1 Diskrete Wahrscheinlichkeitsraume

Die Stochastik unterscheidet sich in mancher Hinsicht von anderen Zweigen der Mathe-
matik. Viele ihrer Definitionen, Konzepte und Resultate sind ohne ihren Bezug auf Pro-
bleme des “téglichen Lebens”, oder andere Naturwissenschaften, etwa die theoretische
Physik, nur schwer zu verstehen. Andererseits ist die Wahrscheinlichkeitstheorie (im wei-
teren kurz:W.-Theorie) eine eigene, rigorose mathematische Theorie mit vielen Beziigen
zu anderen mathematischen Disziplinen.

So ist es nicht weiter verwunderlich, dafl man mit dem Begriff der Wahrscheinlichkeit in
vielen Bereichen des téglichen und wissenschaftlichen Lebens konfrontiert ist:

1. In Wetterberichten heifit es, dafl die Wahrscheinlichkeit fiir Regen bei 20% liegt.

2. Eine erste Hochrechnung nach einer Wahl besagt, dafi wahrscheinlich ca. 9% der
Bevolkerung griin gewéhlt haben.

3. Die Leukdmiewahrscheinlichkeit betrédgt ca. 0.5 Promille.
4. Die Wahrscheinlichkeit beim Wiirfeln eine 6 zu werfen wird als % angenomimen.

5. In der Quantenmechanik ist die Wahrscheinlichkeit gewisser Ereignisse proportional
zum Integral des Quadrats ihrer Wellenfunktion.

Hierbei fallt auf, dafl wir es auf den ersten Blick mit unterschiedlichen Arten zu tun ha-
ben, den Begriff Wahrscheinlichkeit zu gebrauchen (z.B. wird er sowohl auf zukiinftige als
auch auf vergangene Ereignisse angewandt). Um diese verschiedenen Arten unter einen
Hut zu bekommen, wollen wir unter der Wahrscheinlichkeit eines Ereignisses, dessen Aus-
gang uns unbekannt ist, zunéchst einmal ein Maf} fiir die Gewilheit seines Eintretens
(bzw. dafiir, dafl es eingetreten ist) verstehen. Diese Definition impliziert natiirlich, daf§
die Wahrscheinlichkeit eines Ereignisses von meinem (unseren) subjektiven Kenntnisstand
abhéngt. Das ist auch durchaus sinnvoll. Beispielsweise kann in Beispiel (2) der Wahlleiter
schon die Information iiber den Ausgang der Wahl besitzen — das Ereignis “8-10% aller
Wiéhler haben griin gewahlt” hat fiir ihn also Wahrscheinlichkeit 1 oder 0 — wéhrend man
als Fernsehzuschauer noch auf Hochrechnungen, d.h. auf unsichere Informationen, ange-
wiesen ist. Trotzdem ist es selbstverstéindlich aber so, daf jeder Beobachter glaubt mit der
von seinem Kenntnisstand aus bestmoglichen Approximation der ”wahren” Wahrschein-
lichkeit zu arbeiten. Es soll hier noch bemerkt werden, daf§ die W.-Theorie selber, sofern
wir uns erst einmal eine solche verschafft haben, unsensibel gegeniiber dieser Subjektivitat
der Wahl einer Wahrscheinlichkeit ist. Die W.-Theorie findet quasi zu “einem spéteren
Zeitpunkt” statt: Zunéichst bildet man ein Modell des Vorganges, den man analysieren
mochte (und hier findet die Festlegung der Wahrscheinlichkeit eines Ereignisses statt),
dann tritt die W.-Theorie auf den Plan und beschreibt, welches Verhalten das gewahlte
Modell aufweisen sollte.

Dieser erste Versuch Wahrscheinlichkeit zu definieren erfiillt offenbar nicht die Kriterien,
die man an eine mathematisch saubere Definition stellen wiirde. Beispielsweise ist nicht
klar inwieweit eine Wahrscheinlichkeit von 50% ein kleineres Maf3 an Sicherheit bedeutet
als eine Wahrscheinlichkeit von 75%.



Ein Versuch in diese Richtung wiirde die Wahrscheinlichkeit eines Ereignisses £ als den
Erwartungswert der relativen Haufigkeit des Eintretens von E definieren, also als den
Quotienten aus der Zahl der Fille in denen F eingetreten ist und der Gesamtlénge der
“Versuchsreihe”, den man bei einer sehr langen Reihe gleichartiger Situationen erwarten
wiirde. Diese Definition — obgleich sie auf einem “wahren” Sachverhalt beruht (gemeint
ist das Gesetz der groflen Zahlen, das wir in einem spéteren Kapitel kennenlernen wer-
den) — krankt aber an verschiedenen Defiziten. Sieht man einmal von dem praktischen
Einwand ab, dafl es eventuell unmoglich oder nur schwer moglich ist, eine grofle Zahl in-
dentischer und unabhéngiger Situationen herzustellen, so bleibt doch das schwerwiegende
Hindernis, da3 man fiir eine verniinftige Definition eines Erwartungswertes zunéchst eine
Definition der Wahrscheinlichkeit benotigt (wir werden dies im Lauf des dritten Kapitels
kennenlernen). Man hat versucht, dieses Problem durch Wahl von sogenannten zufélligen
Folgen von Ereignissen zu umgehen, doch stellte sich heraus, dafl schon die Definition
des Begriffs einer zufilligen Folge von Ereignissen beinahe das komplette Problem einer
mathematischen Grundlegung der W.-Theorie beinhaltet.

Es waren grob gesprochen diese Griinde, die dazu fithrten, daf§ die mathematische Fun-
dierung der Wahrscheinlichkeitstheorie lange Zeit ein offenes Problem war (das sogar als
sechstes Problem Eingang in die bertihmten Hilbertschen Probleme fand — genauer formu-
lierte Hilbert (1862-1943) in seiner bertimt gewordenen Rede auf dem Weltkongress 1900
das sechste Problem als dasjenige die theoretische Physik und die Wahrscheinlichkeits-
theorie zu axiomatisieren), obschon die ersten wahrscheinlichkeitstheoretischen Resultate
schon sehr viel élter sind. Das Problem der Axiomatisierung wurde schliefllich 1933 von
A.N. Kolmogoroff (1903-1987) gelost.

Grundlage seiner Axiomatisierung bilden ein paar einfache Beobachtungen iiber relative
Héaufigkeiten. Um diese zu formulieren, fiihren wir zunéchst die Menge () aller mogli-
chen Ausgénge eines zufiilligen Experiments ein (unter einem zufélligen Experiment oder
Zufallsexperiment wollen wir gerade einen Vorgang verstehen, dessen Ausgang uns unbe-
kannt ist). Um groflere Schwierigkeiten, die bei beliebiger Wahl von  auftreten kénnen,
aus dem Wege zu gehen, sei bis auf weiteres 2 eine abzéhlbare Menge. Teilmengen von €2
heiflen dann in der Wahrscheinlichkeitstheorie Ereignisse (events). Die iiblichen Mengen-
operationen haben in der Wahrscheinlichkeitstheorie folgende Bedeutung;:

Sprache der Ereignisse Mengenschreib- bzw. Sprechweise
A, B, C sind Ereignisse A, B, C sind Teilmengen von 2
Aund B ANB

A oder B AUB

nicht A Ac=Q\ A

A und B sind unvereinbar AN B =1

A impliziert B ACB.

Grundlegend ist nun folgende

(1.1) Beobachtung. Es sei 2 eine abzahlbare Menge und auf €2 fithre man ein Zufallsex-
periment n mal durch. Fiir A C 2 sei die relative Haufigkeit r(A) definiert als die Anzahl



der Fille, in denen A eingetreten ist, geteilt durch n. Dann gilt fiir jedes n und jede
abzihlbare Indexmenge I, so dafl die Familie der Ereignisse (A;);c; paarweise unvereinbar
ist

L. r(Q)=1
2. T(Uie[ Ai) = ZieIT<Ai)-

Eine Wahrscheinlichkeit ist nun eine Mengenfunktion, die sich wie relative Haufigkeiten
verhélt, genauer:

(1.2) Definition. Es sei Q) eine abzahlbare Menge. Eine Wahrscheinlichkeit (probability)
auf Q ist eine Mengenfunktion P : P(2) — [0,1] von der Potenzmenge P(2) von 2 in
das Einheitsintervall mit

1. P(Q) =1

2. P(U;er Ai) = > oie; P(A;) fiir jede abzdhlbare Indexmenge I und jede paarweise
unvereinbare Familie von Ereignissen (A;)c;.

Das Paar (€2, P) heifit Wahrscheinlichkeitsraum (probability space).

(1.3) Beispiele.

1. Beim Wiirfeln mit 2 Wiirfeln besteht die Menge () offenbar aus allen mdoglichen
Kombinationen von Augenzahlen. (2 besteht in diesem Fall aus 36 Elementen: 2 =
{(1,1),(1,2),...,(6,6)} = {1,2,3,4,5,6}% Wir setzen P({(i,5)}) = 1/36 fiir jedes
sogenannte Elementarereignis (7, j). Fiir jedes Ereignis A ist daher P(A) = |A|/36,
wobei |A| die Anzahl der Elemente in A ist. Sei z. B. A = {(1,1),(2,2),...,(6,6)}
das Ereignis, daf§ die Augenzahlen gleich sind. Dann ist P(A) = 6/36 = 1/6.

2. In einem Kartenspiel mit einer geraden Anzahl (= 2n) von Karten befinden sich 2
Joker. Nach guter Mischung werden die Karten in zwei gleich grole Haufen aufge-
teilt. Wie grof} ist die Wahrscheinlichkeit, dafl beide Joker im gleichen Haufen sind?
Wir wihlen Q = {(i,5) € {1,2,...,2n}? : i # j}. Hierbei ist {(i,7)} C Q das
Ereignis, dafl sich der erste Joker am Platz ¢ und der zweite am Platz j befindet.
Nach guter Mischung hat jedes dieser Ereignisse die Wahrscheinlichkeit P({(7,j)}) =
1/|Q2] = 1/2n(2n — 1). Das uns interessierende Ereignis ist

A={0,5)€{1,2,....,n}? i £ jYU{(i,j) € {n+1,...,2n}* i # j}.

Dieses enthélt 2 - n(n — 1) ”Elementarereignisse” (7, j). Somit ist

_ 2n(n—-1) =n-—1
P4) = 2n(2n—1) 2n—1



3. Eine Miinze wird n-mal geworfen. ) sei die Menge der n-Tupel, bestehend aus
,,Zahl* und ,,Kopf*. Somit ist |2| = 2". Haben alle n-Tupel gleiche Wahrscheinlich-
keiten, so hat jedes Element von 2 Wahrscheinlichkeit 27". Es sei Ay das Ereignis,
daf} k-mal ,,Zahl“ fallt. Es gilt also P(Ay) = |Ag|27". Die Anzahl |Ay| wird weiter
unten bestimmt.

4. Auto-Ziege Problem: Ein Spielleiter konfrontiert einen Spieler mit drei verschlosse-
nen Tiiren; hinter einer steht ein Auto, hinter den anderen je eine Ziege. Der Spieler
muf sich fiir eine Tiir entscheiden und dies dem Leiter verkiinden. Dieser o6ffnet
daraufhin eine der beiden anderen Tiiren und zeigt eine Ziege. Dann fragt er den
Spieler, ob er sich fiir die ungetffnete Tiir umentscheiden mochte, die der Spieler
nicht gewéhlt hatte. Ist es von Vorteil zu tauschen (angenommen, der Spieler hat
Interesse an dem Auto)? Auch der geiibte Spieler neigt zu der falschen Antwort,
daf} ein Tausch irrelevant ist. Wir werden dies im folgenden analysieren. Angenom-
men, der Spieler entscheidet sich, in jedem Fall zu tauschen. Die Tiir mit dem Auto
dahinter sei mit 1 gekennzeichnet, die beiden anderen mit 2 und 3. Eine Moglich-
keit, ein Spiel zu beschreiben, ist die Angabe eines 4-Tupels (u, v, w, x), wobei u die
gewdhlte Tiir des Spielers, v die des Spielleiters und w die Tiir, zu der der Spieler
auf jeden Fall wechselt, beschreibt. x beschreibe dann den Ausgang des Spiels, also
den Gewinn (G) oder Verlust (V) des Autos. Der Stichprobenraum hat dann die
folgende Gestalt:

S = {<17 2737 V)v (17 3727 V)v (2737 17G)7 (3727 17G>}-

Natiirlich nehmen wir an, daf§ alle drei Tiiren mit gleicher Wahrscheinlichkeit 1/3
gewéhlt werden konnen. Bei Wahl der Tir 1 mit Wahrscheinlichkeit 1/3 fithrt ein
Wechsel der Entscheidung natiirlich zum Verlust des Spiels. Bei Wahl der Tiir 2
oder 3 ergibt der Wechsel einen Gewinn. Also ist die Wahrscheinlichkeit, das Auto
zu gewinnen, 1/3 + 1/3 = 2/3. Unter der Annahme, der Spieler tausche generell
nicht, hat der Stichprobenraum die Gestalt:

S = {(17 27 17 G)’ (17 37 17 G)’ (2737 27 V)? (37 27 37 V)}

Hier ergibt sich eine Wahrscheinlichkeit von 2/3 zu verlieren.

Es sei an dieser Stelle erwéhnt, dal es aufgrund der Eigenschaft (2) in der Definition von
P und der Abzidhlbarkeit von ) natiirlich geniigt, die Wahrscheinlichkeit auf den einzel-
nen Elementen von €2, den sogenannten Elementarereignissen (elementary events, sample
points) festzulegen (dies ist auch in einigen der Beispiele unter (1.3) so geschehen). Ge-
nauer gilt:

(1.4) Lemma. Es sei Q eine abzéhlbare Menge (p(w))weq eine Folge positiver Zahlen mit
> pw)=1.
we

Dann ist durch P({w}) := p(w) eine Wahrscheinlichkeit auf € eindeutig definiert.

Ist umgekehrt P eine Wahrscheinlichkeit auf 2, so induziert diese durch p(w) := P({w})
eine Folge mit obigen Eigenschaften.



Beweis. Man setze einfach fiir A C Q2

P(4) = 3" plw)

wEA

und sehe, dafl dies eine Wahrscheinlichkeit auf €2 definiert. O

Bemerkung. Da alle p(w) > 0 sind, spielt selbst im Fall, wo {2 unendlich ist, die Reihenfolge
der Summation in ) _,p(w) keine Rolle. Genau genommen handelt es sich dann um
einen Grenzwert. Man wéhlt zunéchst eine Abzdhlung wi,ws, ... der Elemente von ).
Dann ist - .o p(w) = lim, o D1 ; p(w;), wobei der Grenzwert nicht von der gewéhlten
Abzdhlung abhéingt, da die p(w) > 0 sind, die Summe also absolut konvergiert.

Wir haben also gesehen, daB eine Folge p := (p(w))weq mit Y ., p(w) = 1 eineindeutig
einer Wahrscheinlichkeit P auf € entspricht. Wir werden daher oft auch (€2, p) synonym
fir (Q2, P) verwenden, wenn P durch p induziert ist.

In konkreten Situationen wahlt man €2 oft so, dafl die einzelnen Elementarereignisse w € €2
gleich wahrscheinlich sind, was natiirlich nur moglich ist, wenn €2 endlich ist. Man spricht
dann von einem Laplace-Experiment. Einige Beispiele dazu:

(1.5) Beispiele.

1. Beim Wiirfeln mit einem Wiirfel wiahlt man Q = {1,2,3,4,5,6}. Dabei ist i € Q
das Elementarereignis, dafl die Zahl ¢+ geworfen wird. Ist der Wiirfel nicht gezinkt,
so wird man p(i) = 1/6 fiir alle i € €2 setzen.

2. Als Elementarereignisse beim Wiirfeln mit 2 Wiirfeln fassen wir alle moglichen Kom-
binationen von Augenzahlen auf (siche auch Beispiel 1.3 (1)). € besteht in diesem
Fall aus 36 Elementarereignissen: Q = {(1,1),(1,2),...,(6,6)} = {1,2,3,4,5,6}%
Wir setzen p((i,7)) = 1/36 fiir jedes Elementarereignis.

3. Ein Stapel mit n Karten wird gut gemischt. Wir denken uns die Karten von 1 bis n
durchnumeriert. Die Elementarereignisse sind die moglichen Reihenfolgen dieser n
Karten, etwa bei n = 3:

Q=1{(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)}.

Bei guter Mischung wird man jede Reihenfolge als gleich wahrscheinlich betrachten
konnen. Jedes Elementarereignis hat dann Wahrscheinlichkeit %

4. Urnenmodell: In einer Schachtel (Urne) befinden sich r rote und s schwarze Kugeln.

Eine Kugel wird zufillig herausgenommen. Mit welcher Wahrscheinlichkeit ist sie
rot?
Wir denken uns die Kugeln von 1 bis r + s durchnumeriert. Die Kugeln mit den
Nummern 1 bis r sind rot; die anderen schwarz. Fiir 2 nehmen wir die Menge
{1,2,...,7 + s}. Dann ist i € Q das Elementarereignis, daf§ die Kugel ¢ gezogen
wird. Diese Elementarereignisse sind nach guter Mischung gleich wahrscheinlich,
haben also Wahrscheinlichkeit % Unser Ereignis enthilt r Elementarereignisse.
Seine Wahrscheinlichkeit ist also r/(r + s).

bt



Wahrscheinlichkeiten geniigen einigen einfachen Regeln, die untenstehend aufgelistet sind

(1.6) Satz. Es sei (£2,p) ein W-Raum.

1. Fir jedes Ereignis A gilt 0 < P(A) < 1.
2. P0)=0, P() =1.

3. Sind Ereignisse A; fiir i € N paarweise disjunkt (d.h. A; N A; = 0 fiir i # j), so gilt
P(U,en Ai) = X221 P(A;) (abzéihlbar additiv, countable additive).

4. In (3) ohne die Voraussetzung, daf die A; paarweise disjunkt sind, gilt noch P(|J;cy 4i) <
Yoy P(A;) (abzéhlbar subadditiv, countable subadditive).

5. AC B= P(B)=P(A)+ P(B\ A).
6. AC B= P(A) < P(B) (monoton).
7. PLAUB)=P(A)+ P(B)— P(ANB).

Bemerkung. Gilt A,41 = Ay =+ =0 fir ein n > 1, so besagen (3) und (4)

i=1 i=1 i=1 i=1
(endlich additiv bzw. subadditiv).

Beweis. (1), (2) und (3) folgen sofort aus der Definition.
(4): Jedes w € ;2 A; gehort zu mindestens einem der A;. Demzufolge gilt

P(U Ai) PN CE W EES WL

wel, A; i=1 weA;
(5) Es gelten B = AU (B\ A) und An (B \ A) = (. Somit ist nach (3) P(B) =
P(A)+ P(B\ A).
(6) folgt aus (5) und P(B\ A) > 0.
(7) Wir haben folgende Zerlegungen in disjunkte Teilmengen:

AUuB=(A\B)UB
und
A= (A\B)U(ANB).

Nach (3) gilt:

P(AUB) = P(A\B)+ P(B),
P(A) = P(A\B)+P(ANB).



Subtrahiert man die zweite Gleichung von der ersten, so folgt (7). O

Die Festlegung der Wahrscheinlichkeiten der Elementarereignisse ist ein auflermathema-
tisches Problem. In den bisherigen Beispielen hatten die Elementarereignisse jeweils alle
die gleichen Wahrscheinlichkeiten. Dies ist verniinftig, wenn alle Elementarereignisse als
,,gleich moglich“ erscheinen, oder wenn kein Grund fiir eine Ungleichbehandlung der Ele-
mentarereignisse vorliegt. Tatséchlich wéhlt man die Zerlegung in Elementarereignisse oft
unter diesem Gesichtspunkt.

Ein Beispiel dazu: Jemand wirft zwei Wiirfel. Interessiert er sich nur fiir die Augen-
summe, so kann er als Elementarereignisse die moglichen Ergebnisse dafiir nehmen: 2 =
{2,3,4,...,12}. Es ist offensichtlich, dafl diese Elementarereignisse nicht gleichwertig sind.
Deshalb nimmt man besser die Elementarereignisse aus (1.5 (2)).

In vielen Fillen wire die Festlegung, dafl alle Elementarereignisse gleich wahrscheinlich
sind, aber ganz unsinnig, beispielsweise wenn man die Wahrscheinlichkeit modelliert, dafl
ein produziertes Werkstiick defekt ist.

Nun ein Beispiel mit einem unendlichen W-Raum:

(1.7) Beispiel. Eine Miinze wird so lange geworfen, bis zum erstenmal ,, Kopf“ fallt. Wir
wéhlen als 2 die natiirlichen Zahlen N. Das Elementarereignis ¢ € N bedeutet, daf§ zum
erstenmal beim i-ten Wurf | Kopf“ fallt. Wie grof§ ist p(i)? DaB i eintritt, ist auch ein
Elementarereignis in unserem Beispiel (1.3 (3)), ndmlich, daff zunéchst (i —1)-mal ,,Zahl“
fallt und dann ,,Kopf“. Somit ist p(i) = 27%. Die p(i) erfiillen die Bedingung in Lemma
(1.4): >,y p(i) = 1. Also ist (€2, p) ein W-Raum.

In unserem Modell ist das Ereignis, dafl ,,Kopf“ nie féllt, das unmogliche Ereignis. (Vor-
sicht: Es gibt in der Literatur andere Modelle — mit iiberabzdhlbarem W-Raum — wo
dieses Ereignis zwar Wahrscheinlichkeit 0 hat, aber nicht unmoglich ist.)

Die Bestimmung der Wahrscheinlichkeit von Durchschnitten ist in der Regel einfacher als
die von Vereinigungen. Eine Verallgemeinerung von (1.6 (7)) sieht wie folgt aus: Ay, ..., 4,
seien n Ereignisse. A; U---U A, ist das Ereignis, dal mindestens eines der A; eintritt.

(1.8) Satz (Fin- und Ausschlufiprinzip, inclusion-exclusion principle).
Fir Ay,..., A, C Q gilt

P(A1U...UA,) =) P(A) = > P(A,NA,)+ > P(A,NA,NAY)
=1 i1 <tg i1 <t <i3

— A (=D"IP(AIN AN N A,

Beweis. Induktion nach n: Fiir n = 2 ist dies (1.6 (7)).
Induktionsschluf}:

P(AyU...UA, 1) =P(AU...UA,) +P(Ar11) — P((A1U...UA,) N Aui1)



nach (1.6 (7))

n+1
=> P(A4)— Y P(A, N4,
i=1 1<i1<i2<n
+ ) P(A,NA,NAL) -
1<41<12<i3<n

- P(<A1 N An+1) U (AQ N An+1) U---u (An N An+1))

nach Induktionsvoraussetzung und dem Distributivgesetz fiir Mengenoperationen. Wendet
man auf den letzten Summanden nochmals die Induktionsvoraussetzung an, so folgt die
Behauptung. O

Exkurs zu Abzéahlmethoden

Zur Berechnung der Wahrscheinlichkeiten in Laplace-Experimenten sind die folgenden
kombinatorischen Ergebnisse von Nutzen. In einer Urne seinen n Kugeln mit 1,2,....,n
numeriert. Es werden k& Kugeln zufillig gezogen. Konnen Kugeln mehrfach gezogen wer-
den (man legt also die gezogene Kugel jeweils zuriick), spricht man von einer Stichprobe
mit Zuriicklegen; kann jede Kugel nur einmal auftreten von einer Stichprobe ohne Zuriick-
legen. Eine Ziehung kann durch ein k-Tupel (wy, ..., wy) angegeben werden, wobei w; die
Nummer der bei der i’ten Ziehung gezogenen Kugel ist. Es kommt hier auf die Reihenfolge
an, und man spricht von einer Stichprobe in Reihenfolge. Kommt es hingegen nur auf die
Anzahl der einzelnen Kugeln an, spricht man von einer Stichprobe ohne Reihenfolge und
notiert in gewohnlichen Mengenklammern {wy, ..., wg}.

Man kann nun 4 Stichprobenrdume unterscheiden, deren Elemente gezahlt werden sollen.
Sei A={1,...,n}.

1. (Stichprobe in Reihenfolge mit Zuriicklegen) Man wéhlt hier den Stichprobenraum
O ={w=(w,...,wp) W €Ai=1,... k} = A"
Offensichtlich gilt Q] = n*.
2. (Stichprobe in Reihenfolge ohne Zuriicklegen) Hier ist der Stichprobenraum
Q={w=(w1,...,wg) w; €A w; #Fw; furi#j,1<4i,j <k}

Es dient uns nun ein vermutlich wohlbekanntes Abzéhlprinzip: Sei € die Menge von
k-Tupeln w = (wy, . ..,wy), aufzufassen als Ergebnisse eines aus k Teilexperimenten
bestehenden zufilligen Experiments. Gibt es fiir das i’te Teilexperiment r; mogliche
Ausgénge, und ist fiir jedes ¢ die Zahl r; unabhéngig von den Ausgéngen der fritheren
Teilexperimente, dann ist

Q] =riry- 1y

Dies sieht man einfach via einer Induktion. Es folgt nun unmittelbar: |23] = n(n —
1)(n—2)---(n—k+1). Speziell fiir n = k besteht Qy aus der Menge der Permuta-
tionen von {1,...,n} und es gilt || =nl:=n(n—-1)(n —2)---2- 1.
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3. (Stichprobe ohne Reihenfolge ohne Zuriicklegen) Hier hat der Stichprobenraum die
Form

Qs = {{wr, ... wi} rw € Aw; #wj, (1# 7))

Dieser Raum liBt sich nun einfach beschreiben, indem man in €, die folgende Aqui-
valenzrelation einfithrt: (wy,...,wg) ~ (wi,...,w}) genau dann, wenn es eine Per-
mutation 7 von {1,...,k} gibt mit w, = wy fiir ¢ = 1,..., k. Die Elemente von
Q3 sind nun die Aquivalenzklassen. Da jede Aquivalenzklasse k! Elemente hat, folgt

|Q] = K!)Q23]. Man schreibt
n n!
O3] = =——
2] (k) k\(n — k)

(Binomialkoeflizient) fiir 1 < k < n. (}) ist die Anzahl der Teilmengen der Méchtig-
keit k von einer Menge der Méchtigkeit n. Da jede Menge genau eine Teilmenge der
Miéchtigkeit 0 hat (die leere Menge), setzt man (f) = 1. Setzt man nun noch 0! = 1,
gilt die obige Definitionsgleichung des Binomialkoeffizienten auch fiir £ = 0. Es sei
bemerkt, dal man jede obige Aquivalenzklasse zum Beispiel durch den Reprisen-

tanten (wy,...,wy) mit w; < we < ... < wy beschreiben kann.

In Beispiel (1.5)(3) ist also [Ax| = (}).

4. (Stichprobe ohne Reihenfolge mit Zuriicklegen) Hier wéhlt man die Menge der
Aquivalenzklassen unter der oben eingefithrten Relation im Stichprobenraum €4
als Stichprobenraum. Man wihlt als Représentanten einer jeden Klasse ein Tupel
mit w; < ws < ... < wy, so daBl man die Darstellung

Q4:{w:(w1,...,wk)EAk:wlngg...gwk}

erhélt. Ordnet man jedem Element (wy, . ..,ws) der Menge €2y die Folge (wf,. .., w})
mit w, = w; + 7 — 1 zu, so wird der Stichprobenraum bijektiv auf die Menge
{(Wi,...,w}) € BF : w) < wh < .. w,} mit B={1,2,....,n+k — 1} abgebil-
det, und nach Fall (3) folgt:
n+k—1
- (1)

Eine erste Anwendung haben diese Abzéhlverfahren bei der Berechnungen gewisser Wahr-
scheinlichkeiten in wesentlichen physikalischen Verteilungen.

Die Maxwell-Boltzmannsche und die Bose-FEinsteinsche Statistik Diese sogenannten Sta-
tistiken beschreiben Verteilungen in der statistischen Physik, genauer die Verteilungen
von n Teilchen in einem abstrakten Raum, dem sogenannten Phasenraum. Zerteilt man
diesen Raum in N Zellen, so ist die entsprechende Verteilung dadurch festgelegt, dafl
man bestimmt, was die Wahrscheinlichkeit ist, in einer bestimmten Zelle k Teilchen zu
finden. Nimmt man an, dafl die Teilchen unterscheidbar sind, so ergibt sich die Maxwell—
Boltzmann—Statistik, die jeder Verteilung die Wahrscheinlichkeit ﬁ zurordnet. Fiir das
Ereignis in einer bestimmten Zelle genau k Teilchen vorzufinden haben wir dann (Z) X
(N — 1)"~* Moglichkeiten, da es (}) Moglichkeiten gibt, die k Teilchen fiir die Zelle aus-

zuwihlen und sich die restlichen n— k Teilchen auf (N —1)"~* verschiedene Moglichkeiten

9



auf die N — 1 restlichen Zellen verteilen lassen. Dies ergibt eine Wahrscheinlichkeit Py des
Ereignisses genau k Teilchen in einer bestimmten Zelle vorzufinden von

n 1.x 1\ nk
P, = —)(1——= :
, (k) (3 -5
Diese Verteilung wird uns im Laufe der Vorlesung noch einige Male begegnen.

Die Maxwell-Boltzmann—Statistik hat sich beispielsweise fiir Gasmolekiile als der richtige
Ansatz erwiesen. Fiir einige Elementarteilchen, z.B. Photonen oder Elektronen hingegen
hat es bewahrt, die Teilchen als ununterscheidbar anzunehmen. Wir konnen daher auch
nur noch zwei Verteilungen unterscheiden, wenn sie sich in der Besetzungszahl mindes-
tens einer (und damit mindestens zwei) Zelle(n) unterscheiden. Dies ist der Ansatz der
FEinstein—Bose—-Statistik. Man iiberlegt sich schnell, dal dies dem Ziehen mit Zuriickle-
gen ohne Beachtung der Reihenfolge entspricht, man also (N +n"*1) Elementarereignisse
hat. Die entsprechende Laplace-Wahrscheinlichkeit eines Elementarereignisses ist damit

gegeben durch —x++—~. Nun berechnen wir nach der Einstein-Bose-Statistik die Wahr-

scheinlichkeit dafiirn, daf in einer vorgegebenen Zelle k Teilchen liegen. Dafiir geniigt es, die
Anzahl der Moglichkeiten zu bestimmen, in denen dieses Ereignis eintritt. Diese Anzahl
ist gleich der Anzahl der Moglichkeiten, dafl in den iibrigen N — 1 Zellen n — k Teilchen

liegen, also gleich (N +:__:_2); die gesuchte Wahrscheinlichkeit ist daher gegeben durch
N+4n—k—2
( n—~k )
(N+n—1) :

Es sei hier noch abschliefend erwéhnt, daf§ auch die Bose-Einstein—Statistik nicht allge-
mein giiltig ist. Fiir einige Elementarteilchen wendet man daher noch das Pauli-Prinzip
an, um zur sogenannten Fermi-Dirac—Statistik zu gelangen.
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2 Bedingte Wahrscheinlichkeiten, Unabhingigkeit

Ein wichtiges Werkzeug in der Wahrscheinlichkeitstheorie ist die sogenannte ,,bedingte
Wahrscheinlichkeit “. Dazu ein Beispiel:

Sei ) die Menge der Einwohner Bielefelds. Ein Reporter des WDR befragt einen rein
zufillig herausgegriffenen Bielefelder nach seiner Meinung zur Einfiithrung von Studien-
gebiihren. Wir nehmen an, dafl jeder Einwohner die gleiche Chance hat, befragt zu werden.
Ist N die Anzahl der Einwohner, so ist die Wahrscheinlichkeit dafiir, daf§ ein bestimmter
Einwohner befragt wird, 1/N. Natiirlich ist es sehr wahrscheinlich, da Studierende der
Einfithrung von Studiengebiihren skeptischer gegeniiberstehen als Nichtstudierende. Es sei
B die Menge der Bielefelder Studierenden. Es gilt daher P(B) = |B|/N. Sei A die Menge
der Bielefelder, die die Einfithrung befiirwortet. Es gilt dann P(A) = |A|/N, wiahrend der
relative Anteil der Studierenden, die die Studiengebiihren befiirworten, sich berechnet als
|AN B|/|B| = P(AN B)/P(B). Man bezeichnet dies als bedingte Wahrscheinlichkeit von
A gegeben B. Sie unterscheidet sich fiir gewohnlich von der ”unbedingten” Wahrschein-
lichkeit P(A).

Allgemein definieren wir:

(2.1) Definition. Sei B C 2 ein Ereignis mit P(B) > 0. Fiir jedes Ereignis A C 2 heifit
P(A|B) := P(ANB)/P(B) die bedingte Wahrscheinlichkeit (conditional probability) fur
A gegeben B .

Der nachfolgende Satz enthélt einige einfache Figenschaften, die zeigen, daf es sich bei
der bedingten Wahrscheinlichkeit in der Tat um eine Wahrscheinlichkeit handelt.

(2.2) Satz. Es seien A, B C Q und P(B) > 0. Dann gilt:

1. A> B = P(A|B) =1.
2. BNA=0= P(AB) =0.

3. Sind die Ereignisse A;, i € N, paarweise disjunkt, so gilt

P(Q A B) = Zf;P(AAB).

4. P(A°|B) =1 — P(A|B).

Beweis. (1), (2) folgen sofort aus der Definition.

(3)

p(['jA B) - ﬁP((DAJﬂB):ﬁP(G(AmB))



(4) Wegen AN A° = () gilt nach (3)

P(A|B) + P(A°|B) = P(AU A°|B) = P(Q|B) = 1.

(2.3) Bemerkung. Sei (€2, p) ein endlicher Wahrscheinlichkeitsraum, und alle Elementa-
rereignisse seien gleich wahrscheinlich (Laplace-Experiment). Dann gilt fiir A, B C 2 und
B4
|AN B

1Bl
d.h; die bedingten Wahrscheinlichkeiten lassen sich iiber die Méchtigkeiten der Ereignisse
bestimmen.

P(A|B) =

(2.4) Beispiele.

1. Wie grof} ist die Wahrscheinlichkeit, dafl beim Werfen mit zwei Wiirfeln einer der
beiden eine 2 zeigt, gegeben die Augensumme ist 67 Sei B das Ereignis ,,Die Au-
gensumme ist 6. also

B = {(17 5)7 (27 4)7 (37 3)7 (47 2)7 (57 1)}7
und A das Ereignis ,,Mindestens einer der Wiirfel zeigt 2.
A= {(27 1)7 (27 2)7 (27 3)7 (27 4)7 (27 5)7 (27 6)7 (17 2)7 (37 2)7 (47 2)7 (57 2)7 (67 2)}

Dann gilt ANB = {(2,4), (4,2)} und P(A|B) = 2/5. Zum Vergleich: Die unbedingte
Wahrscheinlichkeit ist P(A) = 11/36 < P(A|B).

2. Es seien drei Késten mit je zwei Schubladen gegeben, in denen je eine Gold (G)- bzw.
eine Silbermiinze (S) in der folgenden Aufteilung liege: Q = {[G, G], [G, S], [S, S]}.
Zufallig wird ein Kasten gewéhlt, und dann zufillig eine Schublade getffnet. In dieser
liege eine Goldmiinze. Wie grof} ist die Wahrscheinlichkeit dafiir, daf in der anderen
Schublade dieses Kastens eine Silbermiinze liegt? Die zuféllige Wahl sei jeweils ein
Laplace-Experiment. Wir numerieren die Késten und Schubladen und wéhlen als
Stichprobenraum Q = {1,2,3} x {1,2} und setzen P({(i,5)}) = 1/3-1/2 = 1/6.
Dann ist die gesuchte Wahrscheinlichkeit P(A|B) mit B = {(1,1),(1,2),(2,1)}
(Ziige, so daB in der Schublade eine Goldmiinze liegt) und A = {(2,1), (3,1), (3,2)}
(Ziige, so daB in der anderen Schublade eine Silbermiinze liegt). Es gilt P(A|B) =
(1/6)/(1/2) = 1/3. Welchen Wert fiir die Wahrscheinlichkeit hétte man vor der
Rechnung erwartet?

In der bisherigen Diskussion haben wir die bedingten Wahrscheinlichkeiten auf die unbe-
dingten zuriickgefiihrt. Es ist jedoch oft wichtiger, umgekehrt Wahrscheinlichkeiten aus
gewissen bedingten Wahrscheinlichkeiten zu berechnen. Die grundlegende Idee dabei ist
es den zugrunde liegenden W.-Raum mit Hilfe einer Bedingung in disjunkte Teilrdume
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zu zerlegen, auf diesen die bedingten Wahrscheinlichkeiten zu berechnen und diese dann
wieder mit geeigneten Gewichten zusammenzufiigen. Ein Beispiel dazu:

(2.5) Beispiel. Ein Gesundheitslexikon sagt, daf es sich beim Auftreten eines Symptoms
S um 2 Krankheiten K oder K¢ handeln kann. Diese sind insgesamt unterschiedlich
haufig: Sie treten im Verhéltnis 7:93 auf. Andererseits zeigt sich das Symptom S, wenn
K vorliegt in 92% aller Fille, bei Vorliegen von K¢ nur in 8.5% aller Falle. Mit welcher
Wahrscheinlichkeit ist nun eine Person, bei der S festgestellt wird, an K erkrankt ?

Zunichst einmal ist es plausibel, dafl wir die Wahrscheinlichkeit fiir das Auftreten von S
berechnen konnen als

P(S) = P(K)P(S|K) + P(K°)P(S|K°).

Dem liegt der folgende allgemeine Satz zugrunde:

(2.6) Satz (Formel von der totalen Wahrscheinlichkeit). Es seien By, ..., B, paarweise
disjunkte Ereignisse. Dann gilt fiir alle A C U?Zl B;

P(4) = 3" P(AIB)P(B).

(Sollte P(B;) = 0 sein, so wird der entsprechende Summand P(A|B;)P(B;) als Null
definiert.)

Beweis. Wegen A = U;L:1(A N B;) und der Disjunktheit der AN B, gilt:
P(A) = P(U(A N Bj)) => P(ANB;)=> P(AB))P(B)).
j=1 j=1 j=1
O

Nun kénnen wir auch das urspriingliche Problem lésen. Gesucht ist P(K]S) bei gegebenem
P(K) =0.07; P(K°) = 0.93; P(S|K) = 0.92; P(S|K¢) = 0.085. Nun ist nach obigen Satz

_ P(KNnS) P(K)P(S|K)
P&]S) = P(S)  P(K)P(S|K)+ P(K¢)P(S|K¢)
_ 0.92 x 0.07 04480

0.92 x 0.07 +0.085 x 0.93

Dies ist ein Spezialfall der sogenannten Bayes-Formel:

(2.7) Satz. Unter den Voraussetzungen von (2.6) und P(A) > 0 gilt

P(A|B)P(B)
PUBIA) = S~ 5B, P(B))
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Die von Thomas Bayes (1702-1761) hergeleitete Formel wurde 1763 veroffentlicht.
Beweis.

P(B;N A)
P(A)
P(A|B;)P(B;)
P(A)
P(A|B;)P(B;)
> ;1 P(A|B;)P(B;)

P(B|A) =

nach Satz (2.6). O

Wird die Wahrscheinlichkeit fiir ein Ereignis A durch ein anderes Ereignis B mit P(B) > 0
nicht beeinflult, im Sinne, dafl P(A|B) = P(A) gilt, so heiflen A und B unabhéngig. Es
ist bequemer, dies symmetrisch in A und B zu definieren und auf die Voraussetzung
P(B) > 0 zu verzichten:

(2.8) Definition. Zwei Ereignisse A und B heilen unabhéngig (independent) , wenn
P(ANB)= P(A)P(B) gilt.
Diese Definition spiegelt genau unsere intuitive Vorstellung von Unabhéngigkeit wider. Es

gilt offensichtlich P(A|B) = P(A) dann und nur dann, wenn A und B unabhingig sind
(vorausgesetzt, dafl P(B) > 0 ist).

Unabhéngigkeit von endlichen vielen Ereignissen wird wie folgt definiert:

(2.9) Definition. Die Ereignisse Ay, ..., A, heiflen unabhéngig, wenn fiir jede Auswahl
von Indizes {iy,...,ix} C {1,...,n} gilt:

P(A;, NA,N---NA;,)=P(A,)P(A,) - P(A;,).

(2.10) Bemerkungen.

1. Sind Ay,..., A, unabhingige Ereignisse und ist {i1,...,i,} eine Teilmenge von
{1,...,n}, so sind offensichtlich A; , A;,,..., A; unabhéngig.

2. Die Forderung P(A; N---NA,) = P(Ay)---P(A,) allein ist keine befriedigende
Definition der Unabhéngigkeit (fiir n > 3), denn damit wére die Eigenschaft in Teil
(1) nicht erfiillt. Dazu ein Beispiel: Es seien 2 = {1,2} und p(1) = p(2) = 1/2
sowie Ay = {1}, Ay = {2} und A3 = (). Dann gilt P(A; N Ay N A3) = P(0) =0 =
P(A;)P(A2)P(A;3), aber natiirlich ist P(A; N Ag) # P(A;)P(As).

3. Paarweise Unabhéngigkeit, d.h. P(A;NA;) = P(A;)P(A,) fiir i # j, impliziert nicht
Unabhéngigkeit. Wieder ein kiinstliches Beispiel dazu: Es seien Q2 = {1,2, 3,4} und
p(i) = 1/4 fiir jedes i € Q2 sowie A; = {1,2}, Ay = {2,3} und A3 = {3,1}. Dann
ist P(Ay N AN As) =0 # P(A)P(Ay)P(A;3); jedoch sind Ap, As, A3 paarweise
unabhéngig.
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4. Die Ausdrucksweise ,,Die Ereignisse Ay, ..., A, sind unabhéngig*, die auch hier ver-
wendet wird, ist nicht ganz genau und fiihrt in gewissen Situation zu Miiverstind-
nissen. Unabhéngigkeit ist keine Eigenschaft von Mengen von Ereignissen, sondern
eine Eigenschaft von n-Tupeln von Ereignissen, die allerdings nicht von der Reihen-
folge dieser Ereignisse im Tupel abhéngt. Fiir ein Ereignis A ist das 1-Tupel (A)
nach unserer Definition stets unabhéngig, das Paar (A, A) jedoch nicht. (A, A) ist
genau dann unabhéngig, wenn P(A) = P(ANA) = P(A)P(A), d.h. P(A) € {0,1}
gilt.

Zur bequemen Formulierung des nachfolgenden Ergebnisses fithren wir die Bezeichnung
Al := A fiir A C Q ein, A° ist wie {iblich das Komplement.

(2.11) Lemma. Die Ereignisse Ay, ..., A, sind genau dann unabhdngig, wenn fir alle

(k’l, ey k?n) S {]_, C}n
ki) _ K
(1) - Tl
j=1 j=1
gilt. Hierbei ist {1,c}"™ die Menge der n-Tupel mit den Komponenten 1 und c.

Beweis (I). Unter der Voraussetzung der Unabhéngigkeit zeigen wir die obige Gleichung
mit Induktion nach n:
n = 1: Offensichtlich gilt P(A') = P(A') und P(A°¢) = P(A°).

Induktionsschlufl n — n+ 1: Die Ereignisse Ay, ..., A,.1 seien unabhéngig. Wir beweisen
die obige Gleichung (fiir n+ 1) mit Induktion nach der Anzahl m der Komplementzeichen
in (ky,...,kye1). Fiir m = 0 folgt sie aus der Unabhéngigkeit. Induktionsschlufi m — m+1
fir 0 < m < n+ 1: Es seien m + 1 > 1 Komplementzeichen in (ki,...,k,+1). Durch
Permutation der Ereignisse konnen wir annehmen, dafl k,,, = c ist.

n+1 n n n
P(ﬂ Afj) = P(ﬂ A¥n A;+1) = P(ﬂ Aff) - P(ﬂ A n An+1).
j=1 j=1 j=1 j=1

Der erste Summand ist nach der Induktionsvoraussetzung an n gleich H?Zl P(Afj), der

zweite nach der Induktionsvoraussetzung an m gleich (H?:1 P(A? ))P(Ant1). Damit
folgt, wie gewiinscht,
n+1 n+1
ki) _ kj
P(ﬂ Aj ) =[] P45
j=1 j=1

(II) Wir zeigen die Umkehrung: Die obige Gleichung in (2.11) gelte fiir alle Tupel (k1, ..., k,) €
{1, c}". Wir zeigen die Unabhéngigkeit von Ay, ..., A,.

Sei {i1,...,i} C{1,...,n}und {j1,..., Jm} sei das Komplement dieser Menge in {1, ...,n}.
Dann la8t sich A;, N---NA,, als Vereinigung paarweise disjunkter Mengen wie folgt schrei-

ben:
U Ay NN A, AR A Al

(kl ..... km)e{l,c}m
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Die Wahrscheinlichkeit davon ist nach unserer Voraussetzung gleich

> P(A,)---P(A,)P(AR) - P(AS) = P(A;) - P(Ay).

(k1,...skm)€{1,c}™

Als Beispiel betrachten wir das iibliche Modell fiir das n-malige Werfen einer Miinze.

(2.12) Satz. Wir bezeichnen mit By das Ereignis, dafi der k-te Wurf ,,Kopf“ ist. Die
Ereignisse By, ..., B, sind unabhéngig.

Beweis. Es gilt P(B;) = P(Bj) = 1/2 fiir alle j € {1,...,n}. Fiir jedes n-Tupel
(k... k) € {1,¢}" gilt P(BP* -+~ Bi») = 27 = [[\_, P(B’). Nach (2.11) sind
By, ..., B, unabhéngig. O

Offenbar ist der n—fache Miinzwurf dquivalent zu einem Zufallsexperiment, welches mit
gleicher Wahrscheinlichkeit in Erfolg (abgekiirzt durch E) oder Milerfolg (abgekiirzt durch
M) endet und das wir n Mal unabhéngig durchfiihren. Dieses Modell ist allerdings — wie
schon in Kapitel 1 diskutiert — nicht immer realistisch. Die naheliegende Verallgemeine-
rung ist die, anzunehmen, dafl £ und M nicht notwendig gleich wahrscheinlich sind; das
Ereignis F tritt mit Wahrscheinlichkeit 0 < p < 1 auf. Der entsprechende W.-Raum ist
Q= {E,M}", d. h. die Menge der E-M-Folgen der Linge n. Die Wahrscheinlichkeiten
der Elementarereignisse w = (wy,...,w,) € Q sind gegeben durch p(w) = p*(1 — p)»=*
wobei k die Anzahl der E’s in der Folge wy, ..., w, bezeichnet (wir werden diesen Ansatz
im néchsten Satz rechtfertigen).

Y

(2.13) Definition. Das durch diesen W-Raum beschriebene Zufallsexperiment heifit
Bernoulli-Experiment der Liénge n mit , Erfolgswahrscheinlichkeit“ p.

Wir wollen die Wahrscheinlichkeit von einigen besonders wichtigen Ereignissen im Bernoulli-
Experiment berechnen. Fiir k € {0,1,...,n} sei Ay das Ereignis, daf} insgesamt k& Erfolge
eintreten. In unserer Beschreibung des Bernoulli-Experiments enthélt A, diejenigen Ele-
mentarereignisse, in denen £ mal F vorkommt. Davon gibt es so viele, wie es Moglichkei-
ten gibt, die k erfolgreich ausgegangenen Experimente auszuwéhlen, also (Z) Jedes hat
Wahrscheinlichkeit p*(1 — p)"~*. Somit ist P(Ax) = (})p*(1 —p)" "

Diese Wahrscheinlichkeit kiirzt man meist mit b(k; n, p) ab. Die b(k; n, p) sind erwartungs-
geméf am grofften, wenn k£ in der Ndhe von np liegt. Fiir grofles n sind sie jedoch klein
(hochstens von der Grofienordnung 1/4/n). Eine ausfiihrliche Analyse der Groien b(k; n, p)

wird spéter gegeben werden.

Beispiel: Ein Wiirfel wird n-mal geworfen. Die Wahrscheinlichkeit dafiir, dafl k-mal die
Sechs erscheint, ist b(k;n, 1/6).

Eine andere, dquivalente Moglichkeit die Binomialverteilung zu erhalten ist ein sogenann-
tes Urnenmodell.
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(2.14) Beispiel Ziehen mit Zuriicklegen (sampling with replacement).

Eine Schachtel (Urne) enthélt r rote und s schwarze Kugeln. Es werden n Kugeln nachein-
ander zufillig entnommen. Dabei wird jede sofort wieder zuriickgelegt und die Schachtel
neu gemischt. Die Elementarereignisse seien die Rot-Schwarz-Folgen der Lange n. Es ist
klar, dafl unter idealen Bedingungen die einzelnen Ziehungen unabhéngig sind, dafl dies
also ein Bernoulli-Experiment der Lénge n mit Erfolgswahrscheinlichkeit p = —= ist. Die
Wahrscheinlichkeit des Ereignisses Ay, genau k-mal Rot zu ziehen, ist somit

o= () () (=)

Eine eingehendere Betrachtung der obigen Beispiele legt die Vermutung nahe, daffi Unab-
héngigkeit eng mit den sogenannten Produktrdumen zusammenhingt. Wir werden dies
gleich beweisen. Zunéchst aber miissen wir sagen, was wir iiberhaupt unter einem Pro-
duktraum verstehen wollen. Dazu seien (21,p1),..., (2, p,) diskrete W:Réume. Wir
konstruieren daraus einen neuen W-Raum (Q,p) mit @ = Oy x -+ x Q,. Fir jedes
w = (W1,...,wy,) € Q definieren wir p(w) = p1(w1)pa(ws) - - - pn(wy). Offensichtlich gilt

Zweﬂ p(w) =L

(2.15) Definition. (€2, p) heifit der Produktraum (product space) der W-Raume (£2;, p;),
1 <1< n.

Zu A C §; definieren wir das Ereignis A = {(wy,...,w,) € Q:w; € A} C Q.

2.16) Satz. Sind A; C Q; fiir 1 < i < n, so sind die Ereignisse A", ... A™ im W.-
( ) ) g 1 > 9
Raum (€2, p) unabhéingig.

Beweis. Es gilt Agi)c ={weN:w € A5} = Af(i). Die 2" Gleichungen in Lemma (2.11)
sind also nachgewiesen, wenn

P(AY N nAD) = P(AY) - P(ATY)

n

fiir alle moglichen A; C €;, 1 <1 < n, gilt. Die linke Seite dieser Gleichung ist gleich

Yooopw) = D Y piw) e palwn)

weAgl)ﬁ---ﬁA%) wi1€AY wn€An
n n n
- - — ()
= 11> v =1]] p(w) =[] P(47).
j=1 wJ'EAj _]:1 wEA(Vj) _]:1
J

Der Produktraum liefert somit ein Modell fiir eine unabhéngige Hintereinanderreihung
von n einzelnen Zufallsexperimenten, insbesondere ist offenbar die oben eingefiihrte Bi-
nomialverteilung das Resultat eines n-fachen (nicht notwendig fairen) Miinzwurfes. Sie
spielt eine zentrale Rolle in der diskreten W.-Theorie.
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Natiirlich mag man einwenden, dafl das Ziehen mit Zuriicklegen fiir einige Anwendungen
nicht besonders interessant ist. Beispielsweise wird man sich bei einer Meinungsumfrage
tunlichst hiiten, dieselbe Person mehrfach zu befragen. Das mathematische Modell hierfiir
liefert ein weiteres Urnenmodell:

(2.17) Beispiel Ziehen ohne Zuriicklegen (sampling without replacement).

Wir betrachten dieselbe Situation wie in Beispiel (2.14) mit dem Unterschied, dafl die
gezogenen Kugeln nicht wieder zuriickgelegt werden. Es mufl nun natiirlich n < r+ s sein.
Die einzelnen Ziehungen sind nicht mehr unabhéngig, da ihr Ausgang die Zusammenset-
zung der Schachtel und damit die nachfolgenden Ziehungen beeinflufit.

Sei A;, wieder das FEreignis, daf§ k& rote Kugeln gezogen werden. Wir setzen voraus, dafl
0<k<rund 0<n-—k < s gilt, sonst ist A, das unmogliche Ereignis. Um P(Ay)
zu bestimmen, muf ein geeigneter Wahrscheinlichkeitsraum festgelegt werden. Als Ele-
mentarereignis betrachten wir die Menge der n-elementigen Teilmengen der r + s Kugeln.
Wie viele darunter gehoren zu A, 7 Es gibt (2) Moglichkeiten, die k& Kugeln aus den roten
auszuwahlen, und (nfk) Moglichkeiten fiir die schwarzen Kugeln, also enthélt A, genau

(T) (nik) Elementarereignisse. Es gilt also

| o= () )/

offensichtlich ein anderer Wert als im Modell mit Zuriicklegen. Man nennt dies auch die
hypergeometrische Wahrscheinlichkeitsverteilung (hypergeometric probability distributi-
on).

Obschon die Binomialverteilung und die hypergeometrische Verteilung unterschiedliche
Wahrscheinlichkeiten fiir das Ereignis & Erfolge zu haben liefern, kann man mutmaflen, daf3
der Unterschied klein ist, sofern r und s grof3 sind. Dies ist plausibel, denn in diesem Fall ist
die Wahrscheinlichkeit, eine Kugel doppelt zu ziehen klein (und dies ist ja die Ursache fiir
die Abhéngigkeit der einzelnen Ziehungen bei der hypergeometrischen Verteilung). P(Ay)
(in der hypergeometrischen Verteilung) kann in der Tat durch die Wahrscheinlichkeit
b(k;n,p) mit p=r/(r + s) angendhert werden, sofern n = r + s grof§ ist. Genauer:

r S r+s n
1' — k 1 — nfk.
am ()G 000) = (ra-»

Beweis. Die Groflen auf der linken Seite sind gleich

(2.18) Satz.

n! rr—=1)--(r—k+1s(s=1)---(s—n+k+1)
kl(n — k)! (r+s)(r+s—1)---(r+s—n+1)

— (Z)pk(l —p)"‘k fiir r, s — o0,
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Wir schlieflen dieses Kapitel mit einer Anwendung der bedingten Wahrscheinlichkeiten
bei genetischen Modellen:

Hardy-Weinberg Theorem : Gene sogenannter ,,diploide” Organismen treten paarweise
auf und sind die Tréger der vererblichen Eigenschaften. In einem einfachen Fall nehmen
die Gene zwei Formen an, die man die Allele A und a nennt. Als Kombinationen sind
dann die Genotypen AA, Aa und aa moglich. Zu einem bestimmten Zeitpunkt sei nun
in einer Bevolkerung der Genotyp AA mit relativer Haufigkeit u > 0 vorhanden, der Ge-
notyp Aa mit der relativen Haufugkeit 2v > 0, und aa mit relativer Haufigkeit w > 0.
Dann ist u + 2v+ w = 1. Wir nehmen an, dal das Gen nicht geschlechtsgebunden ist. Bei
jeder Fortpflanzung {ibertrégt jedes Elternteil ein Gen seines Genpaares, und zwar mit
Wahrscheinlichkeit 1/2 auf den Nachkommen und fiir beide Elternteile unabhéngig von-
einander (zuféllige Zeugung). Bei unabhéngiger Auswahl von Mutter und Vater betrigt
die Wahrscheinlichkeit, dafl beide Genotyp AA haben, dann u?. Die folgende Tabelle gibt
die moglichen Kombinationen der Genotypen sowie die Wahrscheinlichkeit Pa4 an, dafl
diese Kombination von Genotypen zu einem Nachkommen vom Genotyp AA fiihrt:

Vater Mutter relative Haufigkeit Pua
AA AA u? 1
AA Aa 2uv 1/2
Aa AA 2uv 1/2
Aa Aa 40 1/4

Mit der Formel von der totalen Wahrscheinlichkeit ergibt sich somit in der ersten Nach-
kommengeneration der Genotyp AA mit Wahrscheinlichkeit P;(AA) = (u + v)?. Analog
ergibt sich P (aa) = (w+v)? und somit P;(Aa) = 1—(u+v)?—(w+v)? = 2(u+v)(v+w).
Wir fassen diese Wahrscheinlichkeiten als die relativen Haufigkeiten der néchsten Gene-
ration auf: u; = (u+ v)?%, 2v; = 2(u + v)(v + w), w; = (v + w)? Dann folgt fiir die
darauffolgende Generation uy = (uy + v1)?, 200 = 2(u1 + v1)(vy + w1), we = (vy + wy)%
Durch Einsetzten sieht man us = ((u +v)? + (u +v)(v + w))? = (v + v)? = u; und aus
Symmetriegriinden ws = wy, und damit auch vs = v;. Durch Induktion folgt fiir die k-te
Generation:
up = (u+v)?, 20 = 2(u+0)(v+w), wp = (v +w)?.

Die Haufigkeitsverteilung der Genotypen ist also in allen Nachkommengenerationen gleich.
Diese Aussage stammt von dem Mathematiker Godfrey Harold Hardy (1877-1947) und
dem Physiker Wilhelm Weinberg (1862-1937) aus dem Jahre 1908.
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3 Zufallsgroflen, Gesetz der groflen Zahlen

Zu Beginn dieses Kapitels sei noch einmal daran erinnert, wie wir im vergangenen Ab-
schnitt vom Bernoulli-Experiment zur Binomialverteilung gekommen sind. Wahrend das
Bernoulli-Experiment auf dem Wahrscheinlichkeitsraum (€2, p) lebte, wobei Q = {0, 1}V
und p(w) = p*(1 —p)"* fiir ein w mit k Einsen war, war die Binomialverteilung b(k; n, p)
eine Wahrscheinlichkeit auf der Menge {0, ..., n}. Der Zusammenhang zwischen beiden ist
der, dafl man fiir b(k;n,p) die Wahrscheinlichkeiten im Bernoulli-Experiment fiir simtli-
che w mit k£ Einsen quasi aufsammelt. Formal entspricht das einer Abbildung X : 2 — N,
wobei wir zusétzlich jedem n € N die Summe der Wahrscheinlichkeiten seiner Urbilder
zuordnen. Dies ist das Konzept der Zufallsvariablen.

(3.1) Definition Sei (£2,p) ein (diskreter) W.-Raum. Dann heifit eine Abbildung X :
2 — R eine (diskrete) Zufallsvariable oder Zufallsgrofe ((discrete) random variable).

Wir beobachten, daf fiir die formale Definition einer Zufallsvariablen p zunéchst vollig be-
langlos ist. Eine Zufallsgrofe ist einfach eine Abbildung und keine ,,zufallige” Abbildung.
Natiirlich werden wir jedoch nun die Eigenschaften von X im Zusammenhang mit p un-
tersuchen. Die zentrale Idee hierbei wird immer sein, daf} eine Zufallsvariable “wesentliche
Eigenschaften” eines W.-Raumes herausfiltert.

Es bezeichne X () das Bild von Q unter X, d.h. die hochstens abzéhlbare Menge reeller
Zahlen { X(w):w e Q}. Fir ACRist X 1(A)={weQ: X(w) € A} eine Teilmenge
von 2, d. h. ein Ereignis. Wir nennen dies das Ereignis, ,,daff X einen Wert in A annimmt “.
Wir benutzen die folgenden Kurzschreibweisen:

(XA} = {weQ: X(w)eA}=X1(4),
{(X=2} = {weQ: Xw)=2}=X"1{z}),
{(X<z2} = {weQ: X(w) <z} =X"((~00,2]), etc.
Statt P({X € A}), P({X = z}) schreiben wir einfach P(X € A), P(X = z), etc.
Wir schreiben meistens ein Komma anstelle von ,,und“ bzw. des mengentheoretischen
Durchschnitts innerhalb der Klammer in P( ). Sind etwa X, Y ZufallsgroBen und A, B C

R, so schreiben wir P(X € A, Y € B) fir P({X € A}n{Y € B}) oder noch ausfiihrlicher
PH{w:X(w)€ Aund Y(w) € B}).

(3.2) Beispiele.

1. Es sei X die Augensumme beim zweimaligen Werfen eines Wiirfels. Zur forma-
len Beschreibung dieses Versuchs betrachten wir den W.-Raum (2,p) mit Q =
{1,2,3,4,5,6}% und der Gleichverteilung p, also p((7,7)) = 1/36 fiir alle (i,7) € Q.
Die Zufallsgrofie X : Q@ — R mit X ((¢,7)) =i+ J fiir alle (4, 5) € Q beschreibt dann
die Augensumme, und es gilt z. B.

P(X =3)="Pr({(1,2),(2,1)}) =1/18
und

P(X < 4) = P({(la 1)7 (1’2)7 (2’ 1)7 (173)7 (272)7 (37 1)}) = 1/6'
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2. Es bezeichne X die Anzahl der Erfolge in einem Bernoulli-Experiment der Lénge n.
Setzen wir X; = 1, falls der i-te Versuch ein Erfolg ist, und X; = 0 sonst (1 < i < n),
so folgt X =" | X;.

3. Fiir eine beliebige Teilmenge A C €2 definieren wir die Indikatorfunktion 14 von A

durch
1 fallsw € A,

Lalw) = { 0 fallsw ¢ A.

Sei X : Q — R eine ZufallsgroBe. Fiir z € X () sei f(z) := P(X = z). Da die Ereignisse
{X = z} fiir verschiedene z € X () sich gegenseitig ausschlieflen und

Q= U {X =2}

z€X(Q)

Y ofl) =1

z€X(Q)

gilt, folgt

(X(9), f) ist somit ein W.-Raum (dies entspricht der eingangs gemachten Beobachtung
fiir die Binomialverteilung).

(3.3) Definition. f heifit die Verteilung (distribution) der Zufallsgrofie X.

Aus der Verteilung einer Zufallsgrofle 148t sich P(X € A) fir jede Teilmenge A von R

berechnen:
PXeA)= Y [
z€ANX(Q)

Verteilungen sind jedoch oft kompliziert und in vielen praktisch wichtigen Beispielen nicht
explizit berechenbar. Zunéchst einige Beispiele, bei denen die Verteilung einfach angege-
ben werden kann:

Beispiel (3.2 (1)) (Augensumme beim zweimaligen Wiirfeln): X (Q) = {2,3,4,...,12},

Binomialverteilte Zufallsgréfien:

Sei X die Anzahl der Erfolge in einem Bernoulli-Experiment der Lange n und Erfolgs-
wahrscheinlichkeit p. Dann ist, wie wir schon in Kapitel 2 berechnet haben:

P(X =k)= <Z)pk(1 —p)" * =b(k;n,p) firke{0,1,...,n}.

(3.4) Definition. Eine Zufallsgrofie mit obiger Verteilung heifit binomialverteilt mit Pa-

rametern p und n.

21



Diese Zufallsvariablen werden im weiteren Verlauf der Vorlesung noch eine zentrale Rolle
einnehmen.

Offensichtlich kann man auf einem W.-Raum (€2, p) sehr viele verschiedene Zufallsvaria-
blen definieren. Um diese zu unterscheiden, mufl man ihre Verteilungen unterscheiden.
Da sich die exakte Verteilung in vielen Beispielen nur schwer oder gar nicht explizit be-
rechnen 148t, ist es wichtig, dafl es gewisse Kenngroflen von Zufallsgrofien gibt, die oft
einfacher zu berechnen oder abzuschétzen sind, und die wichtige Informationen iiber die
Zufallsgrofle enthalten. Die wichtigste dieser Grofien ist der Erwartungswert, der angibt,
wo die ZufallsgroBe “im Mittel” liegt.

(3.5) Definition. Sei X eine Zufallsgrofie. Man sagt, daf§ der Erwartungswert (expected
value, expectation) von X existiert, falls 3 __ v o [2|P(X = z) < oo ist. Der Erwartungs-
wert von X ist dann definiert durch

E(X)= Y zP(X=2).

z€X ()

Wir definieren also F(X) nur, wenn die Reihe absolut konvergiert. Der Wert der Reihe
> .ex(a) #P(X = z) hingt dann nicht von der Reihenfolge der Summation ab. Es muf§ her-
vorgehoben werden, daf§ der Erwartungswert einer Zufallsgrofie nur von deren Verteilung
abhéngt. Zwei verschiedene Zufallsgroflen mit derselben Verteilung haben also denselben

Erwartungswert — unabhéngig von ihrem Startraum (€2, p). Wir lassen die Klammern oft
weg und schreiben EX statt F(X).

Man kann statt iiber X (£2) auch iiber 2 summieren:

(3.6) Lemma. Der Erwartungswert von X existiert genau dann, wenn die Reihe
Y wea P(W) X (w) absolut konvergiert. In diesem Falle gilt E(X) = o p(w)X(w).

Bewezs.

Yo lAPX =2 = Y ld Y pWw)

z€X(Q) z€X(Q) w: X (w)=z
= ) lapw) =) IX(@)lpw).
(z,w): X (w)=2 weN

Somit folgt der erste Teil der Behauptung; der zweite ergibt sich mit einer Wiederholung

der obigen Rechnung ohne Absolutzeichen. O
(3.7) Satz.
1. Ist ¢ € R und X die konstante Abbildung nach ¢ (d. h. X(w) = ¢ fiir alle w € ),
so gilt EX = c.
2. Xyq,...,X, seien (auf einem gemeinsamen W.-Raum definierte) Zufallsgrofien, deren
Erwartungswerte existieren, und aq,...,a, seien reelle Zahlen. Ferner sei a,X; +

asXo+- - -+a, X, die Zufallsgrofie, deren Wert an der Stelle w € ) gleich a1 X3 (w) +
asXo(w) + -+ - + a, X, (w) ist. Dann existiert F(a; Xy + - -+ + a,X,,) und ist gleich
aEX,+ -+ a,EX,. ("Der Erwartungswert ist linear”.)
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3. X, Y seien Zufallsgroflen. Gilt X <Y und existiert der Erwartungswert von Y, so
gilt EX < EY. (”"Der Erwartungswert ist monoton”.)

Beweis.
(1) und (3) sind nach der Definition des Erwartungswertes evident.

(2) Wir benutzen (3.6):
Zp Nar X1 (w) + ... + a, X (w)]

< o] Do+ o+ aal o p@)Xae)] < o0

Somit existiert der Erwartungswert und es gilt

BlmX, +-+a,X,) = Zp )(a1 X1 (W) + -+ - + an Xp(w))

= m Zp(w)Xl(w) +...+a, Zp(w)X w

= CLlEX1 + ...+ (lnEXn

Bemerkung. Die Menge aller Zufallsgréfien, die auf € definiert sind, ist einfach R und in
natiirlicher Weise ein R-Vektorraum. Die Menge der Zufallsgrofien, deren Erwartungswert
existiert, ist nach (3.7 (2)) ein Unterraum von R®. Man bezeichnet ihn oft als L;(£2,p).
Der Erwartungswert ist eine lineare Abbildung von L; (€2, p) nach R, also ein Element des
Dualraumes von L; (€2, p).

(3.8) Beispiele.

1. Der Erwartungswert der Indikatorfunktion 14 von A C Q ist F(14) = P(A), denn
A={w:1a(w)=1} und also E(14) =0- P(A°)+1- P(A).

2. X binomialverteilt mit Parametern p, n
Wir schreiben X als X; + --- 4+ X,,, wobei X; = 1 ist, wenn der i-te Versuch von
Erfolg gekront war, und andernfalls X; = 0. Es gilt £(X;) = P(X; = 1) = p und
somit E(X) = np.

Die alleinige Kenntnis von Erwartungswerten ist im allgemeinen wenig niitzlich, wenn
nicht gleichzeitig bekannt ist, daf§ die Zufallsgréfie mit hoher Wahrscheinlichkeit ,,nahe“
beim Erwartungswert liegt.

Dazu ein Beispiel: Ist P(X =0) = P(X =1) =1/2, so ist EX = 1/2, aber dies gibt im
Grunde wenig Information iiber X. Anderseits: Sei X die mittlere Anzahl der Kopfwiirfe
bei einem Miinzwurf-Experiment der Lange 1000, d. h. die Anzahl der Kopfwiirfe / 1000.
Aus Beispiel (3.8 (2)) wissen wir, dafl ebenfalls EX = 1/2 gilt. Jedermann ,,ist bekannt “
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daB X mit grofer Wahrscheinlichkeit nahe bei 1/2 liegt. Dies ist der Inhalt des Geset-
zes der groflen Zahlen, das wir weiter unten gleich diskutieren und beweisen werden. Die
Verteilung von X ist hier ziemlich scharf um E X konzentriert. Ohne solche ,,Mafl)konzen-
trationsphdnomene“ wére jede statistische Umfrage beispielsweise sinnlos.

Ein Ma8 fiir die Abweichung, die eine Zufallsgrofle von ihrem Erwartungswert hat, ist die
sogenannte Varianz:

(3.9) Definition. Es sei X eine ZufallsgroBe mit existierendem Erwartungswert EX.
Dann heif3t
V(X):= Y (- EX)’P(X =2)
z€X ()
die Varianz (variance) von X und S(X) := +4/V(X) die Standardabweichung (standard
deviation) von X, falls die auftretende (moglicherweise unendliche) Reihe konvergiert. Die

Varianz ist stets nicht negativ, da die Glieder in der obigen Reihe alle grofler oder gleich
Null sind. Man sagt oft auch, die Varianz sei unendlich, wenn die Reihe divergiert.

Fiir die Diskussion der Varianz und auch in anderen Zusammenhéngen ist die nachste-
hende Folgerung aus (3.6) niitzlich:

(3.10) Lemma. X;,..., X seien (auf einem gemeinsamen W.-Raum definierte) Zu-
fallsgréfen, und g sei eine Abbildung von X1(2) x -+ X Xi(Q) nach R. Dann ist X :=
g(Xi,..., Xy) = go(Xy,...,Xy) eine Zufallsgrife, deren Erwartungswert genau dann
existiert, wenn

Z Z lg(x1, ..., 26)|P(X1 =21, ..., X = a3) < 00

1’1€X1(Q) :L'kEXk(Q)

gilt. In diesem Fall gilt

EX)= Y ... > gla,....s)PXy=x1,..., X = xp).

:131€X1(Q) :L'kGXk(Q)

Beweis. Wir betrachten den neuen W.-Raum (€,p) mit Q' = X;(2) x -+ x X;(Q)

und p'(zq,...,2x) = P(X1 = 21,..., Xy = x1). Auf diesem W.-Raum definieren wir die
Zufallsgrofe g : ' — R. Fiir z € g() = X(Q) gilt

Plg=2z) = Z Py, .. 1) = Z plw) = P(X = 2).

(1,00 x1)EQ! wEeN
L k X(w)=z2

g und X haben also dieselbe Verteilung. Unser Lemma folgt nun sofort aus (3.6). a

(3.11) Lemma.

1. V(X)) ist der Erwartungswert der Zufallsgrife w — (X (w) — EX)?.
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2. V(X)) emistiert genau dann, wenn E(X?) existiert.
3. Emistiert V(X), so gibt V(X) = E(X?) — (EX)?.
4. Fiir a,b € R gilt V(a + bX) = 0*V(X).
5. Sind X und 'Y Zufallsgrifien, deren Varianzen existieren, so existiert die Varianz
von X +Y.
Beweis.

1. folgt aus (3.10) mit £ =1 und g(z) = (x — EX)>.

2. Falls V(X)) existiert, so existiert £X (per Definition).
Wegen 22 < 2(EX)? +2(z — EX)? fiir z € R folgt

Y PP(X=2)<2EX)+2 Y (- EX)’P(X =2) < 0.

z€X(Q) 2€X(Q)

Nach (3.10) existiert dann E(X?).
Falls F(X?) existiert, so folgt

Yo P(X =2 = Y P(X =2+ Y []PX =

Z€X(R) 2EX(Q) 2EX(Q)
lz]<1 lz]>1
< 1+ g < 00.
z€X(Q)

Somit existiert EX. Wegen (z — EX)? < 2(EX)?+ 22 folgt die Existenz von V(X))
wie oben.

3. V(X) = B(X — EX)?) = B(X2—2(EX)X + (EX)?) =
E(X?) —2EX x EX + (EX)* = E(X?) — (EX)*.

4. folgt sofort aus (1) und der Linearitéit des Erwartungswertes.

5. Es gilt (X(w) 4+ Y(w))? < 2X(w)? + 2Y (w)? fiir alle w € 2. Nach (2) folgt dann die
Existenz von V(X +Y).

O

Im allgemeinen gilt V(X +Y) # V(X) + V(Y) (die Varianz ist also nicht linear). Eine
einfache Rechnung ergibt namlich

V(X+Y) = E(X+Y)-E(X+Y))? (3.1)
= E((X-EX)*)+E((Y —EY)?) +2E((X — EX)(Y — EY))
= V(X)+V(Y)+2E((X — EX)(Y — EY)),
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und der letzte Summand ist in vielen Féllen ungleich Null, z. B. fir X =Y, V(X) # 0.
Dennoch ist der Fall, wo fiir zwei ZufallsgroBen X und Y die Gleichung V(X +Y) =
V(X) + V(Y) gilt, von besonderem Interesse. Wir werden dies weiter unten diskutieren.

(3.12) Definition. Sind X und Y zwei Zufallsgrofien, so wird die Kovarianz (covariance)
zwischen X und Y definiert durch cov(X,Y) = E((X — EX)(Y — EY)), falls alle in
diesem Ausdruck vorkommenden Erwartungswerte existieren.

(3.13) Bemerkung. Eine analoge Uberlegung wie im Beweis von (3.11 (2)) zeigt, da8
cov(X,Y) genau dann existiert, wenn F(X), E(Y) und E(XY) existieren. In diesem Fall
gilt

cov(X,Y) = B(XY) — E(X)E(Y).

(3.14) Lemma. Seien X und Y Zufallsgrifien, fir die cov(X,Y) existiert. Dann gelten
cov(X,Y) = cov(Y, X) und cov(AX, uY) = Apcov(X,Y) fir alle A\, p € R.

Beweis. Definition und Linearitdt des Erwartungswerts. O

Die Gleichung (3.1) kann wie folgt verallgemeinert werden:

(3.15) Satz. Seien Xj, ..., X, Zufallsgrofen mit existierenden Varianzen und Kovarian-

zen. Dann gilt
V(Z X,) = V(X)) + ) cov(Xy, X;).
i=1 i=1

i,j=1
i#]

Beweis.
Y(x) = #((G-e(50))) - ((ee-20) )
= élE((Xi ~ BX)(X, - EX;)) = g V(X)) + i— cov(X;, X;).

(3.16) Satz. Existieren V(X)) und V(Y'), so existiert cov(X,Y’) und es gilt

leov(X,Y)] < S(X)S(Y)  (S(X) = +/V(X)).

Beweis. Fiir alle w € Q gilt 2| X (w)Y (w)| < X?*(w) + Y*(w). Daraus und aus (3.11 (2))
folgt die Existenz von E(XY') und nach der Bemerkung (3.13) auch die von cov(X,Y).
Fiir A\, u € R folgt aus (3.14) und (3.15):

0 < VAX +puY) = AV(X) + 22 ucov(X, Y) + 2V (Y).
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Als Funktion von (), u) € R? definiert dies also eine positiv semidefinite quadratische

Form. Demzufolge ist
V(X) cov(X,Y)
det < cov(X,Y) vy )=

Dies impliziert die Aussage. O

(3.17) Bemerkung. Der Vollstindigkeit halber sei auf den folgenden Sachverhalt hin-
gewiesen. Die Existenz von cov(X,Y') setzt nach (3.13) die Existenz von EX, EFY und
E(XY) voraus und folgt nach dem obigen Satz aus der Existenz von V(X) und V(Y).
Letzteres ist jedoch dafiir nicht notwendig: Es gibt Zufallsgrofien mit existierender Kova-
rianz, deren Varianzen nicht existieren.

(3.18) Definition. Die Zufallsgrofien X und Y heilen unkorreliert (uncorrelated), wenn
cov(X,Y) existiert und gleich null ist. Sind die Zufallsgrofen X, ..., X,, paarweise un-

korreliert und existeren die Varianzen, so gilt nach (3.15)

v(z x) - gvm)

(Gleichheit nach Irénée Jules Bienaymé (1796-1878)). Die fiir uns zunéchst wichtigste

Klasse von unkorrelierten Zufallsgrofien sind unabhéngige:

(3.19) Definition. n diskrete Zufallsgrofen X, ..., X, heilen unabhingig, wenn
P(Xl :2;17---7Xn:zn) :P(Xl :zl)P(Xn:zn)

fir alle z; € X;(2), i € {1,...,n} gilt.

Der folgende Satz stellt einen Zusammenhang zwischen der Unabhéngigkeit von Zufalls-
variablen und der Unabhéngigkeit von Ereignissen her.

(3.20) Satz. Die folgenden vier Aussagen iiber die diskreten Zufallsgrofien
X1, Xo, ..., X, sind dquivalent

(a) Xi,...,X, sind unabhéingig.
(b) Fiir alle Ay,..., A, C R gilt
P(Xi€A,Xo€Ay,...,X,€A,)=P(X;€A4))x---x P(X, €A,).

(c) Firalle Ay,..., A, C R sind die Ereignisse {X; € A1}, ..., {X, € A,,} unabhéngig.

(d) Fir 21 € X1(Q),...,2, € X,(Q) sind die Ereignisse {X; = z1},....{X,, = 2.}
unabhéngig.
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Beweis. (a)=-(b): Summation der Gleichung in (3.20) iiber (z1, ..., 2,) € AjxAyx-- X A,.
(b)=(c): Nach (2.11) ist zu zeigen, daB fiir (i1,...,7,) € {1,c}" die Gleichung

p(é{xj cay) - 1i[1P<{Xj & Aj})

gilt, wobei {X; € A;}' := {X; € A;} ist. Nun ist jedoch {X; € A;}° = {X; € AS}. Wir

konnen deshalb einfach (b) mit A; oder A§ anstelle von A; anwenden.

(¢)=(d) ist trivial und (d)=-(a) ergibt sich aus der Definition. O

(3.21) Satz. Sind die Zufallsgrofen X7, ..., X,, unabhéngig, und sind f; : R — R fiir
it = 1,...,n beliebige Funktionen, so sind die Zufallsgrofien Y; = f; 0 X;, i = 1,...,n,
unabhéngig.

Beweis. Fiir beliebige y1,...,y, € Rsei A; = {z; € R: fi(z;) = y;}. Dann ist {Y; = y;} =
{X; € A;}. Die Aussage folgt somit aus Satz (3.20). O

(3.22) Satz. Zwei unabhéngige Zufallsgrofien, deren Erwartungswerte existieren, sind
unkorreliert.

Beweis. Sind X und Y unabhingig, so folgt
Yoo lwPX =2 Y =y) = > Y |zl ly|P(X =2)P(Y =y)
x oy

zeX () yeY (Q)
- (Z P =) (S bley =) < o

Nach (3.10) mit k£ = 2 und g(z,y) = zy folgt die Existenz von E(XY'). Eine Wiederho-
lung der obigen Rechnung ohne Absolutzeichen ergibt E(XY') = E(X)E(Y). Nach (3.13)
folgt daraus die Unkorreliertheit von X und Y. O

(3.23) Bemerkung. Derselbe Beweis ergibt fiir n ZufallsgroBen X,..., X, die un-
abhéngig sind und deren Erwartungswerte existieren, daf der Erwartungswert von [ [}, X;
existiert und gleich [[_, EX; ist.

(3.24) Beispiele.

1. Wir betrachten ein Bernoulli-Experiment mit Parametern n,p und setzen X; = 1,
falls der i-te Versuch ein Erfolg ist, und X; = 0 sonst (1 < ¢ < n). Dann gilt
V(X;) = BE(X?) — (EX;)* = p—p* = p(1 — p). Die Unabhingigkeit von X1, ..., X,
folgt aus der Definition. Nach (3.22) sind die X; paarweise unkorreliert. Nach (3.15)
folgt fir die Anzahl X = >"" | X; der Erfolge

V(X) = Z V(Xi) = np(1 - p)
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und somit S(X) = y/np(1 —p).

2. Um an einem Beispiel zu zeigen, dafl die Umkehrung von (3.22) nicht gilt, wiahlen
wir Q = {—1,0, 1} mit der Gleichverteilung und definieren die ZufallsgroBe X durch
X(w) = w fiir alle w € Q. Dann gelten E(X) =0, E(|X|) =2/3 und E(X|X]|) =0,
also sind X und |X| nach (3.13) unkorreliert. Offensichtlich sind X und |X| aber
abhéngig, denn zum Beispiel ist {X = 1,|X]| = 0} das unmégliche Ereignis, aber
P(X =1)P(|X|=0) ist gleich 1/9.

3. Ein Stapel mit n numerierten Karten wird zuféllig in eine Reihe gelegt. Alle n!
Moglichkeiten mogen gleich wahrscheinlich sein. .S,, bezeichne nun die Anzahl der
Karten, die in Bezug auf die natiirliche Anordnung an ,,ihrem* Platz liegen. S,
nimmt also Werte in {0,1,...,n} an. In einer Ubungsaufgabe wird die Verteilung
von S, bestimmt. Von ihr kann man Erwartungwert und Varianz ableiten. Wir
berechnen diese Werte hier direkt: Dazu sei X die Zufallsgrofle mit Werten 1 oder
0 je nachdem, ob die Karte mit der Nummer k£ am k-ten Platz liegt oder nicht.
Dann ist S, = X; + X + -+ + X,,. Jede Karte ist mit Wahrscheinlichkeit 1/n
am k-ten Platz, also ist P(Xy = 1) = 1/n und P(X; = 0) = (n — 1)/n und
somit E(X) = 1/n. Damit folgt £(S,) = 1. Im Durchschnitt liegt also eine Karte
an ihrem Platz. Weiter ist V(X)) = 1/n — (1/n)?> = (n — 1)/n% Das Produkt
X; X, nimmt die Werte 0 und 1 an. Der Wert 1 entspricht dem Ereignis, dafl die
Karten mit Nummer j und k£ an ihrem Platz liegen, was mit Wahrscheinlichkeit
1/n(n — 1) geschieht. Daher ist E(X;X}) = 1/(n(n — 1)). Nach Bemerkung (3.13)
ist cov(X;, Xi) = 1/(n(n—1))—1/n* = 1/(n*(n—1)). Nach Satz (3.15) folgt damit

n—1 n 1

Die Standardabweichung ist ein Mafl dafiir, wie weit X von E(X) mit nicht zu kleiner
Wahrscheinlichkeit abweichen kann. Diese sehr vage Aussage wird durch die sogenannte
Tschebyscheff-Ungleichung prézisiert. Pafnuty Lwowitsch Tschebyscheff (1821-1894) be-
wies diese Ungleichung 1867. Wir beweisen zunéchst eine etas allgemeinere Version dieser
Ungleichung, die spéter noch niitzlich sein wird:

(3.25) Satz. (Markoff-Ungleichung, Markov-inequality) Es sei ¢ eine auf [0, 00) definier-
te, nichtnegative monoton wachsende Funktion. Es sei X eine Zufallsgrofle, fiir die der
Erwartungswert F(¢(]X])) existiert. Dann gilt fiir jedes a > 0 mit

¢(a) >0
B(6(X])

P(X| 2 0) < =0

Bewezs.

P(X|>a) = 3 PX=5)< Y %%?Hsz)

B T
o) py o BO(XD)
S 2w TN
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(3.26) Satz. (Tschebyscheft-Ungleichung, Chebyshev-inequality) Sei X eine Zufallsgrofe,
deren Erwartungswert £X und Varianz V(X)) existieren. Dann gilt fiir jedes a > 0

V(X)

a2

P(|X — EX|>a) <

Beweis. Mit ¢(x) = z? folgt aus Satz (3.25)
V(X)

a2

P(X — EX| > a) = P((X — EX)? > a®) < —B((X — EX)?) =

a?

O

Beispiel: Sei a > 0 und X eine Zufallsgrofle, die als Werte —a, +a und 0 annimmt
und deren Verteilung gegeben ist durch P(X = —a) = P(X = +a) = 1/(2¢*) und
P(X =0)=1-1/a* Wir erhalten £(X) =0 und V(X) =1 und damit

P(IX — E(X)| > a) = P(IX| > a) = P(X = —a) + P(X = +a) = %

Dieses Beispiel zeigt, dal die Tschebyscheff-Ungleichung im allgemeinen nicht verbessert
werden kann. Dennoch ist sie in vielen Féllen keine sehr gute Abschatzung. Fiir viele
Zufallsgroflen konnen Abweichungen vom Erwartungswert sehr viel besser als mit der
Tschebyscheff-Ungleichung abgeschétzt werden. Wir werden dies in einem der néchsten
Kapitel intensiver diskutieren.

Die Tschebyscheff-Ungleichung ist gut genug, um das nachfolgende Gesetz der grofien
Zahlen zu beweisen. Es wurde vermutlich bereits im Jahre 1689 von Jakob Bernoulli
(1654-1705) fiir den Fall des n-maligen Miinzwurfes bewiesen. Dieses Theorem steht in
der Ars conjectandi, welche erst acht Jahre nach Bernoullis Tod, mit einem Vorwort seines
Neffen Nikolaus versehen, 1713 in Basel erschien:

(3.27) Satz. (Schwaches Gesetz der grofen Zahlen, weak law of large numbers) Es seien
fiir jedes n € N auf einem diskreten Wahrscheinlichkeitsraum paarweise unkorrelierte Zu-
fallsgrofien X1, X, ..., X,, gegeben, die von n abhédngen diirfen, die aber alle den gleichen
Erwartungswert F und die gleiche Varianz V besitzen. Sei S,, := X7 + --- + X,,, und
S, = % sei die Folge der Mittelwerte. Dann gilt fiir jedes € > 0

lim P(|S, — E| >¢) =0.

n—oo

Beweis. Aus (3.26), (3.11 (4)) und (3.15) folgt

1
V(S,) = @nv — 0 fir n — oc.

_ 1 _
P(1Sy = Bl 2 ¢) < 5V(50) = 55
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Interpretation. Falls wir beliebig oft ein Experiment wiederholen und annehmen, dafl die
Ergebnisse (Zufallsgrofien) paarweise voneinander unabhéngig oder mindestens unkorre-
liert sind, so ist die Wahrscheinlichkeit fiir ein Abweichen der Mittelwerte der ersten n
Experimente vom Erwartungswert schliefllich (d. h. fiir hinreichend grofle n) beliebig klein.

(3.28) Bemerkung. Die Voraussetzungen des Satzes muten etwas umstéandlich an. Wie-
so setzen wir nicht einfach voraus, dafl (X;);en eine Folge von unkorrelierten ZufallsgroBen
ist? Die Antwort ist einfach, daf§ wir (im Moment) keine Moglichkeiten haben, eine derarti-
ge unendliche Folge auf einem abzidhlbaren Wahrscheinlichkeitsraum zu definieren (aufler
im ganz trivialen Fall, wo die X; alle konstant sind). Im Satz (3.27) setzen wir jedoch
nur voraus, dafl fiir jedes n ein W.-Raum Q™ existiert, auf dem die X, ..., X,, existie-
ren. Wenn wir ganz pedantisch wéren, sollten wir deshalb X{"), e ,XT(L") schreiben. Es
macht keine Schwierigkeiten, eine solche Folge von W.-Rdumen und die dazugehérenden
Zufallsgroflen als mathematisch prézis definierte Objekte zu konstruieren:

Es seien fi, ..., f, beliebige W.-Verteilungen auf abzdhlbaren Teilmengen A; von R (d. h.
fi o Ay — [0,1] mit Y7 _, fi(z) = 1). Wir konstruieren einen W.-Raum (£, p) und
unabhéngige Zufallsgrofen X; mit X;(Q2) = A; und Verteilungen f; wie folgt:

Sei @ = A} x -+ x A,. Flir w = (wy,...,w,) € Q setzen wir X;(w) = w; fir alle ¢
in {1,...,n} und p(w) = fi(w1)fo(ws) - fu(w,). Per Konstruktion sind Xj, ..., X, un-
abhéngig, also auch unkorreliert. Haben die f; alle denselben Erwartungswert und dieselbe
Varianz (z.B. wenn sie alle gleich sind), so haben die X; alle denselben Erwartungswert
und dieselbe Varianz. Diese Konstruktion konnen wir fiir jedes n durchfiihren.

Der Satz (3.27) 148t sich natiirlich auf binomialverteilte Zufallsgrofien anwenden, denn die-
se lassen sich ja in der Form X, + - -- + X, schreiben, wobei die X1, ..., X,, unabhingig,
also auch unkorreliert sind. Es ist instruktiv, sich die Aussage fiir diesen Fall zu veran-
schaulichen: Seien also die X; unabhéngig mit P(X; =1) =p, P(X; =0) = 1 —p, und sei
S, = X1+ -+ + X, also binomialverteilt mit Parametern n, p. Dann ist F(X;) = p und
V(X;) = p(1 —p). Aus (3.27) folgt also, dafl fiir jedes € > 0

P(’%—p’ 25) = P(|S, —np| > ne)
= Z P(S,=k) = Z (Z)pk(l —p)"F
k:|k—np|>ne k:|k—np|>ne

mit n — oo gegen 0 konvergiert.

Man muf sich jedoch dariiber im klaren sein, dafl keineswegs etwa P(S,, # np) gegen null
konvergiert. In der Tat konvergiert P(|S, — np| > r) gegen 1 fiir jede Zahl r > 0. Nicht
Sy, liegt mit groBer Wahrscheinlichkeit (fiir grofie n) in der Ndhe von np, sondern S, /n in
der Nahe von p. Wir werden diese Sachverhalte in einem spéteren Kapitel prézisieren.

Der Satz (3.27) heifit schwaches Gesetz der groien Zahlen, um es vom sogenannten starken
Gesetz der grofien Zahlen (strong law of large numbers) zu unterscheiden. Dieses besagt

P( lim Sn existiert und ist = E) =1. (3.2)

n—oo n,
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Die Gleichung (3.2) macht jedoch nur Sinn, wenn alle X;, i € N, auf einem W.-Raum defi-
niert sind. Die Konstruktion eines solchen W.-Raumes macht aber, vielleicht unerwartet,
erhebliche Probleme.

Eine Anwendung des schwachen Gesetzes der groflen Zahlen fiihrt zu der folgenden von
Sergej Natanowitsch Bernstein (1880-1968) gegebenen Beweisvariante des Approximati-
onssatzes von Karl Weierstrass (1815-1897). Dieser Satz besagt ja, dal man jede stetige
reelle Funktion f auf dem Einheitsintervall [0,1] durch Polynome, definiert auf [0, 1],
gleichméfig approximieren kann. Wir betrachten nun das sogenannte Bernstein-Polynom

zu f:
Bl (x) = kzn% f(%) (Z) 21— 2)"*,

Wenn S,, eine binomialverteilte Zufallsgrofle mit Parametern x und n bezeichnet, so folgt
mit S, := S, /n unmittelbar E(f(S,)) = B!(z). Da jedes obige f auf [0, 1] gleichmiBig
stetig ist, gibt es zu jedem & > 0 ein d(¢) > 0 derart, dafl fir alle z,y € [0,1] gilt:
|z —y| < d(e) = |f(x) — f(y)| < e. Nach der Tschebyscheff-Ungleichung folgt

1—2x) 1
< )
no?  — 4nd?

P(5, — 2] > 5) < 2
denn 4z(1 —x) =1 — (2z — 1)? < 1. Es folgt somit die Abschiitzung

|Bi(z) = f@)] = [B(f(S)) = f@)] < B(f(S.) = f(x)]) i
< 2sup|f(u)[P(|Sy — 2| > 0) + sup [f(u) = f()|P(|Sh — 2| < 0).

|lu—v|<d

Der erste Term ist durch 5= sup,, | f(u)| beschréinkt, der zweite Term durch ¢ fiir § < §(e),
da f gleichméfBig stetig ist. Indem man also zunéchst 6 = §(¢) und dann n = n(d, ) wahlt,
erhiilt man sup, |Bf(z) — f(x)| < . Somit ist gezeigt, dafl fiir jede stetige reelle Funktion
auf [0,1] die Folge (BJ),en der zugehdrigen Bernstein-Polynome gleichmiflig auf [0, 1]
gegen f konvergiert. Die Bedeutung dieses probabilistischen Ansatzes fiir einen Beweis
des Approximationssatzes von Weierstrass liegt im kanonischen Auffinden der explizit
angebbaren Polynomfolge (BY),cn.

Wir betrachten zwei weitere Anwendung des schwachen Gesetzes der grofien Zahlen:

vorteilhaftes Spiel, bei dem man auf Dauer verliert:

Ein Spiel heifit fair, wenn in jeder Runde der erwartete Verlust gleich dem erwarteten Ge-
winn ist. Ist der erwartete Gewinn jeweils grofer, heifit das Spiel vorteilhaft. Uberraschend
mag nun sein, dafl es vorteilhafte Spiele gibt, bei denen man auf Dauer verliert. Ein ers-
tes Beispiel wurde bereits 1945 von William Feller (1906-1970) gegeben. Wir betrachten
hier ein von Ulrich Krengel ausgearbeitetes Beispiel. Sei Xy = 1 das Startkapital. Man
wirft in jeder Runde eine Miinze. Da Kapital X, nach der n-ten Runde sei X,,_;/2, wenn
Kopf im n-ten Wurf fillt, sonst 5X,,_1/3. Somit ist das Spiel vorteilhaft. Mit Y,, = 1/2
bei Kopf im n-ten Wurf und Y,, = 5/3 sonst folgt die Darstellung X,, = Y} - Yo ---Y,,.
Aus der Unabhéngigkeit der Y; folgt mit E(Y;) = (1/2)(1/2) + (1/2)(5/3) = 13/12:
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E(X,) = (13/12)" — oo. Wenn nun p den Erwartungwert von logY; bezeichnet, besagt
das Gesetz der groflen Zahlen

1
P(’—(long + -+ logVy,) —,u’ < 5) — 1.
n

Dies gilt insbesondere fiir ¢ = —p/2, denn p = (log(1/2) + log(5/3))/2 < 0, also
P(1/nlog X, — p < —u/2) — 1. Also ist mit grofer Wahrscheinlichleit X,, < exp(un/2),
was wegen i < 0 gegen Null strebt. Der Kapitalstand strebt also auf lange Sicht ziemlich
schnell gegen Null.

Normale Zahlen: Wir betrachten das Intervall [0, 1] und stellen jede Zahl z € [0, 1] mit Hil-
fe ihrer Dezimalentwicklung = = 0.ajasas . .., mit a; € {0,...,9} dar. Hilt man die ersten
n Ziffern a4, ..., a, fest, so ergeben die Zahlen, die mit 0.a;as . ..a, beginnen, ein Inter-
vall der Lange 10™". Diese Intervalle sind fiir unterschiedliche Wahlen von aq, as, ..., a,
disjunkt. Wir betrachten nun ein Zufallsexperiment, das solche Intervalle mit Wahrschein-
lichkeit 10" konstruiert. Zu diesem Zweck ziehen wir fiir jedes ¢ die Ziffer a; mit Wahr-
scheinlichkeit 1/10. Dann hat in der Tat jedes der obigen Intervalle Wahrscheinlichkeit
107", Wir bezeichnen fiir j € {0,...,9} mit v )(a:) die absolute Haufigkeit des Auftretens
der Ziffer j in den ersten n Stellen der Ziffer x. Fiir ein festes 6 > 0 besagt nun das schwa-
che Gesetz der groBen Zahlen, da8 fiir jedes 6 > 0 die Menge der obigen Intervalle fiir die
gilt |V7(L])(ZL‘) —1/10] < ¢ fiir alle 0 < j <9 eine Linge hat die asymptotisch fiir n — oo
gegen 1 konvergiert. Die relative Haufigkeit der Ziffern in der Dezimalentwicklung solcher
Zahlen ist also anndhernd gleich. Solche Zahlen heiflen normale Zahlen. Das Gesetz der
groflen Zahlen besagt also, dafl die normalen Zahlen in einer Vereinigung von Intervallen
liegen, die asymptotisch Lénge 1 haben.
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4 Normalapproximation der Binomialverteilung

Es sei daran erinnert, daf eine Zufallsgrofle X mit der Verteilung

P(X =k)=0b(k;n,p) = <Z)pkq"k (g=1-p) fir k=0,1,...,n

binomialverteilt heiflt.

Die exakten Werte fiir b(k; n, p) lassen sich bei festem p allerdings nur fiir moderat grofie
nund k (n = 100 und k = 50 ist z.B. schon nicht mehr so leicht) berechnen. Im Falle
grofler n hilft uns aber eine Version des Zentralen Grenzwertsatzes, einer Art Naturgesetz,
das die asymptotische Verteilung einer groflen Klasse von Variablen angibt.

Die Basis fiir diese Approximation ist die Stirlingsche Formel, die von James Stirling
(1692-1770) bewiesen wurde:

(4.1) Satz.
lim n!/(vV2rn" 1/ 2e™) = 1.

n—oo

Fiir einen Beweis: Siehe etwa O. Forster: Analysis 1 §20 Satz 6.

Man bemerke, da8 die Stirlingsche Formel nicht bedeutet, daf |n! — v/2mn"*/2e™"| gegen
0 konvergiert, im Gegenteil. Es gilt

lim |n! — V2mn"t2e ™| = 0.

n—oo

Die erste Frage, die man sich stellen sollte ist die, in welchem Sinne man eigentlich einen
Limes von b(k;n, p) sinnvoll definieren kann. Dazu bemerken wir zunéchst, daf

b(k + 1;n,p) (n—k)p

b(k;n, p) (k+1)(1—p)

ist und daher
b(k + 1;n,p)

b(k; n, p)
Die Funktion k +— b(k;n, p) nimmt also ihr Maximum genau bei &k = [n + 1]p an. Nun ist
aber mit Hilfe der Stirlingschen Formal sofort klar, dafl

(2 Fmmp (1 = )
(") 2mnp (=R )P /27 (n — np)
1
2mnp(1 —p)’

<lek+1>((n+1)p.

b([n + 1(p)];n,p) = b(np;n,p) =~

wobei wir fiir zwei Folgen a, und b, schreiben a, =~ b,, falls lim,, .. ‘;—: = 1. Also ist
fiir jedes k und p lim,_ b(k;n,p) = 0. Diese Aussage ist eben so wahr wie unniitz. Im
wesentlichen bedeutet sie, dafl man, um einen ”verniinftigen Grenzwert” zu erhalten, nicht
einzelne Wahrscheinlichkeiten b(k;n,p) anschauen sollte, sondern die Wahrscheinlichkeit
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fiir ganze Bereiche, also: > .. . .. b(k;n,p), wobei a,b € R reelle Zahlen sind und
Qp, ¢, Funktionen von n sind. Wie aber soll man «,,, ¢, wihlen? Zunéchst ist klar, dafl
die Binomialverteilung b(+; n, p) den Erwartungswert np hat, es also ratsam ist, ¢, = np
zu wahlen, damit die obige Summe fiir reelle a, b von einer relevanten Gréfenordnung ist.

—1___jist. Nimmt man
2mnp(1—p)

Andererseits zeigt die obige Rechnung, dafl maxy b(k;n,p) ~
an, dafl die Terme b(k;n,p) fiir k£ nahe bei np von derselben Ordnung sind, so liegt es
nahe «,, = v/n oder besser «,, = p(1 — p)y/n zu wihlen (um ein Resultat zu erhalten, das

von p nicht abhéngt). Letzteres wird in der Tat unsere Wahl sein.

Der erste Schritt zur Herleitung eines Grenzwertsatzes fiir die Binomialverteilung wird
sein, daf} wir zunéchst die b(k;n, p) einzeln genauer unter die Lupe nehmen. Wir werden
sehen, daf diese fiir relevante k tatséchlich von der Ordnung 1/y/n sind und dariiber
hinaus zeigt sich, da§ dann b(k;n,p) durch eine schone Funktion approximiert werden

kann. Dazu setzen wir
k—np

xy = xp(n,p) = m

xx hédngt natiirlich von n und p ab, was wir in der Notation jedoch nicht gesondert betonen.
Wir kiirzen 1 — p meist durch ¢ ab.

(4.2) Satz. (lokaler Grenzwertsatz, local limit theorem) Es seien 0 < p <1, g=1—-p
und (a,,)nen > 0 eine Folge reeller Zahlen mit lim,, ... a2 /v/n = 0. Dann gilt

lm  sup \2mnpq b(k;n, p)

—x2/9
=00 ko y [ <an e x3/

-1 =0.

(4.3) Bemerkungen.

1. Ist a, = A eine beliebige, aber feste positive Konstante, so folgt aus dem obigen

Satz unmittelbar "
2 .
lim  sup V2mnpq b(k; n, p)

2
n—00 iz [<A e /2

— 1| =0.

2. Wir schreiben nachfolgend stets b(k;n,p) ~ \/271que*:”i/ 2 fiir die obige gleichmé-
Bige Konvergenz. Allgemeiner: Sind a(k,n), G(k,n) > 0 fir n € Ng, 0 < k < n,
so bedeutet (wahrend des untenstehenden Beweises) a(k,n) ~ [(k,n), dafl fur die

obige Folge (a,)nen > 0

a(k,
Bk,

lim sup
=0 x| <an

n) _ 1| =0
n)
gilt.

3. Wir iiberzeugen uns vom folgenden Sachverhalt, der im Beweis von (4.2) mehrfach
verwendet wird:

alk,n) ~ B(k,n), o(k,n)~pB'(k,n) = alk,n)d (k,n)~ B(k,n)s (k,n).
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Bewezs.

a(k,n)a’(k,n) 1' o (k,n)lalk,n) o (k,n)
B(k,n)B'(k,n) B'(k,n)|B(k,n) B'(k,n)
o/ (k,n) B a(k,n) B ’ o/ (k,n) B ’ a(k,n) B ’
= |Ftem Bt~ B0 T BEw T
Daraus folgt die Aussage sofort. O

Beweis von Satz (4.2). Es gilt

k=np+ /npqxr, n—k=nqg— /npqx,

also
k~np, n—k~ng.

Mit Hilfe der Stirlingschen Formel folgt:

wobei wir ¢(n, k) fiir (52)*(-"%)""* schreiben. Es ist nun
—logp(n, k) = nH(k/n|p),

wobei

H(x|p) = xlog(%) +(1—x) 10g(1 :;)

(diese Funktion heiit relative Entropie von z beziiglich p; sie wird im Rahmen des
Studiums der grofien Abweichungen (Kapitel 6) eine zentrale Rolle spielen). Wir wol-
len diese Funktion nun um den Wert p Taylor entwickeln. Es ist H'(p|p) = 0 und

H"(p|p) =1/p+1/q = 1/(pq). Damit folgt

(x —p)?
2pq

wobei ¢ das Restglied in der Taylorentwicklung bezeichnet. Insbesondere gilt in jedem
endlichen Intervall, das p enthélt eine Abschatzung

[W(z —p)| < clv —pf’
mit einer geeigneten Konstanten c. Wir erhalten somit

n(t-p)°
2pq

H(z|p) = +¥(z — p),

—logp(n, k) — <cn|——p|.

kL 3
7

Aus der Definition der x; erhalt man fiir eine geeignete Konstante 0 < ¢ < oo folgt
h =l
n? NGB
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Wiéhlen wir nun ein k mit |zg| < a,, so konvergiert aufgrund der Bedingung an die Folge
(an)nen die rechte Seite der Ungleichung gegen 0. Da nun aber

i 2
n(i-r) 2
2pq 2’

erhalten wir
o(n, k)

e—x%/Q

lim sup
oo k:|zg|<an

—1‘:0.

Damit ist der Satz gezeigt. O

Ein Rechenbeispiel dazu:
Jemand wirft 1200-mal einen Wiirfel. Mit welcher Wahrscheinlichkeit hat er genau 200-
mal eine 67 Mit welcher Wahrscheinlichkeit 250-mal?

Wir berechnen z;, fiir £ = 200, 250, n = 1200, p = 1/6.
5v/6

Togo = 0, X950 = — = 3.873

V10
b(200; 1200, 1/6) = 0.0309019

b(250; 1200, 1/6) = 0.0000170913.

Wie iiblich muf3 hier bemerkt werden, dafl ein reines Limesresultat fiir die Giite einer Ap-
proximation wie in obigem Rechenbeispiel zunéchst natiirlich gar nichts aussagt. Gefragt
sind konkrete Abschétzungen des Fehlers. Dies ist ein technisch aufwendiges Feld, in das
wir in dieser Vorlesung nicht eintreten werden.

Nachfolgend ist eine numerische Illustration von (4.19) angegeben:

Die sechs Bilder illustrieren die Konvergenz der Binomialverteilung gegen die Funktion
o(x) = (27) % exp(—2?/2). Hier ist jeweils die Funktion ((x) zusammen mit dem ska-
lierten Histogramm

i) { Vnp(l —p)b(k;n,p), fallsk e {0,1,... n}mit |z — x| < 2%,
np\T) =
0

np(1—p)
andernfalls,

der Binomialverteilung b(-;n,p) gezeichnet; in der linken Spalte der symmetrische Fall
mit p = 1/2, in der rechten Spalte der asymmetrische Fall p = 1/5.
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0.4
0.3
n = 160 0.2
0.1
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
p=1/2 p=1/5

Nun kommen wir dazu, die schon eingangs diskutierten ”Bereichswahrscheinlichkeiten”
ZU approximieren.

(4.4) Satz. (von de Moivre-Laplace) Fiir beliebige reelle Zahlen a und b mit a < b gilt:
. Sp — np ) 1 / b,

lim Pla < ——<b ) = — e~ 2 dy. 4.1

n—00 ( \/Npq \/ 27 a ( )

Beweis. Die zentrale Idee des Beweises ist es fiir die einzelnen Summanden der linken Seite
von (4.1) die Approximation aus dem lokalen Grenzwertsatz einzusetzen und zu sehen,
daf dies eine Riemannsumme fiir das Integral auf der rechten Seite von (4.1) liefert.
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Sei also k € {0,...,n}. Dann ist {S, = k} = {(S, — np)/\/npq = x1}. Also ist die links
stehende Wahrscheinlichkeit gleich

Y P(Sa=k)= > bkin,p).

k:a<xp<b k:a<xp<b

Wir setzen nun fiir jeden Summanden auf der rechten Seite seinen in Satz (4.2) angegebe-

nen asymptotischen Wert ein und beriicksichtigen, dafl x;,1 — xx = \/rllqu ist. Die Summe

dieser Grofen nennen wir R,,:

2

R, =— Z e~ A (xppy — ap).

Unter Verwendung der Gleichméfigkeit der Konvergenz in Satz (4.2) sieht man sofort,
dafl der Quotient von P(a < S”T\/_T’;p < b) und dem obenstehenden Ausdruck gegen 1
konvergiert, das heifit, es existiert eine Nullfolge (€, )nen, €, > 0 mit

Sn—np)
R,(1—¢,) <Pla<——<b| <R,(l+¢,). 4.2
(1—e) ( - (140 (42)

k und z; entsprechen einander bikjektiv, und wenn k von 0 bis n lduft, dann variiert xy
im Intervall [—y/np/q, /nq/p] mit der Schrittweite x,, —x, = 1/\/npq. Fiir hinreichend
grofie n umfaBt dieses Intervall das gegebene Intervall [a,b], und die in [a,b] fallenden
Punkte z, teilen dieses in Teilintervalle derselben Lénge 1/,/npg. Wenn nun der kleinste
und der groBite Wert von k£ mit a < xp < b gleich j bzw. [ ist, dann ist

l‘j_l<(I§l‘j<{L‘j+1<...<l‘l_1<l‘l§b<l‘l+1

und die obige Summe 148t sich schreiben als

l

> (i) (e — ),

k=j

wobel ¢(x) = \/%6_352/ 2 ist. Das ist eine Riemannsche Summe fiir das bestimmte Integral

fabgo(x)dx. Somit konvergiert R, mit n — oo gegen das Integral in der Behauptung des
Satzes. Dieser folgt nun sofort mit (4.2). O

Abraham de Moivre (1667-1754) verdffentlichte dieses Ergebnis in seiner ,,Doctrine of
Chances“ 1714. Pierre Simon Marquis de Laplace (1749-1827) erweiterte das Ergebnis
und wies dessen Bedeutung in seiner ,,Théorie analytique des probabilités®“ 1812 nach.
Es handelt sich um den zuerst bekanntgewordenen Spezialfall des sogenannten Zentralen
Grenzwertsatzes (central limit theorem).

Die Funktion x — ¢(z) = \/%76_352/ % heifit auch GauBsche Glockenkurve, wegen des

glockenformigen Verlaufs ihres Graphen.
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Die Verteilung, die durch das Integral unter der Glockenkurve gegeben ist, heifit auch
Standard-Normalverteilung und wird oft mir N (0, 1) abgekiirzt.

Die Integrale fab (z)dzx sind leider nicht in geschlossener Form mit Hilfe von Polynomen,
rationalen Funktionen, Wurzelausdriicken oder elementaren transzendenten Funktionen
(wie sin, cos, exp, etc.) darstellbar.

Es gilt offenbar fiir a < b

[ o= [ stwyir= [ ptwrae = a) - ata),

—00 —00

wobei wir ®(y) := [?_ ¢(x)dz gesetzt haben. Wie nicht anders zu erwarten ist, gilt

/OO o(z)dr = 1. (4.3)

—00

Der Beweis, den man iiblicherweise in der Analysis fiir diese Tatsache gibt, benutzt Po-

larkoordinaten. Wir geben hier einen Beweis, der sich darauf stiitzt, dafl wir den Satz von
de-Moivre-Laplace schon kennen: Wir verwenden (4.4) und setzen S := S\*/L%;p . (Fiir das

Argument hier spielt p keine Rolle; wir kénnen z.B. p = 1/2 nehmen.) Sei a > 0. Dann ist

1=P(-a<S; <a)+ P(|S;| > a).

Nach der Tschebyscheff-Ungleichung gilt:
P(|S:] > a) < EVar(Sn) =

a?’

Nach (4.4) gilt

Demzufolge ist



fiir jedes a > 0, womit (4.6) bewiesen ist.

(4.7) Bemerkung. (a) Wegen lim,, ., sup, P(S, = k) = 0 ist es natiirlich gleichgiiltig,
ob in der Aussage von (4.21) < oder < steht.

(b) Es gilt fiir a € R:

— 1 “ 2
lim P<S" < a) = ®(a) = —/ e~ 2dx,
n—oo npq V2T J o

lim P(Sn P a) = 1—®(a).
n—oo \ /g

Beweis von (b). Wir beweisen die erste Gleichung; die zweite folgt analog. Wegen der
Symmetrie von ¢ und (4.6) gilt:

B(z) = / o(u)du =1 — /:O o(u)du =1 — /__xw(u)du — 11— ®(—2).

Wir setzen wieder S} = % und wéhlen b > 0 so grof, da —b < a gilt. Dann ist
nach (4.4)
limsup P(S} <a) = limsup(P(-b<S! <a)+ P(S; < -b))
= limsup(P(~b < S; <a)+ (1 - P(S;, > —b)))
< limsup(P(=b< S5, <a)+ (1= P(=b< 5, <))
= ®(a) — P(—=b) + (1 — D(b) + ®(—b))
= ®(a) + P(-0b)
liminf P(S; <a) > liminf P(—b < S <a)
= ®(a) — P(-D).
Wegen ®(—b) — 0 fiir b — oo folgt die gewiinschte Aussage. O

Der Satz (4.4) ist eine Prazisierung des Gesetzes der grofen Zahlen, welches besagt, daf
fiir jedes € > 0 lim,, .o P(’S—n" - p} > ¢) = 0 ist. Letzteres konnen wir sofort auch aus (4.4)
herleiten:

P( S"—p‘ge) = P(—eg%—pgs)

n
- P(—ﬁggs"_"pgﬁe) ZP(aSMSb),
VPq Vg VPq Vg

sofern n so groB ist, daB v/ne/\/pg > b und —\/ne/\/pq < a sind. Fiir beliebige Zahlen
a,b € R ist dies aber fiir geniigend groBe n der Fall. Somit ist lim,_ P(|22 —p| <) =1
fiir jedes € > 0.
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Dieser Beweis ist natiirlich insgesamt wesentlich aufwendiger als der in Kapitel 3 angege-
bene. (4.4) ist jedoch sehr viel informativer als das Gesetz der grofien Zahlen.

Tabelle der Verteilungsfunktion ®(z) = [~

gesehen, daf fir z <0 gilt: &(z) =1 — O(—x).

L

00 /27

e~ /2dy fiir x > 0. Wir hatten bereits

T

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
3.0

0.5000
0.5398
0.5793
0.6179
0.6554
0.6915
0.7257
0.7580
0.7881
0.8159
0.8413
0.8643
0.8849
0.9032
0.9192
0.9332
0.9452
0.9554
0.9641
0.9713
0.9772
0.9821
0.9861
0.9893
0.9918
0.9938
0.9953
0.9965
0.9974
0.9981
0.9986

0.5040
0.5438
0.5832
0.6217
0.6591
0.6950
0.7291
0.7611
0.7910
0.8186
0.8437
0.8665
0.8869
0.9049
0.9207
0.9345
0.9463
0.9564
0.9648
0.9719
0.9778
0.9826
0.9864
0.9895
0.9920
0.9939
0.9955
0.9966
0.9975
0.9982
0.9987

0.5080
0.5478
0.5871
0.6255
0.6628
0.6985
0.7324
0.7642
0.7939
0.8212
0.8461
0.8687
0.8888
0.9066
0.9222
0.9357
0.9474
0.9573
0.9656
0.9726
0.9783
0.9830
0.9868
0.9898
0.9922
0.9941
0.9956
0.9967
0.9976
0.9982
0.9987

0.5120
0.5517
0.5910
0.6293
0.6664
0.7019
0.7356
0.7673
0.7967
0.8238
0.8485
0.8708
0.8906
0.9082
0.9236
0.9370
0.9484
0.9582
0.9664
0.9732
0.9788
0.9834
0.9871
0.9901
0.9924
0.9943
0.9957
0.9968
0.9977
0.9983
0.9988

0.5160
0.5557
0.5948
0.6331
0.6700
0.7054
0.7389
0.7703
0.7995
0.8264
0.8508
0.8728
0.8925
0.9099
0.9251
0.9382
0.9495
0.9591
0.9671
0.9738
0.9793
0.9838
0.9874
0.9903
0.9926
0.9944
0.9958
0.9969
0.9977
0.9983
0.9988

0.5199
0.5596
0.5987
0.6368
0.6736
0.7088
0.7421
0.7734
0.8023
0.8289
0.8531
0.8749
0.8943
0.9115
0.9265
0.9394
0.9505
0.9599
0.9678
0.9744
0.9798
0.9842
0.9878
0.9906
0.9928
0.9946
0.9960
0.9970
0.9978
0.9984
0.9988

0.5239
0.5636
0.6026
0.6406
0.6772
0.7123
0.7454
0.7764
0.8051
0.8315
0.8554
0.8770
0.8962
0.9131
0.9278
0.9406
0.9515
0.9608
0.9685
0.9750
0.9803
0.9846
0.9881
0.9908
0.9930
0.9947
0.9961
0.9971
0.9979
0.9984
0.9989

0.5279
0.5675
0.6064
0.6443
0.6808
0.7157
0.7486
0.7793
0.8078
0.8340
0.8577
0.8790
0.8979
0.9146
0.9292
0.9418
0.9525
0.9616
0.9692
0.9761
0.9808
0.9850
0.9884
0.9911
0.9932
0.9949
0.9962
0.9972
0.9979
0.9985
0.9990

0.5319
0.5714
0.6103
0.6480
0.6844
0.7190
0.7517
0.7823
0.8106
0.8364
0.8599
0.8810
0.8997
0.9162
0.9306
0.9429
0.9535
0.9624
0.9699
0.9761
0.9812
0.9854
0.9887
0.9913
0.9934
0.9950
0.9963
0.9973
0.9980
0.9985
0.9989

0.5359
0.5753
0.6141
0.6517
0.6879
0.7224
0.7549
0.7852
0.8133
0.8389
0.8621
0.8830
0.9015
0.9177
0.9319
0.9441
0.9545
0.9633
0.9706
0.9767
0.9817
0.9857
0.9890
0.9916
0.9936
0.9952
0.9964
0.9973
0.9981
0.9986
0.9990

Wir wollen nun sehen, dass das Grenzwertverhalten des Satzes von de Moivre/Laplace
ein Spezialfall eines viel allgemeineren Phénomens ist, eines Satzes, der neben dem Gesetz
der groflen Zahlen ein zweites “Naturgesetz” der Stochastik darstellt. Wie wir dies schon
im Satz von de Moivre/Laplace kennengelernt haben, befasst sich dieser Satz mit der
Konvergenz von Verteilungen P,(e) = P[X,, € e] fiir geeignete Zufallsvariablen X,,. Es
lage sicherlich nahe davon zu sprechen, dass eine Folge von Verteilungen P, gegen eine
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Grenzverteilung P, konvergiert, falls
P,({z}) — Py({z}) VzeR

bzw.

Fu(2) = Pa((—o00,a]) = ) Puly) — Fo(x)

y<z
fiir eine geeignete (Verteilungs-) Funktion Fj gilt.
Das folgende Beispiel zeigt, dass diese Begriffsbildung nicht das Gewdiinschte liefert.

(4.8) Beispiel. Seien X, Zufallsvariablen die im Punkt % konzentriert sind, d. h. fiir alle
n € N gelte

P(X,=—-)=1.

S|

Die P, sind entsprechend Deltafunktionen in %:

Pu({a}) = 6,_1.

Es ist anschaulich klar, dass die P, gegen die Dirac-Verteilung in der 0 konvergieren. Dies
wiirde der obige Konvergenzbegriff aber nicht leisten, denn

wenn Py gerade die Dirac-Verteilung in der 0 ist. Entsprechend gilt auch

lim F,(0) = 0 # 1 = Fy(0).

n—0o0

Die Schwierigkeit ist hierbei offenbar, dass, der Limes Fj gerade im Punkt 0 unstetig ist.
Um diese Schwierigkeit zu umgehen, verlangt man fiir den neuen Konvergenzbegriff nur
das Folgende:

(4.9) Definition. Eine Folge von Verteilungsfunktionen F,, von Wahrscheilichkeiten P,
auf R heifit verteilungskonvergent gegen Fy, falls Fjy eine Verteilungsfunktion ist, d. h.
falls gilt

a) Fp ist monoton wachsend,;
b) Fp ist rechtsseitig stetig;
¢) lim, o F(z) =0 und lim, ., F(z) =1
und falls
F.(x) — Fy(x)

fiir alle z, in denen Fj stetig ist, gilt. Ist [y die Verteilungsfunktion einer Wahrscheinlich-
keit Py auf R, so schreiben wir

P, 2 p,.
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(4.10) Beispiel. Fiir die Funktion F,,, Fy aus dem Eingangsbeispiel gilt

1 z>1/n : 1 x>0
F"(x)_{o r<l/m O JLIEOF"(Q““)_{O v <0

Dies impliziert die Verteilungskonvergenz von F,, gegen Fj.
Es ist interessant, diesen neuen Begriff zu vergleichen mit der Konvergenz von Zufallsva-

riaben X,, gegen eine Zufallsvariable X, in Wahrscheinlichkeit. Letzteres bedeutet, dass
analog zum Gesetz der groflen Zahlen gilt

P(|X,— Xo| >¢) =0 Ve>0.

Wir werden sehen, dass der Begriff der Verteilungskonvergenz schwécher ist als der Begriff
der Konvergenz in Wahrscheinlichkeit:

(4.11) Satz. Es seien (X,,),, Zufallsvariablen mit
X, — Xo in Wahrscheinlichkeit.
Dann konvergiert PX» die Verteilung von X,,, in Verteilung gegen PX°,
Beweis: Wir schreiben
F,:=P* bzw. F,:= P,
Es sei z ein Stetigkeitspunkt von Fj und € > 0. Dann gibt es ein § > 0 mit
Fo(x) —e < Fy(z —0) = P(Xo <z —9)

und

Nun gilt aber fiir alle n € N:
{Xo<z2—-0} C{X, <z}U{|X, — x| >},
da X,, > z und |X,, — Xo| < ¢ folgt
Xo=(Xo—X,) + X, >z —0.
Hieraus folgt
Fo(z) < Fy(x —0) + e < Fy(x) + P(| X, — Xo| > 9) + <.

Analog gilt
{X, <z} c{Xo<z+6}U{|X, — Xo| >},

also auch
F.(z) < Fy(x) + P(|X,, — Xo| > 9) +e.

Insgesamt erhélt man:

|Fo(z) — Fo(z)] < e+ P(|1 X, — Xo| > 9).
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Da der letzte Term fiir n — oo verschwindet, folgt die Behauptung. O

(4.12) Bemerkung. Die Umkehrung des vorhergehenden Satzes gilt in der Regel nicht,
wie dieses Beispiel zeigt. X sei eine Zufallsvariable mit

P(X=1)=P(X=-1)= %

(X,,) sei eine Folge von Zufallsvariablen mit

X2n =X und X2n+1 =-X VneN.

Da PX» = PX fiir alle n € N gilt, ist X,, natiirlich verteilungskovnergent gegen X.
Andererseits gilt

Wir werden diesen Begriff in der Wahrscheinlichkeitstheorie noch genauer betrachten. Fiir
den Moment begniigen wir uns mit einer hinreichenden Bedingung fiir die Verteilungs-
konvergenz.

(4.13) Satz. Es seien P, diskrete Wahrscheinlichkeitsverteilungen iiber Rund Fy : R — R
differenzierbar, monoton wachsend mit

lim Fo(z) =0 und lim Fy(x) = 1.

Gilt dann -
tiw Y @R (e)) = [ S Fyfa)da,

zeR

so fiir alle stetigen Funktionen f : R — R mit existenten Limiten lim, .., f(x), so ist P,
verteilungskonvergent und es gilt

F, — Fy in Verteilung.
Beweis. Sei g : R — R definiert durch
9(x) = L—oog(®) + (1 = 2) 1) (x).
g ist stetig und es gilt lim, ., g(z) = 0, lim,_,_ g(z) = 1. Selbiges gilt fiir die Funktionen

fr(x) = g(kx).

Fiir die zu P, gehorigen Verteilungsfunktion F), gilt dann zum einen fiir alle x € R und

keN
limsup F,(z) = thUpZPn({y})

n—oo n—oo
y<z

< limsup Z Jely —2)P,({y})

n—oo y
= / fily — ) Fy(y)dy
l‘-i-% ) 1
< [ TRy =FRG ).
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Hierbei haben wir zunéchst verwendet, dass g auf R~ gleich 1 ist, dann die Voraussetzung
eingesetzt und schlieflich nochmals die Definition von f;. Andererseits gilt

lim inf F,(z) = liminf " Pa(fy})
y<z

> tmint Y fuly — 2+ D) Pu(l})

)
= / fk(y—x+%)Fo’(y)dy

> [ TRy =R ).

Da Fj insbesondere iiberall stetig ist, folgt

. 1 : 1
kh_)I{)lo Fo(z + E) = lim Fy(x — E) = Fy(z),

Tr—00

also insgesamt
lim F,(x) = Fy(z) VzeR.

n—oo

|

Mit diesem Hilfsmittel an der Hand koénnen wir nun die folgende, allgemeinere Version
des Satzes von de Moivre/Laplace beweisen:

(4.14) Satz. (Satz von Lindeberg-Levy/Spezialfall) Es seien fiir alle n Xy, Xo,..., X,
stochastisch unabhéngige Zufallsvariablen, die alle dieselbe diskrete Verteilung besitzen
und deren Erwartungswerte EX; und Varianzen V(X;) > 0 existieren. Dann gilt

(X —EX | 2
lim P(—o0 < 2K ) <) :/ ——e 24t
n—oo TLV(Xl) oo \/ 27

d. h. die Variablen )" ,(X; — EX;)/y/nV(X;) sind verteiungskonvergent mit Limes

1 T
Fy(z) := E/ e~P/2dt.

(4.15) Bemerkungen.
a) Da e /2 schneller fillt als jede Potenz, ist [ \/LZ—We_yQ/ 2dy existent.

b) Fj ist monoton wachsend, stetig und lim,_, ., Fo(x) = 0. AuBerdem ist Fy differen-
zierbar und nach dem Hauptsatz der Infinitesimalrechnung gilt

1 2
Fy(z) = me*m 2,

Schliefflich lernt man auch in der Analysis, dass
1 < e
—t2/2q4 _ : _
— e dt =1 also lim Fy(x) =1
=/ lim Fyx)

gilt.
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¢) Man beachte, dass die Aussage des Satzes unabhingig ist von der Gestalt der Ver-
teilung von Xj.

Beweis des Satzes. Setze
Vo X, —EX;

VX,

Die Y; sind mit den X; unabhéngig und identisch verteilt. Es gilt
EY;=0 und V(Y;) =1

Setzen wir weiter

So ist "
\/ﬁ? Ez’:l(Xi —EXy)
" nVXl
Mit
]_ —1'2/2

p(r) = o

wollen wir also fiir jede stetige Funktion f : R — R mit existenten Limiten lim, 4., f(x)
beweisen, dass

tiw Y FPWAT = 9) = [ S@)eto)dy = 1)

Da man von f immer die Konstante I(f) subtrahieren kann, konnen wir 0.B.d.A. I(f) =0
annehmen. Betrachte

h(z) = ﬁ / " Fw)ely)dy.

Da f konstruktionsgeméfl gleichméflig stetig und beschréinkt ist, ist A wohldefiniert und
als Quotient stetiger Funktionen stetig. Da

X —1'2/2

'(z) = - v —zp(x)

gilt, folgt
f@)e(x) — [7 . Fy)ely)dye'(x)
h(x) = = = f(x) + zh(x),
(@) = (2) + 2h()
fiir alle x € R. Natiirlich ist auch zh(z) stetig und mit I’'Hospital folgt
N d
lim zh(x) = lim Jooo W) ()y
z—=Fo00 x— 00 plx)
I | Z(r)w 7)oy J@)e@)
t—+too =% w(:vgfsa(r) w—too —p(z)(1 + ;712)
= A @
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Dies wenden wir folgendermafien an:

Zf P(VnY,=y) = E[f(V/nY,)]
= E[N(VnY,)] - [f Voh(v/nY,)]
= E[W(VnY,)] ZEYh VnY,)l.

Aufgrund der Unabhéngigkeit und identischen Verteilung der Y; ist dies gleich

= E[h/<\/ﬁYn>] - \/EE[Ylh(\/ﬁYnﬂ

Nun betrachten wir die Taylor-Entwicklung von h um

1 n
Ly = —= Y.
ﬁ; ’

Dies ergibt:
h(\/nY,) = h(Z >+h’<2>%+%3

mit
Y,
R, =W (Z, + 19\/—%) — W(Z,) firein 9 €0,1).

Nun sind konstruktionsgeméaf Y7 und Z,, stochastisch unabhéngig. Daraus folgt

1
—=E[Y{'R,]

L mnz) + N

EYih(vnY,)] = EW)EM(Z,)) +E(Y?)— NG

E(Z)] , EIYZR.
Vi

Insgesamt ergibt dies:

Y, / _ 2 (pl LAS) !
%)—h(Zn)] E[Y2 - (W(Z, +ﬁ) W(Zy))-

Da b’ gleichméBig stetig ist, konvergieren fiir festes w wegen

Y1 (w)
NG

die Summanden unter beiden Erwartungswerten gegen 0. Da auflerdem A’ beschrankt ist,
konvergieren auch die zugehorigen Erwartungswerte gegen 0. Dies ergibt

lim E[f(vnY,)] = lim »  f(y)PVnY, =y =0.

n—oo

E[f(vnY,)] = E[W(Z, +

lim =0

Das war zu zeigen. O
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Ein Anwendungsbeispiel (AuBersinnliche Wahrnehmung (ASW))

1973 machte C. Tert (Univ. California, Davis) ein Experiment zu ASW. Eine Aquarius
genannte Maschine wéhlte zufillig ein Symbol von A B,C,D und die Versuchsperson sollte
erraten, welches. Tert nahm 15 Personen mit vermuteten “hellseherischen Fahigkeiten”
und testete jede 500 Mal. Von den entstandenen 7500 Versuchen waren 2006 Treffer. Bei
rein zufilligem Raten waren 7500 : 4 = 1875 Treffer zu erwarten gewesen. Frage: Kénnen
die restlichen 2006 — 1875 = 131 Treffer durch Zufallsschwankungen erklért werden ?

Zur Beantwortung dieser Frage bezeichnen wir mit X die Anzahl der Treffer unter der
Annahme, daf§ diese rein zuféllig zustande kommen. Wir verwenden den Satz von de
Moivre und Laplace mit

3
n = 7500;p = ;(1—p):1

-

und erhalten

— 1875

,/7500><—><% ,/7500><—><%

Nach dem Satz von de Moivre und Laplace ist die Grofle auf der rechten Seite der Glei-
chung annéhernd normalverteilt, d. h. gemaf3 N'(0,1). Also

P(X >2006) ~ P(X* > 3.5) ~ 0.00023,

P(X > 2006)

wobei X* eine standardnormalverteilte Zufallsvariable bezeichnet. Die Wahrscheinlich-
keit dafiir, dal die auftretende Differenz das Produkt einer Zufallsschwankung ist, liegt
also bei 2.3 Promille und ist damit extrem klein. Trotzdem beweist dieses Experiment
nicht mit Sicherheit, daBl es ASW gibt, da z.B. im Nachhinein festgestellt wurde, dafl
der Zufallsgenerator nicht besonders zuverlédssig war. (Quellen: C. Tert; Learning to use
extrasensory perception, Chicago Univ. Press (1976); M. Gardner; ESP at random, New
York book reviews (1977))

Eine weitere Anwendungsmoglichkeit des Satzes von de Moivre und Laplace ist die, aus-
zurechnen, wie grofl eine Stichprobe sein mufl; um Aussagen iiber den Parameter p einer
Binomialverteilung mit einer gewissen Sicherheit und Genauigkeit machen zu koénnen.
Obwohl diese Fragestellung eigentlich in die Statistik gehort, wollen wir uns hierzu schon
einmal ein Beispiel anschauen:

Beispiel: In einer Population will man den Anteil an Linkshdndern mit 95% Sicherheit
auf 1% Genauigkeit bestimmen. Wie viele Personen sollte man dazu (mit Zuriicklegen)
befragen?

Wir wollen die Wkeit mit Hilfe der Approximation durch die Normalverteilung berechnen.
Dazu sei X die Anzahl der Linkshénder in der Stlchprobe ist dann der geschétzte Pro-
zentsatz an Linkshéndern in der Gesamtpopulation (Warum das eine sinnvolle Schatzung
ist, werden wir in dem Kapitel {iber Statistik diskutieren). Wir wollen, dafl

X
1= —p|<e=001
n

und das mit 95% Sicherheit, also

X
P(]> —p| <0.01) > 0.95. (4.4)
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Bringt man die Wahrscheinlichkeit auf die Form im Satz von de Moivre und Laplace so
ergibt sich:

X X
P(|= —p| <0.01) = P(—0.01 <= —p<0.01)
n n

_ P(—O-Olﬁ o X-m  _ 00l/m )
Ve —p) ~ /np(1—p) = /p(1—Dp)

Nun kennen wir p dummerweise nicht; aber es gilt stets p(1 —p) < i. Setzen wir dies ein,
erhalten wir

p(l—p) —np p(1—p)

. ( 001y _ X 7] < —0.01\/ﬁ>

X_
> Pl—001x2yn< =" _ <001x2/n].
vnp(l—p)

Nach dem Satz von de Moivre und Laplace ergibt sich
X —np
P —0.01 x 2y/n < ﬁ <0.01 x2y/n | = ®(2) — P(—2) = 28(2) — 1,
np{l—=p

da ®(—z2) =1 — &(z), wobei
2= 0.02/7.

Um nun (4.8) zu erfiillen, bestimmen wir aus einer N (0, 1)-Tafel z so, daB
20(2) —1=10.95 < &(2) = 0.975.
Dies ergibt (ungefihr) z ~ 2. Setzen wir die Definition von z wieder ein, erhalten wir

2 =0.02/n =2, d.h.: n = 10000.

Zu bemerken ist noch, dafl der benétigte Umfang n der Stichprobe n quadratisch von der
Approximationsgenauigkeit € abhéngt. Benttigt man beispielsweise nur eine Genauigkeit
von 2% (oder 5%), so geniigt eine Stichprobe vom Umfang 2500 (400), um das Ziel mit
95% Sicherheit zu erreichen.

Desweiteren bietet sich noch die Mdéglichkeit, den Stichprobenumfang durch eine Vorab-
information, wo ungefahr p liegen konnte, zu verkleinern.
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5 Die Poisson-Approximation

Im vierten Kapitel hatten wir mit der Normalverteilung die sicherlich wichtigste und
meiststudierte Verteilung der W.-Theorie kennengelernt und gesehen, dal man diese als
Limes eine geeignet skalierten Binomialverteilung erhalten kann. In diesem Kapitel wer-
den wir eine weitere zentrale Verteilung kennenlernen, die sich ebenfalls als Limes einer
(natiirlich anders skalierten) Binomialverteilung schreiben 148t.

Wir wollen diese Verteilung an einem Beispiel kennenlernen.

Das Experiment von Rutherford und Geiger

In einem bekannten Experiment beobachteten die Physiker Rutherford und Geiger den
Zerfall einer radioaktiven Substanz. Genauer studierten sie die Emission von a-Teilchen
eines radioaktiven Préaparates in n = 2608 Zeitabschnitten von 7.5 Sekunden. Die folgende
Tabelle gibt die Versuchsergebnisse wieder. Hierbei steht n; fiir jedes natiirliche ¢ fiir die
Anzahl der Zeitabschnitte, in denen genau i a-Teilchen emittiert wurden, r; bezeichnet
die relativen Haufigkeiten dieser Zeitabschnitte.

1 Tn; T
0 57 0.02186
1 203 0.0778
2 383 0.1469
3 925 0.2013
4 932 0.2040
3 408 0.1564
6 273 0.1047
7 139 0.0533
8 45 0.0173
9 27 0.0103
10 10 0.0038
11 4 0.0015
12 0 0
13 1 0.0004
14 1 0.0004

Offensichtlich sind diese Daten weit davon entfernt von einer Normalverteilung zu stam-
men. Wir benotigen vielmehr eine Verteilung, die die "Enden”, d.h. die groflen Zahlen
mit einem sehr viel kleineren Gewicht versieht. Eine solche Verteilung ist die Poisson-
Verteilung.

(5.1) Definition. Sei A > 0 eine reelle Zahl. Eine Zufallsgrofie X mit X (2) = Ny und
der Verteilung 7 gegeben durch

(k) = W)\ , k€ Ny,

heif3t Poisson-verteilt mit Parameter A > 0.
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Zunéchst bemerken wir, dal die Poisson-Verteilung auf den natiirlichen Zahlen, incl. der
Null Ny konzentriert ist. Desweiteren iiberzeugt man sich rasch, daf3

ZW,\ _)‘i =1

ist. my ist also tatsédchlich eine Wahrscheinlichkeit.

Der Erwartungswert dieser Verteilung ist leicht zu berechnen:

B B o0 )\k—l B 0 )\k B
E:mu AE:kk'_ AA;;(k_U!:eAA;:E?:eAMﬁA:A.

Eine Poisson-verteilte Zufallsgrofie hat also Erwartungswert \.

Als nachstes wollen wir die Varianz ausrechnen:

E(X?) = j{:kﬁﬂ) —Ajgjkﬁ
_)\ o )\k _)\ )\k+2 )
_ }: (k=1)+ k)5 =c }: A=A

Somit gilt
V(X)=EB(X*) - (EX)?*=N+A=-\ =\

Wir fassen diese beiden Feststellungen noch einmal in folgendem Lemma zusammen.

(5.2) Lemma. FErwartungswert und Varianz einer Poisson-verteilten Zufallsgrifle sind
gleich dem Parameter \.

Wir wollen nun einmal die eingangs gezeigten Daten aus Rutherford’s Experiment mit de-
nen einer Poissonverteilung vergleichen. Dabei stellt sich die Frage, wie wir den Parameter
A am geschicktesten wihlen. Vor dem Hintergrund des Gesetzes der groflen Zahlen, nach
dem man eine mittlere Zahl emittierter Teilchen erwarten kann, die nahe am Erwartungs-
wert liegt und Lemma (5.2) ist eine gute Wahl die, A als die durchschnittliche Anzahl der
Emissionen zu wihlen. Diese betrug im Experiment von Rutherford und Geiger

10097
= —— ~ 3.87.
“~ 2608
Die néchste Tabelle zeigt den Vergleich der relativen Haufigkeiten r; aus dem Experiment
von Rutherford und Geiger mit den Wahrscheinlichkeiten 7y (k) einer Poissonverteilung

zum Parameter A\ = 3.87.
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k Tk 7T)\(/{3)
0 0.0219 0.0208
1 0.0778 0.0807
2 0.1469 0.1561
3 0.2013 0.2015
4 0.2040 0.1949
5 0.1564 0.1509
6 0.1047 0.0973
7 0.0533 0.0538
8 0.0173 0.0260
9 0.0103 0.0112
10 0.0038 0.0043
11 0.0015 0.0015
12 0 0.0005
13 0.0004 0.0002
14 0.0004 4 x107°

Die beobachteten relativen Haufigkeiten differieren also von den durch die entsprechende
Poisson-Verteilung vorhergesagten Werten nur um wenige Tausendstel. Warum dies ein
plausibles Ergebnis ist, soll am Ende dieses Kapitels in einem Satz geklart werden, der
zeigen wird, daf viele Prozesse, die einer Reihe von Anforderungen genitigen, eine Poisson-
Approximation erlauben. Grundlage dieses Satzes ist eine Festellung dariiber, wie genau
sich die Binomialverteilung b(-;n, p) fir kleine Parameter p und groBie n durch die Pois-
sonverteilung (k) approximieren 1483t. Wieder bleibt das Problem, A zu wéhlen. Wir
l16sen es so, daBl wir A so bestimmen, dafl die Erwartungswerte der Binomialverteilung
und der Poissonverteilung iibereinstimmen, dafl also A = np ist. Wir wollen also zeigen:
b(k;n,p) liegt nahe bei 7y (k) fir A = np.

Um das zu prézisieren, benotigen wir ein Maf fiir den Abstand zweier Wahrscheinlichkei-
ten. Dies wird in unserem Fall gegeben sein durch

A(n,p) =Y |b(k;n, p) — map(k).

A(n,p) laBt sich ahnlich auf fir den Abstand beliebiger anderer Wahrscheinlichkeiten
definieren und heifit Abstand der totalen Variation.

Wir zeigen das folgende Resultat, das sogar noch wesentlich weitreichender ist als unser
oben gestecktes Ziel:

(5.3) Satz. Es seien X7,..., X, unabhingige Zufallsvariablen, definiert auf einem ge-

meinsamen Wahrscheinlichkeitsraum, mit P(X; = 1) = p; und P(X; = 0) = 1 — p; mit
O<pi<lfirallei=1,....,n.5 X=X;+4+---+ X, und A =p; + -+ p,, dann gilt:

D_IP(X = k) =m(k) <23 _p}.

Es folgt also im Fall p=p; = -+ = p,.:
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(5.4) Satz. Fiir alle n € N und p € (0,1) gilt A(n,p) < 2np?.

Die Schranken in den Sétzen (5.3) und (5.4) sind natiirlich nur interessant, falls y " | p?
klein wird bzw. p? klein wird gegen n. Offenbar benétigt man in Satz (5.4) dazu mindestens
J RS in, d.h. die Wahrscheinlichkeit eines Einzelerfolges wird klein mit n. Aus diesem
Grun(ifheiﬁt die Poisson-Verteilung auch Verteilung seltener Ereignisse. Insbesondere folgt
der sogenannte Poissonsche Grenzwertsatz, der von Siméon Denis Poisson (1781-1840) im

Jahre 1832 entdeckt wurde:

(5.5) Satz. (Grenzwertsatz von Poisson) Ist A > 0 und gilt np, — A > 0 fiir n — o0, so
gilt fiir jedes k € Ny:
lim b(k;n,p,) = (k).

n—oo

(5.5) folgt sofort aus (5.4): Aus np, — A folgt p, — 0 fiir n — oo und np? — 0. Ferner
ist |b(k;n, p) — mnp(k)| < A(n, p) fiir jedes k € Ny. Demzufolge gilt

lim [b(k: 2, pr) — o (K)] = 0.

n—oo

Wegen 7, (k) — m\(k) folgt (5.5).

Offenbar unterscheidet sich (5.4) von (5.5) dadurch, daf§ die Aussage von (5.4) auch im
Fall, wo np? — 0, np, — oo gilt, von Interesse ist (z.B. p, = 1/n%?). Der wichtigste
Vorzug von (5.3) und (5.4) im Vergleich zu (5.5) ist jedoch, daf eine ganz konkrete Ap-
proximationsschranke vorliegt. Dafiir ist Satz (5.3) auch schwieriger zu beweisen als (5.5)
(den wir hier allerdings nur als Korollar aus Satz (5.4) ableiten wollen).

Bevor wir den Beweis von Satz (5.3) geben, stellen wir einen wichtigen Aspekt der Pois-
sonverteilung bereit:

(5.6) Proposition. X und Y seien unabhingig und Poisson-verteilt mit Parametern A
beziehungsweise p > 0. Dann ist X + Y Poisson-verteilt mit Parameter A 4 p.

Beweis. Fiir n € Ny gilt:

P(X+Y=n) = Y P(X=kY =n—k)
k=0

= Y P(X=k)P(Y =n—k) (Unabhéngigkeit)
k=0

N LT N 1 (< [n
— - e )\k n—k | —(A+up)
A GRS A (kzzo (k) a )e

1

= e O = (),
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(5.7) Bemerkung. Per Induktion folgt sofort, dafi die Summe von endlich vielen un-
abhéngigen Poisson-verteilten Zufallsgrofien wieder Poisson-verteilt ist, wobei der Para-
meter sich als Summe der Einzelparameter ergibt.

Beweis von Satz 5.3.
Der Beweis des Satzes (5.3) verwendet eine Technik, die man Kopplung (coupling) nennt.

Dabei verwenden wir wesentlich, dafl bei der Berechnung des Abstands

Yoo |P(X = k) — m\(k)| die GroBen P(X = k) bzw. my(k) zwar die Verteilungen von
Zufallsvariablen sind, dafl aber in die Berechnung der zugrunde liegende W.-Raum nicht
eingeht. Wir konnen also einen W.-Raum und Zufallsvariablen mit den gegebenen Vertei-
lungen so wihlen, daf} sie fiir unsere Zwecke besonders geeignet sind und das bedeutet,
daB sie sich bei gegebener Verteilung moglichst wenig unterscheiden. Konkret konstruieren
wir:

Sei Q; = {-1,0,1,2,...}, P(0) = 1 — p; und Py(k) = < pF fiir k > 1 sowie P;(—1) =
1—P,(0)=> ;> Pi(k) = e Pi—(1—p;). Nach Konstruktion sind somit (£2;, ;) W.-Raume.
Betrachte dann den Produktraum (€2, P) der (£;, P;) im Sinne der Definition (2.13). Wir
setzen fir w € ()

0, falls w; =0,
1, sonst,

Xi(w) = {

und
n( ) {k, fallsw; = k, k > 1,

1 0, sonst.

Dann haben nach Definition die Zufallsgroen X; die geforderte Verteilung: P(X; = 1) =
p;und P(X; = 0) = 1—p;,. Sie sind weiter nach Definition des Produktraumes unabhéngig.
Die Y; sind nach Definition Poisson-verteilt zum Parameter p; und ebenfalls unabhéngig.
Also folgt mit Proposition (5.6), dal Y = Y; +- - -+, Poisson-verteilt ist zum Parameter
A. Nun stimmen die ZufallsgroBen in den Werten 0 und 1 iiberein, und es ist P(X; =
Y:) = P;(0) + Pi(1) = (1 — p;) + e Pip;, und somit

P(X; #£Y;) =pi(1 —e ) <p7,

denn fir z > 0 gilt 1 — e < z. Damit folgt

STIP(X = k) = m(k)| = D_|P(X = k) = P(Y = k)|
k=0 k=0

o0

= Y |IPX=k=Y)+P(X=k#Y)-(P(X=k=Y)+P(X £k=Y))|
k=0

< D) PX=k#Y)+P(X#k=Y)
k=0
= 2P(X #£Y)<2) P(X;#Y)<2) pl.
=1 =1
Das beweist Satz (5.3). O
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Nun konnen wir auch kldren, warum die Ergebnisse im Experiment von Rutherford und
Geiger so erstaunlich nahe an den Vorhersagen einer Poisson—Verteilung lagen. Dies ge-
schieht im Rahmen des sogenannten Poissonschen Punktprozesses.

Der Poissonsche Punktprozel3 (Poisson point process)

Wir konstruieren ein mathematisches Modell fiir auf einer Zeitachse zuféllig eintretende
Vorkommnisse. Beispiele sind etwa: Ankommende Anrufe in einer Telefonzentrale, Regis-
trierung radioaktiver Teilchen in einem Geigerzéhler, Impulse in einer Nervenfaser etc.

Die Zeitachse sei (0, 00), und die ,,Vorkommnisse “ seien einfach zuféllige Punkte auf dieser
Achse. Die Konstruktion eines unterliegenden Wahrscheinlichkeitsraumes ist leider etwas
aufwendig und soll hier einfach weggelassen werden (wir glauben hier einfach mal, dafl
man das kann).

Ist I = (t,t + s| ein halboffenes Intervall, so bezeichnen wir mit N; die zufillige Anzahl
der Punkte in 1. Ny ist also eine Zufallsgroffe mit Werten in Ny. Statt N, schreiben wir
auch einfach ;.

zuféllige Punkte

An unser Modell stellen wir eine Anzahl von Bedingungen (P1) bis (P5), die fir Anwen-
dungen oft nur teilweise realistisch sind.

(P1) Die Verteilung von N; hingt nur von der Lénge des Intervalls I ab. Anders ausge-
driickt: Haben die beiden Intervalle I, I” dieselbe Lénge, so haben die Zufallsgrofien
Ny und Ny dieselbe Verteilung. Man bezeichnet das auch als (zeitliche) Homogenitét
des Punktprozesses.

(P2) Sind Iy, Iy, . . ., I paarweise disjunkte Intervalle, so sind Ny, Ny,, ..., N, unabhéngi-
ge Zufallsgrofien.

(P3) Fir alle I (stets mit endlicher Lénge) existiert £N;. Um Trivialitdten zu vermeiden,

fordern wir:

(P4) Es existiert ein Intervall I mit P(N; > 0) > 0.

Aus (P1), (P3), (P4) lassen sich schon einige Schliisse ziehen: Sei

Offensichtlich gilt A(0) = 0, denn Ny setzen wir natiirlich 0. Die Anzahl der Punkte in
einer Vereinigung disjunkter Intervalle ist natiirlich die Summe fiir die Einzelintervalle.

Insbesondere gilt:
Nips = Ny + Ngprq-

Demzufolge:
Alt+s) = A1) + EN 145,
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was wegen (P1)
= A(t) + A(s)
ist.

Nach einem Satz aus der Analysis, der hier nicht bewiesen werden soll, muf} eine derartige
Funktion linear sein, das heift, es existiert A > 0 mit A(s) = As. A = 0 kénnen wir wegen
(P4) sofort ausschliefen. In diesem Fall miiite nach (P1) EN; = 0 fiir jedes Intervall
gelten. Dies widerspricht offensichtlich (P4).

Fiir kleine Intervalle ist die Wahrscheinlichkeit dafiir, daf {iberhaupt ein Punkt in diesem
Intervall liegt, klein. Es gilt ndmlich:

P(N;>1)=> P(N;=k) <Y kP(N;=k) = EN,
k=1 k=1

und demzufolge
P<N(t,t+€] Z 1) S )\E fuI‘ alle t,g Z O

Unsere letzte Forderung besagt im wesentlichen, daf sich je zwei Punkte separieren lassen,
es also keine Mehrfachpunkte gibt. Dazu sei fiir T > 0

Dr(w) := t718r£fT{\t — s |N; — Ng| > 1}
dann besagt unsere Forderung (P5):

(P5) P(Dr < o) — 0

n—oo

fiir jede Nullfolge «,, und jedes endliche T

Natiirlich haben wir in keiner Weise belegt, daf§ eine Familie von Zufallsgré8en N; mit
den Eigenschaften (P1)-(P5) als mathematisches Objekt existiert. Wir kénnen dies im
Rahmen dieser Vorlesung nicht tun. Wir kénnen jedoch nachweisen, daf fiir einen Punkt-
prozeB, der (P1) bis (P5) erfiillt, die N; alle Poisson-verteilt sein miissen:

(5.8) Satz. Sind (P1) bis (P5) erfiillt, so sind fiir alle ¢, s > 0 die ZufallsgroBen N ;44
Poisson-verteilt mit Parameter As.

Beweis. Wegen (P1) geniigt es, N, = N4 zu betrachten. Wir halten s > 0 fest. Fiir
ke N, 1< j <k, definieren wir

k
X](' V= Nty /ksi/i

k
g ._ ] 1 falls X}k)ZL
7 0, falls X" =o0.

Fiir jedes feste k sind die X j(»k) nach (P2) unabhingig und die X j(»k) damit ebenfalls.

Wir stellen einige einfach zu verifizierende Eigenschaften dieser Zufallsgréfien zusammen:
k
_ (k)
No=> X"
j=1
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Sei N = Zle X ](k). Dann gilt fiir jede mogliche Konfiguration der Punkte:

N® < N,.
Demzufolge gilt fiir jedes m € N:
P(N®) > m) < P(N, > m).
Sei pp = P(XY =1) = P(X) > 1) = P(N, > 1).
N® st binomialverteilt mit Parameterk, py.

Wir verwenden nun (P5), um nachzuweisen, daf sich fiir groe &k N®

(5.1)

(5.2)

nur wenig von N,

unterscheidet. In der Tat bedeutet ja N® # N, dal es mindestens ein Intervall der Lange

1/k gibt, in dem 2 Punkte liegen, also
{N® # N} € {D, < 1/k}.

Wegen (P5) folgt
P(N® £ N,) < P(D, <1/k) — 0

fiir k — oo. Fiir m € N und k € N gilt:

P(N,=m) > P(N® =m, N® = N,)
> P(NM =m) - P(N® # N,)
P(Ny;=m) < P( _§k) =m, Ngk) = N;) +P(Ns(k) # N;)
< P(N®™ =m)+ P(N® £ N,).

Unter Benutzung von (5.2) und (5.3) folgt:

P(N, =m) = lim P(N® =m) = lim b(m;k, py)

k—o0 k—o0
und analog B
P(N, = m) = lim P(N® >m).
Wir zeigen nun:
klim kpi = As.

[e o]

kp = ENJ =" GP(N® = j) = 3" P(NW > 1),
j=1 =1

(5.3)

(5.5)

(5.6)

P(Nﬁk) > [) ist nach (5.1) nicht grofer als P(N; > 1) und strebt nach (5.5) fir £ — oo
gegen diese obere Grenze. Nach einem Satz iiber reelle Zahlenfolgen (falls nicht bekannt

oder vergessen: Ubungsaufgabe!) folgt daraus

> P(N,>1)=EN, = )s.

=1

. T (k)
Jim ki = fim 3 PN 21

Damit ist (5.6) gezeigt. Unser Satz folgt nun aus (5.4), (5.6) und dem Satz (5.5).
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Der Poissonsche Punktprozel wird oft verwendet um etwa eintreffende Anrufe in einer
Telefonzentrale, ankommende Jobs in einem Computernetzwerk etc. zu modellieren. Man
iiberlegt sich etwa, dal auch das eingangs geschilderte Rutherford-Experiment in diesen
Rahmen pafit, wenn man sich die radioaktive Substanz als aus sehr vielen Atomen auf-
gebaut vorstellt, von denen jedes eine innere Uhr trédgt. Diese Uhren laufen unabhéngig
voneinander und ist die Uhr eines Teilchens abgelaufen, so zerfillt es unter Emission eines
a-Teilchens. Man iiberlegt sich schnell, das in der Regel (P1)—(P5) erfiillt sind, wobei (P2)
natiirlich nur dann eine Chance hat zu gelten, wenn die Halbwertzeit des Materials sehr
grof} ist gegeniiber der Beobachtungsdauer, wiahrend (P5) bedeutet, daf keine zwei Uhren
gleichzeitig ablaufen.

Allgemein sind die Annahmen (P1)—(P5) natiirlich nicht immer sehr realistisch oder nur
niaherungsweise richtig. Problematisch in Anwendungen sind oft (P1) und (P2).

Wir wollen das Kapitel abschliefen mit einem weiteren Beispiel der Poisson—Approxi-
mation in der Physik.

Das Ideale Gas

Ein Ideales Gas in einem Volumen V besteht aus einem System von N nicht—inter-
agierenden Teilchen (den Molekiilen). Wir nehmen an, da§ V' der d-dimensionale Wiirfel
mit Zentrum 0 und Kantenldnge R ist. Wir wollen nun R und N gegen oo gehen lassen
und zwar so, daf8 die mittlere Teilchendichte konstant bleibt, d.h. N/R? — X > 0, wenn
N, R — o0. Dies heifit manchmal auch thermodynamischer Limes. Das Hinschreiben eines
zugrunde liegenden W.-Raumes bereitet dhnliche Schwierigkeiten wie im Falle des Pois-
sonschen Punktprozesses. Eine gute Wahl fiir die Zustandmenge wére beispielsweise die
Menge aller Punkte, die die N Teilchen einnehmen koénnen, also das N-fache Produkt des
Wiirfels mit sich selbst. Dieser Raum hat allerdings fiir uns den Nachteil, nicht abzéhlbar
zu sein.

Wenn wir fiir den Moment annehmen, dafl man diese Schwierigkeiten tatséchlich iiber-
winden kann, so ist es verniinftig anzunehmen, dafl die Wahrscheinlichkeit, ein Teilchen,
in einer Teilmenge () C V zu finden, proportional ist zum Volumen von (). Genauer
wéhlen wir die Wahrscheinlichkeit als p(Q) = %(f). Die Annahme, die Teilchen mogen
nicht interagieren, driickt sich in der Unabhéngigkeit der Orte der einzelnen Teilchen aus,
d. h. insbesondere, ob ein Teilchen sich im Volumen () befindet, hdngt nur von @), nicht
aber von den anderen Teilchen ab. Sei nun fiir festes Q die Grofie v9(w) die Anzahl der
Teilchen, die sich bei einer zufilligen Verteilung der Teilchen in V' in @) einfinden. Dann gilt

Satz 5.9.

lim P(19(w) = k) = 70\”0][{;(!@))]96_“(’1(@.

Beweis. Der Beweis folgt einer Uberlegung, die wir schon kurz bei der Maxwell-Boltzmann -
Statistik kennengelernt hatten. Es seien 1, ..., 4 die Indizes der Teilchen, die in () liegen
i ={wrir, €Q,1<s<kx;¢Q,jFi,...i}. Dann ist offenbar

-----
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Weiter gilt wegen des obigen Ansatzes fiir P

P(C ) = (1 - Py
Und daher PR — (N) (vol(Q))k(l B UOl(Q))N—k
k Rd R ’
d.h. P(19(w) = k) ist binomialverteilt zu den Parametern N und py = %EQ) Nun ist
aber pyN = N%g@ — Avol(Q) und daher folgt die Behauptung aus Satz (5.5). O

Dieses Beispiel ist gewissermaflen die d-dimensionale Verallgemeinerung des vorher vor-
gestellten Poissonschen Punktprozesses. Dieser ist auch in der aktuellen Forschung ein oft
verwandtes Modell des Idealen Gases.
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6 Grofle und moderate Abweichungen

In diesem Kapitel wollen wir noch einmal auf das Gesetz der grofien Zahlen (Satz (3.30))
eingehen. Wir werden Verscharfungen dieses Gesetzes kennenlernen, die zum einen von
theoretischem Interesse sind, zum anderen aber auch von praktischem Nutzen, da sie
beispielsweise die Konvergenzgeschwindigkeit im Gesetz der groflen Zahlen angeben und
somit die Frage kldren, wie grof eine Stichprobe, die (3.30) geniigt, sein muf}; damit der
Mittelwert der Stichprobe eine gute Approximation fiir den Erwartungswert der einzelnen
Zufallsvariablen ist (eine wesentliche Fragestellung in der Statistik). Desweiteren werden
wir sehen, dafl einer der in diesem Kapitel formulierten Sétze einem zentralen und wohl-
bekannten physikalischen Sachverhalt entspricht.

Wir werden uns zunéchst mit der Binomialverteilung beschéftigen. Sei also S,, eine bino-
mialverteilte Zufallsgrofle zu den Parametern n und p, d.h.

Sn = ilea

wobei die X; unabhéngige Zufallvariablen sind, die mit Wahrscheinlichkeit p den Wert 1
annehmen und mit Wahrscheinlichkeit 1 — p den Wert 0.

Unser erster Satz beruht auf der Beobachtung, dal wir im Gesetz der grolen Zahlen ge-
sehen hatten, dafl die Zufallsvariable S,, — np, wenn man sie durch n dividiert, gegen 0
konvergiert (und zwar mit einer Wahrscheinlichkeit, die selber gegen 1 strebt). Normiert
man hingegen S,, — np, indem man durch y/n dividiert, so ergibt sich nach dem Satz von
de Moivre und Laplace eine Normalverteilung (die in diesem Fall nicht notwendig Varianz
1 hat). Eine berechtigte Frage ist, was eigentlich “dazwischen” geschieht, d.h., wenn wir
Sy — np mit n®, 1/2 < o < 1 normieren.

(6.1) Satz. Sei S, binomialverteilt zu den Parametern n und p. Dann gilt fiir jedes
1/2 <a <1 und jedes e >0
> 6) — 0

Beweis. Der Beweis folgt dem Beweis des gewohnlichen Gesetzes der groBen Zahlen (Satz
(3.30)). Nach der Tschebyscheff-Ungleichung ist

P( >€) Ve _mw-p)

=T 2 202
da a > 1/2. Das beweist den Satz. O

na

wenn n — oo.

S, —np

nCl{

Satz (6.1) besagt also, dafl das Gesetz der grofien Zahlen auch dann erhalten bleibt, wenn
wir statt mit n mit n®, 1/2 < a < 1, skalieren.
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Die néchste Frage, mit der wir uns beschéftigen wollen, ist die nach der Konvergenzge-
schwindigkeit im Gesetz der grofien Zahlen. Betrachtet man den Beweis von Satz (3.30)
noch einmal, so sieht man, dafl man mit der iiblichen Abschétzung durch die Tchebyscheff—
Ungleichung fiir eine b(+; n, p)-verteilte Zufallsvariable S, eine Schranke der Form

{5l 29) < () -

erhélt. Dies ergibt zum Beispiel fiir den symmetrischen Miinzwurf (p = 1/2)und € = 1/10
und n = 1000

1 1

- _) <.

1000 21 = 10/ = 40
Diese Abschétzung liegt jedoch um Groéflenordnungen iiber der richtigen Wahrscheinlich-
keit. Dies sieht man am leichtesten ein, indem man statt der iiblichen Tschebyscheff—
Ungleichung eine andere From der Markoff-Ungleichung anwendet. Benutzt man diese
nimlich mit der monotonen Funktion R 3 z +— e**, A > 0, wobei A zunichst beliebig ist,
so erhélt man

P()Smoo 1

P(Sn > om) < e’"o"\E<e’\S">,

wobei der Erwartungswert auf der rechten Seite existiert, da S, nur endlich viele Wer-
te annimmt. Dieser Ansatz geht auf S.N.Bernstein zuriick. Um diesen Erwartungswert
auszuwerten, schreiben wir AS, = > " | AX;, wobei X, ..., X,, die unabhéngigen Zufalls-
groflen mit P(X; = 1) = pund P(X; = 0) = (1 —p) sind, die die Ergebnisse der einzelnen
Wiirfe beschreiben. Da die X; unabhiingig sind, folgt die Unabhingigkeit der e**i aus
Satz (3.24). Demnach folgt aus der Bemerkung (3.26) fiir jedes A > 0

P<Sn > a) < gTned H E<e)‘X"> — g A (E <e)‘X">)n.
i=1
Dies berechnen wir als
P(Sy > an) < e (pe 4+ (1= p)) " = exp(nf{—ad+log M(V)}),

wobei M (\) = pe*+(1—p) ist. Es bezeichne f(\) den Ausdruck in den geschweiften Klam-
mern. Wir wollen nun A > 0 so wéhlen, dafl wir eine moglichst gute obere Abschitzung
erhalten, d. h., wir bestimmen das Minimum von f. Zunéachst bemerken wir, dafl

_ M) (M’(A))2 _ p(—p)e

IO =Ty~ ) = oy 70

fir alle A > 0 und 0 < p < 1 ist. Demzufolge ist f’(\) streng monoton steigend. Es
existiert also hochstens eine Nullstelle A\ von f/, und in dieser muf§ die Funktion f ihr
absolutes Minimum annehmen. Ist a € (p,1), so ergibt sich aus f'(\g) = 0 nach einer
kleinen Rechnung die Nullstelle

1 —
N — log 21 =P)

Einsetzen in f liefert

FO0) = =alog (%) = (1 = ) log (1=5) = —H(alp).
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Die Funktion H(«|p) heifl relative Entropie von « beziiglich p und hat die folgenden
schonen Eigenschaften:

(6.2) Lemma. Fir 0 <p <1 st H(-[p) > 0 und H(a|p) =0 genau dann wenn o = p.
Fiir ein Intervall I = (a,b) ist inf,e; H(a|p) = 0, falls p € 1. H(:|p) ist stetig und strikt
konvex.

Beweis. Wir betrachten die folgende Hilfsfunktion (t) := tlogt —t + 1 fiir ¢ > 0 und
¥ (0) := 1. Dann gilt: ¢ ist nicht negativ, strikt konvex und (¢) = 0 genau dann wenn
t = 1. Es gilt weiter

« l-«
H(alp =p¢(—>+ 1—pw( )
(alp) = p(%) + (1= (1=5
Somit folgen die Eigenschaften jeweils aus den Eigenschaften der Funktion . Wir be-
trachten exemplarisch den Beweis der Konvexitét: seien oy, s € (0,1) und 0 < p < 1.

Dann gilt mittels der Konvexitéat von 1)

s 1) < () 430 -104(3)

+ (1 —p)uw(ll__o;j) +(1-p —M)w(l _0‘2)

l—p
= pH(aulp) + (1 — p)H(zlp).

O

Zusammenfassend haben wir also gezeigt, daf fiir die Anzahl S,, der , Kopf“-Wiirfe die
Abschatzung

P(Sn > a) < exp(—nH (alp))
fiir alle a € (p, 1) gilt (wobei wir S, fiir 2= schreiben). Wir wollen uns fragen, was uns
diese Anstrengung gebracht hat. Fiir den symmetrischen Miinzwurf gilt

i

fir alle @ € (0,1/2). Der Graph von I(«) := H(a + 1/2|1/2) ist:

S, — %‘ > a) :2P<Sn > o+ 1/2) < 2exp(—nH(a+1/2|1/2)>
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Fiir a = 1/10 und n = 1000 erhalten wir zum Beispiel

Sio00 1 1 5y 600 /5~ 400 B
P(lom 312 16) =2() () <3007
1000 21— 10/ — \6 4 =3 0

was phantastisch viel besser ist als 1/40 aus der Tschebyscheff-Ungleichung.

Interessanterweise ist diese Abschéitzung “auf einer logarithmischen Skala” schon optimal.
Genauer gilt:

(6.3) Satz. (Prinzip grofer Abweichungen von Cramér, large deviation principle)
Bezeichnet S, die Anzahl der Erfolge bei einem Bernoulli-Experiment zu den Parametern
n und p und ist S,, = S—n", so gilt firalle 0 <a < b < 1:

1 _
lim —logP(Sn € (a, b)) = — inf H(z|p).

n—o0 1 z€(a,b)

Beweis. Unser wesentliches Hilfsmittel wird wieder einmal die Stirling—Formel sein. Setzt
man (a,b) =: I so gilt:
P(S, €)= Y blkin,p),
na<k<nb

wobei b(k;n,p) die Binomialverteilung bezeichnet.
Mit A, := (na,nb) ist dann

: < < ; .
max b(k;n,p) < P(S, € 1) < (n+1) max b(k;n, p)

Das asymptotische Verhalten der Wahrscheinlichkeit ist also durch den grofiten Summan-
den bestimmt. Die Monotonie der Logarithmusfunktion liefert:

1 1 )
~log b(k: < ZlogP I
max [n ogb(k;n,p)] < ~log (Snel)

1 1
< -1 1 ~log b(k; n, p)].
~log(n+1) +max [~logb(k; n, p)]
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Wir betrachten nun den entscheidenden Term mit Hilfe der Stirlingschen Formel genauer:

1 1
ﬁlog b(k;n,p) = ﬁlog [(Z)p’“(l —p)"

1 _
= —log (n) +Elogp+n klog(l—p) und
n k n n

1 — 1
—log (n) = logn — k log k — n—k log(n — k) + —RF
n n n n

1
mit lim —RF =0 Vk.
n—oo N,
Hierbei haben wir in dem Term R sowohl die Logarithmen der v/2mwn, v2rk bzw.
2n(n — k) als auch die Logarithmen der Quotienten aus den Fakultdten und ihren
Stirling-Approximationen gesammelt. Da letztere personlich gegen 0 konvergieren und

die Konvergenz von (105_3)@ — 0 fiir alle B,y > 0 die ersten Terme gegen 0 streben 1a8t,
gilt in der Tat lim, .o 2RE =0 Vk.

Da logn = —% log% — ”T’k log %, folgt insgesamt:
1 kook k (1-%
— log b(k; =——log™ —(1-—)1 iS4 —RE
—log b(k; 1, p) oo 1=-) 8T, T nk

Erinnern wir uns an die Definition von H(-|p), so erhalten wir
1 k 1
—logb(n; k;p) = —H(=|p) + =Ry
n n n

Nun ist [ = [a,b] eine kompakte Menge, und daher nimmt H(-|p) als stetige Funktion
sein Minimum auf [a,b] an. Eine kleine Rechnung ergibt, daf die Stetigkeit von H(:|p)
zusammen mit der Tatsache, dafl sich jedes = € [a,b] durch eine Folge k/n, k € A,,
approximieren la8t, dann impliziert, dafl

k
lim max —H(—|p) = max —H (z|p) = — inf H(z|p).
n z€(ab)

n—oo k€A, z€[a,b|
Insgesamt ergibt sich also
1 _
lim —log P(S, € I) = — inf H(z|p).
n—oo 1 z€(a,b)

In der Sprache der Wahrscheinlichkeitstheorie haben wir damit fiir den Miinzwurf ein
Prinzip grofer Abweichungen mit Geschwindigkeit n und Rate H(-|p) bewiesen. Symbo-
lisch schreibt man hierfiir:

P(S, € I) ~ exp(—n 1r€1£H(x|p))

Das bedeutet, dal die Wahrscheinlichkeit fiir ein untypisches Verhalten des empirischen
Mittelwertes der Anzahl der Erfolge exponentiell klein wird. Untypisch sind hierbei offen-
bar alle Werte p' fir die H(p'|p) > 0 ist und somit alle p’ # p. Die Wahrscheinlichkeit
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dafiir, dal der empirische Mittelwert in einer Menge [ liegt, wird gesteuert durch den
Wert p’ € I mit minimaler relativer Entropie bzgl. p und das ist aufgrund der Konvexitét
von H (-|p) dasjenige p’ mit geringstem Abstand zu p. Dies ist eine deutliche Verschiarfung
des Gesetzes der groflen Zahlen.

Man kann sich nun natiirlich fragen, ob es nicht eine Aussage gibt, die sich zu der eingangs
in Satz (6.1) bewiesenen Konvergenzaussage verhilt wie das Prinzip grofler Abweichun-
gen zum Gesetz der groflen Zahlen, eine Aussage, die die Konvergenzgeschwindigkeit in
Satz (6.1) angibt. Schon bei der Betrachtung des Beweises von Satz (6.1) kann man den
Verdacht hegen, da die Konvergenzgeschwindigkeit von 22="2 gegen 0 ganz entscheidend
vom gewéhlten 1/2 < o < 1 abhéngt. Dies ist in der Tat Wahr und wird durch den fol-
genden Satz préazisiert:

(6.4) Satz. ( Prinzip moderater Abweichungen, moderate deviation principle)
Bezeichnet S,, die Anzahl der Erfolge bei einem Bernoulli-Experiment zu den Parametern
n und p, so gilt fiir alle —oo < a < b < oo und alle 1/2 < a < 1:

2

S, —np x

lim - log P (

n—oo ’rL2

€ (a, b)) = — inf

ne ze(ad) 2p(1 — p)’

Beweis. Die Tatsache, dafl die Aussage des Satzes das Verhalten der S,, “zwischen dem Satz
von de Moivre und Laplace und dem Prinzip grofler Abweichungen” analysiert, spiegelt
sich auch im Beweis wieder. Zunéchst benutzen wir die schon im Beweis des Prinzips
grofler Abweichungen verwendeten Abschitzungen

F(&;WEWM): 3 b(k;n, p),

n®a+np<k<n*b+np
und
b(kin,p) < P22 ¢ (a,5)) < (n+ 1) max b(k;n, p)
max b(k;n, p) < — a,b) | < (n max b(k;n, p),
wobei wir jetzt A, := (n®“a + np,n*b + np) wihlen. Folgen wir dem obigen Beweis des

Prinzips der grofien Abweichungen, so erhalten wir wieder
k k
logb(k; n, p) = —nH(—|p) + K.

wobei analog zu obigen Uberlegungen f—;? — 0 fiir jedes # > 0. Da nun die % — p fiir

alle k € A, und H (p|p) = 0, kénnen wir nicht ohne weiteres den Beweis des Prinzips der

groflen Abweichungen “fortfithren”. Stattdessen fahren wir fort wie im Beweis des Satzes
von de Moivre/Laplace und entwickeln die Funktion H(-|p). Wir erhalten

H(z|p) = (z—p)*

2p(1 —p)

wobei wir fiir zwei Funktionen f, ¢ (in diesem Fall von n) f = O(g) schreiben, falls es

+0(z —pl*),
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eine Konstante C' gibt, so dafl f < Cg ist. Insbesondere ist

ki (£ —p)? k
H(= n Z_p3
W) = ngl e nO( = ol
_ 1 k—np ? 20—1 k?_npg 3a—2
B 2p(1—p)< n® )n O\ A
Somit gilt
1

a1 logb(k;n,p) =

np)2 <'k_np
+ 0O
(63 na
2
np)
3

beschrankt ist. Dies ergibt

_2p(11— p) (k;
_229(11— p) (k;

k—np

no

da aufgrund der Defintion von A,, der Term

) 1 S, —np ) k —mnp 2
lim P( € (a,b)) = — lim max| ——— | .
N0 n2a71 ne n—oo kEA, 2p<1 — p)na
Benutzt man nun wie im Beweis des Prinzips der grofien Abweichungen die Tatsache, dafl
[a, b] eine kompakte Menge ist, daf zu jedem x € [a, b] eine Folge a, = % mit k € A,
existiert, die gegen = konvergiert und die Stetigkeit der Quadratfunktion, so erhélt man
. 1 (k: - np) ? 1 ) 1 )
lim max = max ———r° = Sup ———7
n—ookedn 2p(1 —p) \ n® welab] 2p(L =p) seap) 2p(1 —p)
und damit folgt die Aussage des Satzes sofort. O

Als eine Anwendung und Ausweitung des Prinzips der grolen Abweichungen auf die Mul-
tinomialverteilung wollen wir ein Grundprinzip der statistischen Mechanik betrachten.

Boltzmanns Gesetz
Zunéchst wollen wir in wenigen Worten die Herkunft des Begriffs der Entropie in der
Physik kldren (dieser hatte ndmlich urspriinglich wenig mit userem Begriff zu tun).

In der klassischen Mechanik wird der Zustand eines Systems mehrer Teilchen durch Punk-
te im Phasenraum beschrieben, in dem man die Orts- und Impulskoordinaten aufgefiihrt
hat. Die Bewegung des Systems wird durch ein System gewchnlicher Differentialgleichun-
gen (Lagrange, Hamilton) beschrieben. Schon Avogadro wufite, dafl die Teilchenzahl pro
Mol in der GréBenordnung von 10%* Partikeln liegt. Dies fiihrt zu einem Differentialglei-
chungssystem, das keiner verniinftigen Behandlung mehr zugénglich ist.

Die Thermodynamik, die in der Mittel des letzten Jahrhunderts entstand, hat das Ziel,
das Verhalten eines Systems mit Hilfe makroskopischer Variablen, sogenannte Zustands-
grofen, z.B. Druck, Volumen, Temperatur, innere Energie, oder die 1865 von R. Clausius
eingefiihrte Entropie, zu beschreiben.

Die grundlegende Beobachtung von Clausius, gestiitzt auf Arbeiten Carnots, war, da8 fiir
einen reversiblen, d.h. zeitlich umkehrbaren, thermodynamischen Kreisprozef§ das (not-
wendigerweise entlang einer geschlossenen Kurve verlaufende) Integral iiber die Anderung
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der Wiarme d(@) pro Temperatur 1" verschwindet, also in Formeln f % = 0. Mathematisch
impliziert das ({iber eine Form des Hauptsatzes der Integral- und Differentialrechnung
fiir Vektorfelder) die Existenz einer Stamm- oder Potentialfunktion fiir den Integranden,
die eine Zustandsfunktion des zugrunde liegenden Systems ist. Diese Zustandsfunktion
nannte Clausius nach dem griechischen evrgomn (Umkehr) Entropie. Eine wesentliche Ei-
genschaft der Entropie ist, daf sie fiir nicht reversible Prozesse stets positiv ist (und fiir
reversible Prozesse — wie oben erwidhnt — verschwindet). Diese Beobachtung fiihrte zur
Formulierung des zweiten Hauptsatzes der Thermodynamik:

Prozesse in einem abgeschlossenen thermodynamischen System verlaufen stets so, daf3
sich die Entropie des Systems vergrofBert.

Eine Begriindung der thermodynamischen Gesetze auf der Basis der Atomhypothese lie-
fert die statistische Mechanik. Deren Wurzeln wurden mit Hilfe der sich entwickelnden
Wahrscheinlichkeitstheorie von L. Boltzmann und J.W. Gibbs gelegt.

Betrachten wir dazu eine Teilchenkonstellation zu einem festen Zeitpunkt, eine soge-
nannte Konfiguration. Boltzmann ordnete jeder Konfiguration eine Wahrscheinlichkeit
zu (und zwar jeder Konfiguration die gleiche) und fragte wieviele Konfigurationen das-
selbe makroskopische Bild liefern, also denselben Zustand beschreiben. Er erkannte, dafl
die wesentlichen Zusténde, also diejenigen die man beobachtet, diejenigen mit maximaler
Wahrscheinlichkeit sind, sogenannte Gleichgewichtszustdnde. Ein System tendiert stets
zu seinem wahrscheinlichsten Zustand hin, um dann um ihn zu fluktuieren. Bereits 1872
beschrieb er das Verhiltnis von Wahrscheinlichkeitstheorie und Mechanik mit den Worten:

“Lediglich dem Umstand, daB selbst die regellosesten Vorgénge, wenn sie unter denselben
Verhéltnissen vor sich gehen, doch jedes Mal dieselben Durchschnittswerte liefern, ist
es zuzuschreiben, dafl wir auch im Verhalten warmer Koérper ganz bestimmte Gesetze
wahrnehmen. Denn die Molekiile der Korper sind ja so zahlreich und ihre Bewegungen
so rasch, dafl uns nie etwas anderes als jene Durchschnittswerte wahrnehmbar sind. Die
Bestimmung der Durchschnittswerte ist Aufgabe der Wahrscheinlichkeitsrechnung.”

Boltzmanns wichtigster neuer Gedanke ist also die Idee, dal man fiir gewonlich Zusténde
maximaler Wahrscheinlichkeit beobachtet. Andererseits sollten dies nach dem 2. Haupt-
satz auch Zustdnde maximaler Entropie sein. Es liegt also nahe, einen Zusammenhang
zwischen Wahrscheinlichkeit und der Entropie herzustellen. Da die Entropie von zwei
Systemen gleich der Summe der einzelnen Entropien ist, und die Wahrscheinlichkeit der
beiden Systeme im Falle der Unabhéngigkeit multiplikativ ist, sollte der Zusammenhang
zwischen Entropie und Wahrscheinlichkeit logarithmisch sein:

S =klogW,

wobei S die Entropie des Systems ist, W seine Wahrscheinlichkeit und £ schlieflich ein
Proportionalitéitsfaktor, die sogenannte Boltzmannkonstante. Boltzmann bestimmte k an-
hand eines idealen Gases und erhielt den Wert & = 1,38 - 10723J/K. Die Boltzmannkon-
stante k ist eine fundamentale Naturkonstante.

Dieses Boltzmannsche Gesetz wollen wir im folgenden auf der Basis der groflen Abwei-
chungen fiir das Ideale Gas nachvollziehen. Gegeben sei also ein endliches Volumen V', das
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unser Gasbehélter sein soll. In V' wollen wir unabhéngig n Teilchen realisieren. Wir hat-
ten schon im vorangegangenen Kapitel gesehen, dafl der mehrdimensionale Poissonsche
Punktprozef} ein gutes Modell fiir das Ideale Gas darstellt; wir hatten aber auch gesehen,
daf3 wir noch nicht das mathematische Werkzeug besitzen, diesen wirklich zu behandeln.
Um diese Probleme zu umgehen, unterteilen wir V' in r Zellen Z; bis Z, mit relativen
Volumina (in Bezug auf V), my 1= 2220 hig 7 .= 22 Do Wahrscheinlichkeit in den

vol(V') vol(V')
Zellen 7y, ..., Z, Teilchenzahlen ki, ..., k, zu haben (man sagt auch man Besetzungszah-
len ky,..., k. ), ist dann gegeben durch die Multinomialverteilung zu den Parametern n
und 7, ..., T, le.

n! K :
T .krlﬂll ook
Sei nun M(X) die Menge der Wahrscheinlichkeiten auf X := {1,...,r}, versehen mit
der Supremumsnorm || |, . Um dies besser zu verstehen, identifizieren wir dabei M(X)
mit {(p1,...,p) ;0 > 0; >oi_ypi =1} C R". M(X) ist daher offenbar kompakt und
konvex.
Auf dieser Menge definieren wir eine Entropie-Funktion in Analogie zum Fall r = 2:

H(p|m) = Zpﬂog% mit p,m € M(X) und m >0 Vi
i=1 ¢

Man beachte, daf diese Defintion konsistent ist mit der Defintion von H(-|p) im Falle
r = 2. Wieder heiit H(p|m) die relative Entropie von p beziiglich 7.

Ebenfalls analog zum Fall » = 2 zeigt man: H(-|r) ist stetig und konvex und mifit den
Abstand zwischen p und 7 in dem Sinne, daf§ H(p|r) > 0 und H(p|r) =0 < p = 7 (
siche r =2 ).

Wir wollen nun die Wahrscheinlichkeit berechnen, dal untypische Besetzungszahlen vor-

liegen. Dazu sei k; fiir festes n und eine feste Beobachtung w definiert als die Zahl der

Teilchen in der Zelle Z;, und L, (w,-) sei der Vektor der relativen Haufigkeiten der Teil-
ki

chenzahlen in den verschiedenen Zellen, also L, (w,7) = ", =1,...,7.

Weiter sei P, das durch 7 gebildete n-fache Produktmaf (definiert wie in Kapitel 3). Wir
interessieren uns nun fiir die Grofenordnung von Py (L, (w,) € A) fir ein A € M(X),
das ein untypisches Verhalten beschreibt, d.h. fiir die Wahrscheinlichkeit in einer Zelle
wesentlich mehr oder weniger Teilchen vorzufinden als erwartet. Wir wahlen fortan

A= {veMX):|v—-r=|,, >c}

sup —

mit € > 0 (bemerke, dafl A abgeschlossen und beschrinkt und damit kompakt ist). A
ist also die Menge aller Konfigurationen, bei denen die Besetzungszahl mindestens einer
Zelle 7+ um mindestens ne von der zu erwartenden Zahl nm; abweicht.

Aufgrund der Multinomialverteilung von L,, gilt:

|
Po(Lp(w,") € A) = Z #Wfl gk
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mit
T

k
En:{(kl,...,kr):Zki:n; k; €{0,...,n} und HE—WHSUp > e}

i=1
Wieder erhalten wir
1 1
~1 B r*) < =log Py(Ly(w,-) € A
max —log(m(n, k)7") < —log Pr(Ln(w,) € 4)
1
< —1 1 1 k) 7"
< log(n+1) +?é%}§n og(m(n, k) ")
mit m(n, k) := #’W und 7% := 7 ... 7k Mit der Stirlingschen Formel folgt:
1 k; logn
—1 k) =1 — ~Llogk; + O
nogm(n,) ogn E nongr <n)

j=1
"k . 1

= ‘Z&bg&HO(Ogn),
=1 n n n

dalogn=—3"7"_, log =. Somit ist

o

1 - kj 1
- log(m(n, k) ") = Z # log m; — log =% ) + O ( Oin)
7=1

1
= ~H(ps|m) + 0 ( Oi") ,

wobei pr der (Wahrscheinlichkeits-) Vektor ist mit Eintrégen % ist. Eingesetzt ergibt das

keEn n keE, N

max — H(pk\ﬂ) O(logn) < maxllog( (n, k) ")

1
< max — H(pk|7r) +0 ( Oin) ,

keEn

Nun ist {p € M(X) : p = pr,k € E,} kompakt und steigt fiir wachsendes n auf gegen
A. Da H(:|m) stetig ist, folgt wieder

max —H (. |7) —n—ce max —H(p|7).

Also erhalten wir insgesamt:

1
lim —log P,(L,(w,-) € A) = max —H(p|r) = — inf H(p|).
pEA pEA

n—oo M,

Formal haben wir somit ein Prinzip grofler Abweichungen mit Geschwindigkeit n und
Rate H(:|m) fiir die Multinomialverteilung gezeigt.

Inhaltlich bedeutet dies, dafl in dem oben konstruierten Modell eines Idealen Gases un-
typische Besetzungszahlen exponentiell unwahrscheinlich sind mit einer Rate, die durch
die Entropie der so entstandenen Konfiguration gebildet wird. Dies rechtfertigt die Boltz-
mannsche Formel, dal die Entropie der Logarithmus der Wahrscheinlichkeit ist.
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7 Allgemeine Wahrscheinlichkeitsrdume und
Zufallsgroflen mit Dichten

In Kapitel 4 sind wir auf Wahrscheinlichkeiten gestofien, die sich durch Integrale ap-
proximieren lassen. Wir hatten gesehen, dafl fiir S,,, die Anzahl der Erfolge in einem
Bernoulli-Experiment mit Erfolgswahrscheinlichkeit p,

b
— 1
hm P(a < M S b) :/ —671'2/2 dx
n—o0 np(1l —p) o V2w

gilt. Es ist naheliegend, Zufallsgroien einzufiihren, fiir die sich P(a < X < b) durch ein
Integral ausdriicken 148t. Gibt es so etwas?

Zunachst sei bemerkt, dafl diese Frage fiir die Ergebnisse von Kapitel 4 irrelevant ist,
denn dort ist nur von (diskreten) ZufallsgroBen die Rede, fiir die sich die entsprechenden
Wahrscheinlichkeiten durch Integrale approximieren lassen. Dennoch ist es eine bequeme
mathematische Idealisierung, etwa von normalverteilten Zufallsgréfien zu sprechen, d. h.
von ZufallsgroBen X mit

Pla< X <b) = / o(x) dx, o(z) = \/12_776332/2.

Eine derartige Zufallsgrofle hétte eine erstaunliche Eigenschaft: Ist a € R beliebig, so gilt

P(X:a)gP(a—%<X§a):/ilgo(a:)dx

fiir alle n € N, und die rechte Seite konvergiert gegen null fiir n — oo. Somit gilt P(X =
a) = 0 fiir jedes a € R. Es ist evident, daf eine Zufallsgrofie, wie sie in Kapitel 3 definiert
wurde, diese Eigenschaft nicht haben kann. Ist ndmlich p(w) > 0 fir ein w € 2, so gilt
P(X =a)>p(w) >0 fir a = X(w).

Um z.B. normalverteilte Zufallsgréflen exakt zu definieren, mufl der Begriff des W.-
Raumes erweitert werden. Offenbar funktioniert unsere bisherige Definition nicht, da
) = R tberabzéhlbar ist. Andererseits gibt es Beispiele (die man beispielsweise in der
Analysis 11T kennenlernt), dafiir, dafl man nicht mit jedem Ma8 jede beliebige Teilmenge
eines iiberabzdhlbaren (2 messen kann. Man beschriankt sich daher auf Mengensysteme,
die mit dem Begriff der Wahrscheinlichkeit konsistent sind. Und zwar ist es plausibel, daf,
kennt man die Wahrscheinlichkeit zweier Ereignisse A und B, man auch an der Wahr-
scheinlichkeit des Eintretens von A oder B oder von A und B interessiert ist, oder auch
daran, dafl A nicht eintritt. Dies fiithrt zu folgender

(7.1) Definition. Sei 2 eine Menge. Eine nichtleere Familie F von Teilmengen von {2
heifit Algebra, falls fiir alle A, B € F auch A, AN B und AU B in F sind. Eine Algebra
heifit o-Algebra, wenn zusétzlich fiir jede Folge (A, )nen aus F auch | J07 | A, in F ist.

Jede Algebra enthiilt () und Q, weil ) = ANA® fiir A € F und Q = ()¢ gelten. Die einfachste
o-Algebra, die man bilden kann besteht daher aus F = {0, Q}.

71



(7.2) Bemerkung. Ein Mengensystem F ist genau dann eine o-Algebra, wenn die fol-
genden drei Eigenschaften erfiillt sind:

1. Qe F,
2. Ae F= Ace F,
3. Ist (An)nen eine Folge in F, so gilt |2, 4, € F.

Der Beweis ist eine einfache Ubungsaufgabe.

Eine o-Algebra F sollte man sich als ein hinreichend reichhaltiges Mengensystem vorstel-
len. Alle abzéhlbaren Mengenoperationen in F fiihren nicht aus F heraus.

(7.3) Bemerkung. Zu jedem Mengensystem C in {2 gibt es eine kleinste o-Algebra o (C),
die C enthélt. Dies ist einfach der Durchschnitt aller o-Algebren, die C enthalten (und
dies ist als unmittelbare Folgerung aus der Definition wieder eine o-Algebra). Mindestens
eine o-Algebra, namlich P(Q2) (die Potenzmenge), umfaft C.

(7.4) Beispiel. Das fiir uns wichtigste Beispiel ist 2 = R™. Sei C die Familie aller nach
links halboffenen Intervall. Dabei ist fiir a = (aq,...,a,),b = (by,...,b,) € R" mit a < b
(d.h. a; < b; fiir alle ) ein nach links halboffenes Intervall definiert durch

la,b) ={x=(x1,...,2,) ER" 1 aq; <2; <b; fiir i=1,...,n}

Dann heifit B,, := o(C) die Borelsche o-Algebra in R™, und die zu B,, gehorigen Mengen
heiflen Borelsche Mengen (Borel sets). Da sich jede offene Teilmenge des R™ als abzdhlbare
Vereinigung von Intervallen schreiben 148, ist jede offene Menge (und damit auch jede
abgeschlossene Menge) in R™ Borelsch.

Wie definieren nun einen allgemeinen Wahrscheinlichkeitsraum:

(7.5) Definition. Sei 2 eine Menge und F eine o-Algebra von Teilmengen von (2. Ein
Wahrscheinlichkeitsmafi (probability measure) ist eine auf F definierte Funktion P mit
Werten in [0, 1], welche den folgenden Bedingungen geniigt:

1. P(A) >0 fiir alle A € F,
2. P(Q) =1,
3. P ist o-additiv, d.h., fiir disjunkte Ay, A, ... € F gilt

p([] A) - Zf;P(Ai).

(Q, F, P) heifit dann Wahrscheinlichkeitsraum (probability space), P Wahrscheinlichkeit
(probability).

Im diskreten Fall hatten wir jede Abbildung X von €2 nach R Zufallsgrofle genannt. Fiir
einen allgemeinen Wahrscheinlichkeitsraum ist dies nicht zweckméfig. Wir wollen Wahr-
scheinlichkeiten von Ereignissen der Form {a < X < b} bestimmen. Fiir unsere Zwecke
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geniigt die folgende Definition:

(7.6) Definition. Sei (2, F, P) ein W.-Raum und X : Q — R eine Abbildung. X heifit
Zufallsgrofle (random variable) (oder Zufallsvariable), wenn fir alle a € R gilt:

X 1] —o00,d]) € F.

(7.7) Bemerkungen. Der Begriff Zufallsgrofie hat zunéchst nichts mit der Wahrschein-
lichkeit P zu tun. Liegt keine Wahrscheinlichkeit vor, so spricht man von einer mefba-
ren (measurable) Abbildung auf (€, F). Die Familie Fy := {A C R : X 1(4) € F}
ist eine o-Algebra. Dies ist eine einfache Ubung. Ist X eine Zufallsgrofie, so gilt nach
Definition | — oo,a] € Fx fiir jedes a € R. Somit liegt auch jedes Intervall der Form
la,b] =] —00,b]N (] — 00, a])¢ in Fx. Da B; von Intervallen dieser Form erzeugt wird, liegt
somit (unmittelbare Folgerung der Definition (7.6)) das Urbild jeder Borelschen Menge
in F. Eine dquivalente Definition einer Zufallsgrofle ist also durch die Forderung gegeben,
da das Urbild jeder Borelschen Menge in der vorgegebenen o-Algebra F ,landet “.

Schliellich bemerken wir auch noch, dafl unser “neuer” Begriff einer Zufallsgrofie konsis-
tent ist mit dem Begriff, den wir fiir diskrete €2 gepréigt hatten. Dort benutzt man ja die
Potenzmenge P(C) als F. Somit ist

X1 —-o0,d]) € F.

trivialerweise immer erfiillt.

Wir fiihren nun den Begriff der Dichte ein.

(7.8) Definition. Eine Lebesgue-integrierbare Funktion f : R — [0,00) heifit Dichte
(density), wenn [ f(z)dx =1 gilt. ([ ...dz bezeichne das Lebesgue-Integral.)

Falls das Lebesgue-Integral nicht bekannt ist, so setze man voraus, daf§ f Riemann-
integrierbar ist und das uneigentliche Riemann-Integral ffooo f(z) dz existiert und gleich
1 ist.

(7.9) Beispiele.

1. Die Dichte der Standard-Normalverteilung (standard normal distribution) ist defi-

niert durch
1 _$2/2

p(r) = Vol

Wir hatten schon in (6.22) gesehen, daB [~ o(z) dz =1 ist.

z € R.

2. Die Dichte der Normalverteilung (normal distribution) mit Mittel ;1 € R und Varianz
o? > ( ist definiert durch

1 r—1)2 /(252
Pl 0%) = —o=e IR,

wobei die Namensgebung der Parameter ¢ € R und o > 0 im Beispiel (7.14 (2)) klar
werden wird. Durch die Transformation y = (x — u)/o geht die Dichte (- ; i, 0%)

r € R,
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in die Dichte ¢( -;0, 1) der Standard-Normalverteilung aus Beispiel (1) iiber, und es
gilt
oo o0 1 5
T 1, 02 da::/ eV gy =1
/_ N (5 p,07) T y
gemif (6.22).

Normalverteilungen

O' (P(x, 07 02)

-6 -4 -2 0 2 4 6

. Fiir a < b ist die Dichte der gleichférmigen Verteilung (uniform distribution) auf
[a, b] definiert durch

1/(b—a) fir x € [a,b),
f(x):{() fir € R\ [a,b].

. Die Dichte der Exponentialverteilung (exponential distribution) zum Parameter A >

0 ist definiert durch
) = e ™ fiir x>0,
=Y 0 fiir x < 0.

. Die Dichte der Cauchy-Verteilung zum Parameter ¢ > 0 ist definiert durch
c 1

—— xR
T 2?4 2’

fz) =

Cauchy-Verteilungen
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(7.10) Definition. Eine Funktion F': R — [0, 1] heifit Verteilungsfunktion (distribution
function), wenn die folgenden Eigenschaften gelten: (i) F' ist monoton steigend (nonde-

creasing), d.h. fir alle s < ¢ gilt F((s) < F(t).

(ii) F' ist rechtsseitig stetig (right-continuous), d.h. fiir jedes ¢ € R und jede gegen t
konvergente Folge {t, }neny mit ¢, > ¢ fiir alle n € N gilt lim,, o F(t,) = F(t).

(iil) lim; o F'(t) =1 und limy_, o, F'(t) = 0.

Bemerkung. Fiir jede Dichte f ist natiirlich ffoo f(s) ds eine Verteilungsfunktion, die nicht
nur (ii) erfiillt, sondern sogar stetig ist. Wir nennen eine stetige Funktion F': R — [0, 1],
die (i) und (iii) erfiillt, eine stetige Verteilungsfunktion. Nicht jede stetige Verteilungs-
funktion hat eine Dichte, was hier nicht gezeigt wird.

(7.11) Definition. Es seien (2, F, P) ein Wahrscheinlichkeitsraum und X eine Zufalls-
grofle, dann heifit die Funktion Fx(t) := P(X < t), t € R, die Verteilungsfunktion von
X.

Fiir eine Zufallsgrofie X, wie sie in Kapitel 3 definiert wurde, 148t sich die Verteilungsfunk-
tion leicht beschreiben: In den (hochstens abzéhlbar vielen) Punkten ¢ € X (Q2) hat Fx
einen Sprung der Hohe P(X = t) und ist in diesem Punkt rechtsseitig stetig. Ansonsten
ist sie konstant. Offensichtlich erfiillt Fix dann (i)—(iii) der Definition (7.10).

(7.12) Definition. Es seien (2, F, P) ein Wahrscheinlichkeitsraum und f eine
Dichte. Eine Zufallsgrofle X heif3t absolutstetig mit Dichte f, falls

t
Pe(t) = [ f(s)ds
fiir alle t € R gilt. Ist X absolutstetig mit Verteilungsfunktion F'x so nennt man auch Fx
absolutstetig.

Eine Dichte ist nicht ganz eindeutig durch die Zufallsgréfie bzw. deren Verteilungsfunktion
bestimmt. Hat zum Beispiel X die in (7.9 (3)) angegebene Dichte, so ist

=~ [ 1/(b—a) fir z € (ab),
f(fv)—{o fir x € R\ (a,b),
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ebensogut eine Dichte fiir X. Anderungen einer Dichte in abzéihlbar vielen Punkten (oder
allgemeiner: auf einer Nullmenge beziiglich des Lebesgue-Mafles) éndern an den Integralen
nichts.

Eine absolutstetige Zufallsvariable braucht natiirlich keine stetige Dichte zu besitzen. Ist
jedoch eine Dichte f in einem Punkt a stetig, so gilt nach dem Fundamentalsatz der
Differential- und Integralrechnung

d[[’ r=aqa

also hat eine Verteilungsfunktion F' genau dann eine stetige Dichte, wenn sie stetig diffe-
renzierbar ist. Diese stetige Dichte ist, wenn sie existiert, eindeutig durch F' bestimmt.

Hat eine Zufallsgrofle X eine Dichte f, so gilt fiir alle a < b
b
Pla<X<b)=P(X <b)—P(X <a) :/ f(x)dx.
Mit dem zu Beginn des Kapitels vorgestellten Argument folgt, dal P(X = z) = 0 fiir alle
x € R ist, wenn X eine Dichte besitzt. Demzufolge gilt
Pla<X<b)=Pla<X<b=Pla<X<b)=Pla<X<hb).

Wir nennen eine Zufallsgrofle normalverteilt, gleichformig verteilt, exponentialverteilt
bzw. Cauchy-verteilt, wenn sie eine Dichte gem&fi Beispiel (7.9 (2)), (3), (4) bzw. (5)
hat.

(7.13) Definition. Die Zufallsgrofe X auf einem W.-Raum (2, F, P) habe eine Dichte
f-Sei g : R — R eine mefibare Abbildung beziiglich der Borelschen Mengen auf R.

(a) Ist die Funktion R 5 z — g(x)f(x) Lebesgue-integrierbar, so sagen wir, daf§ der
Erwartungswert von g(X) existiert. Er ist dann definiert durch

(b) Ist g(x) = z und R 5 = — xf(x) Lebesgue-integrierbar, so sagen wir, dafl der
Erwartungswert von X existiert. Er ist dann definiert durch

B(X) = / () do.

—00

(c) Es existiere E(X) und es sei g(z) = (z — B(X))% Ist R 2 z — (z — E(X))*f(x)
Lebesgue-integrierbar, so ist die Varianz von X definiert durch

Bemerkung. Die eigentliche Idee hinter dieser Konstruktion ist die folgende: Fiir eine
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diskrete Zufallsvariable X ist wohlbekannt, dal man den Erwartungswert als

Z G,ZP(X = ai)

aiEX(Q)

definiert ist. Eine beliebige Zufallsvariable X “diskretisiert” man, indem man fiir k£ € Z
und n € N die Mengen
Ap i ={k/n < X < (k+1)/n}

und neue Zufallsvariablen .

Xoi= > (k/n)la,

k=—o00
definiert. Die X, steigen gegen X auf und es ist X; < X < X; 4 1. Daher definiert man
den Erwartungswert von X, falls £.X;

lim £ X,

existiert und setzt ihn in diesem Fall gleich dem obigen Limes.

Vor dem Hintergrund dieser Konstruktion und der entsprechenden des Lebesgue-Integrals,
wird man schnell fiir sich kldren kénnen, dafi die Definition des Erwartungswertes und
der Varianz mit den Definitionen dieser Gréfen in Kapitel 3 im Fall diskreter W.-Raume
zusammenfallt. Man mufl natiirlich wichtige Eigenschaften wie zum Beispiel die Linearitét
des Erwartungswertes erneut beweisen. Wir wollen uns diese Arbeit hier ersparen.

(7.14) Beispiele.

(1) Sei X standardnormalverteilt. Dann ist

& 1 2 2 o 2 2 2 0
—z /2d _ / —x /2d — _—x7/2

xXr e xXr — xre T —— e
/Oo | |\/ 2T V2r Jo 2V 27r( )

0 ™

also existiert der Erwartungswert von X, und es gilt

o0 1 9
= —-T /2d = 0
T e T ,
/Oo V2T

da der Integrand eine ungerade Funktion ist. Die Varianz berechnet sich wie folgt: Es gilt

%4 22 "2 dy = lim —/ _x2/2 dx,
(X \/271’/ N—oo /21

und mittels partieller Integration folgt

V(X) = lim —( e_xQ/Z) e Pdr=04+1=1.

o e g L

(2) Sei X normalverteilt mit den Parametern ¢ € R und o > 0. Mit der Transformation
y=(z—p) / o folgt unter Verwendung von Beispiel (1)

o 1 2
r|—— e @m?/20% g0 / +o e V24
< |,u|+<7/ ly| _e y/Qdy<oo
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also existiert der Erwartungswert und es gilt

o~ /202 g / S22
yo—+u e dy =
/ \/_  Vor

Mit der gleichen Transformation und dem Ergebnis aus Beispiel (1) folgt

OO 1 2
V(X) = / (z — p)t——e W /2% yle Y °/2 dy = o°.
oo V2mo \/
2

Eine Zufallsgrofle X ist genau dann normalverteilt mit Erwartungswert p und Varianz o°,
wenn (X — p)/o standardnormalverteilt ist. Etwas allgemeiner: Ist X normalverteilt mit
Erwartungswert ; und Varianz o2, und sind a,b € R, a # 0, so ist aX + b normalverteilt
mit Erwartungswert ap + b und Varianz a®c?. Dies ergibt sich im Fall a > 0 aus der
Tatsache, dafl sowohl P(X < t) = P(aX+b < at+b) als auch (mittels der Transformation
y =ax +b)

t 1 5 5 at+b 1
/ —ef(m*ﬂ) /20 dr = e —(y—ap—b)2/2a%02 d
2ro oo V2mac

fiir alle t € R gelten, also ¢(-;au + b, a?c?) eine Dichte von aX + b ist.

(3) Sei X exponentialverteilt mit Parameter A > 0. Partielle Integration ergibt

o0 o 1 o ]

+ / e dr =0+ (——e*’\x> =
0 0 A

insbesondere existiert der Erwartungswert. Ausmultiplizieren von (z — 1/))?, Verwenden

von E(X) =1/ und zweimalige partielle Integration liefern

E(X)= [ XzeMdr=—ze =
(X) /0 xe x xe Y

> 1 ? —\x > 2 _—A\r 2 1 1
V(X) = ; :U—X e dr = i Are dx_XE<X>+§:ﬁ'

Als néchstes wollen wir gemeinsame Eigenschaften von mehreren Zufallsgrofien X, ..., X,
definiert auf einem gemeinsamen W.Raum (2, F, P), betrachten.

(7.15) Definition.

a) Eine Lebesgue-integrierbare Funktion f : R™ — [0, 00) heifit n-dimensionale Dichte,

wenn
RS
Rn
ist, wobei x ein n-Tupel (z1,...,x,) aus dem R" bezeichnet.
b) Die Funktion f sei eine n-dimensionale Dichte, und X7, ..., X,, seien n Zufallsgréfien.

Man sagt, dafl sie die gemeinsame Dichte (joint density) f haben, wenn
P(XlSCLl,XQSCL27...,Xn§(In):/ f(.’lf)dl’
(—00,a1] XX (—00,an]
fir alle aq,...,a, € R gilt.
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(7.16) Definition. X, ..., X, seien n Zufallsgrofien, definiert auf einem gemeinsamen
W.-Raum (9, F, P). Sie heien unabhéngig, wenn fiir alle aq, ..., a, € R gilt:

P(Xl§a17~~-7Xn§an):P(X1Safl)"'P(Xnéan)-

Bemerkung. Man priift leicht nach, daf3 diese Definition fiir diskrete Zufallsgroflen aqui-
valent zu der in Kapitel 3 gegebenen ist.

(7.17) Satz. Xi,...,X, seien n Zufallsgrofien, definiert auf einem gemeinsamen W.-
Raum (Q,F, P). Jedes der X; habe eine Dichte f;. (Wir setzen nicht voraus, dafl eine
gemeinsame Dichte existiert.) Dann sind die Zufallsgrofien X7, ..., X,, genau dann un-
abhéngig, wenn eine gemeinsame Dichte fir X;,..., X, durch R" > (z1,29,...,2,) —

fi(x1) fo(xs) ... fulx,) gegeben ist.

Beweis. Ist R" 5 (x1,29,...,2,) — fi(z1)fa(z2) ... fu(x,) eine gemeinsame Dichte, so
ergibt sich fiir alle aq,...,a, € R

al an
P(X;<ay,...,Xn<ay) :/ / fi(xy) ... fulzn) dzy .. . day

= H/_aj fila) day = [ P(X; < ay).

j=1

Somit sind X1, ..., X,, unabhéingig. Gilt umgekehrt letzteres, so folgt

P(Xi<ay,.... X, <a,) = [[PX;<ay)

7j=1
= H/ fix;) da;
j=17 =0
al an
und somit ist R" 3 (xy,...,x,) — fi(z1)... fu(z,) eine gemeinsame Dichte. O

Wir wollen nun die Dichte von X + Y berechnen, wenn X und Y unabhéngig sind,
und ihre Verteilungen durch die Dichten f und g gegeben sind. Wir bemerken zunéchst,
daB X + Y nach einer Ubung wieder eine ZufallsgroBe ist. Wir wollen P(X +Y < a)
fiir alle @ € R bestimmen. Mit C, := {(z,y) € R? : z + y < a} konnen wir dies als
P((X,Y) € C,) schreiben. Wichtig ist die Tatsache, dafl aus der definierenden Eigenschaft
(7.15(b)) folgt, da fir Teilmengen C' C R”, fiir die die Funktion R"” 3 z — 1¢(x)f(2)
Lebesgue-integrierbar ist,

P((X1,..., X)) €C) :/Cf(:c) da
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gilt. Wir wollen dies hier nicht beweisen. Es sei auf eine Vorlesung ,,Wahrscheinlichkeits-
theorie* verwiesen. Es gilt mit der Substitution v = z + y und v = y nach Satz (7.17):

P(X+Y <a) = ; f(x)g(y) dx dy

_ /_Oo /: Flu— v)g(v) dvdu.

(7.18) Satz. Es seien X und Y unabhéngige ZufallsgroBen. X habe die Dichte f und Y
die Dichte g. Dann hat X + Y die Dichte

Somit gilt:

h(x) = /OO flx—y)g(y)dy, zeR. (7.1)

Sind f und g zwei Dichten, so definiert (*) eine neue Dichte h, die man als die Faltung
(convolution) von f und g bezeichnet und meist als f * g schreibt.

Als Anwendung von (7.18) konnen wir eine wichtige Eigenschaft von normalverteilten
Zufallsgrofien zeigen:

(7.19) Satz. Es seien X;, 1 < i < n, unabhéngige und normalverteilte Zufallsgrofien
mit Erwartungswerten y; und Varianzen o7. Dann ist ) ;| X; normalverteilt mit Erwar-
tungswert > ., w; und Varianz . o7.

Beweis. Sind X1, ..., X,, unabhéngig, so sind X;+---+X,,_; und X,, ebenfalls unabhéngig
(warum?). Der Satz folgt also mit Induktion nach n aus dem Fall n = 2.

Die Zufallsgrofien Y1 = X7 — 1 und Yo = X5 — o sind normalverteilt mit Erwartungswert
0. Nach (7.18) ist die Dichte h von Y; + Y5 gegeben durch

L L@—y? v
h(z) = —= |+ | |d
(z) 2mo109 / exp< 2 [ o? N o3 Y

—00

fiir alle x € R. Schreibt man den Term in der eckigen Klammer in der Form

2
(r—y)?* ¥ _ (\/0%+0%y_ 03 x) a?
0102 o1\ 0% + 03 of + 03

und benutzt die Transformation

)= VA%, SE—
0102 01\/0%+a§ ’

so ergibt sich
1 1 a? <1 2
h(x) = exp(——i)/ ——e "2 dz = p(2;0,0% 4 02).
( ) 27T(O'%+O’%) 9 0_%+0_% - \/% ()0< 1 2)

Also ist Y] + Y3 normalverteilt mit Erwartungswert 0 und Varianz 0% + o3. Demzufolge
ist X; + X5 normalverteilt mit Erwartungswert u; + pp und Varianz o? + o3. O
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8 Grundlagen der Statistik

In diesem Kapitel wollen wir einen kurzen Einblick in die mathematische Statistik geben.
Die Statistik ist ein sehr reichhaltiges Teilgebiet der Stochastik, die oft in mehreren Vor-
lesungen gesondert behandelt wird; wir konnen daher hier nur einige zentrale Ideen und
Konzepte betrachten. Man unterteilt die mathematische Statistik in die beschreibende
Statistik und die schliefende Statistik. Die beschreibende Statistik fafit Datensédtze zu-
sammen und macht deren Besonderheiten mit Hilfe von Kennzahlen und Grafiken sichtbar.
Wir wollen uns damit hier nicht befassen.

Die Fragestellung der schlieBenden Statistik ist gewissermafien dual zu der Fragestellung
der Wahrscheinlichkeitstheorie. Wéhrend man in der Wahrscheinlichkeitstheorie von ei-
nem festen Modell ausgeht und analysiert, was man an Beobachtungen erwarten kann,
sind in der schlieenden Statistik die Beobachtungen gegeben und man versucht Riick-
schliisse auf das zugrunde liegende Modell zu ziehen. Man hat also in der mathematischen
Statistik a priori eine ganze Klasse von moglichen Modellen und das bedeutet von mogli-
chen Wahrscheinlichkeits—Verteilungen zur Verfiigung. In den einfacheren Fillen — und
das sind u.a. alle hier behandelten — lassen sich diese Wahrscheinlichkeits—Verteilungen
durch einen strukturellen Parameter klassifizieren, der meist reellwertig ist und direkt
mit der urspriinglichen Fragestellung zusammenhéngt. Beispielsweise kann von einer Be-
obachtung bekannt sein (woher auch immer), daf sie von einer Poisson-Verteilung zum
Parameter A > 0 stammt, blofl kennt man das A\ nicht und méchte wissen, welches A am
besten zu der Beobachtung pafit. In diesem Fall wire also die Klasse der moglichen Mo-
delle, die Menge aller Poisson—Verteilungen {m, : A > 0}. In solchen Fillen spricht man
auch von parametrischen Modellen. Die schwierigere (aber auch interessantere) Proble-
matik der sogenannten nichtparametrische Modelle, die wesentlich reichhaltigere Klassen
von Wahrscheinlichkeits—Verteilungen zuldfit, kann hier nicht behandelt werden.

Man unterscheidet drei verschiedene Problemstellungen: man méchte den Parameter durch
einen Schétzwert beschreiben, man mochte ein Priifverfahren entwickeln, mit dem getes-
tet werden kann, ob vorgegebene Hypothesen iiber den Parameterwert mit den Daten
vertréglich sind (statistische Tests), und man mochte Schranken berechnen, die einen
unbekannten Parameter mit vorgegebener Wahrscheinlichkeit einfangen (Konfidenzinter-
valle).

Der allgemeine Rahmen dieser Probleme hat immer folgende Zutaten:

1. eine nichtleere Menge X', der sogenannte Stichprobenraum (so heifit haufig der zu-
grunde liegende Raum in der Statistik, im Gegensatz zu () in der Wahrscheinlich-
keitstheorie) versehen mit einer o-Algebra F

2. eine Familie {F) : 6 € O} von Wahrscheinlichkeiten auf X’; hierbei nehmen wir an,
dal © C R fiir ein d ist und daB © ein verallgemeinertes Intervall ist.

Schétzprobleme

Das Problem in diesem Abschnitt ist das folgende: Man moéchte aus vorliegenden Beob-
achtungen (Realisierungen von Zufallsgroien), die nach P, verteilt sind, den tatséchlich
zugrunde liegenden Parameter 6 schiitzen, oder allgemeiner eine Funktion g : © — RF¥
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(ist der Parameter selbst zu schitzen, so ist g(6) = #). Der Vorteil der allgemeineren
Formulierung liegt darin, dafl auch einfache Félle, in denen ¢ etwas komplizierter aus-
sieht, eingeschlossen sind. So kénnte man die Varianz np(1 — p) einer Binomialverteilung
schitzen wollen. Dann ist § = p und ¢g(p) = np(1 — p). Im Falle der Normalverteilung ist
der Parameterbereich zweidimensional, also § = (i, 0?), eine zu schitzende Funktion ist
zum Beispiel ¢(0) = p.

Zunachst miissen wir natiirlich kléren, was ein Schétzer {iberhaupt sein soll. Hierzu neh-
men wir an, dafl wir n Beobachtungen Xy,..., X, € X gegeben haben. Die Gro3buch-
staben sollen hierbei andeuten, dafl es sich bei Xi,...,X,, um Zufallveriablen handelt,
von denen wir annehmen wollen, dafl sie unabhéngig sind und alle nach P, verteilt. Ein
Schétzer fiir g(0) ist dann sinnvollerweise eine Funktion der ZufallsgroBen X, ..., X,
d.h. eine Funktion § : X" — R* (im dem Falle, dal g(f) = 6 ist, werden anstatt g oft
auch 0 schreiben). Damit ist natiirlich ¢ selbst wieder eine Zufallsvariable.

Nun, da wir wissen, was Schétzer eigentlich sind, stellt sich die Frage nach der Giite von
Schétzern. Wir wollen hier zwei Kriterien vorstellen:

(8.1) Definition. Es sei X = (X3,...,X,) € X" eine Beobachtung und § ein Schétzer
fiir das unbekannte g. ¢ heifit erwartungstreu (unbiased) fiir (), wenn fiir alle § € © die
Gleichung

gilt.
g heifit konsistent (consistent) fiir g(#), wenn fiir alle # € © und alle § > 0

lim P9<\Q(X1, LX) — g(0)] > 5) —0.

n—oo

Ein konsistenter Schétzer geniigt also dem Gesetz der groflen Zahlen und wird somit fiir
grofle Datenmengen immer besser.

Nun haben wir zwar zwei sinnvolle Kriterien zur Beurteilung von Schitzern aufgestellt.
Eine fiir die Praxis relevante Frage ist allerdings die, wie man eigentlich solche Schétzer
findet. Wir werden in der folgenden Definition das Konzept eines Maximum-Likelihood-
Schétzers vorstellen, der in vielen Féllen obigen Giite-Kriterien geniigt. Die Idee hinter
der Konstruktion ist die, dal man — kennt man # nicht — am plausibelsten annimmt, dafl
man einen fiir Py typischen Wert beobachtet hat. Typisch soll hier der Py(z) bzw. eine
Dichte f(x|f) maximierende Wert fiir 6 sein. Da © ein Intervall in R? ist, kann dann ein
Maximum-Likelihood-Schétzer durch Differentiation gefunden werden.

(8.2) Definition

(a) Ist X eine endliche oder abzdhlbare Menge, so heifit die Funktion 6 — L,(0) = Py(x)
mit x € X™ Likelihood-Funktion. Es seien X eine Zufallsvariable, definiert auf einem
allgemeinen W.-Raum, mit Werten in X" = R" und {F) : § € O} eine Familie von
Verteilungen von X. Ist Py verteilt mit einer n-dimensionalen Dichte f(+6), so heifit

hier die Funktion 6 — L,(0) = f(x|0) die Likelihood-Funktion.
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(b) Nimmt L,(-) einen Maximalwert in (z) an, ist also

L.(8(x)) = sup{L.(6) : 6 € O},

SO mennen wir 0(x) eine Maximum-Likelihood-Schéitzung (Schéitzer, estimator) von
6 und ¢(6(z)) eine Maximum-Likelihood-Schéitzung von ¢(#).

(8.3) Bemerkung. L,(6) gibt also an, wie wahrscheinlich die gemachte Beobachtung x
ist, wenn die zugrunde liegende Verteilung P, ist.

Wir wollen nun den Maximum-Likelihood-Schétzer in einigen gut bekannten Situationen
kennenlernen.

(8.4) Beispiele. (a) Bernoulli-Experiment:

In einem Bernoulli-Experiment zu den Parametern n und p soll p aus der Anzahl x der
Erfolge geschitzt werden. Es ist also © = [0,1] und L,(p) = b(x;n,p). Aufgrund der
Monotonie der Logarithmus—Funktion hat log L,(p) dieselben Maxima wie L, (p). Es ist
(log Ly(p))" = £ — 4=, womit man (log L,(p))’ = 0 bei p(z) = 7 findet. Es ist leicht
zu sehen, dafl es sich bei p(z) um ein Maximum von log L,(p) handelt. % ist also der

Maximum-Likelihood-Schétzer fiir p. Dies entspricht der naiven Mittelwertbildung, die
ZleXi)

man iiblicherweise durchfithren wiirde (es ist ndmlich p = ==

Aufgrund der Linearitit des Erwartungswertes gilt aufilerdem E,(p) = E (ZZ 14y — =

p, p ist also erwartungstreu. Schliellich liefert das Gesetz der grofien Zahlen (Satz 3. 30)
die Konsistenz von p.

Wir haben also im Falle der Binomialverteilung gesehen, daff der Maximum-Likelihood-
Schétzer der naiven Vorgehensweise entspricht und diesem Falle auch unsere Giitekriterien
an eine Schatzung erfiillt. Interessanterweise ist der Maximum-Likelihood-Schétzer im Fal-
le der Binomialverteilung sogar der einzige Schétzer, der dies tut.

(8.5) Satz. Ist in obiger Situation S ein erwartungstreuer Schétzer fiir p so gilt S = p.

Beweis. Sei T := S — p. Da sowohl S also auch p erwartungstreu sind gilt fiir alle p
Ey(T) = E,(S —p) = E,(S) — Ey(p) =p—p=0.

Also ist fiir alle p

n

0= E(T) = YTl ()= =a-nr o ro(}) (f%p)

k=0

p

75 SO lduft s von 0 bis co, wenn p das Einheitsintervall durchlauft und

fls) = (1 —p)“kf%T(k) (7)+

Setzt man s =
es ist
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konstant gleich 0. Andererseits ist f(s) ein Polynom, so daf} alle Koeffizienten von f schon
0 sein miissen, was impliziert, daf§ T'(k) = 0 fiir alle £ und somit S = p. O

Um ein weiteres Qualitdtsmerkmal des oben gewonnenen Schétzers zu diskutieren, defi-
nieren wir den Abstand eines Schétzers zu seiner erwartungstreuen Variante.

(8.6) Definition. Der Bias eines Schétzers T eines Parameters p ist als

definiert.

Die Qualitéit eines Schétzers messen wir durch seinen quadratischen Abstand zum zu
schétzenden Wert.

. efinition. Das quadratische Risiko eines Schatzers elnes Parameters p 1st de-
8.7) Definiti D dratische Risiko ei Sch T ei P ist d
finiert als

R(p,T) = E,[(T — p)*].

Den Zusammenhang dieser beiden Definitionen klért die folgende Proposition.

(8.8) Proposition. Sei T ein Schétzer fiir p. Dann gilt

R(p,T) = Vo (T) + b*(p, T).

Beweis. Es gilt

R(p,T) = E)T - p) )
= E(T-E,T)+ (E,T —p))’]
— B(T- 5, T) | +2E,(T — E,T)(E,T — p) + ([T — pl)’
— BT - E,T)?| + (E,[T - p))’

= Vo(T) +0*(p, T).
O
Wir werden nun die Qualitdt des oben hergeleiteten Schétzers p =

1
tersuchen. Sei U die Klasse aller erwartungstreuen Schétzer p von p, d.
Schétzer, fiir die b(p, p) = 0 gilt.

Yo X; fir p un-
h.

dle Klasse aller

(8.9) Satz. Fiir den Schitzer p = % >, X; und jeden erwartungstreuen Schétzer p € U
gilt
. p(1—p) .
Vo(p) 2 = =V,(p)

fir alle p € (0,1). Da b(p,p) = b(p, p) = 0 impliziert dies
R(p,p) > R(p,p)
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fiir alle p € (0,1) und alle p € Y.
Fiir den Beweis bendtigen wir einen neuen Begriff.

(8.10) Definition. Fiir x € {0,1}" sei

und
L.(p) = log Py(w).
Dann ist )
' z\P
L,
(») L.(p)
Mit

1(p) == Ey[(L(p))?]

bezeichnen wir die Fisher Information von p.

Beweis von Satz 8.9. Sei p € U. Da p erwartungstreu ist, gilt

p=Ep= Y p@)B(x).

z€{0,1}"

Dies impliziert

Andererseits gilt
/ / d d
EL,(p) = Y, Lip)Px)= Y S Pylr)=-1=0.

ze{01}n ve{01}n dp dp

Daher gilt auch
EpE,L,(p) = 0.

Subtrahiert man die vorherige Gleichung, erhélt man
1= E,((p — Epp)L.(p))-
Mit Cauchy-Schwarz folgt
1= 1< E(p— Epp)” Ep[(L(p)*] = V, (D) (p)
nach Definition von I(-). Da I(p) > 0 (was wir im Anschluss beweisen), folgt

~ 1
Vp(]?) > m



Dies heifit auch die Cramér-Rao Ungleichung. In einem letzten Schritt berechnen wir I(-).

d 2

v = B _(d%logpp(:c)f .

= E, <dip210g Pp(:cl-)>

Nun gilt fiir jedes ¢

B [$1osBn)| = 4 [ L —1-p-) =0

Daher erhalten wir

I(p) = E, <dipz—|nlogPp(xi)>

(%mgPp(xi))z]

d d .

:éﬁm%mgm@%mﬁm+;@
1

(1—p)?

1
= 0+np]§+n(1—p)

i)
= n —+—
p 1—p

n
p(1=p)
Daher gilt fir p e U

Wiihlen wir fir p=p =+ 3" X,

S

ZXi> = %p(l —p).

=1

R(p,p) = V,(p) =Vp (

Dies beweist den Satz. O
Nun wenden wir die Konzepte auf den Fall normalverteilter Zufallsvariablen an.

(8.4) Beispiele fortgesetzt. (b) Normalverteilung:

Hier leiten wir nur den Maximum-Likelihood—Schétzer fiir die verschiedenen Félle normal-
verteilter Zufallsvariablen her; ihre Giite zu diskutieren erfordert ein wenig Extraarbeit,
die wir im AnschluB erledigen werden. Seien Xi, X5, ..., X, unabhéngig und normalver-
teilt zu den Parametern p und o (wir schreiben im folgenden N (p, 0?)-verteilt). Dann
ist = (u,0?). Die Dichte von X = (X1,...,X,) an der Stelle x = (zy,...,z,) ergibt
sich nach Satz (7.17) zu

n

Fllo) = ( ﬂl—m)nexp(‘riz S )?).

i=1
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Wir betrachten wieder

log f(210) = —nlog(v2r0) — = > (i — u)?

202

und unterscheiden die folgenden Félle:

(1) (Varianz bekannt, Schéitzung des Erwartungswertes)
Sei p unbekannt und 0? = 02 bekannt. Dann ist © = {(u,0?) : p € R, 0% = 02}. Nun
ist %log f(z|f) = 0 genau dann, wenn Y . (z; — u) = 0 ist. Daraus ergibt sich der
Maximun-Likelihood-Schétzer zu
1 n
n <
i=1

Dies ist erneut die naive Mittelwertbildung. Man muf3 natiirlich noch durch Bildung der
zweiten Ableitung iiberpriifen, dafl wirklich ein Maximum in f vorliegt. Dies sei dem Leser
iiberlassen.

(2) (Erwartungswert bekannt, Schétzung der Varianz)
Sei y1 = pip bekannt und o2 > 0 unbekannt. Hier ist © = {(u, 0?) : = po,0? > 0}. Nun
ist L log f(x]f) = 0 genau dann, wenn

n 1 & 9
—;*F;;(%_MO) =0

ist. Daraus ergibt sich fiir 02 der Maximun-Likelihood-Schitzer zu

1 n
=2 _ 1 2
o= ;:1 (@i — o)~

Auch dieser Schitzer entspricht dem naiven Ansatz, aus den Daten die mittlere quadra-
tische Abweichung zu bestimmen.

(3) (beide Parameter unbekannt)
Seien nun beide Parameter ;1 und o unbekannt. Die Gleichungen

4 log f(x]#) =0 und

m log f(x[0) =0

_d
d(o?)

liefern (simultan gelost) die Maximum-Likelihood-Schéatzer i fiir g und

ln
~2 o
o) _nE (x

=1

fir o2. Hier mu8 man allerdings mit Hilfe der Hesseschen Matrix iiberpriifen, ob es sich
um ein Maximum handelt. Dazu beachte, daf3

2 2

d n d
d—lﬂlogf(ﬂﬁ):—? und io? )logf(x|0 04 UGZ
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sowie
2 n

d 1
— 1 0) = —— E P — ).
Somit ist die Determinante der Hesseschen Matrix an der Stelle (ji,5?%) identisch gleich

ﬁ > 0 und %log f(z]f) < 0, also ist die Hessesche Matrix an dieser Stelle negativ

definit, und somit liegt an der Stelle (fi, 52) ein isoliertes Maximum vor.

Die Diskussion der Giite obiger Maximum-Likelihood—Schétzer ist ein wenig aufwendig
und mufl durch ein Lemma vorbereitet werden.

(8.11) Lemma. Die Verteilung der Summe der Quadrate von n unabhdngigen N (0,1)-
verteilten Zufallsgrofien nennt man eine x2-Verteilung (x?- Verteilung mit n Freiheitsgra-
den, x2-distribution with n degrees of freedom). Ihre Dichte ist gegeben durch

1

- - (n/2)—1 —z/2

, x>0.
Hierbei ist

F(t):/ o le  dx
0

die I'-Funktion.
Der Erwartungswert einer x2-verteilten Zufallsgrife ist n, die Varianz 2n.

Beweis. Wir beweisen den ersten rFeil des Satzes via Induktion tiber die Anzahl der Va-
riablen n. Der zweite Teil ist eine Ubung.
n = 1: Es ist fiir eine N(0, 1)-verteilte Zufallsgrofe X

L S
(&
V2T

/gC 1 1 ~3d
= Z 2e z
0 \/271'

mittles der Substitution ¢ = /z. Das — zusammen mit I'(1/2) = /7 — beweist den
Induktionsanfang.

P(X?<z)=P(—vVr <X, <V1) = 2/30

Aufgrund der Unabhéngigkeit der gegebenen Zufallsvariablen und geméafl der Definition
der Faltung ist nach Induktionsvoraussetzung

on(z) = / " e @z — 2)da

[e.e]

z 1 1
_ (n—1)/2)—1 —x/2 ~-1/2
= T e —(z—x exp| — dzx.
/0 2n—D/20((n — 1)/2) T Z ) p( 2 )
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Substituiert man y = 2 ergibt sich

_ i ' (n—1)/2—1, (n—1)/2—1 —1/2/7 _ . \—1/2
#) = T 4, T
_ /21 p=2/2 /1 y(n_l)/Q_l(l - y)—l/Qdy
V2m2=D/21((n — 1)/2) Jo
B 22 1emz/2 I((n—1)/2)T(1/2)
~ T(1/2)20-D72T((n — 1)/2) I'(n/2)
on/2-1—2/2

26D/ (n)2)’
O

Dieses Lemma hilft uns die Frage nach der Giite der oben vorgeschlagenen Maximum-—
Likelihood-Schétzer im wesentlichen zu kléren.

(8.4) Beispiel, 2. Fortsetzung. (b) Zunéchst wollen wir hier wieder die Giite von

fu iiberpriifen. Nach Satz (7.19) ist >, X; normalverteilt mit Erwartungswert nu und
Varianz no?. Dann ist nach den Ausfiihrungen in Beispiel (7.14)(2) der Erwartungswert
von 57 = %Z?Zl X; gleich p, also ist S; erwartungstreu fiir g(6) = p. Das schwache
Gesetz der grofien Zahlen war in Kapitel 3 nur fiir diskrete W.-Radume formuliert worden.
Aber die Markoff-Ungleichung (Satz (3.28)) erhalten wir analog fiir absolutstetig verteilte
ZufallsgroBen X mit Dichte f (verwende E(|X|) = [, |z|f(x)dz; dieser Erwartungswert
existiert, hier nach Beispiel (7.14)(2)). Da nun nach (7.14)(2) die Varianz von S; gleich
o4 /n ist, erhalten wir hier ebenfalls ein schwaches Gesetz und damit die Konsistenz des
Schétzers Sy fiir p.

Die Giite des Schiitzers fiir o bei bekanntem p diskutieren wir #hnlich wie oben. Wir

schreiben dazu &2 als:
9

5Oy <X@- —M0)2

7=y (R
Nach Beispiel (7.14)(2) sind die Zufallsgroflen X := (X; — po)/o standardnormalverteilt.
Nach Lemma (8.6) ist dann > | (X7)? x2-verteilt mit Erwartungswert n und Varianz 2n.
Also ist nach Definition (7.13) E(52) = 02 und V(S;) = 22-. Damit ist 52 erwartungstreu

fiir 02, und wir erhalten entsprechend der Diskussion im Fall (1) die Konsistenz von S,

fiir o2.

Schlielich wollen wir noch verstehen, dafi der Schétzers fiir 0® bei unbekanntem g nicht
erwartungstreu ist. Dazu betrachten wir 62 + /i und berechnen zum einen

B p2(6® + (%) = Bun(= ZXQ i+ i)

— _ZEMQXQ Vo2 (X7) + (B0 X,)* = 0% + pi.
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Andererseits ist

Buo2 (62 + %) = E,p2(6%) + E, ()
2
5 - ~ N g
= B2 (6%) 4 Vior (i) + Bpo2 (1) = B2 (6%) + — + 4%

Loést man diese beiden Gleichungen nach E, ,2(6?) auf, so ergibt sich

—1
B2 (6%) = = —o”.

Somit ist 62 nicht erwartungstreu fiir o2, wohl aber

n o 1 N
S? = 62 = Z(XZ — )%

n—1 n—ll_:1

Ob S? auch konsistent ist fiir o2, kann erst geklirt werden, wenn wir die Verteilung
von S? kennen. Da wir diese im Abschnitt {iber das Testen sowieso berechnen miissen,
verschieben wir den Beweis der Konsistenz nach dort. Hier sei nur vorab bemerkt, dafl
S? in der Tat konsistent ist und dafl man diese Konsistenz im wesentlichen wie oben zeigt.

Statistische Tests

Die Zutaten in diesem Abschitt sind die gleichen wie die im vorangegangenen mit der
zusétzlichen Ingrediens, dafl nun noch eine Teilmenge H C © gegeben ist. H nennen wir
Hypothese, K := © \ H heifit Alternative. Das Problem besteht nun darin, festzustellen,
ob ein gegebener Datensatz nahelegt, dafl der zugrunde liegende Parameter in H ist oder
in K. Betrachten wir ein Beispiel, das wir weniger wegen seiner praktischen Relevanz als
aufgrund dessen gewéhlt haben, dal es Grundlage einer historischen Diskussion zwischen
den Statistikern R.A. Fisher und J. Neyman iiber die Konstruktion von Tests war.

(8.12) Beispiel. Eine englische Lady trinkt ihren Tee stets mit etwas Milch. Eines Tages
verbliifft sie ihre Teerunde mit der Behauptung, sie konne allein am Geschmack unter-
scheiden, ob zuerst die Milch oder zuerst der Tee eingegossen wurde. Dabei sei ihr Ge-
schmack zwar nicht unfehlbar, aber sie wiirde haufiger die richtige Eingief-Reihenfolge
erschmecken, als dies durch blindes Raten moglich wére.

Um der Lady eine Chance zu geben, ihre Behauptung unter Beweis zu stellen, kénnte
man sich folgenden Versuch vorstellen: der Lady werden jeweils n mal 2 Tassen gereicht,
von denen jeweils eine vom Typ “Milch vor Tee”, die andere vom Typ “Tee vor Milch” ist;
ihre Reihenfolge wird jeweils zufillig ausgewiirfelt. Die Lady soll nun durch Schmecken
erkennen, welche Tasse von welchem Typ ist.

Aufgrund dieses Experiments modellieren wir die n Geschmacksproben als unabhéngi-
ge Erfolg/Miflerfolg-Experiment mit Erfolgswahrscheinlichkeit p, also als n-stufiges Ber-
noulli-Experiment. Der Parameter p variiert dabei im Intervall [1/2,1] (da p = 1/2 schon
die Erfolgswahrscheinlichkeit bei purem Raten ist und daher p < 1/2 unrealistisch ist).
Es liegt nun nahe H = 1/2 und K = (1/2,1] zu wihlen, d.h. wir testen die Hypothese
“die Lady rat” gegen die Alternative “die Lady schmeckt den Unterschied”. Natiirlich
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konnten wir auch K = 1/2 und H = (1/2,1] wahlen, denn bislang scheint die Situation
zwischen H und K komplett symmetrisch zu sein. Dafl es tatséchlich einen Unterschied
macht, was man als welche Hypothese wihlt, versteht man, wenn man die moglichen
Fehler betrachtet, die eine Entscheidung 8 € H bzw. 6 € K mit sich bringen kann.

Offenbar gibt es zwei mogliche Fehler: Ist § € H und wird die Hypothese verworfen, so
spricht man von einem Fehler erster Art (type I error), ist § € K und wird die Hypothese
angenommen, so spricht man von einem Fehler zweiter Art (type II error). Ein Test ist
beschrieben durch die Angabe der Menge R derjenigen z, fiir die die Hypothese verwor-
fen wird. R heift auch Verwerfungsbereich (rejection region). Um sich den Unterschied
zwischen den beiden Fehlern deutlich zu machen, stelle man sich vor ein Angeklagter
solle verurteilt werden. Offenbar gibt es auch hier zwei Moglichkeiten: den Angeklagten
unschuldig zu verurteilen oder einen Schuldigen freizusprechen. Dem Rechtsgrundsatz “in
dubio pro reo” wiirde es dann entsprechen, den ersten Fehler so klein wie moglich zu
halten.

Bei einem statistischen Test beide Fehler gleichzeitig zu minimieren ist offenbar schwer
moglich (es sei denn man verschafft sich iiber eine grofie Stichprobe eine grofie Sicherheit
iiber den zugrunde liegenden Parameter); eine Minimierung des Fehlers erster Art wiirde
in letzter Konsequenz bedeuten, die Hypothese stets zu akzeptieren, wiahrend man den
Fehler zweiter Art dadurch klein halten kénnte, indem man stets die Hypothese verwirft.
Man hat sich darauf geeinigt, bei einem Test immer den Fehler erster Art zu kontrollieren,
indem man gewéhrleistet, daf} er kleiner ist als eine vorgegebene Irrtumswahrscheinlichkeit
«. Unter dieser Randbedingung versucht man den Fehler 2. Art moglichst klein zu halten
(trotzdem kann es passieren, dafl dieser besonders bei sehr kleinen Stichproben sehr grof§
wird). Diese Konstruktion beeinflufit auch die Wahl von H bzw. K.

Wie soll man nun zu einem gegebenen Testproblem einen Test konstruieren? In der ma-
thematischen Statistik gibt es verschiedene Ansétze optimale Tests theoretisch zu kon-
struieren. Wir werden an dieser Stelle darauf verzichten ein solch theoretisches Fundament
zu legen und nur eine heuristisch sinnvolle Konstruktion anfiihren, die in den nachfolgend
diskutierten Beispielen in der Tat zu Tests fiihrt, die in gewissem Sinne optimal sind (was
wir allerdings nicht beweisen werden).

Nehmen wir also an, wir wollen die Hypothese H mit einer Fehlerwahrscheinlichkeit (er-
ror probability) (man sagt oft auch zum Signifikanzniveau (level of significance)) o > 0
testen. Es ist sinnvoll, dazu zunéchst eine Stichprobe vom (méglichst grofien) Umfang n
aufzunehmen. Aufgrund dieser Stichprobe schitzen wir dann 6 moglichst gut durch O,
Sieht 6,, nicht signifikant anders aus als man es unter Vorliegen von H erwarten wiirde,
so entscheidet man sich fiir H ansonsten fiir K. Genauer bedeutet das, man wahlt ein
Intervall H = H(a,n) moglichst klein, so daB

Py, ¢ H <a VY9eH

und entscheidet sich H zu akzeptieren, falls 6, € H und ansonsten H abzulehnen. Die
Wahrscheinlichkeit eines Fehlers erster Art ist also maximal «.

Da wir im vergangenen Abschnitt schon gesehen haben, wie man in einigen Fillen gute
Schétzer konstruiert, kénnen wir uns jetzt einmal die obige Methode in Aktion betrachten.
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(8.12 a) Beispiel. Zunichst behandeln wir das eingangs gestellte Problem der Tea-
testing Lady. Wie wir sehen werden, ist dies der allgemeine Fall des Testens im Falle der
Binomialverteilung. Nehmen wir an, die Lady testet 20 Mal, wir fithren also 20 unabhéngi-
ge 0-1 Experimente mit unbekanntem Erfolgsparameter p durch. Wir hatten © = [1/2,1]
angenommen; wir werden aber gleich sehen, dafl wir ebenso gut © = [0, 1] nehmen koénnen,
ohne das Testergebnis zu beeinflussen. Die Anzahl der Erfolge X ist b(k; 20, p)-verteilt.
Sei die Hypothese H = {1/2} (bzw. H = [0,1/2] im Falle von © = [0, 1]), d.h. die Lady
rat. Wir suchen den Verwerfungsbereich R = {c,c+ 1,...,n = 20} in Abhéngigkeit vom
Niveau « (entsprechend versuchen wir den Fehler zu entscheiden, die Lady habe die be-
hauptete geschmackliche Fahigkeit, obwohl sie in Wahrheit rét, kleiner als das gegebene
a zu bekommen). Aus dem vorigen Abschnitt ist bekannt, da§ p = % ein guter Schétzer

fiir p ist. Wir werden also H so wihlen, daB

X N
P(~eH)<a VpeH

und so, daB dabei H dabei moglichst klein ist. R := nH ist dann der Verwerfungsbereich.
Um diesen zu berechnen bemerken wir, dafl

px - (M-

k=c

gilt. Da dies in p monoton wachsend ist, das Supremum {iiber alle p € H also bei p = 1/2
angenommen wird, ist es offenbar egal, ob wir © = [1/2, 1] und H = {1/2} oder © = [0, 1]
und H = [0,1/2] wihlen. Wir kénnen nun ¢ als Funktion von « einfach als Losung der
folgenden Ungleichung bestimmen: 2720 Zzozc (2]:) ) <a<27 ZZO:C—1 (2]:) ) Insbesondere
ist fiir a € [0.021,0.058] das entsprechende ¢ = 15 (also fiir zulédssige Fehler zwischen 2%
und 5%). Wir kénnen noch den Fehler 2. Art diskutieren. Es gilt:

P | 0.6 0.7 0.8 0.9
Fehler 2. Art | 0.874 0.584 0.196 0.011

Dies bedeutet zum Beispiel fiir den Wert p = 0.7, daf§ die Wahrscheinlichkeit einer An-
nahme der Hypothese, obwohl sie falsch ist, bei 0.6 liegt. Eine Verkleinerung des Fehlers
2.Art, ohne dabei das Niveau des Tests zu vergrofiern, ist also hier allein durch eine grofier
gewdhlte Stichprobe moglich.

Wir wollen nun die Qualitdt der benutzten Testmethode theoretisch untersuchen. Dazu
sollten wir zunéchst eine mathematische Definition des Begriffs “Test” geben.

8.13 Definition. Zu testen sei die Hypothese H C © gegen die Alternative K # (). Ein
Test ist eine Abbildung

¢:4{0,1}" — {0,1}.
¢(z) = 0 soll bedeuten, dal wir uns fiir H entscheiden, wiahrend ¢(z) = 1 bedeutet, wir
entscheiden uns fiir K (wir lehnen die Hypothese ab). Ein Test ist vollstandig festgelegt

durch das Gebiet R C O, auf dem wir die Hypothese verwerfen (R ist das Verwerfungs-
gebiet von ¢), d. h. ¢(z) =1 < x € R.
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Neben gewohnlichen Tests betrachten wir auch randomisierte Tests: Ein randomisierter
Test ist eine Abbildung.

¢:{0,1}" —[0,1].
¢(z) ist die Wahrscheinlichkeit H abzulehnen.

Natiirlich will man zwei gegebene Tests der gleichen Hypothese und Alternative verglei-
chen. Dies geht einerseits iiber das Niveau des Tests

max P,(z € R)

peEH

(dies mochte man i. a. durch die gegebene Schranke o > 0 kontrollieren). Sind zwei Tests
zu einem Niveau « vorgelegt, so bietet sich der Fehler zweiter Art als Vergleichskriterium
an. Man definiert daher (dquivalent)

B(p) = Pz € R)

als die Macht eines Tests mit Verwerfungsbereich R in p € K.

Wir werden nun eine Untersuchung der Giite der oben diskutierten Tests im einfachst
moglichen Fall prisentieren, dem Fall, in dem sowohl die Hypothese H als auch die Al-
ternative K aus einem einzigen Punkt bestehen. Im Fall einer Folge von i.i.d. Bernoulli-
Variablen mit unbekanntem Erfolgsparameter p testen wir also die einfache Hypothese

H:{p=rpo}

gegen die einfache Alternative
K:{p=m}.

Da wir uns in diesem Fall auch mit randomisierten Tests befassen wollen, verallgemeinern
wir die Begriffe des Niveaus und der Macht rasch auf diesen Fall: Fiir einen randomisierten

¢ ist
En(¢) = ¢(x)Pu(x)

das Niveau des Tests.

Ex(¢) =Y é(z)Px(x)

ist seine Macht. Bemerke, dafl diese Definitionen konsistent sind mit den Definitionen fiir
nicht-randomisierte Tests.

Wir interessieren uns nun dafiir, unter allen Tests {¢ : Fy(¢) < a} denjenigen Test ¢*
mit maximaler Macht zu finden.

(8.14) Definition. Ein Test ¢* heifit Neyman-Pearson Test, falls es eine Konstante
c¢*, 0 < ¢ < oo gibt, so daBl ¢*(z) = 1 falls Pg(z) > ¢*Py(x) und ¢*(z) = 0 falls
Py (x) < ¢*Py(x). Auf { P (z) = ¢* Py (x)} darf der Test ¢* beliebige Werte 0 < y(z) <1
annehmen.

Wir werden im folgenden einen Test ¢; schérfer nennen als einen Test ¢, falls
Ex(¢1) > Ex(¢2)
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gilt, die Chance H zu verwerfen, wenn K vorliegt bei ¢; somit grofler ist als bei ¢s.

Wir wenden uns nun der speziellen Situation des n-fachen Miinzwurfs zu. Offensichtlich
gilt fiir alle z € {0,1}"

Der folgende Satz ist zentral fiir das gesamte Gebiet der Test-Theorie.

(8.15) Satz [Neyman-Pearson-Lemmal]. In der Situation des n-fachen Miinzwurfs mit
Parameter p sei die Hypothese

H:{p=po}
gegen die Alternative
K:{p=pi}

zu testen. Dann gilt

e Falls ¢* ein Neyman-Pearson Test ist, dann ist ¢* schirfer als jeder andere Test ¢
mit
En(¢) < En(¢7).

e Fiir jedes 0 < o < 1 gibt es einen (randomisierten) Neyman-Pearson Test ¢* zum
Niveau «, also mit Ey(¢*) = a.

Beweis. Sei ¢* ein Neyman-Pearson Test und ¢ ein beliebiger Test zum Niveau kleiner

oder gleich Ey(¢*). Auf

A= {z e {0,1}": ¢"(x) > ¢(x)}
gilt ¢*(x) > 0 und daher
P (z) > ¢* Py(x).
Umgekehrt ist auf
B :={z € {0,1}": ¢"(x) < ¢(x)}
¢*(z) < 1 und daher
P (z) < " Py(x).

Dies bedeutet

Ex(¢") — Ex(¢) = > (¢"(z) — ¢(x))Px(x)

z€{0,1}"

= D (¢°(x) = d(x)) Pic() + ) (¢"(w) — () Prc(x)
€A z€B

> ) (¢"(x) = p(2))c" Pu(x) + > _(¢"(x) — ¢(x))c" Pa(x)

= & Y (#"(2) = ¢(x))Pulx)

z€{0,1}"

= (Eu(¢") — Eu()) = 0.

Nun beweisen wir den zweiten Teil des Satzes und konstruieren den zugehorigen Neyman-
Pearson Test.
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Fiir a = 0 setzen wir ¢* = co. Dann gilt immer
Pr(z) < " Py(x).

Daher ist ¢ = 0 und somit EFyz¢ = 0.
Nun sei @ > 0. Fiir ¢ > 0 setzen wir ¢(z) := Pk(x)/Py(x) und

alc) = Py(g(X) >c) und
alc—0) = Pyq(X)>c).

Offensichtlich gilt

a(0— 0) = Pu(q(X) > 0) = Py (ig g; > o) 1

Desweiteren setzen wir
Cn={xe€{0,1}": q(x) > c,}

fiir eine strikt wachsende Folge (c,,). (C,) ist fallend, d. h. C,,41 C C,, fiir alle n und falls
¢, 1T oo erhalten wir

C::nC’n:@.

n>0

Daher gilt
a(e,) = Pp(q(X) > ¢,) = Pu(C,) — 0

(da P stetig ist). Falls umgekehrt ¢, 11 ¢ > 0, definieren wir
C = ﬂC’N:{x:q(:p)Zc}.
n>0

Daher konvergiert a(c,) — Py(C) = a(c — 0). Umgekehrt, falls b, || b, so ist

B, {x :q(x) > b,}

wachsend und

B::UBn:{x:q(x)>b}.

n>0

Das bedeutet, dal unser «(-) eine rechts-stetige Funktion ist. Definieren wir
¢ =inf{c: a(c) < a},

so erhalten wir
ald) <a < a(c"—0).
Falls a(c*) < a(c* — 0) gilt, so setzen wir

a—ac*)
alcr —0) — a(c)

*

’7/:
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und schlielich ¢(z) = 1 falls Px(z) > ¢*Py(x), ¢*(x) = 0, falls Px(z) < ¢*Py(z) und
¢*(z) = 7%, falls Px(z) = ¢* Py (z). Offenbar ist dies ein Neyman-Pearson Test mit

Eu(9*) = Pu(q(X) > ") +7"Pu(¢(X) =)
= a(c) +7(a(¢" = 0) — alc))
= o) +a—a(c)

*

Q

O

Dies zeigt die Optimalitét des im Beispiel der Tea-testing lady eingefiihrten Test-Verfahrens
fiir den Fall einfacher Hypothesen und Alternativen. Fiir einseitige Tests, d. h. Tests ei-
ner Hypothese H die komplett links (oder komplett rechts) von der Alternative K liegt,
iibertragt sich die Optimalitat mit Hilfe des folgenden

(8.16) Lemma. Sei X Binomial-verteilt zu den Parametern n und p und x < n. Dann
ist
p— Py(X <x)

stetig und strikt fallend in p und

P(X <z)=1 und P(X <z)=0.

Beweis. Alles bis auf die Monotonie ist trivial. Sei daher p; > p,. Wir miissen zeigen, dass
Ppl(X < l‘) > Pp2(X < :E)

Dies machen wir wieder mit Hilfe eines Kopplungsarguments. Wir wéhlen p3 € (0,1)
als ps := g—; und (X;) als i.i.d. Bernoulli Variablen zum Parameter ps. Desgleichen seien
(Y;) i.i.d. Bernoulli Variablen zum Parameter p3 die auch unabhéngig von den (X;) sind.
Definiert man Z; = X;Y;, so nimmt auch Z; nur die Werte 0 und 1 an und die Z; sind
unabhéngig. Daher sind die (Z;) i.i.d. Bernoulli Variablen mit Erfolgswahrscheinlichkeit

P(Z;=1) = P(X; =1)P(Y; = 1) = pop3 = p1.
Offensichtlich gilt {X; = 0} C {Z; = 0} woraus wir
{Xi+.. .+ X, <z} C{Z1+...+Z, <z}
erhalten. Dies bedeutet
Ppo(X <2)=P{Xi+..+ X, <z})<PH{Z1+...+ 2, <z})=Pa(X <)

Die Ungleichung ist strikt, da die Inklusion strikt ist und die Differenz der beiden Mengen
positive Wahrscheinlichkeit besitzt. O

Es soll hier erwédhnt werden, dass neben einseitigen Tests auch zweiseitige Tests der Form
H :{p=po}
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gegen
K {p # po}

(aber nie umgekehrt — warum?) existieren. Das Testverfahren ist analog zum einseitigen
Fall. Man konstruiert sich ein Intervall I € pg, so dass PH(Zn:TlX €l)>1—aund [ da-
bei moglichst klein und entschliefit sich H anzunehmen, falls % € I und entscheidet
sich fiir K, falls # ¢ 1.

(b) Normalverteilung:

(i) Testen auf y bei bekanntem o
Es seien X1, Xo, ..., X,, unabhiingig und N (u, 0?)-verteilt. 0% sei bekannt und es sei die
Hypothese H : p < pg gegen die Alternative K : p > g zu testen. Aus dem Abschnitt
iiber das Schitzen wissen wir schon, dal i = % das unbekannte p gut schitzt.
Wir konstruieren unseren Test also so, dal wir H verwerfen, falls fi > 7 fiir ein noch zu
bestimmendes 7, das von der gegebenen Irrtumswahrscheinlichkeit a abhéangt. Um 7 zu

bestimmen, bedenken wir dafl

2

PM,UQ(:&Z”)SOZ v:uglu(]

gelten soll. Wir wissen schon, dafl ji als normierte Summe von normalverteilten Zufalls-
groBen N (u, 0% /n)-verteilt ist. Also ist

(\/ﬁ(ﬂ—u) . ﬁ(n—u)) :1_¢<M).

o o o o

PM702 ([L > 7]) = PM7U2

Da die rechte Seite dieser Gleichung wiederum monoton wachsend in p ist geniigt es n
aus einer N (0, 1)-Tafel so zu bestimmen, daf

o),

o

um den gewiinschten Test zu konstruieren.

(ii) Testen auf o® bei bekanntem p

Wieder seien X1, X», ..., X, unabhingig und N(u,o?)-verteilt. Diesmal sei p bekannt
und wir testen H : 0 > o( gegen die Alternative K : ¢ < gy. Aus dem Abschnitt iiber
das Schétzen wissen wir, daB 62 = = 3> | (X; — p)? ein guter Schitzer fiir o ist. Nach
Lemma 8.6 wissen wir schon, daf3 0%62 verteilt ist gem#f der y2-Verteilung. Wollen wir
also z.B. auf dem Signifikanzniveau o > 0 die Hypothese H : 0% > o2 gegen K : 0 < 02
testen (der umgekehrte Test H : 0% < 02 gegen K : 0® > o7 geht analog), so miissen wir

also ein 7 so finden, dafl
P,

02 (62 <n) <«

fiir alle 02 > o2 gilt (und dabei n moglichst klein). Wir werden dann H annehmen, falls
% > 1 und andernfalls werden wir H ablehnen. Nun ist

~ n . n
PM702<02 < T}) = PM702<§02 < ET})

nn/o? nn/a%
= [ sz [ g
0 0
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wobei ¢, (z) die Dichte der x2-Verteilung bezeichnet. Wir bestimmen also 1 so aus einer

X2-Tabelle, dafl
nn/o?
/ gn(z)d'z =,
0

haben wir unseren Test konstruiert.

Prinzipiell underscheiden sich im Falle der Normalverteilung die Tests auf p bzw. o2 bei
unbekanntem anderen Parameter nicht von den oben gezeigten Verfahren, wenn der andere
Parameter bekannt ist. Es gibt allerdings ein technisches Problem. Seien wieder X1, ..., X,
unabhiingige, identisch nach A (u, 0?) verteilte Zufallsvariablen und seien y und o2 unbe-
kannt. Wie wir schon gesehen haben, sind i = = >~ X; bzw. 5% = L= 3" (X, —1)? dann
gute Schétzer fiir die unbekannten Parameter, auf die getestet werden soll, aber das niizt
uns relativ wenig, denn wir haben Probleme, die Verteilung der Schétzer zu bestimmen.
Zwar wissen wir, daB i N'(u, 0% /n)-verteilt ist, doch kennen wir o2 nicht (dal wir g nicht
kennen, konnen wir ggf. verschmerzen, da wir ja gerade auf p testen wollen) und von
S? kennen wir die Verteilung iiberhaupt nicht. Diese Problem wollen wir im folgenden
16sen. Aus technischen Griinden werden wir uns dazu zunichst um die Verteilung von S?
kiimmern. Dies geschieht mit Hilfe des folgenden Lemma:

(8.17) Lemma. Es seien A eine orthogonale n x n-Matriz, Y = (Y1,...,Y,) ein Vektor
aus unabhingigen N (0, 1)-verteilten Zufallsvariablen und Z = (Zy,...,Z,) der Vektor
A(Y). Dann sind Zy, ..., Z, unabhdingig und N (0, 1)-verteilt.

Beweis. Es bezeichne g(y, . ..,y,) die Dichte von Y. Fiir jedes n-dimensionale Rechteck
[a, b] gilt nach der Transformationsformel fiir orthogonale Transformationen:

P(AYY) € [a,b]) = P(Y € A7 ([a,b]) = /A_l([ . a1, .. yn)dyr - - - dyy,

= /[b[g(yl,...,yn)dy1~-~dyn = P(Y € [a,b]).
O

Wir wenden dieses Lemma auf die spezielle orthogonale Matrix A an, die in der ersten
Zeile den Vektor (1/y/n,...,1/4/n) als Eintrag hat. Diese Vorgabe kann nach dem Gram-
Schmidtschen Orthonormalisierungs-Verfahren zu einer orthogonalen Matrix aufgefiillt
werden. Weiter sei Y; = % und Y = %Z?:l Y; Hier ist dann

1 - [ p
Z1=—=Y1+---Y,) =+/nY = — .
1= =Yt V) = Va \/ﬁ< - )
Es bezeichne (-, -) das gewohnliche Skalarprodukt in R™. Dann gilt wegen der Orthogona-
litdt von A

Zid-+ 72 = (2,2)- 72 =(Y,Y) —n(Y)?




Da die Z; unabhingig sind, ist Z; von Z3 + - -+ + Z2 unabhiingig, und somit ji von S2.

Ferner ist ("0;21)52 verteilt wie Z7 + ...+ Z2, was nach Lemma 8.6 x2_,-verteilt ist. (Wir

ot

bemerken hier, dafl dies insbesondere die Konsistenz von S? impliziert, da V (S?) = o

folgt.) Damit ist das Problem der Verteilung von S? geklért.

Fiir das Problem des Testens auf p bei unbekanntem o? erinnern wir noch einmal, daf

[t eine gute Schétzung von p war und, dafl \/ﬁ% gemiB N(0,1) verteilt war. Da uns
das aufgrund des unbekannten o2 nicht weiterhilft, ersetzen wir einfach das unbekannte
o? durch seine gute Schitzung S2. Dies fiirt zu folgender Statistik:

_ i
T:=T(X):= \/ﬁ'us'u = \;_(n"l) vn —1,

2

[ea

wobei wir die 2. Schreibweise gewéhlt haben, um anzudeuten, dafl 7" der Quotient aus
einer NV(0, 1)-verteilten und einer (nach dem vorigen Schritt davon unabhiingigen) x?_;-
verteilten Variablen ist. Welche Verteilung hat nun 7' ? Dazu beweisen wir folgenden Satz:

(8.18) Satz. Sind W und U,, unabhingige Zufallsvariable, und ist W N (0, 1)-verteilt und
U, X2-verteilt, so nennt man die Verteilung von

T %74
" VU, /n

eine t,-Verteilung oder auch eine t-Verteilung mit n Freiheitsgraden (t-distribution with
n degrees of freedom). Die Dichte von T, berechnet sich zu

n+l 2 n
5 )1 (1 n ) ( +1)/2.
2 5)

NN}

Die t;-Verteilung ist uns schon begegnet: Hier ist die Dichte hy(z) = 1/(7(1 + z?)).
Dies ist die Cauchy-Verteilung zu ¢ = 1, siche Beispiel (7.9)(5). Man spricht auch von
der Standard-Cauchy-Verteilung. Die allgemeine t-Verteilung stammt von William Sealy
Gosset (1876-1937), der unter der Pseudonym ,,Student “ publizierte. Dies tat er, da er als
Angestellter der Guiness-Brauerei nicht publizieren durfte. Die t-Verteilung heifit daher
auch Studentsche Verteilung.

hn(z) =

Beweis. Da U, x2-verteilt ist, ist P(U, > 0) = 1, also ist T}, mit Wahrscheinlichkeit 1
wohldefiniert. Weiter sei A > 0. Dann ist nach Satz (7.17)

P(Tn<>\):P\/_W<)\\/7
MWoln 2
- [ e s

Wir substituieren mit ¢(t) = t/y/n und verwenden I'(1/2) = /7

0o A 9 vt
P(T, <\ = /o /OO \/EZnTHT(:L/2)F(1/2) exp <—%<y + y‘;t >>y7 dt dy.
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Eine erneute Substitution ¢(z) = Hiﬁ liefert

P(T,<\ = exp(—z)znTH_l(l + 152/71)_%rl dzdt

/O°° /; \/ﬁF(n/z)F(l/Q)

n+1

(1 +t2/n)n;1(/ooo exp(—2)z 2 'dz)dt.

A 1
/_oo Vvnl'(n/2)0(1/2)

Mit der Definition der Gammafunktion ist das innere Integral nach z gleich I'(2!). Da
nun noch h,(A\) = h, (=) gilt, ist das Lemma bewiesen. O

Mit W = /nY und U, = Z2 + -+ + Z2 ist somit T'(X) t,_, verteilt. Wir fassen also
fiir unsere Situation zusammen:

(8.19) Satz. Sind Xi,..., X, unabhingige N (uo,0?)-verteilte ZufallsgroBen, dann ist
T(X) t,_q-verteilt.

Das Testen im Falle der Normalverteilung auf ;1 bzw. o bei jeweils unbekanntem anderen
Parameter gestaltet sich nun genauso wie in Beispiel (8.8) (b). Die dort verwendeten
Schiitzer fi und &2 fiir die unbekannten u und o2 ersetzt man — wie oben gesehen — durch T
bzw. S?. Analog mufl man die in den Tests unter Beispiel (8.8) (b) die Normalverteilung fiir
ft durch die t,,_;-Verteilung fiir T bzw. die y2-Verteilung von 62 durch die x2_,-Verteilung
von S? ersetzen. Mit diesen Verdnderungen bleiben alle weiteren Rechenschritte dieselben.

Bei genauerem Hinsehen haben wir bislang nur sogenannte einseitige Tests studiert; das
sind solche Tests, bei denen der Parameterbereich in zwei Teilintervalle zerfallt, von denen
einer die Hypothese und der andere die Alternative ist. Dies fithrt dazu, dafl die Hypothese
entweder verworfen wird, wenn der Schétzer des Parameters, auf den getestet werden soll,
zu groB ist, oder wenn er zu klein ist (aber nicht beides), je nachdem, ob die Hypothese nun
das “linke” oder das “rechte” Teilintervall von O ist. Dem gegeniiber stehen zweiseitige
Tests, bei denen © in drei Intervalle zerfillt. Dabei steht das mittlere Intervall fiir die
Hypothese, die beiden anderen Intervalle bilden die Alternative. Dementsprechend wird
H verworfen, wenn der Schétzer des zu testenden Parameters zu klein ist und dann, wenn
er zu grof ist (natiirlich nicht gleichzeitig !).

Die prinzipielle Testidee dndert sich nicht. Wieder approximiert man den zu testenden
Parameter durch seinen guten Schétzer (die wir in den von uns betrachteten Situationen
nun schon hinlénglich kennengelernt haben) und konstruiert zu gegebener Signifikanz o
den Verwerfungsbereich des Tests. Wir wollen das an einem Beispiel studieren.

(8.20) Beispiel. Es seien X1, ..., X,, n gemiB N (u, 0?) verteilte Zufallsvariablen und es
seien p und o unbekannt. Fiir ein gegebenes festes py wollen wir die Hypothese 1 =
gegen die Alternative p # g testen. Es sei also

H = {(,0%) : b= o, 0* > 0}

und
K ={(n,0%) : p # po, 0> > 0}.
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SchlieBlich sei © = H U K. Da ¢? unbekannt ist, arbeiten wir mit der Statistik 7' (und
nicht mit /). Wir bemerken, daB unter H die Statistik 7' = \/nZ = t-verteilt ist, also
insbesondere Erwartungswert 0 hat. Wir werden also H akzeptieren, wenn 7" betragsmifig
nicht zu grof ist, ansonsten lehnen wir H ab.

Sei also o > 0 gegeben. Gesucht ist ein k& (moglichst klein), so daf

PH0,02<|T‘ > k) < a.

Man nennt den Wert ¢,y g mit P(T < t,_; ) = [ das §-Quantil der t,,_;-Verteilung. Um
einen Test zum Niveau « zu erhalten, bestimmt man aus Tabellen der ¢, _;-Verteilung die
Zahl k = t,_11-a/2 (das 1 — a/2-Quantil). Wegen der Symmetrie der t,_;-Verteilung ist
dann P(|7(X)| > k) = «. Es folgt die Entscheidungsregel: die Hypothese wird verworfen,
wenn g

(L — >t 1l—a/2——-
|N M0| 1,1 /2\/5

Ein Beispiel: es mogen 15 unabhéingige zuféllige Variable mit derselben Normalverteilung
N(u,o?) die folgenden Werte angenommen haben: 0.78, 0.78, 1.27, 1.21, 0.78, 0.71, 0.68,
0.64, 0.63, 1.10, 0.62, 0.55, 0.55, 1.08, 0.52. Teste H : 1 = g = 0.9 gegen K : pu # 0.9. Bei
welchem Niveau o wird H verworfen? Aus den Daten ermittelt man f zu 0.7934 und S
zu 0.2409. Dann mufl man mit Hilfe einer Tabelle der t14-Verteilung « so bestimmen, dafl
das 1 — a/2-Quantil unterhalb des Wertes (0.9 —0.7934)+/15/0.2409 liegt. Dies liefert den
kritischen Wert o =~ 0.1, womit fiir dieses Niveau und alle besseren Niveaus die Hypothese
H verworfen wird.

Anschlieflend wollen wir noch ein Schétzproblem diskutieren, das von grofler praktischer
Relevanz ist. Die dort verwendeten Schétzer bzw. deren Verteilung sollen hier nicht her-
geleitet werden. Die auftretenden Verteilungen haben wir allerdings schon kennengelernt.
Die Testsituation tritt haufig beim Vergleich zweier Verfahren auf. Beispielsweise stelle
man sich vor, ein neu den Markt kommendes Medikament B soll getestet werden. Man
mochte freilich wissen, ob dieses Medikament besser ist als das bisher iibliche A. Dazu
wird man sinnvollerweise zwei (moglichst grofie) Versuchsgruppen bilden, von denen eine
Medikament A, die andere Medikament B nimmt. Ist die durschnittliche Krankheitsdauer
der Gruppe die Medikament B genommen hat, signifikant kiirzer als die der anderen Grup-
pe, wird man die Hypothese, das neue Medikament bringt keine Verbesserung verwerfen,
ansonsten wird man die Hypothese akzeptieren.

Prinzipiell unterscheidet man bei dieser Art Problemen zwei verschiedene Modelle. Zum
einen hat man die Fille, in denen man Medikament A und Medikament B an der glei-
chen Person ausprobieren kann (hir ist das Beispiel von Medikamenten auch eher schlecht
gewihlt; solche Tests findet man beispielsweise beim Vergleich zweier Typen Schuhsohlen,
in dem man jedem Probanden unter jeden Schuh eine der beiden Sohlen nageln kann).
Hat man nun n Versuchspersonen, so bekommt man fiir Medikament A eine Versuchsrei-
he Yi,...,Y,, von denen wir annehmen wollen, dass die Y; ~ N (s, 0%) unabhiingig und
unabhéngig von den X; sind. Das Paar (X;,Y;) beschreibt somit die Messung der Wir-
kungen von A und B an Person i. Man spricht daher in diesem Fall auch von sogenannten
gepaarten Stichproben. Wir betrachten nun die Differenz der beiden Wirkungen
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Unter der Hypothese
H : = po

sind die D; unabhingig und N (0, o?)-verteilt. Bei unbekanntem o2 koénnen wir also den
oben hergeleiteten ¢-Test benutzen, um H gegen die Alternative

K # po

zu testen.

(8.21) Beispiel. Wir verabreichen 10 Patienten zunéchst eine Nacht Schlafmittel A und
dann eine Nacht Schlafmittel B. Die folgende Tabelle gibt die Werte fiir D; wieder.

Patient | 1 2 3 4 5 6 7 8 9 10
D; |12 24 13 13 00 1.0 18 08 46 14

Wir wollen nun H : die beiden Mittel sind gleich wirksam, also p; = ps auf dem Niveau
a = 0.01 testen. Aus dem Datenvektor ermitteln wir 7 = 1.58,/10/1.513 = 4.06. Da wir
einen zweiseitigen Test betrachten, miissen wir dies vergleichen mit dem 0.995-Quantil der
to-Verteilung. Dieses ist 3.25. Somit verferfen wir H aufgrund der Daten. Wir entscheiden
uns also dafiir, das eine Schlafmittel wir wirksamer zu erkldren.

Die Modellierung durch verbundene Stichproben ist nicht immer realistisch. Meist hat
man eine Gruppe, die mit Methode A behandelt wird, und eine andere, der man Methode
B angedeihen la8t. Um dies zu mathematisieren seien zwei Folgen von Zufallsvariablen
Xi,..., X, und Yq,...,Y,, gegeben, die alle unabhéngig seien. Die Zufallsvariablen X;
seien alle gemdB N (u1,0%), die Y; gemdl N (ug,03) verteilt. Getestet werden soll die
Hypothese H : 11 = po gegen die Alternative K : uy # po. Ist 0% # 02 so bekommen wir
ziemlich grofie Probleme, die hier nicht behandelt werden sollen. Im Falle von 0% = o2 =:

o? schiitzen wir dieses (unbekannte) o2 durch

[ ﬁ (g(xi _ X2y gm _ Y)2),

wobeidie X = 3" X, und Y = L 3" 'Y, die Mittelwerte der Stichproben sind. Unter
der Hypothese H : 11 = uo ist dann die Statistik

- X-Y
T = —rn-——
S’/L+l

verteilt geméf einer t,,,,_»-Verteilung (insbesondere hat sie den Erwartungswert 0). Wir
werden also H verwerfen, wenn 7" betragsmifig zu grofl wird. Ist genauer eine Signifikanz
a > 0 gegeben, so verwerfen wir H, falls

|T| > tinpn—1,1-a/2:

sonst akzeptieren wir H. Das Problem, das wir somit gelost haben, heifit auch Zweistich-
probeproblem mit unverbundenen Stichproben.

102



Es sei abschlieBend noch erwéhnt, dafl man fiir die entsprechende nicht-parametrische
Fragestellung, wenn man also nicht voraussetzt, daf§ die X; und Y} eine bestimmte Ver-
teilung haben (z. B. eine Normalverteilung), einen anderen Test entwickelt hat. Dieser
ist unter dem Namen Mann-Whinteny U-test oder Wilkoxon Zweistichproben Rangsum-
mentest in der Literatur bekannt. Er basiert auf der ganz einfachen Idee, dafl; wenn beide
Stichproben Xi,..., X, und Yy, ...,Y,, den gleichen Mittelwert haben und man die Stich-
probenelemente der X; und Y; der Grofle nach ordnet, dann auch die Summe der “Platze”
(der Statistiker sagt Rénge), an denen ein X-Stichprobenwert vorkommt, ungefahr gleich
der Summe der Rénge der Y-Stichprobe sein sollte. Um so einen Test allerdings sinnvoll
durchzufithren, muss man mehr iiber die Verteilung der Rangstatistik wissen. Das wiirde
uns an dieser Stelle zu weit fithren, wird aber in einer Vorlesung iiber Statistik behandelt.

Konfidenzintervalle

Das dritte Problem der Statistik (das hier nur kurz angerissen werden soll) ist das der
sogenannten Konfidenzintervalle. Hierbei geht es darum Intervalle anzugeben, die den un-
bekannten vorgegebenen Parameter mit einer vorgegebenen Wahrscheinlichkeit einfangen.
Um genau zu sein, sind wir natiirlich weniger an einem einzigen Intervall interessiert, als
an der Prozedur ein solches zu finden. Unter den allgemeinen Rahmenbedingugen der
Statistik definieren wir

(8.22) Definition. Ein Konfidenzintervall fiir den unbekannten Parameter § € © ba-
sierend auf dem Schiitzer 6 ist ein Berechnungsschema, daB aus 6 ein Intervall I(6) kon-
struiert, so daB 0 € I(0) ist. Ein Konfidenzintervall heiBt v-Konfidenzintervall (wobei
0<~<1), falls

Py € 1(6)) > (8.1)

fiir alle 6§ € ©.

Es ist im allgemeinen natiirlich nicht schwer einen Bereich zu finden, in dem das unbe-
kannte # mit grofler Wahrscheinlichkeit liegt, ndmlich © personlich. Offenbar kann die
Angabe von O nicht der Sinn der Konstruktion eines Konfidenzintervalls sein. Wir schlie-
Ben dies aus, in dem wir fordern, da§ das Konfidenzintervall in einem geeigneten Sinne

moglichst klein ist (genauer, dafl es kein Intervall gibt, dafl echt in I(6) enthalten ist und
das auch noch die Bedingung (8.1) erfiillt).

Hat man nun einen guten Schétzer 6 fiir 6 so bedeutet die Defintion von Konfidenzinter-
vall, daf} dies ein Intervall der Form [é — K1, 0+ Kol fiir K1, ko > 0 ist. Kennt man zudem
die Verteilung, so 148t sich damit prinzipiell (nicht immer leicht) x; und ko berechnen.
Wir werden dies an drei Beispielen sehen.

(8.23) Beispiele. a) Binomialverteilung
Hier wollen wir ein Konfidenzintervall fiir den unbekannten Parameter p konstruieren. Sei-
en Xi,...,X, n Beobachtungen. Dann wissen wir, dafi X = &1+=4%x ein guter Schétzer
fiir p ist. Damit ist

I(X) :=[X — k1, X + K]

ein Konfidenzintervall fiir p. Um x; und ks zu berechnen, erinnern wir, da nX binomi-

103



alverteilt ist zu den Parametern n und p. Um also zu gegegenem v > 0 zu garantieren,
daB B
Pype (X)) 2y dh B(p g I(X)) <1-7

iiberlegen wir, daf3
Py(p ¢ I(X)) = Py(X > p+ r1) + Pp(X < p— k).

Wir wollen nun s; und ko so wahlen, dafl die beiden Summanden auf der rechten Seite

jeweils 1_77 sind. Unbefriedigenderweise lassen sich die entsprechenden Werte fiir x; und
ko allgemein nicht gut ausrechnen. Fiir den Fall, dal man berechtigterweise annehmen
kann, dafl X dem Satz von de Moivre und Laplace geniigt hatten wir schon in Kapitel 4

gesehen, wie man die entsprechenden Konfidenzintervalle konstruiert.

b) Normalverteilung

i) Konfidenzintervall fiir u, o® bekannt

Wieder sei aufgrund von n Beobachtungen X7, ..., X,,, die diesmal N (u, o?)-verteilt seien,
ein Konfidenzintervall I(ji) fir das unbekannte p zu konstruieren, wobei i = %

der gute Schiitzer fiir p ist. Bekanntlich ist i N(u, 02 /n)-verteilt. Unser Ansatz fiir das
Konfidenzintervall ist aufgrund der Symmetrie der Normalverteilung

I(f) = —]

[ = n—= i+ n—=
\/7 \/_
fiir ein zu berechnendes 1. Wie oben rechnen wir fiir gegebenes v < 1
o
Pt (i & 1(1)) = Puoe(ii > ot =) + Fup2(it < pp—1—=)
1 2 NG NLD

A

= BV L o) 4 BV < )
= 1=01n) +&(=n) = 2(1 - 2(n)).

Bestimmt man daher n aus einer N/ (0, 1)-Tafel so, da8

So ist

und somit

das Konfidenzintervall ist also konstruiert.

ii) Konfidenzintervall fiir o2, i bekannt
Wir erinnern daran, daf in dieser Situation 62 := £ 3" (X — p1)? ein guter Schitzer fiir
o? ist. Weiter ist 26 verteilt geméB der x2-Verteilung. Wir machen folgenden Ansatz
fiir das Konfidenzintervall P
16%) =[],
m e
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Ist nun wieder v gegeben, so ist

~2 ~2
22 €13 = Pt <o <t
T 2

n
= P, < ;02 <m)

P

w,o

n . n .
= 1-— Pu,a2(§<72 <m)—(1-— PM702(;02 <m).

Wir wihlen nun 7; und 7 so aus einer x2-Tabelle, daf

n

n . ~
P 702(§0'2 S 771) — PMO-Q(;O'Q < 772) = .

1

Hierbei gibt es viele Moglichkeiten — und anders als im Falle i) ist eine symmetrische Lage
des Intervalls um den unbekannten Parameter nicht besonders nahliegend, da auch die
X2-Verteilung nicht symmetrisch ist. Man koénnnte z.B. 1; = oo wiihlen und erhielte ein

einseitges Konfidenzintervall der Form |0, "ni;], wobei 7, so gewahlt ist, dafl

ng2

gilt; anderseits kann man auch 7, = 0 setzen und erhélt ein Intervall der Form [7, 00),
wobei dann 7; die Gleichung

n .
PM,UQ(EUQ < 771) =7

erfiillt. Und selbstversténdlich sind auch viele Wahlen von 2-seitigen Konfidenzintervallen
denkbar, beispielsweise 1y, 1, so, daf3

n _, 1 v
PMJQ(;U <m)= 5t 3g
und 1
n .9 Y
P;w?(ga <) = 5 9

(in gewisser Weise eine symmetrische Wahl).

Konfidenzintervalle fiir den Fall, dafl beide Parameter unbekannt sind lassen sich in dhn-
licher Weise konstruieren.
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9 Markoff-Ketten

Bisher haben wir uns hauptséachlich mit unabhéngigen Ereignissen und unabhéngigen Zu-
fallsgrofen beschéftigt. Andrej Andrejewitsch Markoff (1856-1922) hat erstmalig in einer
Arbeit 1906 Zufallsexperimente analysiert, bei denen die einfachste Verallgemeinerung
der unabhéngigen Versuchsfolge betrachtet wurde. Man spricht bei diesen Versuchsfolgen
heute von Markoff-Ketten. Wir werden sehen, dafl sehr viele Modelle Markoff-Ketten sind.
Man kann sie anschaulich wie folgt beschreiben: Ein Teilchen bewegt sich in diskreter Zeit
auf einer hochstens abzéhlbaren Menge I. Befindet es sich auf einem Platz ¢ € I, so wech-
selt es mit gewissen Wahrscheinlichkeiten (die von i abhéingen) zu einem anderen Platz
j € I. Diese Ubergangswahrscheinlichkeiten hiingen aber nicht weiter von der , Vorge-
schichte* ab, das heifit von dem Weg, auf dem das Teilchen zum Platz i gekommen ist.

(9.1) Definition. Es sei [ eine nichtleere, hochstens abzdhlbare Menge. Eine Matrix
P = (pij)ijer heiBt stochastische Matrix (stochastic matrix), wenn p;; € [0,1] fiir alle
i,7 € I und Eje[pij = 1 fiir alle ¢ € I gelten. Die Komponenten p;; heilen Uber-

gangswahrscheinlichkeiten (transition probabilities). Eine stochastische Matrix wird im
Zusammenhang mit Markoff-Ketten auch Ubergangsmatrix (transition matrix) genannt.
Eine auf einem Grundraum (2, F, P) definierte Zufallsgroe X :  — I nennt man /-
wertige Zufallsgrofie.

(9.2) Definition. Eine endlich oder unendlich lange Folge Xy, X1, X, ... [-wertiger Zu-
fallsgrofen heiBt (zeitlich homogene, time homogeneous) Markoff-Kette (Markov chain)

mit stochastischer Matrix P, wenn fiir alle n > 0 und alle 7y, 21, ...,%,, 0,11 € I mit
P(XOIZ(],,Xn:Zn) >O

P(Xn+1 :’in+1 | XO :i07 X1 :’il,..., Xn :Zn) :pinin+l

gilt. Die Startverteilung (initial distribution) v einer Markoff-Kette ist definiert durch

v(i) = P(Xo =1) fiir alle ¢ € I. Oft schreibt man P,, um die Startverteilung zu betonen.
Ist die Startverteilung auf einen Punkt konzentriert, d.h. gilt v(i) = 1 fiir ein ¢ € I, so
schreiben wir meist P, anstelle von P,.

(9.3) Satz. Sei {X,, }nen, eine Markoff-Kette mit Startverteilung v.
a) Fir alle n € Ny und iy, i1, ..., 1, € I gilt

P(XQ = ’io, X1 = ’il, Ce 7Xn = Zn) = V(Z.O)pioilpilig v o Di 1
P((Xo,Xl, R ,Xn_l) €A X, = ’Ln) > ( ist, so gilt

P((Xn+1,...,Xm)EB|(Xo,...,Xn_l)eA, anln)
— P((Xpirse . X) € B | X =in,).
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Beweis. (a) folgt durch Induktion nach n: Definitionsgemé$ gilt die Behauptung fiir n = 0.
Gelte die Behauptung fiir ein n € Ny und seien ig, i1, . . ., 9,41 € I. Ist P(Xo = dg,..., X, =
in) = 0, so gilt die behauptete Formel ebenfalls fiir n+1: Ist P(Xy = i, ..., X, =4,) > 0,
so folgt aus Definition 9.2

P(Xo=j0,..., Xp =in, Xpp1 = int1) = P(Xpp1 = tng1 | Xo =d0,..., Xy = 1ip)
XP(XO :’io,...,Xn :’ln)
= V(Z.O)pi()il <+ Pip_qinPiningr -

(b) Sei P((Xo, Xy,...,Xs1) € A, X,, = i,) > 0. Mit der Definition der bedingten
Wabhrscheinlichkeit und Teil (a) folgt

P((Xnt1,--, Xm) € B (Xo,...,Xp1) € A, X, =1y)
P((Xn+17...7Xm>EB7 Xn:Zn7 (Xo,...,anl)EA)
P((XQ,...,Xn_l)GA, anln)

.....

Z(lo ..... Z‘nfl)EA V(Zo)pl(ﬂl ° plnfl'ln
= E Pivins1Pinsring2 -+ - Pim—1im -

Dieser Ausdruck héngt nicht von A ab, insbesondere fiihrt also die obige Rechnung fiir
A = [10Ln=1} yum gleichen Resultat. Aber fiir A = %171} gilt die in (b) behauptete
Formel. O

(9.4) Bemerkung. Die Aussage von (b) heiit Markoff-Eigenschaft (Markov property).
Sie spiegelt genau die eingangs erwéahnte Eigenschaft wieder, dafl in einer Markoff-Kette
die Wahrscheinlichkeit, zur Zeit n 4+ 1 in einen beliebigen Zustand zu gelangen, nur vom
Zustand zur Zeit n abhéngt, aber nicht davon, in welchem Zustand die Kette frither war.
Nicht jede Folge von [-wertigen Zufallsgroflen mit dieser Eigenschaft ist eine homogene
Markoff-Kette in unserem Sinn: Die Ubergangswahrscheinlichkeiten kénnen namlich noch
von der Zeit abhdngen. Genauer: Sei Xg, X1,... eine Folge I-wertiger Zufallsgréflen, die
die Eigenschaft aus Satz (9.3 (b)) hat. Dann existiert eine Folge {P, },en, von stochasti-
schen Matrizen P,, = (p,,(4, j))i jer mit

P(XQ = io, e ,Xn = Zn) = I/(io)po(io, Zl) .. -pn—l(in—lain)

fir alle n € Ny und 4g,...,%, € I. Der Beweis sei dem Leser iiberlassen. Man spricht
dann von einer (zeitlich) inhomogenen Markoff-Kette. Wir werden jedoch nur (zeitlich)
homogene Ketten betrachten, ohne dies jedesmal besonders zu betonen.

(9.5) Satz. Es seien P = (p;;); jer eine stochastische Matrix, v eine Verteilung auf I und
N € Nj. Dann gibt es eine abzéhlbare Menge 2, eine Wahrscheinlichkeitsverteilung p
auf 2 und Abbildungen X; : Q — [ fiir alle i € {0,1,..., N}, so daB X,..., Xy eine
homogene Markoff-Kette mit Startverteilung v und Ubergangsmatrix P ist.

Beweis. Es sei Q := I1%NYund p(ig, . .., in) = v(io)Digi, - - - Din_yin S0Wie Xy (ig, ..., ix) =
in fir alle n € {0,1,..., N} und (ig,...,in) € Q. Da die Summe der Komponenten der
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stochastischen Matrix P in jeder Zeile gleich eins ist, gilt fiir alle n € {0,1,..., N} und
(0, .., in) € J10mm)

P(Xo=ip,...,Xp=1,) = E P(Xy=1igp,..., XN =in)
(in+1 ..... Z'N)EI{""’I ~~~~~ N}
- Z V@O)pioil < Din_qin
(ing1,nyin )ET{nF1 N}

= V(io)pi0i1 <o Pip_qin-

Dieses Produkt ist grofler als Null genau dann, wenn jeder Faktor grofier als Null ist. Ist
dies der Fall, so ist offenbar

P(Xn+1:in+1 | on’io,...,Xn:’in) :pinin+1'

|

Bemerkung. Nachfolgend soll stets von einer unendlich langen Markoff-Kette ausgegangen
werden, dies jedoch nur wegen einer bequemeren Notation. Alle nachfolgenden Uberlegun-
gen bendtigen die Konstruktion einer unendlichen Markoff-Kette nicht, sondern kommen
damit aus, daB fiir jedes N eine Kette geméf Satz (9.5) konstruiert werden kann.

(9.6) Beispiele.
a) Sei p;; = g; fiir alle 4,5 € I, wobei Zje[ ¢; = 1 ist. Dann gilt
P(Xo =1y, X1 =11,...,Xpn=1,) =v(i0)qi, - - - G,
Man sieht leicht, daf ¢; = P(X,, = j) fiir m > 1 ist. Somit gilt
P(Xo =gy, Xn=1in) = P(Xo = i0)P(X1 = i1) ... P(X,, = in),

d.h., die Xy, Xy, ..., X, sind unabhéngig. Satz (9.5) liefert also als Spezialfall die
Konstruktion von unabhéngigen, I-wertigen Zufallsgrofien.

b) Irrfahrt auf Z: Es sei Y1, Ys, ... eine Folge unabhéngiger, {1, —1}-wertiger Zufalls-
groBen mit P(Y; = 1) = p und P(Y; = —1) =1 —p, wobei p € [0, 1] ist. Sei X :=0
und X, = Z?Zl Y; fiir n > 1. Dann ist Xy, X;,... eine Markoff-Kette auf Z. Die
Ubergangsmatrix P = (pij)ijez ist durch p;;11 = p und p;;_1 = 1 — p eindeutig
festgelegt, und die Startverteilung ist in 0 konzentriert.

c) Symmetrische Irrfahrt auf Z2: Hier ist I = Z% und Dlinsonsia), o) = 1/(2d), falls
i, = Jjx fiir alle bis auf genau ein k € {1,2,...,d}, fiir das |iy — jx| = 1 ist. Alle
anderen Ubergangswahrscheinlichkeiten miissen dann gleich Null sein.

d) Ehrenfests Modell der Wéirmebewegung: Es seien n Kugeln auf zwei Schachteln
verteilt. Zu einem bestimmten Zeitpunkt seien r Kugeln in der rechten Schachtel
und [ := n — r in der linken. Mit Wahrscheinlichkeit 1/2 tun wir nun {iberhaupt
nichts (dafl diese auf den ersten Blick unsinnige Annahme begriindet ist, werden
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n € Ny definiert man die n-te Potenz P = (p

wir zu einem spéteren erkennen). Im anderen Fall wird mit Wahrscheinlichkeit 1/2
eine der n Kugeln nun zufillig ausgewahlt, wobei jede dieselbe Chance hat, und
in die andere Schachtel gelegt. Wir kénnen fiir I die Anzahl der Kugeln in der
rechten Schachtel nehmen, also I = {0,...,n}. Die Ubergangswahrscheinlichkeiten
sind gegeben durch

Prr—1 = T/Qn, r e {1,2, .. .,n},
Proy1=1/2—71/2n, re{0,1,...,n—1}.

Irrfahrt auf I = {0, ...,n} mit Absorption ( random walk with absorbing barriers):
0 und n seien absorbierend, also ppy = 1 und p,, = 1. Fir i € {1,2,...,n — 1}
geschehe ein Schritt nach rechts mit Wahrscheinlichkeit p € (0,1) und ein Schritt
nach links mit Wahrscheinlichkeit ¢ := 1 — p, also p;;+1 = p und p;,—; = ¢. Die
stochastische Matrix hat somit die Form

e}

1 0
qg O

s

qg 0 p
0 1

Irrfahrt mit Reflexion (reflecting barriers): Das gleiche Modell wie in Beispiel (e)
mit der Anderung, dal pp; = ppn—1 = 1 sein soll.

Wettervorhersage: Wenn wir annehmen, daf§ die Wahrscheinlichkeit fiir Regen am
folgenden Tag nur von Bedingungen von heute abhéngt und unbeeinflufit ist vom
Wetter der vergangenen Tage, so liefert dies eine ganz einfache Markoff-Kette. Ist
a die Wahrscheinlichkeit, dafl es morgen regnet, wenn es heute geregnet hat, und (8
die Wahrscheinlichkeit, dafl es morgen regnet, wenn es heute nicht geregnet hat, so
hat die stochastische Matrix die Form

a 11—«
r= (5179,

Auf Grund der Vielzahl von Beispielen fiir Markoff-Ketten kénnte man vermuten, dafl
Markoff selbst aus angewandten Fragestellungen heraus die Ketten analysiert hat. Mar-
koff hatte jedoch bei seinen Untersuchungen primér im Sinn, Gesetze der grofien Zahlen
und zentrale Grenzwertsiitze fiir die Ketten zu studieren. Er hatte nur ein Beispiel vor
Augen: er analysierte die moglichen Zusténde ,,Konsonant“ und ,,Vokal“ bei der Buch-
stabenfolge des Romans ,,Eugen Onegin“ von Puschkin. Die Zufallsgréfie X, soll hier den
n-ten Buchstaben des Textes angeben.

Eine stochastische Matrix P = (p;;); jer kann man stets ohne Probleme potenzieren: Fiir

(n)
1]

(n+1) __ (n)
b = E pzk Dy
kel

)i jer rekursiv durch pﬁ?) = ¢;; und
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fiir alle 7,5 € I, das heifit, P" ist das n-fache Matrixprodukt von P mit sich selbst. Aus
der rekursiven Definition folgt, dafl P" selbst eine stochastische Matrix ist. Es gelten die
aus der linearen Algebra bekannten Rechenregeln fiir Matrizen, insbesondere gilt P"P" =

P+ das heif3t
kel

Diese Gleichungen nennt man auch Chapman-Kolmogoroff-Gleichungen.

(9.7) Definition. Die Komponenten pz(?) der Ubergangsmatrix P" = (pz(?))i,jel heiflen
n-stufige Ubergangswahrscheinlichkeiten (n th order transition probabilities).

(9.8) Bemerkung. Sei Xy, X1, Xo, ... eine Markoff-Kette mit stochastischer Matrix P =
(pij)ijer- Sind m,n € Ny und ¢, j € I mit P(X,,, =) > 0, so gilt

P(Xpin =7 | X =1) =pl.

Beweis. Es gilt
P(Xonpn =7 | X =1)
= Z P(Xm—l—l:im-i-la"')

im+17---aim+n7161

Xernfl == Z.ernflu Xern :j ‘ Xm = Z)
und mit der Definition (9.2) folgt

P( Xm+1 - Z.m-‘,-la cee 7Xm+n—1 - im—f—n—la Xm+n :j | Xm - Z)
= P( Xern = j ‘ Xm = i, Xerl = Z.erla s 7Xm+n71 = iernfl )
n—1
X H P(Xm-‘,-k = Z.m-‘,-k | X = (3 Xm+1 = im—i—la s 7Xm+k—1 = Z.m-l—k—l)
k=1
Diipi1 Pimirimsa « «  Pimin—1j-

Somit gilt
P(Xm+n = | Xy = Z) = Z Piivyr + - Pippyn—1j — pz(?)-
41, tmtn—1€1
O
(9.9) Lemma. Fir alle m,n € Ny und i,j,k € I gilt plm+") > pgk m) (")
Beweis. Dies ergibt sich sofort aus den Chapman-Kolmogoroff-Gleichungen. O

(9.10) Lemma. Es sei Xo, X1, X, ... eine Markoff-Kette mit Startverteilung v und Uber-
gangsmatrixz P. Dann gilt

P (X, =j)=Y_ v(i)p)



fiir alle n € Ny und j € I. Ist die Startverteilung v auf i € I konzentriert, so gilt
Pi(Xn = j) =py} -

Beweis. Aus Satz (9.3 (a)) folgt

P(X,=j) = Y. P(Xo=io,...,Xp1=1in1, Xo=J])

10y esin—1€1

= Z V(0)Pigiy - - - Pin_1j = Z V(’i)pz(‘;‘l)-

i0yeesin_1€1 iel

O

(9.11) Definition. Es sei P = (p;;)i jer eine stochastische Matrix. Man sagt, j € I sei
(n)
> 0.

von i € I aus erreichbar (can be reached from), wenn ein n € Ny existiert mit p;;

Notation: 1 ~ j.

Die in (9.11) definierte Relation auf I ist reflexiv und transitiv. Wegen pg-] )= 1> 0 gilt
1~ ¢ fir alle s € I. Falls ¢ ~» j und 5 ~~ k gelten, so gibt es m,n € Ny mit pgn) > (0 und
pgz) > 0, und dann ist pg,znm) > pgm)pﬁ) > 0 nach Lemma (9.9).

Die durch i ~ j < (i ~ j und j ~~ 1) fiir alle 7, 7 € I definierte Relation ist offenbar eine
Aquivalenzrelation auf I. Wir werden ¢ ~ j fiir den Rest dieses Kapitels stets in diesem

Sinne verwenden.

Sind A, B C I zwei Aquivalenzklassen der obigen Aquivalenzrelation, so sagen wir, B ist
von A aus erreichbar und schreiben A ~~ B, wenn ¢ € A und j € B existieren mit ¢ ~ j.
Offensichtlich héngt dies nicht von den gewéhlten Représentanten in A und B ab.

(9.12) Definition. Es sei P eine stochastische Matrix.

a) Eine Teilmenge I’ von I hei8t abgeschlossen (closed), wenn keine i € I’ und j € I\ I’
existieren mit ¢ ~> j.

b) Die Matrix P und auch eine Markoff-Kette mit Ubergangsmatrix P heilen irreduzibel
(irreducible), wenn je zwei Elemente aus I dquivalent sind.

Bemerkung. Es sei P = (p;;); jer eine stochastische Matrix.

a) Ist I’ C I abgeschlossen, so ist die zu I’ gehorige Untermatrix P’ := (p;;); jer eine
stochastische Matrix fiir I'.

b) Ist P irreduzibel, so existieren keine abgeschlossenen echten Teilmengen von I.
(9.13) Beispiele.

a) Die symmetrische Irrfahrt auf Z¢ ist irreduzibel.

111



b) Bei der Irrfahrt auf {0,...,n} mit absorbierenden Rindern gibt es drei Aquiva-
lenzklassen, némlich {0}, {1,...,n — 1} und {n}. Die Mengen {0} und {n} sind
abgeschlossen, und es gelten {1,...,n — 1} ~» {n} und {1,...,n — 1} ~ {0}.

c) Essei I ={0,1,2} und die stochastische Matrix gegeben durch

1/2 1/2 0
P=| 1/2 1/4 1/4
0 1/3 2/3

Dann ist die Markoff-Kette irreduzibel.
d) Essei I ={0,1,2,3} und die stochastische Matrix gegeben durch

1/2 1/2 0 0
1/2 1/2 0 0
1/4 1/4 1/4 1/4
0o 0 0 1

P=

Dann gibt es drei Aquivalenzklassen: {0,1}, {2} und {3}. Der Wert 0 ist von 2 aus
erreichbar, aber nicht umgekehrt. Der Wert 3 hat absorbierendes Verhalten; kein
anderer Wert ist von 3 aus erreichbar.

Es sei Xo, X1, Xo,... eine Markoff-Kette mit Ubergangsmatrix P = (pij)ijer und Start-
verteilung v. Die wichtigste Frage, die uns fiir einen Grofiteils des Kapitels beschiftigen
wird, ist die Diskussion der Verteilung von X,, fiir grofle n, also

Py(Xy =34) =Y vy, jel
el
Zu diesem Zwecke werden wir annehmen, dafl der Zustandsraum I endlich ist. Aus obi-
gen Uberlegungen erhélt man dann, dafl die Frage der asymptotischen Verteilung von X,
aquivalent ist zur Frage, wie sich grofie Potenzen von stochastischen Matrizen verhalten.

Im dem Falle, in dem I nur aus zwei Elementen besteht, kann man sich das noch recht
leicht iiberlegen.

(9.14) Beispiel. Sei |I| =2 und

l—a «
P= .
( p 1—5)
Dann ist fir « = f = 0 P* = Id fiir jedes n (wobei Id bei uns immer die Identitét

bezeichnet, egal auf welchem Raum sie lebt). Im Falle von o« = § = 1 ist offenbar P" = P
fiir jedes ungerade n und P" = Id fiir alle geraden n.

Im Falle von 0 < a4+ < 2 (dem interessanten Fall) diagonalisieren wir P, um seine
Potenzen zu berechnen. Es ist
P=RDR ™,

=15
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und
1 0
D_(O 1—a—ﬁ)

P" = RD"R ™.

ist. Daher ist

Nun konvergiert aber

Eingesetzt ergibt das

mit

™ = o —

a+f a+ 3

Im allgemeinen, d.h. fiir |7| > 2 sind wir leider ziemlich schnell am Ende unserer Weisheit,
wenn es um die Berechnung der Eigenwerte von P und damit um das Diagonalisieren von
[P geht. Die obige Methode taugt also nicht, um allgemein Erkenntnisse iiber das Langzeit-
verhalten von Markoff-Ketten zu gewinnen. Der Effekt, den wir aber im Beispiel (9.14)
gesehen haben, dafl ndmlich die Limesmatrix aus lauter identischen Zeilen besteht — und
das bedeutet, dafi die Markoff-Kette asymptotisch ihren Startort “vergifit” — werden wir in
dem allgemeinen Limesresultat wiederfinden. Um dieses zu beweisen, miissen wir zunéchst
den Begriff der Entropie, den wir schon in Kapitel 4 und 6 fiir zweielementige Grundraume
kennengelernt haben, auf groflere Raume tibertragen.

(9.15) Definition. Es sei I eine endliche, mindestens zweielementige Menge und v, o
seinen Wahrscheinlichkeiten auf I mit o(7) > 0 fiir alle 1 € /. Dann heift

H(v|o) := ; ¥(1) log <%)

die relative Entropie (relative entropy) von v beziiglich o. Hierbei setzen wir 0log0 = 0.
Wir sammeln ein paar Eigenschaften der Entropiefunktion

(9.16) Proposition. In der Situation von Definition (9.15) ist H(-|p) positiv und strikt
konvex und es ist H(v|o) =0 < v = o.

Beweis. Der Beweis folgt dem Beweis von Lemma (6.2). Sei also wieder die nicht—negative,
strikt—konvexe Funktion ¢ (t) gegeben durch ¢ (t) = tlogt —t + 1 (und wieder ist ¥(t) =
0« t=1). Dann ist

vt = Lo (3 ms(50) - 55 )

. Zgw@z)(g())
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woraus die Behauptungen folgen. O

Wir kommen nun zu einem Satz, der das aymptotische Verhalten einer groflen Gruppe
von Markoff-Ketten klart. Dieser Satz ist gewissermaflen ein Gesetz der grofien Zahlen fiir
Markoff-Ketten; er wird in der Literatur haufig auch als Ergodensatz fiir Markoff-Ketten
bezeichnet.

(9.17) Satz. Ergodensatz (ergodic theorem) Sei P eine stochastische Matrix iiber einem
endlichen Zustandsraum I und v irgendeine Anfangsverteilung. Weiter existiere ein NV, so
daBl PV nur strikt positive Eintrige hat. Dann konvergiert

n
VP —n—oo 0,

wobei g eine Wahrscheinlichkeit auf I ist, die der Gleichung

oP=o

gentgt.

(9.18) Bemerkung. Die Bedingung “es existiere ein N, so dafi PV nur strikt positive
Eintrage hat” impliziert natiirlich, da§ P irreduzibel ist (man kann nach spitestens N
Schritten jeden Punkt von jedem anderen aus erreichen). Umgekehrt ist die Bedingung
aber nicht dquivalent zur Irreduzibilitdt von P. Beispielsweise ist die Matrix

0 1
= (V)
irreduzibel, aber natiirlich ist keine ihrer Potenzen strikt positiv. Man kann sich iiber-
legen, daf} obige Bedingung &dquivalent ist zur Irreduzibilitdt von P plus einer weiteren
Bedingung, die Aperiodizitdt von P heifit. Unter letzterem wollen wir verstehen, dafl der
gg'T iiber sdmtliche Zeiten, zu denen man mit positiver Wahrscheinlichkeit in den Punkt
1 zuriickkehren kann, wenn man in ¢ gestartet ist, und iiber sdmtliche Startpunkte ¢ eins
ist. Wir werden diese Aquivalenz hier nicht beweisen und nur bemerken, daf irreduzible
und aperiodische Markoff-Ketten manchmal auch ergodisch (ergodic) heifien.

Satz (9.17) enthélt offenbar unter anderem eine unbewiesene Existenzaussage. Diese wer-
den wir getrennt beweisen. Wir zeigen also zunéchst, dafl es eine Wahrscheinlichkeit o
mit

oP=o

gibt. Die Existenz eines beliebigen o, das obiger Gleichung geniigt, ist ziemlich offensicht-
lich, denn offenbar ist 1 Eigenwert jeder stochastischen Matrix (die konstanten Funktionen
sind rechte Eigenvektoren) — also muf} es auch linke Eigenvektoren zum Eigenwert 1 ge-
ben; ein solcher ist o. Auch ist es nicht schwierig, ein solches ¢ so zu normieren, dafl
die Summe seiner Eintrége 1 ist. Was aber a priori iiberhaupt nicht klar ist, ist, warum
ein solches p eigentlich nicht-negativ sein sollte. Wer in der linearen Algebra ein wenig
Perron-Froebenius Theorie betrieben hat, wird dies schon wissen. Wir werden es hier mit
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Hilfe eines anderen, mehr stochastischen Arguments herleiten.

(9.19) Satz. Sei @ eine stochastische r x r Matrix. Dann existiert

k
1
i J .
fim 52 @ =i
und es gilt
HQ=QH=H H?=H.

Beweis. Zunichst bemerken wir, dal mit @ auch Q" stochastisch ist (es ist z.B.

D Qe )= Qe d)Q(d, f) =1;

f=1 f=1 d=1

fiir beliebiges n geht das analog.) Damit ist dann auch

stochastisch. Dariiber sind die P, € R™ und als solche beschriinkt. Nach dem Satz von
Bolzano—Weierstrafl besitzt somit die Folge der P, einen Haufungspunkt H. Wir wollen
im folgenden sehen, daf es genau einen Haufungspunkt dieser Folge gibt. Dazu betrachten
wir eine Teilfolge (H;) der Folge (Py), die gegen H konvergiert. Damit erhalten wir

?vlv—‘

l
1 )
H=HQ=:> Q"
QH 1Q lle

1 1
= H - 7@ + 7@”1-
Da die letzten beiden Terme fiir [ — oo verschwinden, ergibt sich
QH=HQ=H. (9.1)

Ist nun H' ein weiterer Haufungspunkt und (H,,) eine Folge die gegen H' konvergiert,
dann erhalten wir aus (9.20) einerseits

H'H=HH =H.
Andererseits folgert man analog zu oben
HP,=PH =H'

fiir alle k und somit
HH=HH = H'.

Daher ist H' = H und H? = H. O
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Was haben wir nun damit gewonnen? Nun, die Gleichung H() = H impliziert doch, dafl
fiir jede Zeile p von H gilt, dafl
oQ = o,

jede Zeile (und jede konvexe Kombination von Zeilen) von H ist also ein linker Eigenvek-
tor von H zum Eigenwert eins. Dariiber hinaus ist die Menge der stochastischen Matrizen
abgeschlossen in R™. Das sieht man, indem man einerseits die Abgeschlossenheit aller
nicht-negativen Matrizen erkennt (das ist nicht schwer) und andererseits sieht, daf} die
Menge aller Matrizen mit Zeilensumme eins fiir alle Zeilen abgeschlossen ist (die Men-
ge der stochastischen Matrizen ist dann der Durchschnitt dieser beiden abgeschlossenen
Mengen). Letzteres ist wahr, denn die Funktionen f;, die die i’te Zeilensumme bilden sind
stetig, und die Menge der Matrizen mit Zeilensumme 1 ist dann das Urbild der (abge-
schlossenen) Menge (1,...,1) unter der stetigen Abbildung f = (fi,..., f;).

Somit ist H als Limes stochastischer Matrizen wieder stochastisch, seine Zeilen sind also
Wahrscheinlichkeiten auf dem Grundraum. Dies beweist die Existenz einer Wahrschein-
lichkeit o mit

0Q = o.

Solche Wahrscheinlichkeiten heiflen auch stationér (stationary) bzgl. Q). Nun sind wir in
der Lage Satz (9.17) zu beweisen.

Beweis von (9.17) Wie wir eben gesehen haben, existiert eine stationére Verteilung o bzgl.
P, ndmlich beispielsweise eine Zeile des entsprechend Satz (9.19) gebildeten Cesaro-Limes
der Potenzen von P (der der Einfachhheit halber auch H heiflen soll). Ein solches p besitzt
nur strikt positive Eintridge. Ware z.B. o(i) = 0, so ergébe das

0=0(i) = o(j)P"(j. 1)
jer
im Widerspruch dazu, dal PV strikt positiv ist und > o(j) = 1 ist.
Dariiber hinaus gibt es nur eine Verteilung p, die stationér zu P ist (insbesondere besteht

H aus lauter identischen Zeilen). Gébe es ndmlich g, ¢’, die beide stationér bzgl. P wéren,
so gilte fiir jedesa € Rund n € N

0—ag = (0—ad)P".

Wir wahlen » .
Q(Z) . Q(Zo)

a = min = —.
iel o'(i)  ¢(io)

Damit ist
0= (0 —ad)(io) = Y (0 —ad) ()P (j, io)-
jel
Aus der strikten Positivitit von PV folgt somit, daB o(j) = a¢’(j) fiir alle j € I gelten
muf. Da o und ¢ Wahrscheinlichkeiten sind, impliziert das, dafl @ = 1 ist und folglich
0o = ¢. Die im Satz behauptete Konvergenz ist also die Konvergenz gegen einen Punkt
im klassichen Sinne.
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Um diese Konvergenz schliellich zu zeigen, verwenden wir die Entropiefunktion aus De-
finition (9.15) in der Schreibweise

, v(i)
H(v|o) = ) _oli 1/1<—)
vl =3 e { 5
wobei ¢ wieder die strikt konvexe Funktion
P(t) =tlogt —t+1

ist. Daher ist

H(WPlo) = > o)y

AN
)
<
=
<
=
<
N
FQ‘T
o~
<
S— | ~—
N———

jel

= H(v|o),

wobei das “<”-Zeichen aus der Tatsache, dafl W% eine konvexe Kombination

der Z(—j,; ist, folgt, zusammen mit der Konvexitéit von ¢ und das vorletzte Gleichheitszeichen
eine i(onsequenz der Stochastizitéit von P ist. Somit ist

H(vPlo) < H(v[o)

mit Gleichheit genau dann, wenn vIP = v, also v = p ist. Anwenden von P verkleinert also
die Entropie und damit eine Art Distanz zum invarianten Maf.

Somit ist insbesondere die Folge (H (UIP’"\Q))n monoton fallend und zwar strikt, solange
vP™ # o ist.

Wir wollen abschlieend sehen, dafl dies schon impliziert, daf die Folge o,, := vP" gegen p
konvergiert. Da g,, beschrinkt ist, besitzt die Folge zumindest im R!! einen Haufungspunkt
o' und es existiert eine Teilfolge (g, );, die gegen ¢’ konvergiert. Wir zeigen, dafl ¢’ = p ist
(und sind dann fertig, da die Argumentation fiir jeden Haufungspunkt gilt und die Folge
o, damit gegen p konvergiert).

Nun ist einerseits
H(d'|o) > H(d'P|o).
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Andererseits haben wir

HPlo) = Y o) (( )
_ llggo (yIP’"l )
()

Nun ist (), eine Teilfolge und daher n; + 1 < ny;1. Dies ergibt mit der vorher gezeigten

Monotonie
. g(j)zz}((”wl)”’)

o0 £~ o(J)
P’”“)(J) oy

Insgesamt ist also

und daher

Beispiele:

1. Irrfahrt auf dem Kreis

Fiir n € N sei C,, der n-Kreis, d.h. der Graph, der entsteht, wenn man n Punkte
durchnummeriert und den Punkt & mit den Punkten £ — 1 und k£ + 1 verbindet
(Punkt 1 wird mit 2 und n verbunden). Auf C,, definiert man eine Markoff-Kette
vermoge der Ubergangsvorschrift p; = 1/2 und Diit1 = Dii—1 = 1/4 (dabei ist
die Addition modulo n zu verstehen). Offenbar ist fiir die zugehorige stochastische
Matrix P und jedes r > n/2 + 1, P" strikt positiv. Also sind die Voraussetzungen
des Ergodensatzes erfiillt und fiir jede beliebige Startverteilung v konvergiert vP"
gegen das invariante Mafl der Kette, was offensichtlich die Gleichverteilung auf allen
Zusténden ist.

2. Ehrenfests Urnenmodell

In der Situation von Beispiel (9.6 (d)) rechnet man wieder nach, daf§ die Bedingun-
gen des Ergodensatzes erfiillt sind. Die Kette konvergiert daher gegen ihre Gleich-
gewichtsverteilung, d.h. die Binomialverteilung.

Das Arcussinusgesetz

Wir werden uns im folgenden auf eine besondere Markoff-Kette konzentrieren. Dazu be-
merken wir zunéchst, dafl — hat man eine Folge (X;) von unabhéngigen, identisch verteilten
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Zufallsvariablen mit endlich vielen Werten gegeben (daf es so eine Folge gibt, konnen wir
allerdings hier nicht zeigen) — man daraus eine Markoffkette S,, bilden kann, indem man

und Sy = 0 setzt. In der Tat rechnet man schnell nach, daf§ fiir jedes Ereignis {S,_1 =
Ap—1y .-, S = ai, SO = a,o} mit P({Sn—l = Qp—1,---, S = ay, SQ = (lo}) >0 gllt

P(Sn - a'n|Sn—1 = Qp—1y---, Sl = aq, SO - (lo) - P(Xn = ap — a'n—l)a

also die Markoff-Eigenschaft erfiillt ist. Wir werden im folgenden genau eine solche Markoft-
Kette betrachten, wobei die X; unabhéngige Zufallsvariablen mit Werten in {—1, 1} und
P(X; =1) = P(X; = —1) = 1/2 sind. Anschaulich entpricht das einer Art Pfad, der
in der 0 startet und in jedem Punkt n € N entscheidet, ob er einen Schritt nach oben
oder einen Schritt nach unten geht. Die Menge aller solcher Pfade der Lange n sei €2,,.
Aus naheliegenden Griinden bezeichnet man die Folge Sy = 0, S1, ..., S, auch als Irrfahrt
(random walk) auf Z. Den Index dieser Zufallsgroien bezeichnet man meist als die ,,Zeit “.
Wir sagen also etwa ,,die Wahrscheinlichkeit, daff zum Zeitpunkt 100 die Irrfahrt erstmals
in 20 ist, ist...“ und meinen damit die Wahrscheinlichkeit des Ereignisses

A= {Sl 7£ 20, 52 7£ 20,...,599 7£ 20, SlOO - 20}

Nachfolgend sind zwei Simulationen einer derartigen Irrfahrt mit n = 1000 abgebildet.
Aus dem Gesetz der grofilen Zahlen folgt, dafl zum Beispiel S1gp0/1000 mit groBer Wahr-
scheinlichkeit nahe bei 0 liegt. Um etwas zu ,,sehen“ miissen wir die y-Achse gegeniiber
der z-Achse strecken. Eine genauere theoretische Diskussion des richtigen Streckungsmaf-
stabs kann hier nicht gegeben werden.
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Wir werden uns im folgenden also mit dem Verhalten solcher “Streckenziige” S,, befassen.
Um nicht in Konflikt zu der Tatsache zu geraten, dafl wir gar nicht wissen, daf es unendlich
viele unabhéngige Zufallsvariablen gibt, werden wir nur Aussagen iiber S, fiir endliche n
treffen. Dazu benotigen wir nur die Existenz von unabhéngigen Xy, ..., X,,, die wir schon
kennen.

Zunéchst betrachten wir fiir £ < n das Ereignis Ay = {S, = 0}. A ist das unmogliche
Ereignis, falls k£ ungerade ist. Wir betrachten also Agy, 2k < n. Offensichtlich gilt

P(Ay) = (2:) 27 = b(k; 2k, 1/2).

Wir kiirzen diese Grofie auch mit wug, ab (up = 1). Wir bemerken zunéchst, daf
P(Agg) nicht von n, der Gesamtlinge des Experiments, abhéngt, sofern nur n > 2k
gilt. Dies ist nicht weiter erstaunlich, denn die X; sind ja unabhéngig.

Wir werden diesem Phénomen noch mehrmals begegnen und wollen es deshalb genau
ausformulieren: Sei £ < n und A ein Ereignis in €. Wir kénnen ihm das Ereignis

A={w=(s0,..-,50) € Ly : (80,...,50) €A}

in §2,, zuordnen. Dann gilt
PO(A) = PO,

wobei P die durch die Gleichverteilung auf den Teilmengen von €, definierte Wahi-
scheinlichkeit ist. Der Leser moge dies selbst verifizieren. Fiir ein derartiges Ereignis ist
es deshalb gleichgiiltig, in welchem Pfadraum (2,, die Wahrscheinlichkeit berechnet wird,
sofern nur n > k ist. Wir werden im weiteren stillschweigend auch endlich viele Ereignisse
miteinander kombinieren (z.BDurchschnitte bilden), die zunéchst fiir Pfade unterschiedli-
cher Lange definiert sind. Dies bedeutet einfach, dal diese Ereignisse im obigen Sinne als
Ereignisse in einem gemeinsamen Raum (2, interpretiert werden, wobei nur n geniigend
grof} gewahlt werden muf.

Um die Groflenordnung von ugy, = P(Agy) fiir grofie k£ zu bestimmen, erinnern wir uns an
den lokalen Grenzwertsatz (Satz (4.2)). Dieser liefert sofort:
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(9.21) Satz.
1

Uk ~ —F—

vk’
d.h.
klim ugVrk = 1.

Interessanterweise lassen sich die Wahrscheinlichkeiten einer Reihe anderer Ereignisse in
Beziehung zu ugy setzen. Es sei zunéchst fiir £ € N fy, die Wahrscheinlichkeit, dafl die
erste Nullstelle der Irrfahrt nach dem Zeitpunkt 0 die Zeitkoordinate 2k hat, das heif3t

for = P(S1 # 0, S2 #0,..., So-1 # 0, Sop = 0).

Dann gilt

(9.22) Satz.

L. for = grtiop— = P(S1 >0, S, >0,..., 552 >0, Sp—1 <0)
= Ugk—2 — U2k-

2. UQk:P(Sl#O, SQ#O,,SQ]C#O)ZP(»SHZO, SQZO,,SQkZO)

k
3. Ugp = ijl fojUor—2;.

Zum Beweis dieses Satzes miissen wir ein wenig ausholen. Insbesondere stellen wir einen
eleganten Trick vor, mit dem sich die Machtigkeit gewisser Pfadmengen bestimmen l48t.
Dieser beruht auf einer teilweisen Spiegelung der Pfade an der x-Achse.

Wir sagen, daf ein Pfad (s;, Si+1,...,5;) die z-Achse bertihrt, falls ein k mit i« < k < j
existiert, fiir das s, = 0 ist.

(9.23) Lemma. (Reflektionsprinzip, reflection principle) Es seien a,b € N und i,j € Z
mit i < j. Die Anzahl der Pfade von (i,a) nach (j,b), welche die x-Achse berihren, ist
gleich der Anzahl der Pfade von (i, —a) nach (j,b).

Beweis. Wir geben eine bijektive Abbildung an, die die Menge der Pfade von (i, —a) nach
(7, b) auf die Menge der Pfade von (i, a) nach (j,b), welche die z-Achse beriihren, abbildet.
Sei

(8i = —a, Sit1,---58j-1, $; =)

ein Pfad von (i, —a) nach (j,b). Dieser Pfad mufl notwendigerweise die z-Achse beriihren.
Sei 7 die kleinste Zahl > ¢, fiir welche s, = 0 gilt. Offensichtlich ist dann

(_Sia —Sitly- -y TS7r—1, S7 = Oa Sr41y---585 = b)

ein Pfad von (7, a) nach (7, b), der die z-Achse beriihrt, und die Zuordnung ist bijektiv. O
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Das Spiegelungsprinzip werden wir nun verwenden, um die Menge der Pfade, die nach 2k
Schritten zum ersten Mal wieder die z-Achse beriihren abzuzéhlen.

(9.24) Satz.

1. Es gibt %(2;:12) Pfade von (0,0) nach (2p,0) mit
s1 >0, 89 >O,...,82p,1 > 0.
2. Es gibt -1 (*) Pfade von (0,0) nach (2p,0) mit

p+1\p
81207 52207"'752]7—120-

Beweis. (1) Es ist notwendigerweise s; = 1 und s9,—1; = 1. Wir suchen somit nach der
Anzahl der Pfade von (1,1) nach (2p — 1,1) mit s; > 0, s > 0,..., 59,1 = 1. Diese ist
gleich der Anzahl aller Pfade von (1,1) nach (2p — 1,1) minus der Anzahl der Pfade, die
die x-Achse beriihren. Dies ist nach dem Spiegelungsprinzip gleich der Anzahl aller Pfade
von (1,1) nach (2p — 1, 1) minus der Anzahl der Pfade von (—1,1) nach (2p —1,1). Nach
ein biBchen elementarer Kombinatorik erhélt man daher

(2p—2) (2p—2)_ 1 <2p—1)_1(2p—2)
p—1 j% 2p—1 j% p\p—1

als die gesuchte Anzahl der Pfade.

(2) Wir verlingern jeden Pfad, der die Bedingung erfiillt, indem wir noch die beiden
Punkte (—1,—1) und (2p 4 1, —1) anfiigen und mit (0,0) bzw. (2p,0) verbinden.
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Auf diese Weise wird eine bijektive Abbildung von der gesuchten Menge von Pfaden auf
die Menge der Pfade von (—1,—1) nach (2p+1, —1), welche die Bedingung sy > —1, s; >
—1,..., 89, > —1 erfiillen, hergestellt. Die Anzahl der Pfade in dieser Menge ist gleich der
Anzahl der Pfade von (0,0) nach (2p +2,0) mit s; > 0, s5 > 0,..., Sop41 > 0 (Verschie-
bung des Ursprungs). (2) folgt dann aus (1). O

Nun sind wir in der Lage Satz (9.22) zu beweisen:

Beweis von Satz (9.22). (1) Nach (9.24 (1)) gibt es —(2]5 12) Pfade von (0,0) nach (2k,0)

mit s; > 0,...,s9,_1 > 0 und natiirlich genauso viele mit s; <0, ..., so._1 < 0. Es folgt

2 (2 — 2 2%k — 1
— 272]6 272(/671) _ =
far k(k—l) Qk(k ) o 122

Wir beweisen die nédchste Gleichung: Falls s9;_o > 0 und s9,_1 < 0sind, so gelten sq;,_o = 0
und s = —1. Die Anzahl der Pfade von (0,0) nach (2k—1,—1) mit s; > 0,..., Sop_3 >
0, Sop—2 = 0 ist gleich der Anzahl der Pfade von (0,0) nach (2k — 2,0) mit allen y-
Koordinaten > 0. Die zweite Gleichung in (1) folgt dann mit Hilfe von (9.24 (2)). Die
dritte ergibt sich aus

U\ ., 2k(2k—1) (2k—2\ 1 __ 1
= 92k T\ 7/ R e IR L
2k <k) k- k <k—1) 1 < 2]{;)“%2

(2) Cy; sei das Ereignis {S; # 0,52 # 0,...,55_1 # 0, Sy; = 0}. Diese Ereignisse
schliefen sich gegenseitig aus und haben Wahrscheinlichkeiten f5; = ugj_2 — u2;. Somit
ist mit ug =1

P(Sl # 0, 52 # 0, Sgk 7£ 0 =1- <U CQJ) =1- Z(UQJ;Q — u2j> = U9k-

Die zweite Gleichung folgt analog aus der dritten Identitéat in (1).

(3) Fir 1 S ] S k sel Bj = {51 7é 0, SQ 7& 0,...,52]‘_1 7& 0, ng = 0, Sgk = 0}
Diese Ereignisse sind paarweise disjunkt, und ihre Vereinigung ist {Sy, = 0}. |B,| ist
offenbar gleich der Anzahl der Pfade von (0,0) nach (24,0), die die z-Achse dazwischen
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nicht beriihren, multipliziert mit der Anzahl aller Pfade von (27, 0) nach (2k,0), das heifit
| Bj| = 2% fy; 22}‘C % gy _oj. Somit gilt P(B;) = fajuor_2;, das heifit

Ugg = ZP Zf2yu2k 2+

|

Eine interessante Folgerung ergibt sich aus der ersten Gleichung in (2). Da nach (9.21)
limg o ugr, = 0 gilt, folgt, daBl die Wahrscheinlichkeit fiir keine Riickkehr der Irrfahrt
bis zum Zeitpunkt 2k mit k& — oo gegen 0 konvergiert. Man kann das folgendermaflen
ausdriicken: ,,Mit Wahrscheinlichkeit 1 findet irgendwann eine Riickkehr statt.“ Man sagt
auch, die Irrfahrt sei rekurrent. Wir wollen das noch etwas genauer anschauen und be-
zeichnen mit 7" den Zeitpunkt der ersten Nullstelle nach dem Zeitpunkt 0. 7" mufl gerade
sein, und es gilt P(T = 2k) = for. Aus (1) und ug, — 0 folgt

oo N
Z fa = lim Z fok
N—o00
k=1 k=1
N
= lim (u2k,2 — UQk)
N—o00
k=1
= Nh_Igo(uo —ugy) = 1.

Wir sehen also, dafl (for)ren eine Wahrscheinlichkeitsverteilung auf den geraden natiirli-
chen Zahlen definiert, die Verteilung von T'. Daraus 148t sich der Erwartungswert von T’

berechnen: - .
ET = Z 2k for, = Z Ugk—2,
k=1 k=1

wobei wir die Gleichung (9.22 (1)) anwenden. Nach (9.21) divergiert jedoch diese Reihe!
Man kann auch sagen, daf§i ET gleich oo ist. Mit Wahrscheinlichkeit 1 findet also ein
Ausgleich statt; man mufl jedoch im Schnitt unendlich lange darauf warten.

Obgleich P(S; # 0,...,8% # 0) = P(S; > 0,...,Sy > 0) ~ 1/v7k gegen 0 kon-
vergiert, ist diese Wahrschemhchkelt erstaunlich grofl. Wieso erstaunlich? Wir betrach-
ten das Ereignis F , daf} die Irrfahrt wiahrend genau 2] Zeiteinheiten bis 2k positiv
ist. Aus formalen Grunden prézisieren wir ,,positiv sein“ wie folgt: Die Irrfahrt ist po-
sitiv im Zeitintervall von [ bis [ + 1, falls S; oder S;;1 > 0 ist. Es kann also auch
S; =0, S;41 > 0oder §; > 0, S;;1 = 0 sein. Man iiberzeugt sich leicht davon, dafl die An-
zahl der Intervalle, wo dieses der Fall ist, gerade ist. F}, (%) ist natiirlich gerade das Ereignis
{51 >0,5 >0,...,S% > 0}. Aus Griinden der Symmetrie ist P(F(k)) P(F(k)) was
nach (9.24 (2)) glelch Ugp ~ 1/V/Tk ist.

Die Fj(k) sind fiir 0 < j < k paarweise disjunkt, und es gilt

k
k
> P(FY) =
=0
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Mithin kénnen nicht allzuviele der P(F; (k)) von derselben Gréflenordnung wie P(F), (k)) sein,
denn sonst miifite die obige Summe > 1 Werden Anderselts ist wenig plausibel, dafl unter
diesen Wahrscheinlichkeiten gerade P(F ) und P(F ) besonders grof} sind. Genau dies
ist jedoch der Fall, wie aus dem folgenden bemerkenswerten Resultat hervorgehen wird.

(9.25) Satz. Fiir 0 < j < k gilt

P(FM) = ujuz_s;.

Beweis. Wir fiihren einen Induktionsschlul nach k. Fiir £ = 1 gilt

1
P(F) = P(FY) = 5 = .
Wir nehmen nun an, die Aussage des Satzes sei bewiesen fiir alle £ < n — 1, und beweisen

sie fir k = n.

Wir hatten in (9.22 (2)) schon gesehen, dafl P(FO(")) = P(F,(L")) = Ugy, ist (ug ist = 1).
Wir brauchen deshalb nur noch 1 < 57 < n — 1 zu betrachten. Zunéchst fiithren wir einige
spezielle Mengen von Pfaden ein.

Fir1 <l<n,0<m<n-—Isei Glfm die Menge der Pfade der Lange 2n mit: so = 0, s >
0, 89 >0,...,89_1 >0, s9y =0 und 2m Strecken des Pfades zwischen den z-Koordinaten
2l und 2n sind positiv.

Analog bezeichne G, fiir1 <1 <n,0 <m < n—I, die Menge der Pfade mit: sp = 0, s; <
0, 50 <0,...,89_1 < O s9; = 0 und 2m Strecken des Pfades zwischen den z-Koordinaten
20 und 2n sind positiv.

Die G G, sind offensichtlich alle paarweise disjunkt. Ferner gilt

L,m>

G, CEP. G, C FW.
Man beachte, daf} fiir 1 < j < n — 1 jeder Pfad aus F ™) s genau einer der Mengen
Gy G, gehort. Dies folgt daraus, daf8 ein solcher Pfad mindestens einmal das Vor-
zeichen wechseln, also auch die 0 passieren muf. Ist 2/ die z-Koordinate der kleinsten
Nullstelle > 0, so gehort der Pfad zu G;fj_l, falls der Pfad vor 2[ positiv, und zu G, falls

er vor 2l negativ ist. Demzufolge ist

P(F™) ZPG; ) +ZP L)

Es bleibt noch die Aufgabe, die Summanden auf der rechten Seite dieser Gleichung zu
berechnen.

Offensichtlich enthalten G+ und G, gleich viele Pfade. |G .| ist gleich der Anzahl der
Pfade von (0, 0) nach (21, O) mit s; > O s1>0,..., 8y 1> 0 multipliziert mit der Anzahl
der Pfade der Lénge 2n — 2] mit Start in (21,0) und 2m positiven Strecken, das heifit

1
‘GlJ,rm ‘Gli,m| = §f2122lP(F1§:L*l))22n7217
1
P(G},) = P(Gin)= s IaP(ES™).
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Nach der weiter oben stehenden Gleichung ist also

n 1 d n—l 1n_j n—l
PUE) =52 FaPEST) 45 > uP(F),
=1 =1

Nach Induktionsvoraussetzung ist das

1< 1
= 5 Z f2l Ugj—2] Usn—25 + 5 Z le Uop—25—21 U25 = U2j Up—2; nach (9.22 (3))
=1 =1

O

Um das Verhalten von P(F j(k)) fiir festes k als Funktion von j zu untersuchen, betrachten
wir fiir 1 < j < k — 1 die Quotienten

PE) (G @)k —2)NG + DYk — 5 = 1))’
PE®)  FICEEE T GV — )22+ )2k - 2) - 2)!

(2k—2j —1)(j+1)
(27 + Dk =7)

Dieser Quotient ist > 1, = 1 oder < 1, je nachdem, ob j < %, j = % oder j > % ist.

Als Funktion von j fallt also P(F j(k)) fiir 7 < % und steigt an fiir j > %

P(Fo(k)) = P(F, ék)) ist also der grofite vorkommende Wert und P(F [es 1) der kleinste. Es
2

ist bedeutend wahrscheinlicher, daf§ die Irrfahrt iiber das ganze betrachtete Zeitintervall
positiv ist, als daf} sich positive und negative Zahlen ausgleichen. Dies scheint im Wider-
spruch zum Gesetz der groflen Zahlen zu stehen. Ohne dies genauer diskutieren zu kénnen,
sei aber daran erinnert, dafl die Riickkehrzeit T nach 0 keinen endlichen Erwartungswert
hat, wie wir oben gezeigt haben.

Mit Hilfe von (9.23) 148t sich eine einfach Approximation fiir P(Fj(k)) fiir grofe j und
k — 7 gewinnen:

(9.26) Satz. Fiir j — oo, k — j — oo gilt P(F{") ~ 1L das heift

Vik—35)’

tim /5 — ) P(F) =
k—j—o0

3 |

Betrachten wir speziell z € (0, 1) so gilt fiir j,k — oo mit j/k ~ x
1
Vr(l—z)

Diese Wahrscheinlichkeiten sind also von der Grofienordnung 1/k, das heifit asymptotisch
viel kleiner als

J

1
P(F™) ~ —
m

k k
P(FM) = P(E) ~

3 -
F'
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Die Funktion (x(1 — z))~%/2 hat fiir z = 0 und 1 Pole. Das steht in Ubereinstimmung

damit, daf fiir j/k ~ 0 und j/k ~ 1 die Wahrscheinlichkeiten P(Fj(k)) von einer anderen
GroBenordnung als 1/k sind.

Eine Aussage wie (9.26) ist gewissermafien auch ein lokaler Grenzwertsatz, da wir damit
Informationen tiber die Wahrscheinlichkeit, daf§ der Zeitraum der Fiihrung exakt = 2j ist,
erhalten. Da diese Wahrscheinlichkeiten jedoch alle fiir grofle £ klein werden, interessiert
man sich eher zum Beispiel fiir die Wahrscheinlichkeit, dafl der relative Anteil der Zeit,
wo die Irrfahrt positiv ist, > « ist.

Es seien 0 < a < § < 1. 1(a, B) sei die Wahrscheinlichkeit, dafl dieser relative Anteil der
Zeit zwischen o und 3 liegt. Genauer: T} sei (die auf g, definierte) Zufallsgrofe, die die
Dauer der Fiihrung zéhlt:

2%k
Ty = Z Lis;_1>0,8;>0}-
=1
Dann ist T,
k
(@, 8) = Pa< 3F <8) = > P(FM).

Wir wollen nun aus (9.26) fiir & — oo folgern:

JQ<Z’<6 g \/ k)

Die rechte Seite ist nichts anderes als die Riemann-Approximation fiir

ﬁl 1 2

— Z(arcsin /3 — arcsin v/a).
T \/x 1 — ) ™

9.2)

Es folgt damit:

(9.28) Satz. (Arcus-Sinus-Gesetz)
2
klim ve(a, B) = = (arcsin \/3 — arcsin v/a).
—00 i

Beweis. Wir miissen (9.27) zeigen. Wir schreiben die Stirling-Approximation als n! =
V2rn(2)" F(n) mit lim,_ F(n) = 1. Es folgt

oy (W)(%-2\ 1 111 FE)F@k-))
re) = (5) (o= )= D0 ) FFDFG) k) FE—j)

Wir wéhlen nun ein § > 0 mit 0 < § < 1/2 und betrachten fiir jedes k nur die Werte j
fiir die gilt

.

womit k6 < j und ké < k—j folgt. Fiir k — oo konvergiert nun jedes F'(j), F'(k—j), F'(25)
gleichméBig fiir alle obigen Werte von j. Somit existiert fiir § < a < < 1—4 ein G, 5(k)
fiir jedes k = 1,2, ..., so daf fiir jedes obige § > 0 gilt:

klim Gop(k) =1 gleichmiBig fir d<a<f<1-6§
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und

oy (L5 1 ! G a(h).
2. PED) (k 2 w<j/k><1—<j/k>>> «s%)

a<i<p a<i<p

Nun folgt die Behauptung gleichméBig fiir § < a < § < 1—4, wie auch immer 0 < § < 1/2
gewihlt war. Damit folgt die Behauptung. O

(9.29) Bemerkung. Die Aussage von (9.28) ist auch richtig fir & = 0 oder § = 1. Das
heifit etwa, dafl v, (0, 5) — die Wahrscheinlichkeit dafiir, dafl der relative Anteil der Zeit,
in der K, fithrt, < g3 ist — gegen %arcsin /B konvergiert.

Beweis Offensichtlich gilt limy,_.o. 7£(0, ) = 1/2. Ist 8 € (0,1/2), so folgt

lim 74(0,3) = Jim (34(0,1/2) — (3,1/2)) = = axesin /5,

k—o0
fir g > 1/2
: . 2 :
;}LTOW(O’B) = ]}Lrlgo(vk(o, 1/2) +v(1/2,8)) = — arcsin V3.
Fir ¢ (a, 1) fithrt dasselbe Argument zum Ziel. O

Der Beweis des Arcus-Sinus-Gesetzes wurde in einer allgemeineren Form zuerst von Paul
Pierre Lévy (1886-1971) im Jahre 1939 gegeben.

Die Funktion *—=— hat das folgende Aussehen:

z(l—x

Fyp — L1

my/z(1—x)
4
3H
21
1t

: x
0 0.2 0.4 0.6 0.8 1

128



10 Informationstheorie

Die mathematische Disziplin, die heutzutage Informationstheorie heifit, wurde durch den
amerikanischen Ingenieur C. E. Shannon begriindet. Shannon nannte seine bahnbrechende
Arbeit “A mathematical theory of communication”. Erst spiter hat die Bezeichnung ,,In-
formationstheorie“ Eingang gefunden. Die Bezeichnung kann héhere Erwartungen wecken
als die Theorie erfiillen kann. Es ist wichtig, darauf hinzuweisen, daf die Theorie nichts
iber die Bedeutung, den Inhalt oder den Wert einer Mitteilung (einer , Information*)
aussagt.

a) Optimale Quellenkodierung nach Huffman, Entropie.

Wir betrachten ein Zufallsexperiment mit n moglichen Ausgéingen, das wir einfach durch
einen endlichen Wahrscheinlichkeitsraum (€2, p) mit Q = {w, ..., w,} beschreiben kénnen.
Die Wahrscheinlichkeiten p(w;) kiirzen wir mit p; ab, und p sei der Wahrscheinlichkeits-
vektor (p1,...,pn). Bevor das Zufallsexperiment ausgefiihrt ist, herrscht Unsicherheit,
UngewiBheit iiber den moglichen Ausgang. Wir mochten eine Zahl H(p), die Entropie
des Experimentes, definieren, die ein Maf§ fiir die Unbestimmtheit sein soll. Das Wort
,,Entropie“ ist aus dem griechischen évrpémew (umwenden) abgeleitet. Es wurde 1876
von Clausius in die Thermodynamik eingefithrt. Auf die Beziehungen zwischen Infor-
mationstheorie und statistischer Mechanik kann hier nicht eingegangen werden. Das am

wenigsten unbestimmte Experiment, das wir uns vorstellen kénnen, ist das determinis-
tische, dessen Ausgang von vornherein vorausgesagt werden kann. Ein solches muf} die
Entropie 0 haben. Im allgemeinen haben wir lediglich H(p) > 0.

Wir haben die Funktion H eingefiihrt, ohne zu sagen, wie sie genau definiert ist. Um
zu einer verniinftigen Definition zu gelangen, gehen wir vom oben eingefiihrten, wahr-
scheinlichkeitstheoretischen Modell mit dem Wahrscheinlichkeitsvektor p = (py,...,pn)
aus. Bezeichnet man mit log, den Logarithmus zur Basis 2 und verwendet man die Kon-
vention 0log, 0 = 0, so kann man die Entropie einfach durch

H(p) == pilog,pi (10.1)
=1

definieren, wie es in vielen Lehrbiichern geschieht. Die Griinde, die zu dieser Definition
der Entropie fiihren, bleiben dann aber rétselhaft.

Wir wollen versuchen, zu einer Herleitung der Entropie zu kommen, die deren Interpreta-
tion als ,,Maf} der Unbestimmtheit “ Rechnung triagt. Dazu stellen wir uns vor, dafl das FEx-
periment ausgefiihrt wurde und dafl eine Person A weif}, wie es ausgegangen ist, wiahrend
eine Person B nicht iiber dieses Wissen verfiigt. Wieviel ist nun das Wissen von A wert,
verglichen mit dem Mangel an Wissen von B? Anders gesagt: Wieviel Anstrengung wird
es B kosten, um sein Wissen auf dasselbe Niveau wie das von A zu bringen? Wir kénnen
versuchen, diese Anstrengung z. B. durch die Zeit zu messen, die B braucht, um den Aus-
gang zu erfahren. Das Problem ist, eine verniinftige und wohldefinierte Handlungsweise,
der B folgen soll, zu finden. Eine erste Anndherung an eine Definition der Entropie wére,
die Anzahl der Fragen an A zu zdhlen, die B stellen muf}, um den tatsidchlichen Ausgang
zu finden. Wir denken dabei an Fragen mit moglicher Antwort ,,ja“ oder ,nein“. Man
darf natiirlich nicht fragen: ,,Welches der w; ist es;‘, sondern etwa: ,Ist es w; oder ws;
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Die Anzahl der benotigten Fragen hiangt natiirlich vom Geschick des Fragestellers ab, fer-
ner im allgemeinen vom Ausgang des Zufallsexperimentes. Wir wollen deshalb die mittlere
Anzahl der benéttigten Fragen betrachten, wenn der Fragesteller optimal fragt. Leider ist
auch dies, selbst wenn wir das genau prézisiert haben, noch nicht die {ibliche Definition
von H, d.h. der Ausdruck in (10.1). Wir werden diesen Punkt noch ausfiihrlich diskutie-
ren. Die Grofle, zu der wir nach einigen Prézisierungen gelangen werden, nennen wir die
wahre Entropie und bezeichnen sie mit Hy. Zur klaren Unterscheidung nennen wir H aus
(10.1) die ideelle Entropie.

Wir fassen die bisherige Diskussion in der nachfolgenden Definition (10.2) zusammen, wir
werden sie spéter durch die Definition (10.7) prézisieren.

(10.2) Definition. Fiir ein Zufallsexperiment (€2, p) ist die wahre Entropie Hy(p) defi-
niert als der Erwartungswert der Anzahl benotigter Fragen bei optimaler Fragestrategie.

(10.3) Beispiele.

1. Beim Miinzwurf, also bei p = (1/2, 1/2), fragt man etwa: ,Ist es wyj‘ Das ist
offensichtlich optimal. Somit ist Hy(1/2, 1/2) = 1.

2. Auch fiir p = (1/2, 1/4, 1/4) kann man die optimale Fragestrategie leicht erraten:
Man fragt natiirlich: ,,Ist es wy;‘ Falls die Antwort ,,nein* ist, so fragt man nach wy.
Die mittlere Anzahl der Fragen ist

L 1+ ! 2+ ! 2= 5

2 4 4 72
Fragt man zuerst nach w, und dann, falls notig, nach wy, so betragt die mittlere
Anzahl der benttigten Fragen

IS,

was offenbar schlechter ist.

3. Beip = (1/4, 1/4, 1/4, 1/4) fragt man am besten zunéchst: ,,Ist es wy oder wy;‘ und
dann nach w; bzw. w3. Man braucht also bei jedem Versuchsausgang zwei Fragen.
Fragt man jedoch der Reihe nach ,Ist es wyi’, ,,Ist es woi‘ und ,Ist es w3y, so
benotigt man zwar nur eine Frage, wenn w; der Ausgang ist, im Mittel aber mehr,
némlich | | ) ) "

Jltg2+ 30 3=1
Um zu prézisieren, was eine Fragestrategie ist, fithren wir den Begriff Code ein. Statt
,ja“ und ,nein“ verwenden wir die Zeichen 1 und 0. Ein Wort sei eine endliche Folge
von Nullen und Einsen. Ist 4 ein Wort, so bezeichnen wir mit || die Lange von u, zum
Beispiel hat p = 001101 die Lénge |u| = 6. Die leere Folge nennen wir das leere Wort. Es
hat die Lange 0.

Ein Wort 1 heifit Préfix eines Wortes pp, wenn || < |us| ist und die ersten |u| Stellen
von s mit uq identisch sind. Zum Beispiel ist 01 ein Préfix von 010010 aber nicht von
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000. Das leere Wort ist natiirlich Préfix von jedem anderen Wort. Die Idee, die hinter
der folgenden Definition eines Codes steht, kann leicht aus der folgenden Betrachtung
eingesehen werden: Gegeben sei eine Fragestrategie fiir (€2, p). Wir nehmen an, daf§ wir
zum Beispiel fiinf Fragen brauchen, um den Ausgang zu bestimmen, der w; sein moge; die
Antworten auf die fiinf Fragen in diesem Fall seien etwa ,,ja“ ,ja“, ,nein“, ja“ , nein“
Da 0 dem ,nein“ und 1 dem ,,ja“ entspricht, ist es natiirlich, w; das Codewort 11010
zuzuordnen.

(10.4) Definition. Ein Code « fiir (€2,p) ist eine injektive Abbildung, die jedem Ver-
suchsausgang w; in € ein Codewort r(w;) zuordnet. Dabei darf keines der Worter (w;)
Priifix eines anderen Wortes x(w;) sein.

Wir kénnen einen Code durch eine Tabelle, ein sogenanntes Codebuch, darstellen, d. h.
durch ein Schema, in dem in einer Spalte die moglichen Versuchsausgénge (Nachrichten)
und in einer anderen Spalte die zugehorigen Codeworter stehen. Als Beispiel eines Code-
buchs kéonnen wir das Morsealphabet nehmen, wo wir 0 statt ,,Punkt“ und 1 statt ,,Strich“
lesen. Allerdings ist das Morsealphabet kein Code im Sinne unserer Definition, da die
Prafixeigenschaft nicht erfiillt ist: Es ist ,,Punkt“ das Codewort fiir ,,e und ,,Punkt—
Strich“ das Codewort fiir ,,a“.

Von den fiinf Vorschlédgen fiir ein Codebuch in der nachfolgenden Tabelle sind nur x3, x4
und k5 als Codes brauchbar, denn x; ist nicht injektiv und ks hat nicht die Préafixeigen-
schaft.

(10.5) Beispiel.

K1 K2 R3 | K4 K5
w1 | 00 0 00 | 010 1
we | 10 01 01| 011 01
ws | 110 001 10 | 101 001
wy | 00 000 11 ] 11 000

Es ist nun nicht schwer, den Zusammenhang zwischen Fragestrategien fiir (€2, p) und Codes
zu erdrtern. Wenn wir ein Verfahren haben, um Fragen zu stellen, so konstruieren wir den
zugehorigen Code k folgendermafien: Die erste Ziffer von k(w;) setzen wir gleich 1 bzw. 0,
je nachdem ob die Antwort auf die erste Frage ,,ja“ bzw. ,nein“ ist, falls das Ereignis w;
eintritt. Wenn man, falls w; eintritt, nur eine Frage zu stellen braucht, so haben wir das
Codewort r(w;) bereits gefunden. Bendtigt man dagegen mehrere Fragen, so setzen wir
die zweite Ziffer in x(w;) gleich 1 bzw. 0, je nachdem ob die Antwort auf die zweite Frage
,ja’ bzw. ;nein“ lautet, falls w; eintritt. Auf diese Weise fahren wir fort, bis der ganze
Code festgelegt ist.

Wenn uns umgekehrt ein Code gegeben ist, so lautet die erste Frage der zugehorigen Fra-
gestrategie: | Ist die erste Ziffer des Codeworts fiir das eingetretene Ereignis gleich 177
Als néchstes die Frage: |, Ist die zweite Ziffer des Codewortes des eingetretenen Ereignisses
eine 17”7, etc. Da der Code die Prifixeigenschaft hat, ist jederzeit klar, ob man mit den
Fragen aufhoren kann.
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(10.6) Beispiele.

1. Die erste Strategie in Beispiel (10.3 (2)) ergibt den untenstehenden Code k;; die
zweite fihrt auf ko.

K1 K2
wi | 1 01
o)) 01 1
ws | 00 00

2. Fiir das Beispiel (10.3 (3)) ergeben sich die beiden folgenden Codes:

K1 )
wp | 11 |1
5) 10 01
ws | 01 | 001
wq | 00 | 000

Unsere Codes haben eine zusétzliche angenehme Eigenschaft. Wir stellen uns vor, dafi das
Experiment mehrfach hintereinander ausgefiihrt wird und dafl wir laufend eine Mitteilung
iiber den Ausgang jedes einzelnen in Codeform erhalten vermoge eines bestimmten Codes
k. Da kein Codewort Préfix eines anderen ist, sind wir nie im Zweifel dariiber, wo ein Code-
wort aufthort und das néchste anfangt. Jede mit Hilfe des Codes gegebene Mitteilung kann
daher auf eindeutige Weise decodiert oder entziffert werden. Wenn wir z. B. den Code &4
aus Beispiel (10.6 (1)) benutzen und die Folge 11100101100 empfangen, so entspricht dies
eindeutig den Versuchsausgéingen wy, wy, wy, ws, w1, W, Wi, W3.

Welcher Code, d. h. welche Fragestrategie, optimal ist, hdngt natiirlich vom Wahrschein-
lichkeitsvektor p = (p1,...,p,) ab. Der Erwartungswert der Linge eines Codes & ist

E(|x]) = Zpilfi(wz)\,

dies ist gleichzeitig der Erwartungswert der Anzahl der Fragen bei Verwendung der zu s
gehorigen Fragestrategie. Wir kénnen nun unsere Definition (10.2) préazisieren:

(10.7) Definition. Fiir ein Zufallsexperiment (€2, p) ist die wahre Entropie Hy(p) definiert
durch
Ho(p) = min{ E(|x|) : x ist Code fiir (2,p)}.

Man miifite korrekterweise zunéichst das Infimum betrachten. Wir werden jedoch sehen,
daB stets ein optimaler Code existiert, d.h. ein Code ko mit E(|k|) > E(|rol|) fiir jeden
anderen Code & fiir (€2, p). Natiirlich ist die obige Definition von Hy jetzt noch unhandlich,
denn wir haben noch keinen optimalen Code und damit noch keine Moglichkeit, Hy(p) zu
berechnen.

Manchmal ist es niitzlich, Codes als bindre Baume zu veranschaulichen. Dabei ist die
Knotenmenge des Baumes die Menge aller Codeworter und aller ihrer Prifixe. Wir be-
zeichnen diese Knotenmenge mit K (k). Wir ziehen eine Verbindung zwischen p und pa,
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a € {0, 1}, sofern p und pa zu K (k) gehoren. Die Menge dieser Verbindungen bezeichnen
wir mit V' (k). (K(k),V(k)) ist dann ein Graph, der offensichtlich zusammenhéngend ist
und keine Kreise aufweist. (Ein Kreis in einem Graphen (K, V') ist eine Folge (e, ..., e,)
von verschiedenen Knoten mit n > 3, {e;,e;41}, {en, 1} € V fir 1 <i<mn-—1.))

Wir ordnen die Elemente von K (k) aufsteigend der Liange nach. Auf der untersten Ebene
das leere Wort, sozusagen die ,,Wurzel“ des Baumes, und dann aufsteigend die Worter
der Léange 1,2,... Dabei zeichnen wir eine Verbindung nach rechts oben von p nach pl
und nach links oben von p nach 0, sofern 1 beziehungsweise p0 € K (k) sind.

(108) Beispiel. Q= {wl,wQ,w3,w4,w5}.

k(wy) = 00, K(we) = 010, K(ws) = 10,
k(wy) = 110, K(ws) = 1111.
Dann ist
K(k)=1{0,0,1,00,01,10,11,010,110,111,1111}.
Der Baum:

1111

111

Aus dem Baum eines Codes 148t sich die zugehorige Fragestrategie sofort ablesen. Im
obigen Beispiel fragt man zuerst: ,,Ist es w3, wy oder ws.* Falls ,,ja“ so befindet man sich
im Knoten 1 und falls ,,nein* im Knoten 0, und dann fahrt man entsprechend weiter. Wir

nennen einen derartigen bindren Baum vollstidndig, falls fiir jedes Wort p € K(k), das
kein Blatt ist, das heif3t, das nicht zu den Codewdrtern des Codes gehort, sowohl p0 wie
pl zu K (k) gehoren. Es ist evident, dafl man sich bei der Suche nach einem optimalen

Code auf solche beschréanken kann, die zu vollstdndigen Baumen fithren. Fragestrategi-
en mit unvollstdndigen Bdumen enthalten iiberfliissige Fragen. Wir nennen einen Code
vollstdndig, falls der zugehorige Baum es ist. Unvollstdndige Baume lassen sich durch
Weglassen der iiberfliissigen Knoten zu vollstdndigen verkiirzen und entsprechend lassen
sich unvollstandige Codes verbessern.

(10.9) Beispiel. Wir betrachten den Code mit den Codewdrtern 01, 1101, 1110, 1111.
Daraus ergibt sich der Baum
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1111

Wir kénnen ihn zu folgendem Baum verkiirzen

110 111

10 11

und erhalten den besseren Code mit den Codewortern 0, 10, 110, 111.

Ein Verfahren fiir einen optimalen Code ist von Huffman angegeben worden. Man be-
zeichnet diesen Code als Huffman-Code. Die Konstruktion des Codes erfolgt rekursiv
nach der Anzahl n der moglichen Versuchsausginge. Wir setzen dabei stets p; > 0 fiir
alle i € {1,...,n} voraus, denn gilt p; = 0 fiir ein 7, so lassen wir w; aus der Betrachtung
weg. Ferner geniigt es, nur den Grundraum 2 = {1,2,...,n} zu betrachten, wodurch die
Notation einfacher wird. Fiir n = 2 ist £(1) = 0 und x(2) = 1 offensichtlich eine optimale
Codierung von (py, p2).

Sei also n > 2. Wir nehmen an, daf§ wir den Huffman-Code fiir alle Wahrscheinlichkeits-
vektoren der Lénge n— 1 schon konstruiert haben und geben nun den Code fiir (py, . .., p,)
an.

Zunachst bemerkt man, daf§ die Reihenfolge der p; fiir die Codierung keine Rolle spielt,
denn wenn 7 : {1,...,n} — {1,...,n} eine Permutation und & ein Code fiir (p1,...,pn)
mit den Codewortern (1), ..., k(n) ist, so ist k(7 (1)),..., k(m(n)) natiirlich ein Code fiir
(P=(1)s - - - » Pr(n)) mit derselben mittleren Lénge.

Wir kénnen daher voraussetzen, dafl p; > p, > -+ > p, gilt. Nun fafit man die beiden
kleinsten Wahrscheinlichkeiten zusammen und betrachtet den Wahrscheinlichkeitsvektor
(p1, P25 - - -, Pn—2, Pn—1+pn) mit n—1 Komponenten. Natiirlich braucht p,,_1+p,, nicht mehr
die kleinste Komponente dieses Vektors zu sein. Bezeichnet geméafl Induktionsvorausset-
zung k(1),...,k(n — 1) den Huffman-Code fiir diesen Vektor, so ist x(1), k(2),...,k(n —
2),k(n —1)0, k(n — 1)1 der Huffman-Code fiir (py,...,p,). Es ist offensichtlich, dafi der
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Huffman-Code stets zu einem vollstéandigen Baum fiihrt. Das beweist natiirlich noch lange
nicht, dafl er optimal ist.

Bevor wir zeigen, dal der Huffman-Code optimal ist, betrachten wir ein Beispiel:

(10.10) Beispiel. In der untenstehenden Tabelle ist der zu codierende Wahrscheinlich-
keitsvektor (py,...,pg) die erste Spalte:

p=0,36 036 036 036 036 037 0.63 1
pe=0,21 021 021 021 027 036 0,37
p3=0,15 0,15 0,15 0,16 0,21 0,27
ps=0,12 0,12 0,12 0,15 0,16

ps=0,07 0,07 009 0,12

pe=0,06 0,06 0,07

pr=0,02 0.03

p8:0,01

Die Spalten sind die Wahrscheinlichkeitsvektoren. Die erste ist der urspriingliche, der
codiert, werden soll. Den néchsten gewinnt man jeweils, indem man die beiden kleinsten
Wahrscheinlichkeiten zusammenzéhlt und gleich richtig einordnet. Diese Summe ist im
neuen Wahrscheinlichkeitsvektor jeweils unterstrichen.

Den Huffman-Code gewinnt man riickwérts. Fiir den Vektor der Lénge zwei besteht der
zugehorige Code aus den Wortern 0 und 1. Danach wird jeweils das Codewort, das zur
unterstrichenen Wahrscheinlichkeit in der vorangehenden Tabelle gehort, durch Anhéngen
der Ziffer 0 bzw. 1 aufgespaltet, um die beiden neuen Codeworter fiir die beiden letzten
Wahrscheinlichkeiten zu erhalten. In der folgenden Tabelle sind die aufgespaltenen Code-
worter jeweils unterstrichen:

k(1) = 00 00 00 00 00 1 O
k(2) = 10 10 10 10 01 00 1
k(3)=010 010 010 11 10 01
k(4) =011 011 011 010 11

k(5) =111 111 110 011
k(6) = 1100 1100 111

k(7) = 11010 1101

k(8) = 11011

Sowohl aus der Definition von E(|x|) als auch durch Addition der unterstrichenen Wahr-
scheinlichkeiten in der ersten Tabelle ergibt sich, daf} die mittlere Linge dieses Codes
2,55 ist. Benotigt man also fiir einen Wahrscheinlichkeitsvektor nur die mittlere Lénge
des zugehorigen Huffman-Codes, so geniigt die erste Tabelle.

Der zugehorige Baum sieht wie folgt aus:

135



11010 11011

Der Huffman-Code ist offenbar nicht immer eindeutig definiert. Es kann nédmlich passie-
ren, dafl die Summe der beiden kleinsten Wahrscheinlichkeiten gleich einer der anderen
ist, so dafl die Einordnung nicht eindeutig ist. Dies ist jedoch ohne Belang, denn offen-
sichtlich haben die entstehenden Huffman-Codes dieselbe mittlere Lénge.

(10.11) Satz. Jeder Huffman-Code ist optimal.

Beweis. Der Beweis verlauft mit Induktion nach n, der Lange des Wahrscheinlichkeits-
vektors. Der Fall n = 2 ist trivial.

Induktionsschlufl von n — 1 auf n:

Wir nehmen an, daf§ der Satz fiir Vektoren der Liange n—1 > 2 gezeigt ist. Sei (p1, ..., pn)
ein beliebiger Wahrscheinlichkeitsvektor der Lange n mit p; > 0 fiir alle ¢ € {1,...,n}.
Wir kénnen annehmen, dafl p; > py > -+ > p, > 0 gilt, denn dies 1&8t sich durch
Vertauschen stets erreichen.

Sei /{ggﬁ ein Huffman-Code fiir diesen Vektor. Sei & ein beliebiger anderer Code mit den

Codewortern fiq, . . ., ft,. Wir zeigen nun
B(|n]) > E(|sgol)- (10.2)

Zunachst ordnen wir die Codewdrter von s nach aufsteigender Lénge. Den geordneten
Code nennen wir &' = (uf, ..., u,); fiir die Codeworter gilt |p)| < [ph| < -+ < |ul,|. Die
Menge der Codewdrter ist dieselbe geblieben. Es ist ziemlich offensichtlich, dafi F(|x|) >
E(|+']) ist (Nachpriifen!).

Falls |p,| > |, | ist, so stutzen wir das Wort !, indem wir von p, die letzten |u) |—|pul,_|
Binérzeichen weglassen. Dieses Wort sei u”7. Wegen der Prifix-Eigenschaft unterscheidet
sich dieses Wort von pf,...,u, ;. Das neue Wort !’ kann aber auch nicht Prifix eines
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der anderen Worter sein, denn seine Léange ist zumindest die der anderen. Also ist k" =
(Mllv te 7/"L;’L*17 ”Ir;) ein Code.

Gilt |u), 1| = ||, so setzen wir k” = &’. In jedem Fall gilt E(|x'|) > E(|"]).
Mindestens zwei Worter von £” haben die Liange m := |u/|. Sei a das aus den ersten

— 1 Zeichen von p! bestehende Wort. Dann gilt p = a0 oder p! = al. Wir nehmen
das letztere an, der andere Fall geht genau gleich. Wir betrachten nun zwei Fille:

I/|

(i) Eines der anderen Worter von x” der Lénge m ist das Wort a0. Falls a0 nicht bereits
das zweitletzte Wort ist, so vertauschen wir a0 mit dem zweitletzten Wort. Diesen
(eventuell neuen) Code nennen wir "

(ii) Keines der anderen Worter der Liange m ist a0. Dann ersetzen wir u!, ; durch a0
und nennen den neuen Code «”. Die Priafixeigenschaft wird dadurch nicht zerstort,
denn a1 war ja schon Codewort.

Es gilt offenbar E(|"|) = E(|x"|), denn die Léngen sind gleichgeblieben. Wir schreiben

K" = (v,...,v,) mit v,_ 1 = a0 und v, = «al. Dann ist (v4,...,1,_2,a) ein Code
fir (p1,...,Pn—2,Pn-1 + Pn). Um dies einzusehen, miissen wir nur die Prifixeigenschaft
nachpriifen. Das Wort o kann aber kein Préfix von vq,..., v, o sein, denn die Langen

dieser Codeworter sind kleiner oder gleich |a| 4+ 1, und a0, al waren verschieden von
Viy...yVp_9.

Nach Induktionsvoraussetzung ist die mittlere Lénge des Codes (v, ..., Vo, ) grofer
oder gleich der mittleren Lénge des zugehorigen Huffman-Codes, also

n—2

n—1)
S pilvil + (por + pa)lal = Elipeg).
=1

1)

wobei /igl 4  ein Huffman-Code fiir (p1, ..., pn—2, Pn—1+Dpn) ist. Nach der rekursiven Kon-

struktion des Huffman-Codes /i% )ﬂ aus /igluﬂl) ist

E|/{Huff E|’L€Huff)|+pn 1+pn

Somit gilt
n n—2
ElR"[ = pilvil = D pilvil + (a1 + pa)lal + (pa-1 + pn)
= i=1
n—1)
> Elstpg |+ Poo1 + Pn = Elripgl.
Damit ist (10.2) gezeigt. O

Wegen der Optimalitdt des Huffman-Codes haben wir natiirlich auch ein effektives Be-
rechnungsverfahren fiir Hy(p) gewonnen. Wir wollen nun noch die Beziehung zwischen

Ho(p) und dem bereits in (10.1) angegebenen Ausdruck fiir die ideelle Entropie H(p)
diskutieren.
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Im allgemeinen stimmen Hy(p) und H(p) nicht iiberein. Das sieht man schon bei n = 2,
wo stets Ho(p) = 1 ist. Der folgende Satz zeigt, daf§ die wahre Entropie Hy(p) nur wenig
oberhalb der ideellen Entropie H(p) liegen kann. Man beachte, dafl wegen p; < 1 stets
log, p; < 0 und somit H(p) = — >, pilogy p; > 0 ist.

(10.12) Satz. Fiir jeden Wahrscheinlichkeitsvektor p = (py,...,p,) gilt

H(p) < Ho(p) < H(p) + 1.

Da ein Versuchsausgang w; € € mit p; = p(w;) = 0 bei den Definitionen der ideellen und
der wahren Entropie in (10.1) bzw. (10.7) keinen Beitrag liefert, konnen wir fir den Be-
weis des Satzes p; > 0 fiir alle i € {1,...,n} voraussetzen. Wir benétigen einige einfache

Aussagen iiber die Langen der Codeworter eines Codes.

(10.13) Proposition. (a) ly,...,l, seien die Lingen der Codewdérter eines Codes. Dann
gilt 31 275 <1 und Gleichheit gilt genau dann, wenn der Code vollstindig ist.

(b) Seien ly,...,l, € N mit " 27% < 1. Dann existiert ein Code mit den Wortlingen
oL,

Beweis. (a) Wir zeigen zunéchst mit Induktion nach n, daf fiir einen vollsténdigen Code
Z?Zl 27l = 1 gilt. Fiir n = 2 ist die Aussage trivial, denn dann mufl [, = I, = 1 gelten. Sei

n > 3. O.E.d.A. konnen wir annehmen, dafl [; < [y < --- <, gilt. Aus der Vollstandigkeit
folgt, daf3 [,,_1 = [, > 2 gilt. Die letzten beiden Codeworter sind dann von der Form 0
und pl. Ersetzen wir diese beiden Codeworter durch das eine pu, so erhalten wir einen
vollstéandigen Code mit n —1 Codewértern, wobei das letzte die Léange [,, — 1 hat. Wenden
wir nun die Induktionsvoraussetzung an, so folgt > . , 27l = Z?:_f 27l g 2lntl — 1,

Ein unvollstédndiger Code 148t sich zu einem vollstéindigen verkiirzen. Damit folgt sofort
S 275 <1 fiir jeden Code, wobei das Gleichheitszeichen nur fiir vollstédndige gilt.

(b) Wir wenden wieder Induktion nach n an. Fiir n = 2 ist die Sache trivial. Sei n > 3.
Wir kénnen wieder annehmen, dafl I; < [, < --- < [, gilt. Wegen Z?:l 27k < 1
folgt Z;:ll 27l < 1. Per Induktionsvoraussetzung existiert ein Code mit Wortlingen
l1,...,l,—1, der jedoch nach (a) nicht vollstdndig ist. Der zugehorige Baum hat also einen
Knoten p, der kein Codewort ist und so, dafl entweder ;0 oder pl keine Knoten sind.
Da [,, mindestens so grof3 wie die anderen sind, ergibt sich, daf§ wir den Baum mit einem
neuen Blatt ergédnzen konnen, das p als Préafix hat und das die Lange [,, hat. O

Wir benotigen noch das folgende elementare analytische Ergebnis:

(10.14) Lemma. Fir alle i € {1,...,n} seien s; und r; positive reelle Zahlen mit
Yoy si > > 1 Dann gilt Y s;logy(si/1i) > 0.

Beweis. Es gilt logx < z — 1 fiir alle z > 0, wobei log den Logarithmus zur Basis e
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bezeichnet. Somit folgt
. 2« B — _ <
> sog < Z( 1) YooY s
=1 i=1 =1 i=1
also >, s;log(s;/r;) > 0. Die log,-Funktion ist jedoch proportional zur log-Funktion.
Damit ist (10.14) gezeigt. O

Beweis von H(p) < Hy(p):
Es seien [, ...,[, die Wortldngen des Huffman-Codes & fiir p = (p1,...,p,). Da dieser

vollsténdig ist, folgt nach (10.13 (a)) Y0, 27% =1 = 3"  p;. Nach (10.14) ist dann
S pilogy(pi/27h) = S0 pilogy pi + Yo Lipi > 0. Das bedeutet, da E(|x|) > H(p)
gilt. O

Beweis von Ho(p) < H(p) + 1:

Zu vorgegebenen p; kénnen wir natiirliche Zahlen /; wéhlen mit —log, p; < l; < —log, p;+
1. Aus der ersten Ungleichung folgt >°7" 27% < > p; = 1. Nach (10.13 (b)) existiert
ein Code mit diesen [; als Wortldngen. Wegen der zweiten Ungleichung fiir die [; folgt
Yo pili < =30 pilogyp; + 1. Der optimale Code hat jedoch héchstens die mittlere

Léinge Z?:l pzll O

Bemerkung. Der letzte Beweisteil von (10.12) deutet darauf hin, dafl bei einem optimalen
Code die Lénge des i-ten Codewortes ungeféhr gleich —log, p; sein wird.

Es ist klar, daf} die wahre Entropie H, als Maf fiir die Ungewiflheit in einigen Situation
etwas unbefriedigend ist. Am deutlichsten sieht man das bei einem Experiment mit zwei
moglichen Ausgéngen, die mit den Wahrscheinlichkeiten p; und p, = 1 — p; auftreten,
denn dann gilt Hy(py, 1 — p1) = 1 fiir jedes p; € (0,1).

Wir kénnen noch eine andere Beziehung zwischen Hy und H herleiten, indem wir un-
abhéngige Repetitionen des Zufallsexperimentes (€2, p) betrachten. Nach Kapitel 2 ist der
geeignete W .-Raum fiir eine k-fache Repetition der Produktraum (QF, p*), mit p*(wy, ..., wi) =
plwr) . ..plwy) fir alle wy, ..., wg € Q.

Es ist klar, wie aus einer Fragestrategie (d.h. einem Code) fiir p eine fiir p* gewonnen
werden kann: Man fragt zundchst nach dem Ausgang des ersten Experimentes, dann nach
dem zweiten etc. bis nach dem k-ten. Die gesamte Anzahl der benétigten Fragen ergibt
sich als Summe der benétigten Fragen fiir die einzelnen Experimente; somit summieren
sich auch die Erwartungswerte. Ist x ein optimaler Code fiir p, so ist der optimale Code
fiir p* natiirlich mindestens so gut wie dieser ,,Repetitionscode®, der die mittlere Linge
kEE(|k|) hat. Somit folgt:
Ho(p") < kHo(p).

Es zeigt sich jedoch, dafl die oben beschriebene k-fache Repetition der optimalen Frage-
strategie fiir p im allgemeinen nicht die optimale Fragestrategie fiir p* ist.

(10.15) Beispiel. Sei (p1,p2) = (3/4, 1/4). Dann ist Hy(p) = 1. Der Huffman-Algorithmus
fiir p? wird durch das folgende Schema gegeben:
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wobei die einzelnen Zahlen mit 1/16 zu multiplizieren sind. Die mittlere Lénge des zu-
gehorigen Huffman-Codes ist also 27/16, was deutlich kleiner als 2 ist.

(10.16) Satz. Sei p = (p1,...,pn) ein Wahrscheinlichkeitsvektor. Dann gilt

1
Jim —Ho(p") = H(p).

Beweis. Einsetzen in die Definition (10.1) ergibt H(p*) = kH (p). Aus Satz (10.12) folgt
dann H(p) < Ho(p*)/k < H(p) + 1/k, woraus sich Satz (10.16) ergibt. O

Die ideelle Entropie H(p) ist also die pro Versuch benétigte mittlere Anzahl von Fragen
bei vielen unabhiingigen Repetitionen des Versuchs. In der Regel liegt Hy(p*)/k bereits
fiir kleine k£ sehr nahe an der ideellen Entropie H (p).

Die ideelle Entropie H hat einige interessante Eigenschaften. Zu vorgegebenem n € N ist
sie definiert auf der Menge von Wahrscheinlichkeitsvektoren

j=1

Als Durchschnitt von n Halbraumen und einer Hyperebene ist A\, eine konvexe Teilmenge
des R™. Benutzt man die Konvention 0log, 0 = 0, so wird durch (10.1) eine stetige Funkti-
on H : A, — [0,00) definiert. Der Beweis des folgenden Satzes sei dem Leser iiberlassen,
fiir Teil (b) ist Lemma (10.14) hilfreich:

(10.17) Satz.

a) Die Funktion H ist streng konkav auf A, das heifit fiir A € (0,1) und p,p’ € A,
mit p # p', gilt H(Ap+ (1 = A)p') > A (p) + (1 — N H(p').

b) Fir alle p € A, gilt H(p) < H(1/n,...,1/n).
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