscheinlichkeiten auf I mit ̺(i) > 0 für alle ı ∈ I. Dann heißt

H(ν|̺) :=
∑

i∈I

ν(i) log

(
ν(i)

̺(i)

)

die relative Entropie (relative entropy) von ν bezüglich ̺. Hierbei setzen wir 0 log 0 = 0.

Wir sammeln ein paar Eigenschaften der Entropiefunktion

(9.16) Proposition. In der Situation von Definition (9.15) ist H(·|̺) positiv und strikt
konvex und es ist H(ν|̺) = 0 ⇔ ν = ̺.

Beweis. Der Beweis folgt dem Beweis von Lemma (6.2). Sei also wieder die nicht–negative,
strikt–konvexe Funktion ψ(t) gegeben durch ψ(t) = t log t− t+ 1 (und wieder ist ψ(t) =
0 ⇔ t = 1). Dann ist

H(ν|̺) =
∑

i∈I

̺(i)

(
ν(i)

̺(i)
log

(
ν(i)

̺(i)

)
− ν(i)

̺(i)
+ 1

)

=
∑

i∈I

̺(i)ψ

(
ν(i)

̺(i)

)
,
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woraus die Behauptungen folgen. 2

Wir kommen nun zu einem Satz, der das aymptotische Verhalten einer großen Gruppe
von Markoff-Ketten klärt. Dieser Satz ist gewissermaßen ein Gesetz der großen Zahlen für
Markoff-Ketten; er wird in der Literatur häufig auch als Ergodensatz für Markoff-Ketten
bezeichnet.

(9.17) Satz. Ergodensatz (ergodic theorem) Sei P eine stochastische Matrix über einem
endlichen Zustandsraum I und ν irgendeine Anfangsverteilung. Weiter existiere ein N , so
daß P

N nur strikt positive Einträge hat. Dann konvergiert

νP
n →n→∞ ̺,

wobei ̺ eine Wahrscheinlichkeit auf I ist, die der Gleichung

̺P = ̺

genügt.

(9.18) Bemerkung. Die Bedingung “es existiere ein N , so daß P
N nur strikt positive

Einträge hat” impliziert natürlich, daß P irreduzibel ist (man kann nach spätestens N
Schritten jeden Punkt von jedem anderen aus erreichen). Umgekehrt ist die Bedingung
aber nicht äquivalent zur Irreduzibilität von P. Beispielsweise ist die Matrix

P =

(
0 1
1 0

)

irreduzibel, aber natürlich ist keine ihrer Potenzen strikt positiv. Man kann sich über-
legen, daß obige Bedingung äquivalent ist zur Irreduzibilität von P plus einer weiteren
Bedingung, die Aperiodizität von P heißt. Unter letzterem wollen wir verstehen, daß der
ggT über sämtliche Zeiten, zu denen man mit positiver Wahrscheinlichkeit in den Punkt
i zurückkehren kann, wenn man in i gestartet ist, und über sämtliche Startpunkte i eins
ist. Wir werden diese Äquivalenz hier nicht beweisen und nur bemerken, daß irreduzible
und aperiodische Markoff-Ketten manchmal auch ergodisch (ergodic) heißen.

Satz (9.17) enthält offenbar unter anderem eine unbewiesene Existenzaussage. Diese wer-
den wir getrennt beweisen. Wir zeigen also zunächst, daß es eine Wahrscheinlichkeit ̺
mit

̺P = ̺

gibt. Die Existenz eines beliebigen ̺, das obiger Gleichung genügt, ist ziemlich offensicht-
lich, denn offenbar ist 1 Eigenwert jeder stochastischen Matrix (die konstanten Funktionen
sind rechte Eigenvektoren) – also muß es auch linke Eigenvektoren zum Eigenwert 1 ge-
ben; ein solcher ist ̺. Auch ist es nicht schwierig, ein solches ̺ so zu normieren, daß
die Summe seiner Einträge 1 ist. Was aber a priori überhaupt nicht klar ist, ist, warum
ein solches ̺ eigentlich nicht-negativ sein sollte. Wer in der linearen Algebra ein wenig
Perron-Froebenius Theorie betrieben hat, wird dies schon wissen. Wir werden es hier mit
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Hilfe eines anderen, mehr stochastischen Arguments herleiten.

(9.19) Satz. Sei Q eine stochastische r × r Matrix. Dann existiert

lim
k→∞

1

k

k∑

j=1

Qj =: H

und es gilt
HQ = QH = H H2 = H.

Beweis. Zunächst bemerken wir, daß mit Q auch Qn stochastisch ist (es ist z.B.

r∑

f=1

Q2(e, f) =

r∑

f=1

r∑

d=1

Q(e, d)Q(d, f) = 1;

für beliebiges n geht das analog.) Damit ist dann auch

Pk :=
1

k

k∑

j=1

Qj

stochastisch. Darüber sind die Pk ∈ R
r2

und als solche beschränkt. Nach dem Satz von
Bolzano–Weierstraß besitzt somit die Folge der Pk einen Häufungspunkt H . Wir wollen
im folgenden sehen, daß es genau einen Häufungspunkt dieser Folge gibt. Dazu betrachten
wir eine Teilfolge (Hl) der Folge (Pk), die gegen H konvergiert. Damit erhalten wir

QHl = HlQ =
1

l

l∑

j=1

Qj+1

= Hl −
1

l
Q+

1

l
Ql+1.

Da die letzten beiden Terme für l → ∞ verschwinden, ergibt sich

QH = HQ = H. (9.1)

Ist nun H ′ ein weiterer Häufungspunkt und (Hm) eine Folge die gegen H ′ konvergiert,
dann erhalten wir aus (9.20) einerseits

H ′H = HH ′ = H.

Andererseits folgert man analog zu oben

H ′Pk = PkH
′ = H ′

für alle k und somit
H ′H = HH ′ = H ′.

Daher ist H ′ = H und H2 = H . 2
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Was haben wir nun damit gewonnen? Nun, die Gleichung HQ = H impliziert doch, daß
für jede Zeile ̺ von H gilt, daß

̺Q = ̺,

jede Zeile (und jede konvexe Kombination von Zeilen) von H ist also ein linker Eigenvek-
tor von H zum Eigenwert eins. Darüber hinaus ist die Menge der stochastischen Matrizen
abgeschlossen in R

r2
. Das sieht man, indem man einerseits die Abgeschlossenheit aller

nicht-negativen Matrizen erkennt (das ist nicht schwer) und andererseits sieht, daß die
Menge aller Matrizen mit Zeilensumme eins für alle Zeilen abgeschlossen ist (die Men-
ge der stochastischen Matrizen ist dann der Durchschnitt dieser beiden abgeschlossenen
Mengen). Letzteres ist wahr, denn die Funktionen fi, die die i’te Zeilensumme bilden sind
stetig, und die Menge der Matrizen mit Zeilensumme 1 ist dann das Urbild der (abge-
schlossenen) Menge (1, . . . , 1) unter der stetigen Abbildung f = (f1, . . . , fr).

Somit ist H als Limes stochastischer Matrizen wieder stochastisch, seine Zeilen sind also
Wahrscheinlichkeiten auf dem Grundraum. Dies beweist die Existenz einer Wahrschein-
lichkeit ̺ mit

̺Q = ̺.

Solche Wahrscheinlichkeiten heißen auch stationär (stationary) bzgl. Q. Nun sind wir in
der Lage Satz (9.17) zu beweisen.

Beweis von (9.17) Wie wir eben gesehen haben, existiert eine stationäre Verteilung ̺ bzgl.
P, nämlich beispielsweise eine Zeile des entsprechend Satz (9.19) gebildeten Cesaro-Limes
der Potenzen von P (der der Einfachhheit halber auch H heißen soll). Ein solches ̺ besitzt
nur strikt positive Einträge. Wäre z.B. ̺(i) = 0, so ergäbe das

0 = ̺(i) =
∑

j∈I

̺(j)PN (j, i)

im Widerspruch dazu, daß P
N strikt positiv ist und

∑
̺(j) = 1 ist.

Darüber hinaus gibt es nur eine Verteilung ̺, die stationär zu P ist (insbesondere besteht
H aus lauter identischen Zeilen). Gäbe es nämlich ̺, ̺′, die beide stationär bzgl. P wären,
so gälte für jedes a ∈ R und n ∈ N

̺− a̺′ = (̺− a̺′)Pn.

Wir wählen

a = min
i∈I

̺(i)

̺′(i)
=:

̺(i0)

̺′(i0)
.

Damit ist
0 = (̺− a̺′)(i0) =

∑

j∈I

(̺− a̺′)(j)PN(j, i0).

Aus der strikten Positivität von P
N folgt somit, daß ̺(j) = a̺′(j) für alle j ∈ I gelten

muß. Da ̺ und ̺′ Wahrscheinlichkeiten sind, impliziert das, daß a = 1 ist und folglich
̺ = ̺′. Die im Satz behauptete Konvergenz ist also die Konvergenz gegen einen Punkt
im klassichen Sinne.

116



Um diese Konvergenz schließlich zu zeigen, verwenden wir die Entropiefunktion aus De-
finition (9.15) in der Schreibweise

H(ν|̺) =
∑

i∈I

̺(i)ψ

(
ν(i)

̺(i)

)
,

wobei ψ wieder die strikt konvexe Funktion

ψ(t) = t log t− t+ 1

ist. Daher ist

H(νP|̺) =
∑

i∈I

̺(i)ψ

(
νP(i)

̺(i)

)

=
∑

i∈I

̺(i)ψ

(∑
j∈I ν(j)P(j, i)

̺(i)

)

=
∑

i∈I

̺(i)ψ

(∑
j∈I ̺(j)P(j, i)

̺(i)

ν(j)

̺(j)

)

≤
∑

i∈I

∑

j∈I

̺(j)P(j, i)ψ

(
ν(j)

̺(j)

)

=
∑

j∈I

̺(j))ψ

(
ν(j)

̺(j)

)

= H(ν|̺),

wobei das “≤”-Zeichen aus der Tatsache, daß
∑

j∈I ̺(j)P(j,i)

̺(i)
ν(j)
̺(j)

eine konvexe Kombination

der ν(j)
̺(j)

ist, folgt, zusammen mit der Konvexität von ψ und das vorletzte Gleichheitszeichen
eine Konsequenz der Stochastizität von P ist. Somit ist

H(νP|̺) ≤ H(ν|̺)

mit Gleichheit genau dann, wenn νP = ν, also ν = ̺ ist. Anwenden von P verkleinert also
die Entropie und damit eine Art Distanz zum invarianten Maß.

Somit ist insbesondere die Folge
(
H(νP

n|̺)
)

n
monoton fallend und zwar strikt, solange

νP
n 6= ̺ ist.

Wir wollen abschließend sehen, daß dies schon impliziert, daß die Folge ̺n := νP
n gegen ̺

konvergiert. Da ̺n beschränkt ist, besitzt die Folge zumindest im R
|I| einen Häufungspunkt

̺′ und es existiert eine Teilfolge (̺nl
)l, die gegen ̺′ konvergiert. Wir zeigen, daß ̺′ = ̺ ist

(und sind dann fertig, da die Argumentation für jeden Häufungspunkt gilt und die Folge
̺n damit gegen ̺ konvergiert).

Nun ist einerseits
H(̺′|̺) ≥ H(̺′P|̺).
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Andererseits haben wir

H(̺′P|̺) =
∑

j∈I

̺(j)ψ

(
(̺′P)(j)

̺(j)

)

= lim
l→∞

∑

j∈I

̺(j)ψ

(
(νP

nl)P(j)

̺(j)

)

= lim
l→∞

∑

j∈I

̺(j)ψ

(
(νP

nl+1)(j)

̺(j)

)
.

Nun ist (nl)l eine Teilfolge und daher nl + 1 ≤ nl+1. Dies ergibt mit der vorher gezeigten
Monotonie

lim
l→∞

∑

j∈I

̺(j)ψ

(
(νP

nl+1)(j)

̺(j)

)

≥ lim
l→∞

∑

j∈I

̺(j)ψ

(
(νP

nl+1)(j)

̺(j)

)
= H(̺′|̺).

Insgesamt ist also
H(̺′|̺) = H(̺′P|̺)

und daher
̺′ = ̺.

2

Beispiele:

1. Irrfahrt auf dem Kreis

Für n ∈ N sei Cn der n-Kreis, d.h. der Graph, der entsteht, wenn man n Punkte
durchnummeriert und den Punkt k mit den Punkten k − 1 und k + 1 verbindet
(Punkt 1 wird mit 2 und n verbunden). Auf Cn definiert man eine Markoff-Kette
vermöge der Übergangsvorschrift pii = 1/2 und pi,i+1 = pi,i−1 = 1/4 (dabei ist
die Addition modulo n zu verstehen). Offenbar ist für die zugehörige stochastische
Matrix P und jedes r > n/2 + 1, P

r strikt positiv. Also sind die Voraussetzungen
des Ergodensatzes erfüllt und für jede beliebige Startverteilung ν konvergiert νP

n

gegen das invariante Maß der Kette, was offensichtlich die Gleichverteilung auf allen
Zuständen ist.

2. Ehrenfests Urnenmodell

In der Situation von Beispiel (9.6 (d)) rechnet man wieder nach, daß die Bedingun-
gen des Ergodensatzes erfüllt sind. Die Kette konvergiert daher gegen ihre Gleich-
gewichtsverteilung, d.h. die Binomialverteilung.

Das Arcussinusgesetz

Wir werden uns im folgenden auf eine besondere Markoff-Kette konzentrieren. Dazu be-
merken wir zunächst, daß – hat man eine Folge (Xi) von unabhängigen, identisch verteilten
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Zufallsvariablen mit endlich vielen Werten gegeben (daß es so eine Folge gibt, können wir
allerdings hier nicht zeigen) – man daraus eine Markoffkette Sn bilden kann, indem man

Sn =

n∑

i=1

Xi

und S0 = 0 setzt. In der Tat rechnet man schnell nach, daß für jedes Ereignis {Sn−1 =
an−1, . . . , S1 = a1, S0 = a0} mit P ({Sn−1 = an−1, . . . , S1 = a1, S0 = a0}) > 0 gilt

P (Sn = an|Sn−1 = an−1, . . . , S1 = a1, S0 = a0) = P (Xn = an − an−1),

also die Markoff-Eigenschaft erfüllt ist. Wir werden im folgenden genau eine solche Markoff-
Kette betrachten, wobei die Xi unabhängige Zufallsvariablen mit Werten in {−1, 1} und
P (Xi = 1) = P (Xi = −1) = 1/2 sind. Anschaulich entpricht das einer Art Pfad, der
in der 0 startet und in jedem Punkt n ∈ N entscheidet, ob er einen Schritt nach oben
oder einen Schritt nach unten geht. Die Menge aller solcher Pfade der Länge n sei Ωn.
Aus naheliegenden Gründen bezeichnet man die Folge S0 = 0, S1, . . . , Sn auch als Irrfahrt
(random walk) auf Z. Den Index dieser Zufallsgrößen bezeichnet man meist als die ,,Zeit“.
Wir sagen also etwa ,,die Wahrscheinlichkeit, daß zum Zeitpunkt 100 die Irrfahrt erstmals
in 20 ist, ist. . .“ und meinen damit die Wahrscheinlichkeit des Ereignisses

A = {S1 6= 20, S2 6= 20, . . . , S99 6= 20, S100 = 20}.

Nachfolgend sind zwei Simulationen einer derartigen Irrfahrt mit n = 1000 abgebildet.
Aus dem Gesetz der großen Zahlen folgt, daß zum Beispiel S1000/1000 mit großer Wahr-
scheinlichkeit nahe bei 0 liegt. Um etwas zu ,,sehen“ müssen wir die y-Achse gegenüber
der x-Achse strecken. Eine genauere theoretische Diskussion des richtigen Streckungsmaß-
stabs kann hier nicht gegeben werden.

200 400 600 800 1000
n

-30

-20

-10

Sn
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200 400 600 800 1000
n
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10

20

Sn

Wir werden uns im folgenden also mit dem Verhalten solcher “Streckenzüge” Sn befassen.
Um nicht in Konflikt zu der Tatsache zu geraten, daß wir gar nicht wissen, daß es unendlich
viele unabhängige Zufallsvariablen gibt, werden wir nur Aussagen über Sn für endliche n
treffen. Dazu benötigen wir nur die Existenz von unabhängigen X1, . . . , Xn, die wir schon
kennen.

Zunächst betrachten wir für k ≤ n das Ereignis Ak = {Sk = 0}. Ak ist das unmögliche
Ereignis, falls k ungerade ist. Wir betrachten also A2k, 2k ≤ n. Offensichtlich gilt

P (A2k) =

(
2k

k

)
2−2k = b(k; 2k, 1/2).

Wir kürzen diese Größe auch mit u2k ab (u0 = 1). Wir bemerken zunächst, daß
P (A2k) nicht von n, der Gesamtlänge des Experiments, abhängt, sofern nur n ≥ 2k
gilt. Dies ist nicht weiter erstaunlich, denn die Xi sind ja unabhängig.

Wir werden diesem Phänomen noch mehrmals begegnen und wollen es deshalb genau
ausformulieren: Sei k < n und A ein Ereignis in Ωk. Wir können ihm das Ereignis

Ā = {ω = (s0, . . . , sn) ∈ Ωn : (s0, . . . , sk) ∈ A }

in Ωn zuordnen. Dann gilt
P (k)(A) = P (n)(Ā),

wobei P (n) die durch die Gleichverteilung auf den Teilmengen von Ωn definierte Wahr-
scheinlichkeit ist. Der Leser möge dies selbst verifizieren. Für ein derartiges Ereignis ist
es deshalb gleichgültig, in welchem Pfadraum Ωn die Wahrscheinlichkeit berechnet wird,
sofern nur n ≥ k ist. Wir werden im weiteren stillschweigend auch endlich viele Ereignisse
miteinander kombinieren (z.BḊurchschnitte bilden), die zunächst für Pfade unterschiedli-
cher Länge definiert sind. Dies bedeutet einfach, daß diese Ereignisse im obigen Sinne als
Ereignisse in einem gemeinsamen Raum Ωn interpretiert werden, wobei nur n genügend
groß gewählt werden muß.

Um die Größenordnung von u2k = P (A2k) für große k zu bestimmen, erinnern wir uns an
den lokalen Grenzwertsatz (Satz (4.2)). Dieser liefert sofort:
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(9.21) Satz.

u2k ∼ 1√
πk
,

d.h.
lim
k→∞

u2k

√
πk = 1.

Interessanterweise lassen sich die Wahrscheinlichkeiten einer Reihe anderer Ereignisse in
Beziehung zu u2k setzen. Es sei zunächst für k ∈ N f2k die Wahrscheinlichkeit, daß die
erste Nullstelle der Irrfahrt nach dem Zeitpunkt 0 die Zeitkoordinate 2k hat, das heißt

f2k = P (S1 6= 0, S2 6= 0, . . . , S2k−1 6= 0, S2k = 0).

Dann gilt

(9.22) Satz.

1. f2k = 1
2k
u2k−2 = P (S1 ≥ 0, S2 ≥ 0, . . . , S2k−2 ≥ 0, S2k−1 < 0)

= u2k−2 − u2k.

2. u2k = P (S1 6= 0, S2 6= 0, . . . , S2k 6= 0) = P (S1 ≥ 0, S2 ≥ 0, . . . , S2k ≥ 0).

3. u2k =
∑k

j=1 f2ju2k−2j.

Zum Beweis dieses Satzes müssen wir ein wenig ausholen. Insbesondere stellen wir einen
eleganten Trick vor, mit dem sich die Mächtigkeit gewisser Pfadmengen bestimmen läßt.
Dieser beruht auf einer teilweisen Spiegelung der Pfade an der x-Achse.

Wir sagen, daß ein Pfad (si, si+1, . . . , sj) die x-Achse berührt, falls ein k mit i ≤ k ≤ j
existiert, für das sk = 0 ist.

(9.23) Lemma. (Reflektionsprinzip, reflection principle) Es seien a, b ∈ N und i, j ∈ Z

mit i < j. Die Anzahl der Pfade von (i, a) nach (j, b), welche die x-Achse berühren, ist
gleich der Anzahl der Pfade von (i,−a) nach (j, b).

Beweis. Wir geben eine bijektive Abbildung an, die die Menge der Pfade von (i,−a) nach
(j, b) auf die Menge der Pfade von (i, a) nach (j, b), welche die x-Achse berühren, abbildet.
Sei

(si = −a, si+1, . . . , sj−1, sj = b)

ein Pfad von (i,−a) nach (j, b). Dieser Pfad muß notwendigerweise die x-Achse berühren.
Sei τ die kleinste Zahl > i, für welche sτ = 0 gilt. Offensichtlich ist dann

(−si,−si+1, . . . ,−sτ−1, sτ = 0, sτ+1, . . . , sj = b)

ein Pfad von (i, a) nach (j, b), der die x-Achse berührt, und die Zuordnung ist bijektiv. 2
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a

−a

τ

Das Spiegelungsprinzip werden wir nun verwenden, um die Menge der Pfade, die nach 2k
Schritten zum ersten Mal wieder die x-Achse berühren abzuzählen.

(9.24) Satz.

1. Es gibt 1
p

(
2p−2
p−1

)
Pfade von (0, 0) nach (2p, 0) mit

s1 > 0, s2 > 0, . . . , s2p−1 > 0.

2. Es gibt 1
p+1

(
2p
p

)
Pfade von (0, 0) nach (2p, 0) mit

s1 ≥ 0, s2 ≥ 0, . . . , s2p−1 ≥ 0.

Beweis. (1) Es ist notwendigerweise s1 = 1 und s2p−1 = 1. Wir suchen somit nach der
Anzahl der Pfade von (1, 1) nach (2p − 1, 1) mit s1 > 0, s2 > 0, . . . , s2p−1 = 1. Diese ist
gleich der Anzahl aller Pfade von (1, 1) nach (2p− 1, 1) minus der Anzahl der Pfade, die
die x-Achse berühren. Dies ist nach dem Spiegelungsprinzip gleich der Anzahl aller Pfade
von (1, 1) nach (2p− 1, 1) minus der Anzahl der Pfade von (−1, 1) nach (2p− 1, 1). Nach
ein bißchen elementarer Kombinatorik erhält man daher

(
2p− 2

p− 1

)
−
(

2p− 2

p

)
=

1

2p− 1

(
2p− 1

p

)
=

1

p

(
2p− 2

p− 1

)

als die gesuchte Anzahl der Pfade.

(2) Wir verlängern jeden Pfad, der die Bedingung erfüllt, indem wir noch die beiden
Punkte (−1,−1) und (2p+ 1,−1) anfügen und mit (0, 0) bzw. (2p, 0) verbinden.
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(0, 0) (2p, 0)

Auf diese Weise wird eine bijektive Abbildung von der gesuchten Menge von Pfaden auf
die Menge der Pfade von (−1,−1) nach (2p+1,−1), welche die Bedingung s0 > −1, s1 >
−1, . . . , s2p > −1 erfüllen, hergestellt. Die Anzahl der Pfade in dieser Menge ist gleich der
Anzahl der Pfade von (0, 0) nach (2p + 2, 0) mit s1 > 0, s2 > 0, . . . , s2p+1 > 0 (Verschie-
bung des Ursprungs). (2) folgt dann aus (1). 2

Nun sind wir in der Lage Satz (9.22) zu beweisen:

Beweis von Satz (9.22). (1) Nach (9.24 (1)) gibt es 1
k

(
2k−2
k−1

)
Pfade von (0, 0) nach (2k, 0)

mit s1 > 0, . . . , s2k−1 > 0 und natürlich genauso viele mit s1 < 0, . . . , s2k−1 < 0. Es folgt

f2k =
2

k

(
2k − 2

k − 1

)
2−2k =

1

2k

(
2k − 2

k − 1

)
2−2(k−1) =

1

2k
u2k−2.

Wir beweisen die nächste Gleichung: Falls s2k−2 ≥ 0 und s2k−1 < 0 sind, so gelten s2k−2 = 0
und s2k−1 = −1. Die Anzahl der Pfade von (0, 0) nach (2k−1,−1) mit s1 ≥ 0, . . . , s2k−3 ≥
0, s2k−2 = 0 ist gleich der Anzahl der Pfade von (0, 0) nach (2k − 2, 0) mit allen y-
Koordinaten ≥ 0. Die zweite Gleichung in (1) folgt dann mit Hilfe von (9.24 (2)). Die
dritte ergibt sich aus

u2k =

(
2k

k

)
2−2k =

2k(2k − 1)

k · k

(
2k − 2

k − 1

)
· 1

4
· 2−2k+2 =

(
1 − 1

2k

)
u2k−2.

(2) C2j sei das Ereignis {S1 6= 0, S2 6= 0, . . . , S2j−1 6= 0, S2j = 0}. Diese Ereignisse
schließen sich gegenseitig aus und haben Wahrscheinlichkeiten f2j = u2j−2 − u2j. Somit
ist mit u0 = 1

P (S1 6= 0, S2 6= 0, . . . , S2k 6= 0) = 1 − P

( k⋃

j=1

C2j

)
= 1 −

k∑

j=1

(u2j−2 − u2j) = u2k.

Die zweite Gleichung folgt analog aus der dritten Identität in (1).

(3) Für 1 ≤ j ≤ k sei Bj = {S1 6= 0, S2 6= 0, . . . , S2j−1 6= 0, S2j = 0, S2k = 0}.
Diese Ereignisse sind paarweise disjunkt, und ihre Vereinigung ist {S2k = 0}. |Bj| ist
offenbar gleich der Anzahl der Pfade von (0, 0) nach (2j, 0), die die x-Achse dazwischen
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nicht berühren, multipliziert mit der Anzahl aller Pfade von (2j, 0) nach (2k, 0), das heißt
|Bj| = 22jf2j2

2k−2ju2k−2j. Somit gilt P (Bj) = f2ju2k−2j, das heißt

u2k =
k∑

j=1

P (Bj) =
k∑

j=1

f2ju2k−2j.

2

Eine interessante Folgerung ergibt sich aus der ersten Gleichung in (2). Da nach (9.21)
limk→∞ u2k = 0 gilt, folgt, daß die Wahrscheinlichkeit für keine Rückkehr der Irrfahrt
bis zum Zeitpunkt 2k mit k → ∞ gegen 0 konvergiert. Man kann das folgendermaßen
ausdrücken: ,,Mit Wahrscheinlichkeit 1 findet irgendwann eine Rückkehr statt.“ Man sagt
auch, die Irrfahrt sei rekurrent. Wir wollen das noch etwas genauer anschauen und be-
zeichnen mit T den Zeitpunkt der ersten Nullstelle nach dem Zeitpunkt 0. T muß gerade
sein, und es gilt P (T = 2k) = f2k. Aus (1) und u2k → 0 folgt

∞∑

k=1

f2k = lim
N→∞

N∑

k=1

f2k

= lim
N→∞

N∑

k=1

(u2k−2 − u2k)

= lim
N→∞

(u0 − u2N) = 1.

Wir sehen also, daß (f2k)k∈N eine Wahrscheinlichkeitsverteilung auf den geraden natürli-
chen Zahlen definiert, die Verteilung von T . Daraus läßt sich der Erwartungswert von T
berechnen:

ET =
∞∑

k=1

2kf2k =
∞∑

k=1

u2k−2,

wobei wir die Gleichung (9.22 (1)) anwenden. Nach (9.21) divergiert jedoch diese Reihe!
Man kann auch sagen, daß ET gleich ∞ ist. Mit Wahrscheinlichkeit 1 findet also ein
Ausgleich statt; man muß jedoch im Schnitt unendlich lange darauf warten.

Obgleich P (S1 6= 0, . . . , S2k 6= 0) = P (S1 ≥ 0, . . . , S2k ≥ 0) ∼ 1/
√
πk gegen 0 kon-

vergiert, ist diese Wahrscheinlichkeit erstaunlich groß. Wieso erstaunlich? Wir betrach-
ten das Ereignis F

(k)
j , daß die Irrfahrt während genau 2j Zeiteinheiten bis 2k positiv

ist. Aus formalen Gründen präzisieren wir ,,positiv sein“ wie folgt: Die Irrfahrt ist po-
sitiv im Zeitintervall von l bis l + 1, falls Sl oder Sl+1 > 0 ist. Es kann also auch
Sl = 0, Sl+1 > 0 oder Sl > 0, Sl+1 = 0 sein. Man überzeugt sich leicht davon, daß die An-

zahl der Intervalle, wo dieses der Fall ist, gerade ist. F
(k)
k ist natürlich gerade das Ereignis

{S1 ≥ 0, S2 ≥ 0, . . . , S2k ≥ 0}. Aus Gründen der Symmetrie ist P (F
(k)
0 ) = P (F

(k)
k ), was

nach (9.24 (2)) gleich u2k ∼ 1/
√
πk ist.

Die F
(k)
j sind für 0 ≤ j ≤ k paarweise disjunkt, und es gilt

k∑

j=0

P (F
(k)
j ) = 1.
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Mithin können nicht allzuviele der P (F
(k)
j ) von derselben Größenordnung wie P (F

(k)
k ) sein,

denn sonst müßte die obige Summe > 1 werden. Anderseits ist wenig plausibel, daß unter
diesen Wahrscheinlichkeiten gerade P (F

(k)
k ) und P (F

(k)
0 ) besonders groß sind. Genau dies

ist jedoch der Fall, wie aus dem folgenden bemerkenswerten Resultat hervorgehen wird.

(9.25) Satz. Für 0 ≤ j ≤ k gilt

P (F
(k)
j ) = u2ju2k−2j.

Beweis. Wir führen einen Induktionsschluß nach k. Für k = 1 gilt

P (F
(1)
0 ) = P (F

(1)
1 ) =

1

2
= u2.

Wir nehmen nun an, die Aussage des Satzes sei bewiesen für alle k ≤ n−1, und beweisen
sie für k = n.

Wir hatten in (9.22 (2)) schon gesehen, daß P (F
(n)
0 ) = P (F

(n)
n ) = u2n ist (u0 ist = 1).

Wir brauchen deshalb nur noch 1 ≤ j ≤ n− 1 zu betrachten. Zunächst führen wir einige
spezielle Mengen von Pfaden ein.

Für 1 ≤ l ≤ n, 0 ≤ m ≤ n− l sei G+
l,m die Menge der Pfade der Länge 2n mit: s0 = 0, s1 >

0, s2 > 0, . . . , s2l−1 > 0, s2l = 0 und 2m Strecken des Pfades zwischen den x-Koordinaten
2l und 2n sind positiv.

Analog bezeichne G−
l,m für 1 ≤ l ≤ n, 0 ≤ m ≤ n−l, die Menge der Pfade mit: s0 = 0, s1 <

0, s2 < 0, . . . , s2l−1 < 0, s2l = 0 und 2m Strecken des Pfades zwischen den x-Koordinaten
2l und 2n sind positiv.

Die G+
l,m, G

−
l,m sind offensichtlich alle paarweise disjunkt. Ferner gilt

G+
l,m ⊂ F

(n)
l+m, G

−
l,m ⊂ F (n)

m .

Man beachte, daß für 1 ≤ j ≤ n − 1 jeder Pfad aus F
(n)
j zu genau einer der Mengen

G+
l,m, G

−
l,m gehört. Dies folgt daraus, daß ein solcher Pfad mindestens einmal das Vor-

zeichen wechseln, also auch die 0 passieren muß. Ist 2l die x-Koordinate der kleinsten
Nullstelle > 0, so gehört der Pfad zu G+

l,j−l, falls der Pfad vor 2l positiv, und zu G−
l,j, falls

er vor 2l negativ ist. Demzufolge ist

P (F
(n)
j ) =

j∑

l=1

P (G+
l,j−l) +

n−j∑

l=1

P (G−
l,j).

Es bleibt noch die Aufgabe, die Summanden auf der rechten Seite dieser Gleichung zu
berechnen.

Offensichtlich enthalten G+
l,m und G−

l,m gleich viele Pfade. |G+
l,m| ist gleich der Anzahl der

Pfade von (0, 0) nach (2l, 0) mit s1 > 0, s1 > 0, . . . , s2l−1 > 0 multipliziert mit der Anzahl
der Pfade der Länge 2n− 2l mit Start in (2l, 0) und 2m positiven Strecken, das heißt

|G+
l,m| = |G−

l,m| =
1

2
f2l2

2lP (F (n−l)
m )22n−2l,

P (G+
l,m) = P (G−

l,m) =
1

2
f2lP (F (n−l)

m ).
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Nach der weiter oben stehenden Gleichung ist also

P (F
(n)
j ) =

1

2

j∑

l=1

f2lP (F
(n−l)
j−l ) +

1

2

n−j∑

l=1

f2lP (F
(n−l)
j ).

Nach Induktionsvoraussetzung ist das

=
1

2

j∑

l=1

f2l u2j−2l u2n−2j +
1

2

n−j∑

l=1

f2l u2n−2j−2l u2j = u2j u2n−2j nach (9.22 (3)).

2

Um das Verhalten von P (F
(k)
j ) für festes k als Funktion von j zu untersuchen, betrachten

wir für 1 ≤ j ≤ k − 1 die Quotienten

P (F
(k)
j )

P (F
(k)
j+1)

=

(
2j
j

)(
2k−2j
k−j

)
(
2j+2
j+1

)(
2k−2j−2
k−j−1

) =
(2j)!(2k − 2j)!((j + 1)!)2((k − j − 1)!)2

(j!)2((k − j)!)2(2j + 2)!(2k − 2j − 2)!

=
(2k − 2j − 1)(j + 1)

(2j + 1)(k − j)
.

Dieser Quotient ist > 1, = 1 oder < 1, je nachdem, ob j < k−1
2

, j = k−1
2

oder j > k−1
2

ist.

Als Funktion von j fällt also P (F
(k)
j ) für j < k−1

2
und steigt an für j > k−1

2
.

P (F
(k)
0 ) = P (F

(k)
k ) ist also der größte vorkommende Wert und P (F⌈k−1

2 ⌉) der kleinste. Es

ist bedeutend wahrscheinlicher, daß die Irrfahrt über das ganze betrachtete Zeitintervall
positiv ist, als daß sich positive und negative Zahlen ausgleichen. Dies scheint im Wider-
spruch zum Gesetz der großen Zahlen zu stehen. Ohne dies genauer diskutieren zu können,
sei aber daran erinnert, daß die Rückkehrzeit T nach 0 keinen endlichen Erwartungswert
hat, wie wir oben gezeigt haben.

Mit Hilfe von (9.23) läßt sich eine einfach Approximation für P (F
(k)
j ) für große j und

k − j gewinnen:

(9.26) Satz. Für j → ∞, k − j → ∞ gilt P (F
(k)
j ) ∼ 1

π
1√

j(k−j)
, das heißt

lim
j→∞

k−j→∞

√
j(k − j)P (F

(k)
j ) =

1

π
.

2

Betrachten wir speziell x ∈ (0, 1) so gilt für j, k → ∞ mit j/k ∼ x

P (F
(k)
j ) ∼ 1

πk

1√
x(1 − x)

.

Diese Wahrscheinlichkeiten sind also von der Größenordnung 1/k, das heißt asymptotisch
viel kleiner als

P (F
(k)
0 ) = P (F

(k)
k ) ∼ 1√

πk
.
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Die Funktion (x(1 − x))−1/2 hat für x = 0 und 1 Pole. Das steht in Übereinstimmung

damit, daß für j/k ∼ 0 und j/k ∼ 1 die Wahrscheinlichkeiten P (F
(k)
j ) von einer anderen

Größenordnung als 1/k sind.

Eine Aussage wie (9.26) ist gewissermaßen auch ein lokaler Grenzwertsatz, da wir damit
Informationen über die Wahrscheinlichkeit, daß der Zeitraum der Führung exakt = 2j ist,
erhalten. Da diese Wahrscheinlichkeiten jedoch alle für große k klein werden, interessiert
man sich eher zum Beispiel für die Wahrscheinlichkeit, daß der relative Anteil der Zeit,
wo die Irrfahrt positiv ist, ≥ α ist.

Es seien 0 < α < β < 1. γk(α, β) sei die Wahrscheinlichkeit, daß dieser relative Anteil der
Zeit zwischen α und β liegt. Genauer: Tk sei (die auf Ω2k definierte) Zufallsgröße, die die
Dauer der Führung zählt:

Tk :=

2k∑

j=1

1{Sj−1≥0, Sj≥0}.

Dann ist

γk(α, β) := P
(
α ≤ Tk

2k
≤ β

)
=

∑

j:α≤ j
k
≤β

P (F
(k)
j ).

Wir wollen nun aus (9.26) für k → ∞ folgern:

γk(α, β) ∼ 1

π

∑

j:α≤ j
k
≤β

1

k

1√
j
k
(1 − j

k
)
. (9.2)

Die rechte Seite ist nichts anderes als die Riemann-Approximation für
∫ β

α

1

π

1√
x(1 − x)

dx =
2

π
(arcsin

√
β − arcsin

√
α).

Es folgt damit:

(9.28) Satz. (Arcus-Sinus-Gesetz)

lim
k→∞

γk(α, β) =
2

π
(arcsin

√
β − arcsin

√
α).

Beweis. Wir müssen (9.27) zeigen. Wir schreiben die Stirling-Approximation als n! =√
2πn

(
n
e

)n
F (n) mit limn→∞ F (n) = 1. Es folgt

P (F
(k)
j ) =

(
2j

j

)(
2k − 2j

k − j

)
1

22k
=

1

π

1√
( j

k
)(1 − ( j

k
))

1

k

F (2j)F (2(k − j))

F (j)F (j)F (k − j)F (k − j)
.

Wir wählen nun ein δ > 0 mit 0 < δ < 1/2 und betrachten für jedes k nur die Werte j
für die gilt

δ ≤ j

k
≤ 1 − δ,

womit kδ ≤ j und kδ ≤ k−j folgt. Für k → ∞ konvergiert nun jedes F (j), F (k−j), F (2j)
gleichmäßig für alle obigen Werte von j. Somit existiert für δ ≤ α < β ≤ 1−δ ein Gα,β(k)
für jedes k = 1, 2, . . ., so daß für jedes obige δ > 0 gilt:

lim
k→∞

Gα,β(k) = 1 gleichmäßig für δ ≤ α < β ≤ 1 − δ
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und
∑

α≤ j
k
≤β

P (F
(k)
j ) =

(
1

k

∑

α≤ j
k
≤β

1

π

1√
(j/k)(1 − (j/k))

)
Gα,β(k).

Nun folgt die Behauptung gleichmäßig für δ ≤ α < β ≤ 1−δ, wie auch immer 0 < δ < 1/2
gewählt war. Damit folgt die Behauptung. 2

(9.29) Bemerkung. Die Aussage von (9.28) ist auch richtig für α = 0 oder β = 1. Das
heißt etwa, daß γk(0, β) — die Wahrscheinlichkeit dafür, daß der relative Anteil der Zeit,
in der K1 führt, ≤ β ist — gegen 2

π
arcsin

√
β konvergiert.

Beweis Offensichtlich gilt limk→∞ γk(0,
1
2
) = 1/2. Ist β ∈ (0, 1/2), so folgt

lim
k→∞

γk(0, β) = lim
k→∞

(γk(0, 1/2)− γk(β, 1/2)) =
2

π
arcsin

√
β,

für β > 1/2

lim
k→∞

γk(0, β) = lim
k→∞

(γk(0, 1/2) + γk(1/2, β)) =
2

π
arcsin

√
β.

Für γk(α, 1) führt dasselbe Argument zum Ziel. 2

Der Beweis des Arcus-Sinus-Gesetzes wurde in einer allgemeineren Form zuerst von Paul
Pierre Lévy (1886-1971) im Jahre 1939 gegeben.

Die Funktion 1
π

1√
x(1−x)

hat das folgende Aussehen:

0 0.2 0.4 0.6 0.8 1
x

1

2

3

4

5 1

π

√
x(1−x)
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10 Informationstheorie

Die mathematische Disziplin, die heutzutage Informationstheorie heißt, wurde durch den
amerikanischen Ingenieur C.E. Shannon begründet. Shannon nannte seine bahnbrechende
Arbeit “A mathematical theory of communication”. Erst später hat die Bezeichnung ,,In-
formationstheorie“ Eingang gefunden. Die Bezeichnung kann höhere Erwartungen wecken
als die Theorie erfüllen kann. Es ist wichtig, darauf hinzuweisen, daß die Theorie nichts
über die Bedeutung, den Inhalt oder den Wert einer Mitteilung (einer ,,Information“)
aussagt.

a) Optimale Quellenkodierung nach Huffman, Entropie.
Wir betrachten ein Zufallsexperiment mit n möglichen Ausgängen, das wir einfach durch
einen endlichen Wahrscheinlichkeitsraum (Ω, p) mit Ω = {ω1, . . . , ωn} beschreiben können.
Die Wahrscheinlichkeiten p(ωi) kürzen wir mit pi ab, und p sei der Wahrscheinlichkeits-
vektor (p1, . . . , pn). Bevor das Zufallsexperiment ausgeführt ist, herrscht Unsicherheit,
Ungewißheit über den möglichen Ausgang. Wir möchten eine Zahl H(p), die Entropie
des Experimentes, definieren, die ein Maß für die Unbestimmtheit sein soll. Das Wort
,,Entropie“ ist aus dem griechischen ὲντρέπεω (umwenden) abgeleitet. Es wurde 1876
von Clausius in die Thermodynamik eingeführt. Auf die Beziehungen zwischen Infor-
mationstheorie und statistischer Mechanik kann hier nicht eingegangen werden. Das am

wenigsten unbestimmte Experiment, das wir uns vorstellen können, ist das determinis-
tische, dessen Ausgang von vornherein vorausgesagt werden kann. Ein solches muß die
Entropie 0 haben. Im allgemeinen haben wir lediglich H(p) ≥ 0.

Wir haben die Funktion H eingeführt, ohne zu sagen, wie sie genau definiert ist. Um
zu einer vernünftigen Definition zu gelangen, gehen wir vom oben eingeführten, wahr-
scheinlichkeitstheoretischen Modell mit dem Wahrscheinlichkeitsvektor p = (p1, . . . , pn)
aus. Bezeichnet man mit log2 den Logarithmus zur Basis 2 und verwendet man die Kon-
vention 0 log2 0 = 0, so kann man die Entropie einfach durch

H(p) = −
n∑

i=1

pi log2 pi (10.1)

definieren, wie es in vielen Lehrbüchern geschieht. Die Gründe, die zu dieser Definition
der Entropie führen, bleiben dann aber rätselhaft.

Wir wollen versuchen, zu einer Herleitung der Entropie zu kommen, die deren Interpreta-
tion als ,,Maß der Unbestimmtheit“ Rechnung trägt. Dazu stellen wir uns vor, daß das Ex-
periment ausgeführt wurde und daß eine Person A weiß, wie es ausgegangen ist, während
eine Person B nicht über dieses Wissen verfügt. Wieviel ist nun das Wissen von A wert,
verglichen mit dem Mangel an Wissen von B? Anders gesagt: Wieviel Anstrengung wird
es B kosten, um sein Wissen auf dasselbe Niveau wie das von A zu bringen? Wir können
versuchen, diese Anstrengung z.B. durch die Zeit zu messen, die B braucht, um den Aus-
gang zu erfahren. Das Problem ist, eine vernünftige und wohldefinierte Handlungsweise,
der B folgen soll, zu finden. Eine erste Annäherung an eine Definition der Entropie wäre,
die Anzahl der Fragen an A zu zählen, die B stellen muß, um den tatsächlichen Ausgang
zu finden. Wir denken dabei an Fragen mit möglicher Antwort ,,ja“ oder ,,nein“. Man
darf natürlich nicht fragen: ,,Welches der ωi ist es¿‘, sondern etwa: ,,Ist es ω1 oder ω5¿‘
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Die Anzahl der benötigten Fragen hängt natürlich vom Geschick des Fragestellers ab, fer-
ner im allgemeinen vom Ausgang des Zufallsexperimentes. Wir wollen deshalb die mittlere
Anzahl der benötigten Fragen betrachten, wenn der Fragesteller optimal fragt. Leider ist
auch dies, selbst wenn wir das genau präzisiert haben, noch nicht die übliche Definition
von H , d. h. der Ausdruck in (10.1). Wir werden diesen Punkt noch ausführlich diskutie-
ren. Die Größe, zu der wir nach einigen Präzisierungen gelangen werden, nennen wir die
wahre Entropie und bezeichnen sie mit H0. Zur klaren Unterscheidung nennen wir H aus
(10.1) die ideelle Entropie.

Wir fassen die bisherige Diskussion in der nachfolgenden Definition (10.2) zusammen, wir
werden sie später durch die Definition (10.7) präzisieren.

(10.2) Definition. Für ein Zufallsexperiment (Ω, p) ist die wahre Entropie H0(p) defi-
niert als der Erwartungswert der Anzahl benötigter Fragen bei optimaler Fragestrategie.

(10.3) Beispiele.

1. Beim Münzwurf, also bei p = (1/2, 1/2), fragt man etwa: ,,Ist es ω1¿‘ Das ist
offensichtlich optimal. Somit ist H0(1/2, 1/2) = 1.

2. Auch für p = (1/2, 1/4, 1/4) kann man die optimale Fragestrategie leicht erraten:
Man fragt natürlich: ,,Ist es ω1¿‘ Falls die Antwort ,,nein“ ist, so fragt man nach ω2.
Die mittlere Anzahl der Fragen ist

1

2
· 1 +

1

4
· 2 +

1

4
· 2 =

3

2
.

Fragt man zuerst nach ω2 und dann, falls nötig, nach ω1, so beträgt die mittlere
Anzahl der benötigten Fragen

1

4
· 1 +

1

2
· 2 +

1

4
· 2 =

7

4
,

was offenbar schlechter ist.

3. Bei p = (1/4, 1/4, 1/4, 1/4) fragt man am besten zunächst: ,,Ist es ω1 oder ω2¿‘ und
dann nach ω1 bzw. ω3. Man braucht also bei jedem Versuchsausgang zwei Fragen.
Fragt man jedoch der Reihe nach ,,Ist es ω1¿‘, ,,Ist es ω2¿‘ und ,,Ist es ω3¿‘, so
benötigt man zwar nur eine Frage, wenn ω1 der Ausgang ist, im Mittel aber mehr,
nämlich

1

4
· 1 +

1

4
· 2 +

1

4
· 3 +

1

4
· 3 =

9

4
.

Um zu präzisieren, was eine Fragestrategie ist, führen wir den Begriff Code ein. Statt
,,ja“ und ,,nein“ verwenden wir die Zeichen 1 und 0. Ein Wort sei eine endliche Folge
von Nullen und Einsen. Ist µ ein Wort, so bezeichnen wir mit |µ| die Länge von µ, zum
Beispiel hat µ = 001101 die Länge |µ| = 6. Die leere Folge nennen wir das leere Wort. Es
hat die Länge 0.

Ein Wort µ1 heißt Präfix eines Wortes µ2, wenn |µ1| < |µ2| ist und die ersten |µ1| Stellen
von µ2 mit µ1 identisch sind. Zum Beispiel ist 01 ein Präfix von 010010 aber nicht von
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000. Das leere Wort ist natürlich Präfix von jedem anderen Wort. Die Idee, die hinter
der folgenden Definition eines Codes steht, kann leicht aus der folgenden Betrachtung
eingesehen werden: Gegeben sei eine Fragestrategie für (Ω, p). Wir nehmen an, daß wir
zum Beispiel fünf Fragen brauchen, um den Ausgang zu bestimmen, der ω1 sein möge; die
Antworten auf die fünf Fragen in diesem Fall seien etwa ,,ja“, ,,ja“, ,,nein“, ,,ja“, ,,nein“.
Da 0 dem ,,nein“ und 1 dem ,,ja“ entspricht, ist es natürlich, ω1 das Codewort 11010
zuzuordnen.

(10.4) Definition. Ein Code κ für (Ω, p) ist eine injektive Abbildung, die jedem Ver-
suchsausgang ωi in Ω ein Codewort κ(ωi) zuordnet. Dabei darf keines der Wörter κ(ωi)
Präfix eines anderen Wortes κ(ωj) sein.

Wir können einen Code durch eine Tabelle, ein sogenanntes Codebuch, darstellen, d. h.
durch ein Schema, in dem in einer Spalte die möglichen Versuchsausgänge (Nachrichten)
und in einer anderen Spalte die zugehörigen Codewörter stehen. Als Beispiel eines Code-
buchs können wir das Morsealphabet nehmen, wo wir 0 statt ,,Punkt“ und 1 statt ,,Strich“
lesen. Allerdings ist das Morsealphabet kein Code im Sinne unserer Definition, da die
Präfixeigenschaft nicht erfüllt ist: Es ist ,,Punkt“ das Codewort für ,,e“ und ,,Punkt–
Strich“ das Codewort für ,,a“.

Von den fünf Vorschlägen für ein Codebuch in der nachfolgenden Tabelle sind nur κ3, κ4

und κ5 als Codes brauchbar, denn κ1 ist nicht injektiv und κ2 hat nicht die Präfixeigen-
schaft.

(10.5) Beispiel.

κ1 κ2 κ3 κ4 κ5

ω1 00 0 00 010 1
ω2 10 01 01 011 01
ω3 110 001 10 101 001
ω4 00 000 11 11 000

Es ist nun nicht schwer, den Zusammenhang zwischen Fragestrategien für (Ω, p) und Codes
zu erörtern. Wenn wir ein Verfahren haben, um Fragen zu stellen, so konstruieren wir den
zugehörigen Code κ folgendermaßen: Die erste Ziffer von κ(ωi) setzen wir gleich 1 bzw. 0,
je nachdem ob die Antwort auf die erste Frage ,,ja“ bzw. ,,nein“ ist, falls das Ereignis ωi

eintritt. Wenn man, falls ωi eintritt, nur eine Frage zu stellen braucht, so haben wir das
Codewort κ(ωi) bereits gefunden. Benötigt man dagegen mehrere Fragen, so setzen wir
die zweite Ziffer in κ(ωi) gleich 1 bzw. 0, je nachdem ob die Antwort auf die zweite Frage
,,ja“ bzw. ,,nein“ lautet, falls ωi eintritt. Auf diese Weise fahren wir fort, bis der ganze
Code festgelegt ist.

Wenn uns umgekehrt ein Code gegeben ist, so lautet die erste Frage der zugehörigen Fra-
gestrategie: ,,Ist die erste Ziffer des Codeworts für das eingetretene Ereignis gleich 1?”
Als nächstes die Frage: ,,Ist die zweite Ziffer des Codewortes des eingetretenen Ereignisses
eine 1?”, etc. Da der Code die Präfixeigenschaft hat, ist jederzeit klar, ob man mit den
Fragen aufhören kann.
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(10.6) Beispiele.

1. Die erste Strategie in Beispiel (10.3 (2)) ergibt den untenstehenden Code κ1; die
zweite führt auf κ2.

κ1 κ2

ω1 1 01
ω2 01 1
ω3 00 00

2. Für das Beispiel (10.3 (3)) ergeben sich die beiden folgenden Codes:

κ1 κ2

ω1 11 1
ω2 10 01
ω3 01 001
ω4 00 000

Unsere Codes haben eine zusätzliche angenehme Eigenschaft. Wir stellen uns vor, daß das
Experiment mehrfach hintereinander ausgeführt wird und daß wir laufend eine Mitteilung
über den Ausgang jedes einzelnen in Codeform erhalten vermöge eines bestimmten Codes
κ. Da kein Codewort Präfix eines anderen ist, sind wir nie im Zweifel darüber, wo ein Code-
wort aufhört und das nächste anfängt. Jede mit Hilfe des Codes gegebene Mitteilung kann
daher auf eindeutige Weise decodiert oder entziffert werden. Wenn wir z. B. den Code κ1

aus Beispiel (10.6 (1)) benutzen und die Folge 11100101100 empfangen, so entspricht dies
eindeutig den Versuchsausgängen ω1, ω1, ω1, ω3, ω1, ω2, ω1, ω3.

Welcher Code, d. h. welche Fragestrategie, optimal ist, hängt natürlich vom Wahrschein-
lichkeitsvektor p = (p1, . . . , pn) ab. Der Erwartungswert der Länge eines Codes κ ist

E(|κ|) =

n∑

i=1

pi|κ(ωi)|,

dies ist gleichzeitig der Erwartungswert der Anzahl der Fragen bei Verwendung der zu κ
gehörigen Fragestrategie. Wir können nun unsere Definition (10.2) präzisieren:

(10.7) Definition. Für ein Zufallsexperiment (Ω, p) ist die wahre Entropie H0(p) definiert
durch

H0(p) = min{E(|κ|) : κ ist Code für (Ω, p)}.

Man müßte korrekterweise zunächst das Infimum betrachten. Wir werden jedoch sehen,
daß stets ein optimaler Code existiert, d. h. ein Code κ0 mit E(|κ|) ≥ E(|κ0|) für jeden
anderen Code κ für (Ω, p). Natürlich ist die obige Definition von H0 jetzt noch unhandlich,
denn wir haben noch keinen optimalen Code und damit noch keine Möglichkeit, H0(p) zu
berechnen.

Manchmal ist es nützlich, Codes als binäre Bäume zu veranschaulichen. Dabei ist die
Knotenmenge des Baumes die Menge aller Codewörter und aller ihrer Präfixe. Wir be-
zeichnen diese Knotenmenge mit K(κ). Wir ziehen eine Verbindung zwischen µ und µa,
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a ∈ {0, 1}, sofern µ und µa zu K(κ) gehören. Die Menge dieser Verbindungen bezeichnen
wir mit V (κ). (K(κ), V (κ)) ist dann ein Graph, der offensichtlich zusammenhängend ist
und keine Kreise aufweist. (Ein Kreis in einem Graphen (K, V ) ist eine Folge (e1, . . . , en)
von verschiedenen Knoten mit n ≥ 3, {ei, ei+1}, {en, e1} ∈ V für 1 ≤ i ≤ n− 1.)

Wir ordnen die Elemente von K(κ) aufsteigend der Länge nach. Auf der untersten Ebene
das leere Wort, sozusagen die ,,Wurzel“ des Baumes, und dann aufsteigend die Wörter
der Länge 1, 2, . . . Dabei zeichnen wir eine Verbindung nach rechts oben von µ nach µ1
und nach links oben von µ nach µ0, sofern µ1 beziehungsweise µ0 ∈ K(κ) sind.

(10.8) Beispiel. Ω = {ω1, ω2, ω3, ω4, ω5}.

κ(ω1) = 00, κ(ω2) = 010, κ(ω3) = 10,

κ(ω4) = 110, κ(ω5) = 1111.

Dann ist
K(κ) = {∅, 0, 1, 00, 01, 10, 11, 010, 110, 111, 1111}.

Der Baum:

∅

1

11

111

1111

0

00
01 10

110

ω1

ω4

ω5

ω2

ω3

Aus dem Baum eines Codes läßt sich die zugehörige Fragestrategie sofort ablesen. Im
obigen Beispiel fragt man zuerst: ,,Ist es ω3, ω4 oder ω5.“ Falls ,,ja“ so befindet man sich
im Knoten 1 und falls ,,nein“ im Knoten 0, und dann fährt man entsprechend weiter. Wir

nennen einen derartigen binären Baum vollständig, falls für jedes Wort µ ∈ K(κ), das
kein Blatt ist, das heißt, das nicht zu den Codewörtern des Codes gehört, sowohl µ0 wie
µ1 zu K(κ) gehören. Es ist evident, daß man sich bei der Suche nach einem optimalen

Code auf solche beschränken kann, die zu vollständigen Bäumen führen. Fragestrategi-
en mit unvollständigen Bäumen enthalten überflüssige Fragen. Wir nennen einen Code
vollständig, falls der zugehörige Baum es ist. Unvollständige Bäume lassen sich durch
Weglassen der überflüssigen Knoten zu vollständigen verkürzen und entsprechend lassen
sich unvollständige Codes verbessern.

(10.9) Beispiel. Wir betrachten den Code mit den Codewörtern 01, 1101, 1110, 1111.
Daraus ergibt sich der Baum
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1101 1110 1111

111110

11

1

01

0

∅

Wir können ihn zu folgendem Baum verkürzen

∅

1

111110

11

0

10

und erhalten den besseren Code mit den Codewörtern 0, 10, 110, 111.

Ein Verfahren für einen optimalen Code ist von Huffman angegeben worden. Man be-
zeichnet diesen Code als Huffman-Code. Die Konstruktion des Codes erfolgt rekursiv
nach der Anzahl n der möglichen Versuchsausgänge. Wir setzen dabei stets pi > 0 für
alle i ∈ {1, . . . , n} voraus, denn gilt pi = 0 für ein i, so lassen wir ωi aus der Betrachtung
weg. Ferner genügt es, nur den Grundraum Ω = {1, 2, . . . , n} zu betrachten, wodurch die
Notation einfacher wird. Für n = 2 ist κ(1) = 0 und κ(2) = 1 offensichtlich eine optimale
Codierung von (p1, p2).

Sei also n > 2. Wir nehmen an, daß wir den Huffman-Code für alle Wahrscheinlichkeits-
vektoren der Länge n−1 schon konstruiert haben und geben nun den Code für (p1, . . . , pn)
an.

Zunächst bemerkt man, daß die Reihenfolge der pi für die Codierung keine Rolle spielt,
denn wenn π : {1, . . . , n} → {1, . . . , n} eine Permutation und κ ein Code für (p1, . . . , pn)
mit den Codewörtern κ(1), . . . , κ(n) ist, so ist κ(π(1)), . . . , κ(π(n)) natürlich ein Code für
(pπ(1), . . . , pπ(n)) mit derselben mittleren Länge.

Wir können daher voraussetzen, daß p1 ≥ p2 ≥ · · · ≥ pn gilt. Nun faßt man die beiden
kleinsten Wahrscheinlichkeiten zusammen und betrachtet den Wahrscheinlichkeitsvektor
(p1, p2, . . . , pn−2, pn−1+pn) mit n−1 Komponenten. Natürlich braucht pn−1+pn nicht mehr
die kleinste Komponente dieses Vektors zu sein. Bezeichnet gemäß Induktionsvorausset-
zung κ(1), . . . , κ(n− 1) den Huffman-Code für diesen Vektor, so ist κ(1), κ(2), . . . , κ(n−
2), κ(n − 1)0, κ(n − 1)1 der Huffman-Code für (p1, . . . , pn). Es ist offensichtlich, daß der

134



Huffman-Code stets zu einem vollständigen Baum führt. Das beweist natürlich noch lange
nicht, daß er optimal ist.

Bevor wir zeigen, daß der Huffman-Code optimal ist, betrachten wir ein Beispiel:

(10.10) Beispiel. In der untenstehenden Tabelle ist der zu codierende Wahrscheinlich-
keitsvektor (p1, . . . , p8) die erste Spalte:

p1 = 0, 36 0,36 0,36 0,36 0,36 0,37 0,63 1
p2 = 0, 21 0,21 0,21 0,21 0,27 0,36 0,37
p3 = 0, 15 0,15 0,15 0,16 0,21 0,27
p4 = 0, 12 0,12 0,12 0,15 0,16
p5 = 0, 07 0,07 0,09 0,12
p6 = 0, 06 0,06 0,07
p7 = 0, 02 0,03
p8 = 0, 01

Die Spalten sind die Wahrscheinlichkeitsvektoren. Die erste ist der ursprüngliche, der
codiert werden soll. Den nächsten gewinnt man jeweils, indem man die beiden kleinsten
Wahrscheinlichkeiten zusammenzählt und gleich richtig einordnet. Diese Summe ist im
neuen Wahrscheinlichkeitsvektor jeweils unterstrichen.

Den Huffman-Code gewinnt man rückwärts. Für den Vektor der Länge zwei besteht der
zugehörige Code aus den Wörtern 0 und 1. Danach wird jeweils das Codewort, das zur
unterstrichenen Wahrscheinlichkeit in der vorangehenden Tabelle gehört, durch Anhängen
der Ziffer 0 bzw. 1 aufgespaltet, um die beiden neuen Codewörter für die beiden letzten
Wahrscheinlichkeiten zu erhalten. In der folgenden Tabelle sind die aufgespaltenen Code-
wörter jeweils unterstrichen:

κ(1) = 00 00 00 00 00 1 0
κ(2) = 10 10 10 10 01 00 1
κ(3) = 010 010 010 11 10 01
κ(4) = 011 011 011 010 11
κ(5) = 111 111 110 011
κ(6) = 1100 1100 111
κ(7) = 11010 1101
κ(8) = 11011

Sowohl aus der Definition von E(|κ|) als auch durch Addition der unterstrichenen Wahr-
scheinlichkeiten in der ersten Tabelle ergibt sich, daß die mittlere Länge dieses Codes
2,55 ist. Benötigt man also für einen Wahrscheinlichkeitsvektor nur die mittlere Länge
des zugehörigen Huffman-Codes, so genügt die erste Tabelle.

Der zugehörige Baum sieht wie folgt aus:
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∅

0 1

01 11

110 111

1101

00

010 011

10




1100

11010 11011

Der Huffman-Code ist offenbar nicht immer eindeutig definiert. Es kann nämlich passie-
ren, daß die Summe der beiden kleinsten Wahrscheinlichkeiten gleich einer der anderen
ist, so daß die Einordnung nicht eindeutig ist. Dies ist jedoch ohne Belang, denn offen-
sichtlich haben die entstehenden Huffman-Codes dieselbe mittlere Länge.

(10.11) Satz. Jeder Huffman-Code ist optimal.

Beweis. Der Beweis verläuft mit Induktion nach n, der Länge des Wahrscheinlichkeits-
vektors. Der Fall n = 2 ist trivial.

Induktionsschluß von n− 1 auf n:
Wir nehmen an, daß der Satz für Vektoren der Länge n−1 ≥ 2 gezeigt ist. Sei (p1, . . . , pn)
ein beliebiger Wahrscheinlichkeitsvektor der Länge n mit pi > 0 für alle i ∈ {1, . . . , n}.
Wir können annehmen, daß p1 ≥ p2 ≥ · · · ≥ pn > 0 gilt, denn dies läßt sich durch
Vertauschen stets erreichen.

Sei κ
(n)
Huff ein Huffman-Code für diesen Vektor. Sei κ ein beliebiger anderer Code mit den

Codewörtern µ1, . . . , µn. Wir zeigen nun

E(|κ|) ≥ E(|κ(n)
Huff |). (10.2)

Zunächst ordnen wir die Codewörter von κ nach aufsteigender Länge. Den geordneten
Code nennen wir κ′ = (µ′

1, . . . , µ
′
n); für die Codewörter gilt |µ′

1| ≤ |µ′
2| ≤ · · · ≤ |µ′

n|. Die
Menge der Codewörter ist dieselbe geblieben. Es ist ziemlich offensichtlich, daß E(|κ|) ≥
E(|κ′|) ist (Nachprüfen!).

Falls |µ′
n| > |µ′

n−1| ist, so stutzen wir das Wort µ′
n, indem wir von µ′

n die letzten |µ′
n|−|µ′

n−1|
Binärzeichen weglassen. Dieses Wort sei µ′′

n. Wegen der Präfix-Eigenschaft unterscheidet
sich dieses Wort von µ′

1, . . . , µ
′
n−1. Das neue Wort µ′′

n kann aber auch nicht Präfix eines
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der anderen Wörter sein, denn seine Länge ist zumindest die der anderen. Also ist κ′′ =
(µ′

1, . . . , µ
′
n−1, µ

′′
n) ein Code.

Gilt |µ′
n−1| = |µ′

n|, so setzen wir κ′′ = κ′. In jedem Fall gilt E(|κ′|) ≥ E(|κ′′|).
Mindestens zwei Wörter von κ′′ haben die Länge m := |µ′′

n|. Sei α das aus den ersten
m − 1 Zeichen von µ′′

n bestehende Wort. Dann gilt µ′′
n = α0 oder µ′′

n = α1. Wir nehmen
das letztere an, der andere Fall geht genau gleich. Wir betrachten nun zwei Fälle:

(i) Eines der anderen Wörter von κ′′ der Länge m ist das Wort α0. Falls α0 nicht bereits
das zweitletzte Wort ist, so vertauschen wir α0 mit dem zweitletzten Wort. Diesen
(eventuell neuen) Code nennen wir κ′′′.

(ii) Keines der anderen Wörter der Länge m ist α0. Dann ersetzen wir µ′
n−1 durch α0

und nennen den neuen Code κ′′′. Die Präfixeigenschaft wird dadurch nicht zerstört,
denn α1 war ja schon Codewort.

Es gilt offenbar E(|κ′′|) = E(|κ′′′|), denn die Längen sind gleichgeblieben. Wir schreiben
κ′′′ = (ν1, . . . , νn) mit νn−1 = α0 und νn = α1. Dann ist (ν1, . . . , νn−2, α) ein Code
für (p1, . . . , pn−2, pn−1 + pn). Um dies einzusehen, müssen wir nur die Präfixeigenschaft
nachprüfen. Das Wort α kann aber kein Präfix von ν1, . . . , νn−2 sein, denn die Längen
dieser Codewörter sind kleiner oder gleich |α| + 1, und α0, α1 waren verschieden von
ν1, . . . , νn−2.

Nach Induktionsvoraussetzung ist die mittlere Länge des Codes (ν1, . . . , νn−2, α) größer
oder gleich der mittleren Länge des zugehörigen Huffman-Codes, also

n−2∑

i=1

pi|νi| + (pn−1 + pn)|α| ≥ E(|κ(n−1)
Huff |),

wobei κ
(n−1)
Huff ein Huffman-Code für (p1, . . . , pn−2, pn−1 +pn) ist. Nach der rekursiven Kon-

struktion des Huffman-Codes κ
(n)
Huff aus κ

(n−1)
Huff ist

E|κ(n)
Huff | = E|κ(n−1)

Huff | + pn−1 + pn.

Somit gilt

E|κ′′′| =
n∑

i=1

pi|νi| =
n−2∑

i=1

pi|νi| + (pn−1 + pn)|α| + (pn−1 + pn)

≥ E|κ(n−1)
Huff | + pn−1 + pn = E|κ(n)

Huff |.

Damit ist (10.2) gezeigt. 2

Wegen der Optimalität des Huffman-Codes haben wir natürlich auch ein effektives Be-
rechnungsverfahren für H0(p) gewonnen. Wir wollen nun noch die Beziehung zwischen

H0(p) und dem bereits in (10.1) angegebenen Ausdruck für die ideelle Entropie H(p)
diskutieren.
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Im allgemeinen stimmen H0(p) und H(p) nicht überein. Das sieht man schon bei n = 2,
wo stets H0(p) = 1 ist. Der folgende Satz zeigt, daß die wahre Entropie H0(p) nur wenig
oberhalb der ideellen Entropie H(p) liegen kann. Man beachte, daß wegen pi ≤ 1 stets
log2 pi ≤ 0 und somit H(p) = −∑n

i=1 pi log2 pi ≥ 0 ist.

(10.12) Satz. Für jeden Wahrscheinlichkeitsvektor p = (p1, . . . , pn) gilt

H(p) ≤ H0(p) < H(p) + 1.

Da ein Versuchsausgang ωi ∈ Ω mit pi = p(ωi) = 0 bei den Definitionen der ideellen und
der wahren Entropie in (10.1) bzw. (10.7) keinen Beitrag liefert, können wir für den Be-
weis des Satzes pi > 0 für alle i ∈ {1, . . . , n} voraussetzen. Wir benötigen einige einfache

Aussagen über die Längen der Codewörter eines Codes.

(10.13) Proposition. (a) l1, . . . , ln seien die Längen der Codewörter eines Codes. Dann
gilt

∑n
i=1 2−li ≤ 1 und Gleichheit gilt genau dann, wenn der Code vollständig ist.

(b) Seien l1, . . . , ln ∈ N mit
∑n

i=1 2−li ≤ 1. Dann existiert ein Code mit den Wortlängen
l1, . . . , ln.

Beweis. (a) Wir zeigen zunächst mit Induktion nach n, daß für einen vollständigen Code∑n
i=1 2−li = 1 gilt. Für n = 2 ist die Aussage trivial, denn dann muß l1 = l2 = 1 gelten. Sei

n ≥ 3. O.E.d.A. können wir annehmen, daß l1 ≤ l2 ≤ · · · ≤ ln gilt. Aus der Vollständigkeit
folgt, daß ln−1 = ln ≥ 2 gilt. Die letzten beiden Codewörter sind dann von der Form µ0
und µ1. Ersetzen wir diese beiden Codewörter durch das eine µ, so erhalten wir einen
vollständigen Code mit n−1 Codewörtern, wobei das letzte die Länge ln−1 hat. Wenden
wir nun die Induktionsvoraussetzung an, so folgt

∑n
i=1 2−li =

∑n−2
i=1 2−li + 2−ln+1 = 1.

Ein unvollständiger Code läßt sich zu einem vollständigen verkürzen. Damit folgt sofort∑n
i=1 2−li ≤ 1 für jeden Code, wobei das Gleichheitszeichen nur für vollständige gilt.

(b) Wir wenden wieder Induktion nach n an. Für n = 2 ist die Sache trivial. Sei n ≥ 3.
Wir können wieder annehmen, daß l1 ≤ l2 ≤ · · · ≤ ln gilt. Wegen

∑n
i=1 2−li ≤ 1

folgt
∑n−1

i=1 2−li < 1. Per Induktionsvoraussetzung existiert ein Code mit Wortlängen
l1, . . . , ln−1, der jedoch nach (a) nicht vollständig ist. Der zugehörige Baum hat also einen
Knoten µ, der kein Codewort ist und so, daß entweder µ0 oder µ1 keine Knoten sind.
Da ln mindestens so groß wie die anderen sind, ergibt sich, daß wir den Baum mit einem
neuen Blatt ergänzen können, das µ als Präfix hat und das die Länge ln hat. 2

Wir benötigen noch das folgende elementare analytische Ergebnis:

(10.14) Lemma. Für alle i ∈ {1, . . . , n} seien si und ri positive reelle Zahlen mit∑n
i=1 si ≥

∑n
i=1 ri. Dann gilt

∑n
i=1 si log2(si/ri) ≥ 0.

Beweis. Es gilt log x ≤ x − 1 für alle x > 0, wobei log den Logarithmus zur Basis e

138



bezeichnet. Somit folgt
n∑

i=1

si log
ri

si
≤

n∑

i=1

si

(
ri

si
− 1

)
=

n∑

i=1

ri −
n∑

i=1

si ≤ 0,

also
∑n

i=1 si log(si/ri) ≥ 0. Die log2-Funktion ist jedoch proportional zur log-Funktion.
Damit ist (10.14) gezeigt. 2

Beweis von H(p) ≤ H0(p):
Es seien l1, . . . , ln die Wortlängen des Huffman-Codes κ für p = (p1, . . . , pn). Da dieser
vollständig ist, folgt nach (10.13 (a))

∑n
i=1 2−li = 1 =

∑n
i=1 pi. Nach (10.14) ist dann∑n

i=1 pi log2(pi/2
−li) =

∑n
i=1 pi log2 pi +

∑n
i=1 lipi ≥ 0. Das bedeutet, daß E(|κ|) ≥ H(p)

gilt. 2

Beweis von H0(p) < H(p) + 1:
Zu vorgegebenen pi können wir natürliche Zahlen li wählen mit − log2 pi ≤ li < − log2 pi+
1. Aus der ersten Ungleichung folgt

∑n
i=1 2−li ≤ ∑n

i=1 pi = 1. Nach (10.13 (b)) existiert
ein Code mit diesen li als Wortlängen. Wegen der zweiten Ungleichung für die li folgt∑n

i=1 pili < −∑n
i=1 pi log2 pi + 1. Der optimale Code hat jedoch höchstens die mittlere

Länge
∑n

i=1 pili. 2

Bemerkung. Der letzte Beweisteil von (10.12) deutet darauf hin, daß bei einem optimalen
Code die Länge des i-ten Codewortes ungefähr gleich − log2 pi sein wird.

Es ist klar, daß die wahre Entropie H0 als Maß für die Ungewißheit in einigen Situation
etwas unbefriedigend ist. Am deutlichsten sieht man das bei einem Experiment mit zwei
möglichen Ausgängen, die mit den Wahrscheinlichkeiten p1 und p2 = 1 − p1 auftreten,
denn dann gilt H0(p1, 1 − p1) = 1 für jedes p1 ∈ (0, 1).

Wir können noch eine andere Beziehung zwischen H0 und H herleiten, indem wir un-
abhängige Repetitionen des Zufallsexperimentes (Ω, p) betrachten. Nach Kapitel 2 ist der
geeignete W.-Raum für eine k-fache Repetition der Produktraum (Ωk, pk), mit pk(ω1, . . . , ωk) =
p(ω1) . . . p(ωk) für alle ω1, . . . , ωk ∈ Ω.

Es ist klar, wie aus einer Fragestrategie (d. h. einem Code) für p eine für pk gewonnen
werden kann: Man fragt zunächst nach dem Ausgang des ersten Experimentes, dann nach
dem zweiten etc. bis nach dem k-ten. Die gesamte Anzahl der benötigten Fragen ergibt
sich als Summe der benötigten Fragen für die einzelnen Experimente; somit summieren
sich auch die Erwartungswerte. Ist κ ein optimaler Code für p, so ist der optimale Code
für pk natürlich mindestens so gut wie dieser ,,Repetitionscode“, der die mittlere Länge
kE(|κ|) hat. Somit folgt:

H0(p
k) ≤ kH0(p).

Es zeigt sich jedoch, daß die oben beschriebene k-fache Repetition der optimalen Frage-
strategie für p im allgemeinen nicht die optimale Fragestrategie für pk ist.

(10.15) Beispiel. Sei (p1, p2) = (3/4, 1/4). Dann istH0(p) = 1. Der Huffman-Algorithmus
für p2 wird durch das folgende Schema gegeben:
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9 9 9 16
3 4 7
3 3
1

wobei die einzelnen Zahlen mit 1/16 zu multiplizieren sind. Die mittlere Länge des zu-
gehörigen Huffman-Codes ist also 27/16, was deutlich kleiner als 2 ist.

(10.16) Satz. Sei p = (p1, . . . , pn) ein Wahrscheinlichkeitsvektor. Dann gilt

lim
k→∞

1

k
H0(p

k) = H(p).

Beweis. Einsetzen in die Definition (10.1) ergibt H(pk) = kH(p). Aus Satz (10.12) folgt
dann H(p) ≤ H0(p

k)/k < H(p) + 1/k, woraus sich Satz (10.16) ergibt. 2

Die ideelle Entropie H(p) ist also die pro Versuch benötigte mittlere Anzahl von Fragen
bei vielen unabhängigen Repetitionen des Versuchs. In der Regel liegt H0(p

k)/k bereits
für kleine k sehr nahe an der ideellen Entropie H(p).

Die ideelle Entropie H hat einige interessante Eigenschaften. Zu vorgegebenem n ∈ N ist
sie definiert auf der Menge von Wahrscheinlichkeitsvektoren

△n =

{
(p1, . . . , pn) ∈ R

n

∣∣∣∣ p1 ≥ 0, . . . , pn ≥ 0,
n∑

j=1

pj = 1

}
.

Als Durchschnitt von n Halbräumen und einer Hyperebene ist △n eine konvexe Teilmenge
des R

n. Benutzt man die Konvention 0 log2 0 = 0, so wird durch (10.1) eine stetige Funkti-
on H : △n → [0,∞) definiert. Der Beweis des folgenden Satzes sei dem Leser überlassen,
für Teil (b) ist Lemma (10.14) hilfreich:

(10.17) Satz.

a) Die Funktion H ist streng konkav auf △n, das heißt für λ ∈ (0, 1) und p, p′ ∈ △n

mit p 6= p′, gilt H(λp+ (1 − λ)p′) > λH(p) + (1 − λ)H(p′).

b) Für alle p ∈ △n gilt H(p) ≤ H(1/n, . . . , 1/n).

140


