Übungen zur Vorlesung Höhere Finanzmathematik

Sommersemester 2015

PD Dr. V. Paulsen

Blatt 05

05.05.2015

Aufgabe 1: 4 Punkte

Wir betrachten ein Finanzmarktmodell für eine Aktie, dass durch zwei unabhängige Wiener-Prozesse getrieben wird und nehmen an, dass der Aktienpreisprozeß eine stochastische Differentialgleichung der Form

$$dS(t) = S(t)(\mu dt + \sigma_1 dW_1(t) + \sigma_2 dW_2(t))$$

mit $\mu \in \mathbb{R}$ und $\sigma_1 > 0$, $\sigma_2 > 0$ erfüllt. Weiter wird angenommen, dass es einen konstanten Geldmarktzins r > 0 gibt. Damit entwickelt sich das Geldmarktkonto also entsprechend $\beta(t) = \exp(rt)$ für alle $t \geq 0$. Weiter fixieren wir einen Handelszeitraum [0, T).

- 1. Wieso ist das Modell arbitragefrei?
- 2. Wieso ist das Modell nicht vollständig?
- 3. Geben Sie einen replizierbaren Claim und eine Replikationsstrategie an.
- 4. Geben Sie einen Claim an, der nicht replizierbar ist.

Aufgabe 2: Ornstein Uhlenbeck Prozess

4 Punkte

Sei $(\Omega, \mathfrak{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und W eine Wiener-Prozeß mit Wiener-Filtration $(\mathfrak{F}_t)_{t\geq 0}$. Ein Ornstein Uhlenbeck-Prozeß ist eine Lösung der stochastischen Differentialgleichung

$$dX_t = -\alpha X_t dt + \sigma dW(t)$$

mit Anfangsbedingung $X_0 = x$. Hierbei sind α, σ positive reelle Konstanten und x eine reelle Zahl.

- 1. Bestimmen Sie die Lösung $(X_t)_{t\geq 0}$.
- 2. Bestimmen Sie $\mathbb{E}X_t$ und $\operatorname{Var}X_t$ für alle $t \geq 0$.
- 3. Gegen welche Verteilung konvergiert die Verteilung von X_t für $t \to \infty$.
- 4. Bestimmen Sie die zu X gehörige Halbgruppe von Übergangskernen.

Aufgabe 3: quadrierter Ornstein-Uhlenbeck Prozess

4 Punkte

Sei X ein Ornstein-Uhlenbeck Prozess und damit Lösung der Gleichung

$$dX(t) = -X(t)dt + dW(t)$$

zu einem Startwert $a \neq 0$. Zeigen Sie, dass es einen Wienerprozess B gibt, so dass $Y(t) = X(t)^2$ die Gleichung

$$dY(t) = 1 - 2Y(t)dt + 2\sqrt{|Y(t)|}dB(t)$$

zum Anfangswert a^2 löst.

Y heißt quadrierter Ornstein-Uhlenbeck Prozess der Dimension 1.

Bestimmen Sie die zu ${\cal Y}$ gehörige Halbgruppe an Übergangskernen.

Abgabe: Die. 12.05.2015 bis spätestens 11.00 im Fach 145