Übungen

Abgabetermin: Freitag, 22.05.2009, 10.15 Uhr

Aufgabe 22. (6 Punkte)

Geben Sie einen Maßraum $(\Omega, \mathcal{A}, \mu)$ und Folgen (f_n) , (g_n) , (h_n) von μ -integrierbaren reellwertigen Funktionen an, die jeweils punktweise gegen Null konvergieren, und für die gilt:

- a) $\lim_{n\to\infty} \int f_n d\mu = \infty$.
- b) $\lim_{n\to\infty} \int g_n d\mu = 1.$
- c) $\limsup_{n\to\infty} \int h_n d\mu = 1$, $\liminf_{n\to\infty} \int h_n d\mu = -1$.

Aufgabe 23. (6 Punkte)

 $(\Omega, \mathcal{A}, \mu)$ sei ein Maßraum, $f: \Omega \to [0, \infty[$ sei μ -integrierbar, und es sei $\nu(A) := \int_A f \, d\mu$, $A \in \mathcal{A}$. Zeigen Sie:

- a) ν ist ein endliches Maß auf (Ω, \mathcal{A}) .
- b) ν ist μ -stetig, d. h. $\mu(N) = 0$, $N \in \mathcal{A} \Rightarrow \nu(N) = 0$.
- c) Sei $g: \Omega \to \mathbb{R}$ ν -integrierbar $\Rightarrow \int_A g \, d\nu = \int_A g \cdot f \, d\mu \quad \forall \ A \in \mathcal{A}.$

Aufgabe 24. (6 Punkte)

 $(\Omega, \mathcal{A}, \mu)$ sei ein Maßraum, \mathcal{A}_0 sei eine Algebra mit $\mathcal{A} = \sigma(\mathcal{A}_0)$, und f, g seien μ -integrierbare Funktionen. Zeigen Sie:

$$\int_{A} f \, d\mu \le \int_{A} g \, d\mu \quad \forall \ A \in \mathcal{A}_{0} \ \Rightarrow \ f \le g \ \mu\text{-f.s.}$$

Hinweis: $\mathcal{M} = \{ A \in \mathcal{A} | \int_A f \, d\mu \le \int_A g \, d\mu \}$ ist eine monotone Klasse.

Aufgabe 25. (6 Punkte)

 $(\Omega, \mathcal{A}, \mu)$ sei ein Maßraum, $\emptyset \neq Q \subset \mathbb{R}^n$ offen, und $g: \Omega \times Q \to \mathbb{R}$ sei eine Abbildung mit folgenden Eigenschaften:

- (i) $g(\cdot, t)$ ist $(\mathcal{A}, \mathbb{B})$ -messbar für alle $t \in Q$;
- (ii) $g(\omega, \cdot)$ ist stetig in $t_0 \in Q$ für μ -fast alle $\omega \in \Omega$;
- (iii) es gibt eine μ -integrierbare Funktion $h:\Omega\to\mathbb{R}$ mit $|g(\cdot,t)|\leq h$ für alle $t\in Q$.

Zeigen Sie, dass $t \to \int g(\cdot, t) d\mu$ stetig in t_0 ist.