A N G E W A N D TE M ATHEMATIK

U N D
I N F O R M A T I K

Maximal ϕ-Inequalities for Nonnegative Submartingales

G. Alsmeyer und U. RÖSLER

Universität Münster und Universität Kiel
e-mail: gerolda@math.uni-muenster.de, roesler@math.uni-kiel.de
Bericht Nr. 04/03-S

UNIVERSITÄTM ÜNTER

Maximal ϕ-Inequalities for Nonnegative Submartingales

Gerold Alsmeyer
Institut für Mathematische Statistik
Fachbereich Mathematik
Westfälische Wilhelms-Universität Münster
Einsteinstraße 62
D-48149 Münster, Germany
Uwe Rösler
Mathematisches Seminar
Christian-Albrechts-Universität Kiel
Ludewig-Meyn-Straße 4
D-24098 Kiel, Germany

Let $\left(M_{n}\right)_{n \geq 0}$ be a nonnegative submartingale and $M_{n}^{*} \stackrel{\text { def }}{=} \max _{0 \leq k \leq n} M_{k}$, $n \geq 0$ the associated maximal sequence. For nondecreasing convex functions $\phi:[0, \infty) \rightarrow[0, \infty)$ with $\phi(0)=0$ (Orlicz functions) we provide various inequalities for $E \phi\left(M_{n}^{*}\right)$ in terms of $E \Phi_{a}\left(M_{n}\right)$ where, for $a \geq 0$,

$$
\Phi_{a}(x) \stackrel{\text { def }}{=} \int_{a}^{x} \int_{a}^{s} \frac{\phi^{\prime}(r)}{r} d r d s, \quad x>0
$$

Of particular interest is the case $\phi(x)=x$ for which a variational argument leads us to

$$
E M_{n}^{*} \leq\left(1+\left(E\left(\int_{1}^{M_{n} \vee 1} \log x d x\right)\right)^{1 / 2}\right)^{2}
$$

A further discussion shows that the given bound is better than Doob's classical bound $\frac{e}{e-1}\left(1+E M_{n} \log ^{+} M_{n}\right)$ whenever $E\left(M_{n}-1\right)^{+} \geq e-2 \approx$ 0.718 .

AMS 1991 subject classifications. 60G42, 60E15.
Keywords and phrases. Nonnegative submartingale, maximal sequence, Orlicz and Young function, Choquet representation, convex function inequality.

1. Introduction

Let $\left(M_{n}\right)_{n \geq 0}$ be a nonnegative submartingale and $M_{n}^{*} \stackrel{\text { def }}{=} \max _{0 \leq k \leq n} M_{k}, n \geq 0$ the associated maxima. Moment inequalities for the sequence $\left(M_{n}^{*}\right)_{n \geq 0}$ in terms of $\left(M_{n}\right)_{n \geq 0}$ are usually based on Doob's maximal inequality which states that

$$
\begin{equation*}
P\left(M_{n}^{*}>t\right) \leq \frac{1}{t} \int_{\left\{M_{n}^{*}>t\right\}} M_{n} d P \tag{1.1}
\end{equation*}
$$

for $n \geq 0$ and $t>0$. If $p>1$, a combination of (1.1) with Hölder's inequality shows

$$
\begin{equation*}
E M_{n}^{* p} \leq\left(\frac{p}{p-1}\right)^{p} E M_{n}^{p} \tag{1.2}
\end{equation*}
$$

for $n \geq 0$ [4, p. 255f], the constant being sharp (see [3, p. 14]). In case $p=1$ one finds with (1.1) that

$$
\begin{equation*}
E M_{n}^{*} \leq \frac{e}{e-1}\left(1+E M_{n} \log ^{+} M_{n}\right) \tag{1.3}
\end{equation*}
$$

for $n \geq 0$. Clearly, these results apply to $\left(\left|M_{n}\right|\right)_{n \geq 0}$ if $\left(M_{n}\right)_{n \geq 0}$ is a martingale.

Orlicz and Young functions. (1.2) and (1.3) are only special cases within a whole class of convex function inequalities based on Doob's inequality which is the main topic of this paper. Let \mathfrak{C} denote the class of Orlicz functions, that is unbounded, nondecreasing convex functions $\phi:[0, \infty) \rightarrow[0, \infty)$ with $\phi(0)=0$. If the right derivative ϕ^{\prime} is also unbounded then ϕ is called a Young function and we denote by \mathfrak{C}^{\prime} the subclass of such functions. Given any probability space $(\Omega, \mathfrak{A}, P)$, each $\phi \in \mathfrak{C}$ induces the semi-Banach space $\left(\mathfrak{L}^{\phi}(P),\|\cdot\|_{\phi}\right)$ of ϕ-integrable random variables X on $(\Omega, \mathfrak{A}, P)$, where

$$
\|X\|_{\phi} \stackrel{\text { def }}{=} \inf \{\lambda>0: E \Phi(|X| / \lambda) \leq 1\}
$$

defines the underlying semi-norm. $\left(\mathfrak{L}^{\phi}(P),\|\cdot\|_{\phi}\right)$ is called an Orlicz space and equals the space of α-times integrable functions $\left(\mathfrak{L}^{\alpha}(P),\|\cdot\|_{\alpha}\right)$ in case $\phi(x)=x^{\alpha}$ for some $\alpha \in[1, \infty)$.

Since $\phi(x)=\int_{0}^{x} \phi^{\prime}(s) d s \leq x \phi^{\prime}(x)$ by convexity, the numbers

$$
\begin{equation*}
p=p_{\phi} \stackrel{\text { def }}{=} \inf _{x>0} \frac{x \phi^{\prime}(x)}{\phi(x)} \quad \text { and } \quad p^{*}=p_{\phi}^{*} \stackrel{\text { def }}{=} \sup _{x>0} \frac{x \phi^{\prime}(x)}{\phi(x)} \tag{1.4}
\end{equation*}
$$

are both in [$1, \infty$]. ϕ is called moderate [5, p. 162] if $p^{*}<\infty$ or, equivalently [7, Thm. 3.1.1], if for some (and then all) $\lambda>1$ there exists a finite constant c_{λ} such that

$$
\begin{equation*}
\phi(\lambda x) \leq c_{\lambda} \phi(x), \quad x \geq 0 \tag{1.5}
\end{equation*}
$$

This property is shared by all $\phi \in \mathfrak{C}$ which are also regularly varying at infinity at order $\alpha \geq 1$ [2], thus including $\phi(x)=x^{\alpha}$ for $\alpha \in[1, \infty)$. Examples of non-moderate Orlicz functions are $\phi(x)=\exp \left(x^{\alpha}\right)-1$ for any $\alpha \geq 1$.

Given a Young function ϕ, the right continuous inverse $\psi^{\prime}(x) \stackrel{\text { def }}{=} \inf \left\{y: \phi^{\prime}(y)>x\right\}$ of ϕ^{\prime} is also unbounded and thus $\psi(x) \stackrel{\text { def }}{=} \int_{0}^{x} \psi^{\prime}(s) d s$ again an element of \mathfrak{C}^{\prime}, called the conjugate Young function to ϕ. Obviously, this conjugation is reflexive. A simple geometric argument shows [5, p. 163] that

$$
\begin{equation*}
x \phi^{\prime}(x)=\phi(x)+\int_{0}^{\phi^{\prime}(x)} \psi^{\prime}(s) d s=\phi(x)+\psi\left(\phi^{\prime}(x)\right), \quad x \geq 0 \tag{1.6}
\end{equation*}
$$

and, by reflexivity, the same identity holds true with the roles of ϕ and ψ interchanged. With the help of (1.6), $\psi(x) \geq \frac{1}{p_{\psi}^{*}} x \psi^{\prime}(x)$ and $\psi^{\prime}\left(\phi^{\prime}(x)\right) \geq x$ we infer as in [5, p. 169] that

$$
x \phi^{\prime}(x)=\phi(x)+\psi\left(\phi^{\prime}(x)\right) \geq \phi(x)+\frac{1}{p_{\psi}^{*}} \phi^{\prime}(x) \psi^{\prime}\left(\phi^{\prime}(x)\right) \geq \phi(x)+\frac{1}{p_{\psi}^{*}} x \phi^{\prime}(x)
$$

for $x \geq 0$ and thus $p_{\phi}=\inf _{x>0} \frac{x \phi^{\prime}(x)}{\phi(x)} \geq \frac{p_{\psi}^{*}}{p_{\psi}^{*}-1}$. The reverse inequality can also be shown $[7$, Thm. 3.1.1] so that we have the identity

$$
\begin{equation*}
p_{\phi}=\frac{p_{\psi}^{*}}{p_{\psi}^{*}-1}, \quad \text { or equivalently } \quad \frac{1}{p_{\phi}}+\frac{1}{p_{\psi}^{*}}=1 \tag{1.7}
\end{equation*}
$$

As further results stated in [7, Thm. 3.1.1] we mention that for any $\phi \in \mathfrak{C}$ with $p=p_{\phi}$ the assertions

$$
\begin{align*}
& \phi(\lambda x) \geq \lambda^{p} \phi(x) \text { for all } \lambda>1 \text { and } x>0 \tag{1.8}\\
& \frac{\phi(x)}{x^{p}} \nearrow \tag{1.9}
\end{align*}
$$

hold true, and that for moderate ϕ with $p^{*}=p_{\phi}^{*}$ furthermore

$$
\begin{align*}
& \phi(\lambda x) \leq \lambda^{p^{*}} \phi(x) \text { for all } \lambda>1 \text { and } x>0 \tag{1.10}\\
& \frac{\phi(x)}{x^{p^{*}}} \searrow \tag{1.11}
\end{align*}
$$

The following two inequalities, the first of which may also be found in [5, p. 169], are easily deduced from another inequality stated as (2.12) in the next section. This latter inequality emerges as a special case of one of our results, see Corollary 2.2, but can also be derived by different arguments based on Doob's inequality and the Choquet representation of a function in \mathfrak{C}. For the interested reader this is briefly demonstrated in Appendix 1.

Proposition 1.1. Let ϕ be an Orlicz function with $p=p_{\phi}>1$ and $\left(M_{n}\right)_{n \geq 0}$ be a nonnegative submartingale. Then

$$
\begin{equation*}
\left\|M_{n}^{*}\right\|_{\phi} \leq \frac{p}{p-1}\left\|M_{n}\right\|_{\phi} \tag{1.12}
\end{equation*}
$$

for each $n \geq 0$. If ϕ is also moderate, i.e. $p^{*}=p_{\phi}^{*}<\infty$, then furthermore

$$
\begin{equation*}
E \phi\left(M_{n}^{*}\right) \leq\left(\frac{p}{p-1}\right)^{p^{*}} E \phi\left(M_{n}\right) \tag{1.13}
\end{equation*}
$$

for each $n \geq 0$.

2. Main Results

Inequalities of type (1.13) are also the content of our main results to be presented in this section. They are based upon integration of a variational variant of Doob's inequality (1.1) to be proved in Proposition 3.2, namely

$$
\begin{equation*}
P\left(M_{n}^{*}>t\right) \leq \frac{\lambda}{(1-\lambda) t} \int_{t}^{\infty} P\left(M_{n} / \lambda>s\right) d s=\frac{\lambda}{(1-\lambda) t} E\left(\frac{M_{n}}{\lambda}-t\right)^{+} \tag{2.1}
\end{equation*}
$$

for all $n \geq 0, t>0$ and $\lambda \in(0,1)$. Under additional contraints on ϕ we will see that by good choices of λ the constant in (1.13) can be improved considerably. We will also derive an inequality for $E M_{n}^{*}$ in terms of $E M_{n} \log ^{+} M_{n}$ which in many situations strictly beats (1.3).

The following two subclasses of \mathfrak{C} will be of interest hereafter. We shall denote by \mathfrak{C}^{*} the set of all differentiable $\phi \in \mathfrak{C}$ whose derivative is concave or convex, and by \mathfrak{C}_{0} the set of $\phi \in \mathfrak{C}$ such that $\frac{\phi^{\prime}(x)}{x}$ is integrable at 0 and thus in particular $\phi^{\prime}(0)=0$. Put $\mathfrak{C}_{0}^{*} \stackrel{\text { def }}{=} \mathfrak{C}_{0} \cap \mathfrak{C}^{*}$.

Given $\phi \in \mathfrak{C}$ and $a \geq 0$, define

$$
\begin{equation*}
\Phi_{a}(x) \stackrel{\text { def }}{=} \int_{a}^{x} \int_{a}^{s} \frac{\phi^{\prime}(r)}{r} d r d s, \quad x>0 \tag{2.2}
\end{equation*}
$$

and note that $\Phi_{a} \mathbf{1}_{[a, \infty)} \in \mathfrak{C}$ for $a>0$. If $\phi \in \mathfrak{C}_{0}$ the same holds true for $\Phi \stackrel{\text { def }}{=} \Phi_{0}$, whereas $\Phi \equiv \infty$ otherwise. The function Φ will be of great importance in our subsequent analysis. If $\phi \in \mathfrak{C}_{0}$ then Φ is obviously again an element from this class. If in addition ϕ^{\prime} is concave or convex the same holds true for $\Phi^{\prime}(x)=\int_{0}^{x} \frac{\phi^{\prime}(r)}{r} d r$, hence $\phi \in \mathfrak{C}_{0}^{*}$ implies $\Phi \in \mathfrak{C}_{0}^{*}$. Use $\Phi^{\prime \prime}(x)=\frac{\phi^{\prime}(x)}{x}$ to see that ϕ and Φ are related through the differential equation

$$
\begin{equation*}
x \Phi^{\prime}(x)-\Phi(x)=\phi(x), \quad x \geq 0 \tag{2.3}
\end{equation*}
$$

under the initial conditions $\phi(0)=\phi^{\prime}(0)=\Phi(0)=\Phi^{\prime}(0)=0$. If $\phi(x)=x^{p}$ for some $p>1$, then $\Phi(x)=\frac{1}{p-1} x^{p}$, in particular $\Phi=\phi$ in case $\phi(x)=x^{2}$. If $\phi(x)=x$ then $\Phi \equiv \infty$, but we have $\Phi_{1}(x)=(x \log x-x+1)$. Further properties of Φ and its relation to ϕ are collected in Lemma 3.1 at the beginning of Section 3 where it will be seen particularly that Φ and ϕ grow at the same order of magnitude unless ϕ or its conjugate are non-moderate.

THEOREM 2.1. Let $\left(M_{n}\right)_{n \geq 0}$ be a nonnegative submartingale and $\phi \in \mathfrak{C}$. Then

$$
\begin{equation*}
E \phi\left(M_{n}^{*}\right) \leq \phi(a)+\frac{\lambda}{1-\lambda} E \Phi_{a}\left(M_{n} / \lambda\right) \tag{2.4}
\end{equation*}
$$

for all $a \geq 0, \lambda \in(0,1)$ and $n \geq 0$, in particular $\left(\lambda=\frac{1}{2}\right)$

$$
\begin{equation*}
E \phi\left(M_{n}^{*}\right) \leq \phi(a)+E \Phi_{a}\left(2 M_{n}\right) \tag{2.5}
\end{equation*}
$$

for all $a>0$ and $n \geq 0$. If $\left(M_{n}\right)_{n \geq 0}$ is a positive martingale with $M_{n+1} \leq c M_{n}$ for some $c>0$ and all $n \geq 0$, and if $E \Phi_{a}\left(M_{0}\right)<\infty$, then

$$
\begin{equation*}
E \phi\left(M_{n}^{*}\right) \geq c^{-1}\left(E \Phi_{a}\left(M_{n}\right)-E \Phi_{a}\left(M_{0}\right)\right) \tag{2.6}
\end{equation*}
$$

for all $n \geq 0$.

Of course, inequality (2.4) with $a=0$ is of interest only when $\Phi_{0}<\infty$, thus for $\phi \in \mathfrak{C}_{0}$. The conditions on $\left(M_{n}\right)_{n \geq 0}$ implying (2.6) were given by Gundy [6] to demonstrate that the bound in (1.3) cannot be much improved, see (2.17) below and also [8, p. 71f].

If $\phi(x)=x^{p}$ for some $p>1$, then $\Phi(x)=\frac{1}{p-1} x^{p}$ implies in (2.4) with $a=0$

$$
\begin{equation*}
E M_{n}^{* p} \leq \frac{\lambda^{1-p}}{(1-\lambda)(p-1)} E M_{n}^{p} \tag{2.7}
\end{equation*}
$$

for all $n \geq 0$ and $\lambda \in(0,1)$. Elementary calculus shows that

$$
\lambda^{*}(p) \stackrel{\text { def }}{=} \underset{\lambda \in(0,1)}{\operatorname{argmin}} \frac{\lambda^{1-p}}{(1-\lambda)}=\frac{p-1}{p}
$$

With this value of λ in (2.7) Doob's \mathfrak{L}^{p}-inequality (1.2) comes out again. For an extension of it consider nonnegative increasing functions ϕ on $[0, \infty)$ such that $\phi^{1 / \gamma}$ is also convex for some $\gamma>1$. As before let $\left(M_{n}\right)_{n \geq 0}$ be a nonnegative submartingale. Then the same holds true for $\left(\phi^{1 / \gamma}\left(M_{n}\right)\right)_{n \geq 0}$, the associated sequence of maxima being $\left(\phi^{1 / \gamma}\left(M_{n}^{*}\right)\right)_{n \geq 0}$. Consequently, (1.2) implies

$$
\begin{equation*}
E \phi\left(M_{n}^{*}\right) \leq\left(\frac{\gamma}{\gamma-1}\right)^{\gamma} E \phi\left(M_{n}\right) \tag{2.8}
\end{equation*}
$$

for each $n \geq 0$. Interesting examples are $\phi(x)=x^{p} \log ^{r}(1+x)$ for $p>1$ and $r \geq 0$ (choose $\gamma=p$), as well as $\phi(x)=e^{r x}$ for $r>0$. For the latter example any $\gamma>0$ will do and since $\left(\frac{\gamma}{\gamma-1}\right)^{\gamma}$ decreases to e as $\gamma \rightarrow \infty$, we obtain

$$
\begin{equation*}
E e^{r M_{n}^{*}} \leq e E e^{r M_{n}} \tag{2.9}
\end{equation*}
$$

for all $n \geq 0$ and $r>0$.
We will show in the next section that $\Phi(x) \leq \frac{1}{p-1} \phi(x)$ for each $\phi \in \mathfrak{C}$ with $p=p_{\phi}>1$ $\left(\Rightarrow \phi \in \mathfrak{C}_{0}\right)$. With this at hand the subsequent corollary follows from Theorem 2.1.

Corollary 2.2. Given the situation of Theorem 2.1, let $\phi \in \mathfrak{C}$ be such that $p=p_{\phi}>1$. Then

$$
\begin{equation*}
E \phi\left(M_{n}^{*}\right) \leq \frac{\lambda}{(1-\lambda)(p-1)} E \phi\left(M_{n} / \lambda\right) \tag{2.10}
\end{equation*}
$$

for all $\lambda \in(0,1)$ and $n \geq 0$. If ϕ is also moderate $\left(p^{*}<\infty\right)$ then

$$
\begin{equation*}
E \phi\left(M_{n}^{*}\right) \leq \frac{p^{*}-1}{p-1}\left(\frac{p^{*}}{p^{*}-1}\right)^{p^{*}} E \phi\left(M_{n}\right) \tag{2.11}
\end{equation*}
$$

for each $n \geq 0$.

A comparison of the constants going with $E \phi\left(M_{n}\right)$ in (2.11) and (1.13) shows that the one in (2.11) is strictly better unless $p=p^{*}$ (see Lemma A. 2 in Appendix 2 for a rigorous proof). For large p, p^{*} and $\beta \stackrel{\text { def }}{=} p^{*} / p$ we also have that $\frac{p^{*}-1}{p-1}\left(\frac{p^{*}}{p^{*}-1}\right)^{p^{*}} \approx \beta e$, while $\left(\frac{p}{p-1}\right)^{p^{*}} \approx e^{\beta}$.

Putting $q=\frac{p}{p-1}$ and choosing $\lambda=\frac{1}{q}$ in (2.10), we obtain

$$
\begin{equation*}
E \phi\left(M_{n}^{*}\right) \leq E \phi\left(q M_{n}\right) \tag{2.12}
\end{equation*}
$$

for each $n \geq 0$ and any $\phi \in \mathfrak{C}$ with $p>1$. It is this inequality which will easily give the assertions of Proposition 1.1 (see Section 3).

By a similar argument as the one leading to (2.8), Doob's inequality (1.2) can be used to get refinements of (1.13) and (2.11) for functions $\phi \in \mathfrak{C}^{*}$. However, the main tool for this is not (2.1) but rather a suitable Choquet representation of ϕ exploited in a similar manner as in [1] for the special case of $\phi \in \mathfrak{C}^{*}$ with concave derivative.

Theorem 2.3. Given the situation of Theorem 2.1, let $\phi \in \mathfrak{C}, k \geq 1$ and $\phi^{(k)}$ the k-th order derivative of ϕ. Then $\phi^{(k)} \in \mathfrak{C}\left(\Rightarrow \phi \in \mathfrak{C}^{*}\right)$ implies

$$
\begin{equation*}
E \phi\left(M_{n}^{*}\right) \leq\left(\frac{k+1}{k}\right)^{k+1} E \phi\left(M_{n}\right) \tag{2.13}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\left\|M_{n}^{*}\right\|_{\phi} \leq \frac{k+1}{k}\left\|M_{n}\right\|_{\phi} \tag{2.14}
\end{equation*}
$$

for each $n \geq 0$.

In case $\phi(x)=x^{p}$ for integral $p>1$ we have $\phi^{(p-1)} \in \mathfrak{C}$ and thus that (2.13) coincides with (1.2).

We finally turn to the case $\phi(x)=x$ for which $\Phi \equiv \infty$ but $\Phi_{1}(x)=x \log x-x+1$ as mentioned earlier. A more general version of inequality (2.4) proved in Section 3 (Proposition 3.2) will be used to derive the following alternative to Doob's \mathfrak{L}_{1}-inequality (1.3).

ThEOREM 2.4. If $\left(M_{n}\right)_{n \geq 0}$ is a nonnegative submartingale, then

$$
\begin{equation*}
E M_{n}^{*} \leq b+\frac{b}{b-1} E\left(\int_{1}^{M_{n} \vee 1} \log x d x\right) \tag{2.15}
\end{equation*}
$$

for all $b>1$ and $n \geq 1$. The value of b which minimizes the right hand side equals $b^{*} \stackrel{\text { def }}{=}$ $1+\left(E\left(\int_{1}^{M_{n} \vee 1} \log x d x\right)\right)^{1 / 2}$ and gives

$$
\begin{equation*}
E M_{n}^{*} \leq\left(1+\left(E\left(\int_{1}^{M_{n} \vee 1} \log x d x\right)\right)^{1 / 2}\right)^{2} \tag{2.16}
\end{equation*}
$$

If $\left(M_{n}\right)_{n \geq 0}$ is a positive martingale with $M_{n+1} \leq c M_{n}$ for some $c>0$ and all $n \geq 0$, and if $E M_{0} \log ^{+} M_{0}<\infty$, then

$$
\begin{equation*}
E M_{n}^{*} \geq \frac{1}{c}\left(E M_{n} \log ^{+} M_{n}-E M_{0} \log ^{+} M_{0}\right) \tag{2.17}
\end{equation*}
$$

for all $n \geq 0$.
Since $\int_{1}^{x} \log y d y=x \log ^{+} x-(x-1)$ for $x \geq 1$, inequality (2.15) may be restated as

$$
\begin{equation*}
E M_{n}^{*} \leq b+\frac{b}{b-1}\left(E M_{n} \log ^{+} M_{n}-E\left(M_{n}-1\right)^{+}\right) \tag{2.18}
\end{equation*}
$$

for all $n \geq 1$ and $b>1$. For the special choices $b=E\left(M_{n}-1\right)^{+}+1$ and $b=e$, this yields for each $n \geq 1$

$$
\begin{equation*}
E M_{n}^{*} \leq \frac{1+E\left(M_{n}-1\right)^{+}}{E\left(M_{n}-1\right)^{+}} E M_{n} \log ^{+} M_{n} \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
E M_{n}^{*} \leq e+\frac{e}{e-1}\left(E M_{n} \log ^{+} M_{n}-E\left(M_{n}-1\right)^{+}\right) \tag{2.20}
\end{equation*}
$$

respectively, where the right hand side of (2.19) is to be interpreted as 1 if $M_{n} \leq 1$ a.s. Note that even the choice $b=e$, though only suboptimal, leads to a better bound for $E M_{n}^{*}$ than in (1.3) whenever $E\left(M_{n}-1\right)^{+} \geq e-2 \approx 0.718$.

The previous upper bounds for $E M_{n}$ may be further improved if $m \stackrel{\text { def }}{=} E M_{0}>1$. To see this note that $\left(\hat{M}_{n}\right)_{n \geq 0} \stackrel{\text { def }}{=}\left(1, \frac{M_{0}}{m}, \frac{M_{1}}{m}, \ldots\right)$ forms again a nonnegative submartingale whose maxima \hat{M}_{n}^{*} satisfy

$$
\hat{M}_{n}^{*}=\frac{M_{n-1}^{*}}{m} \vee 1
$$

for $n \geq 1$. Consequently, (2.15) and (2.18) for $\left(\hat{M}_{n}\right)_{n \geq 0}$ give
Corollary 2.5. If $\left(M_{n}\right)_{n \geq 0}$ is a nonnegative submartingale with $m=E M_{0}>1$, then

$$
\begin{align*}
E M_{n}^{*} \leq E \hat{M}_{n+1}^{*} & \leq b+\frac{b}{b-1} E\left(\int_{1}^{\left(M_{n} / m\right) \vee 1} \log x d x\right) \\
& \leq b+\frac{b}{b-1}\left(E\left(\frac{M_{n}}{m} \log ^{+}\left(\frac{M_{n}}{m}\right)\right)-E\left(\frac{M_{n}}{m}-1\right)^{+}\right) \tag{2.21}
\end{align*}
$$

for all $b>1$ and $n \geq 1$, in particular

$$
\begin{equation*}
E M_{n}^{*} \leq\left(1+\left(E\left(\int_{1}^{\left(M_{n} / m\right) \vee 1} \log x d x\right)\right)^{1 / 2}\right)^{2} \tag{2.22}
\end{equation*}
$$

when choosing the minimizing b^{*} (compare (2.16)).

3. Proofs

We begin with a collection of some useful properties of the function $\Phi=\Phi_{0}$ in (2.2) associated with an element ϕ of \mathfrak{C}_{0}.

Lemma 3.1. For each $\phi \in \mathfrak{C}_{0}$ with $p=p_{\phi}>1$ the function Φ satisfies

$$
\begin{equation*}
\Phi(x) \leq \frac{1}{p-1} \phi(x), \quad x \geq 0 . \tag{3.1}
\end{equation*}
$$

If ϕ is moderate, i.e. $p^{*}=p_{\phi}^{*}<\infty$, then

$$
\begin{equation*}
\Phi(x) \geq \frac{1}{p^{*}-1} \phi(x), \quad x \geq 0 \tag{3.2}
\end{equation*}
$$

Finally, for each $\phi \in \mathfrak{C}_{0}$ the inequality

$$
\begin{equation*}
\liminf _{x \rightarrow \infty} \frac{\Phi(x)}{x \log x}>0 \tag{3.3}
\end{equation*}
$$

holds true.

The final inequality shows that $\lim _{x \rightarrow \infty} \frac{\Phi(x)}{x}=\infty$ whenever $\phi \in \mathfrak{C}_{0}$ is a function "close to the identity" in the sense that $\phi(x)=o(x \log x)$ as $x \rightarrow \infty$. Another class of examples comprises $\phi(x)=r x \log ^{r-1}(1+x)-\log ^{r}(1+x)$ for $r \geq 1$ in which case $\Phi(x)=(1+x) \log ^{r}(1+x)$ (use the differential equation (2.3)).

Proof. Using $x \phi^{\prime}(x) \geq p \phi(x)$, we obtain by partial integration

$$
\int_{0}^{s} \frac{\phi^{\prime}(r)}{r} d r=\frac{\phi(s)}{s}+\int_{0}^{s} \frac{\phi(r)}{r^{2}} d r \leq \frac{\phi(s)}{s}+\frac{1}{p} \int_{0}^{s} \frac{\phi^{\prime}(r)}{r} d r
$$

and thus $\int_{0}^{s} \frac{\phi^{\prime}(r)}{r} d r \leq \frac{p}{p-1} \frac{\phi(s)}{s} \leq \frac{1}{p-1} \phi^{\prime}(s)$ for $s \geq 0$. An integration of this inequality with respect to s obviously implies (3.1). The second inequality (3.2) is obtained analogously when utilizing that $p^{*}<\infty$ implies $x \phi^{\prime}(x) \leq p^{*} \phi(x)$ for all $x \geq 0$. As to (3.3), choose $a>0$ such that $\phi^{\prime}(a)>0$. Then

$$
\Phi(x) \geq \Phi_{a}(x)=\int_{a}^{x} \int_{a}^{s} \frac{\phi^{\prime}(1)}{r} d r d s=\phi^{\prime}(a)(x \log (x / a)-x+a)
$$

for all $x \geq a$.

The proofs of Theorem 2.1 and 2.4 are based on the following more general proposition.

Proposition 3.2. Let $\left(M_{n}\right)_{n \geq 0}$ be a nonnegative submartingale and $\phi \in \mathfrak{C}$. Then inequality (2.1) holds true and furthermore

$$
\begin{equation*}
E \phi\left(M_{n}^{*}\right) \leq \phi(b)+\frac{\lambda}{1-\lambda} \int_{\left\{M_{n} / \lambda>b\right\}}\left(\Phi_{a}\left(\frac{M_{n}}{\lambda}\right)-\Phi_{a}(b)-\Phi_{a}^{\prime}(b)\left(\frac{M_{n}}{\lambda}-b\right)\right) d P \tag{3.4}
\end{equation*}
$$

for all $n \geq 0, a, b>0$ and $\lambda \in(0,1)$. If $\frac{\phi^{\prime}(x)}{x}$ is integrable at 0 , i.e. $\phi \in \mathfrak{C}_{0}$, then (3.4) remains valid for $b=0$.

Proof. Doob's maximal inequality gives

$$
\begin{align*}
P\left(M_{n}^{*}>t\right) & \leq \frac{1}{t} \int_{\left\{M_{n}^{*}>t\right\}} M_{n} d P \\
& =\frac{1}{t} \int_{0}^{\infty} P\left(M_{n}^{*}>t, M_{n}>s\right) d s \\
& =\frac{1}{t} \int_{0}^{\lambda t} P\left(M_{n}^{*}>t\right) d s+\frac{1}{t} \int_{\lambda t}^{\infty} P\left(M_{n}>s\right) d s \\
& \leq \lambda P\left(M_{n}^{*}>t\right)+\frac{\lambda}{t} \int_{t}^{\infty} P\left(M_{n} / \lambda>s\right) d s \tag{3.5}
\end{align*}
$$

and thus

$$
P\left(M_{n}^{*}>t\right) \leq \frac{\lambda}{(1-\lambda) t} \int_{t}^{\infty} P\left(M_{n} / \lambda>s\right) d s
$$

for all $n \geq 0, t>0$ and $\lambda \in(0,1)$, which is (2.1). With this result we further infer

$$
\begin{aligned}
E \phi\left(M_{n}^{*}\right) & \leq \phi(b)+\int_{b}^{\infty} \phi^{\prime}(t) P\left(M_{n}^{*}>t\right) d t \\
& \leq \phi(b)+\frac{\lambda}{1-\lambda} \int_{b}^{\infty} \frac{\phi^{\prime}(t)}{t} \int_{t}^{\infty} P\left(M_{n} / \lambda>s\right) d s d t \\
& =\phi(b)+\frac{\lambda}{1-\lambda} \int_{b}^{\infty}\left(\int_{b}^{s} \frac{\phi^{\prime}(t)}{t} d t\right) P\left(M_{n} / \lambda>s\right) d s \\
& =\phi(b)+\frac{\lambda}{1-\lambda} \int_{b}^{\infty}\left(\Phi_{a}^{\prime}(s)-\Phi_{a}^{\prime}(b)\right) P\left(M_{n} / \lambda>s\right) d s \\
& =\phi(b)+\frac{\lambda}{1-\lambda} \int_{\left\{M_{n} / \lambda>b\right\}}\left(\Phi_{a}\left(\frac{M_{n}}{\lambda}\right)-\Phi_{a}(b)-\Phi_{a}^{\prime}(b)\left(\frac{M_{n}}{\lambda}-b\right)\right) d P
\end{aligned}
$$

for all $n \geq 0, b, t>0, \lambda \in(0,1)$ and $a>0$, where $a=0$ may also be chosen if $\frac{\phi^{\prime}(x)}{x}$ is integrable at 0 .

Proof of Theorem 2.1. Inequality (2.4) follows directly from Proposition 3.2 if we choose $b=a$ and recall that $\Phi_{a}(a)=\Phi_{a}^{\prime}(a)=0$. Hence we are left with the proof of (2.6). If $\left(M_{n}\right)_{n \geq 0}$ is a positive martingale satisfying $M_{n+1} \leq c M_{n}$ for all $n \geq 0$ and some $c>0$, then

$$
P\left(M_{n}^{*}>t\right) \geq \frac{1}{c t} \int_{\left\{M_{n}^{*}>t\right\}} M_{n} d P-\frac{1}{c t} \int_{\left\{M_{0}>t\right\}} M_{0} d P
$$

for all $n \geq 0$ and $t>0$, see [8, p. 72]. Consequently,

$$
\begin{align*}
P\left(M_{n}^{*}>t\right) \geq & \frac{1}{c t} \int_{\left\{M_{n}>t\right\}} M_{n} d P-\frac{1}{c t} \int_{\left\{M_{0}>t\right\}} M_{0} d P \\
= & \frac{1}{c t} \int_{t}^{\infty}\left(P\left(M_{n}>s\right)-P\left(M_{0}>s\right)\right) d s \\
& +\frac{1}{c}\left(P\left(M_{n}>t\right)-P\left(M_{0}>t\right)\right) \tag{3.6}
\end{align*}
$$

for all $n \geq 0$ and $t>0$. Assuming $E \Phi_{a}\left(M_{0}\right)<\infty$, and also $E \phi\left(M_{n}^{*}\right)<\infty$ (there is nothing to prove otherwise), (2.6) now follows upon integration over $(0, \infty)$ with respect to t of both sides of (3.6) multiplied with $\phi^{\prime}(t)$. We must only note that

$$
\int_{0}^{\infty} \phi^{\prime}(t)\left(P\left(M_{n}>t\right)-P\left(M_{0}>t\right)\right) d t=E \phi\left(M_{n}\right)-E \phi\left(M_{0}\right) \geq 0
$$

because ϕ is convex and $E \phi\left(M_{k}\right) \leq E \phi\left(M_{n}\right)<\infty$ for $0 \leq k \leq n$.
We continue with a short proof of Proposition 1.1 stated in the Introduction.
Proof of Proposition 1.1. Let $\phi \in \mathfrak{C}$ with $p=p_{\phi}>1$, put $q \stackrel{\text { def }}{=} \frac{p}{p-1}$ and recall from (2.12) that $E \phi\left(M_{n}^{*}\right) \leq E \phi\left(q M_{n}\right)$ for each $n \geq 0$. Setting $\gamma_{n} \stackrel{\text { def }}{=}\left\|M_{n}\right\|_{\phi}$, this inequality implies

$$
E \phi\left(M_{n}^{*} / q \lambda_{n}\right) \leq E \phi\left(M_{n} / \lambda_{n}\right)=1
$$

as well as (use also (1.10))

$$
E \phi\left(M_{n}^{*}\right) \leq E \phi\left(q M_{n}\right) \leq q^{p^{*}} E \phi\left(M_{n}\right)
$$

The second inequality proves (1.13) while the first one yields $\left\|M_{n}^{*}\right\|_{\phi} \leq q \lambda_{n}$ and thus assertion (1.12).

Proof of Theorem 2.3. The basic tool for the proof of Theorem 2.3 is to convert the assumption of smooth convexity $\left(\phi^{(k)} \in \mathfrak{C}\right)$ into a suitable Choquet decomposition of ϕ. Each $\phi \in \mathfrak{C}$ can be written as

$$
\phi(x)=\int_{[0, \infty)}(x-t)^{+} Q_{\phi}(d t)
$$

where $Q_{\phi}(d t)=\phi^{\prime}(0) \delta_{0}+\phi^{\prime}(d t)$. Hence, if $\phi^{\prime} \in \mathfrak{C}$, then

$$
\begin{aligned}
\phi(x) & =\int_{0}^{x} \phi^{\prime}(y) d y \\
& =\int_{0}^{x} \int_{[0, \infty)}(y-t)^{+} Q_{\phi^{\prime}}(d t) d y \\
& =\int_{[0, \infty)} \int_{0}^{x}(y-t)^{+} d y Q_{\phi^{\prime}}(d t) \\
& =\int_{[0, \infty)} \frac{\left((x-t)^{+}\right)^{2}}{2} Q_{\phi^{\prime}}(d t) .
\end{aligned}
$$

An inductive argument now gives that

$$
\begin{equation*}
\phi(x)=\int_{[0, \infty)} \frac{\left((x-t)^{+}\right)^{k+1}}{(k+1)!} Q_{\phi^{(k)}}(d t) \tag{3.7}
\end{equation*}
$$

for each $\phi \in \mathfrak{C}$ with $\phi^{(k)} \in \mathfrak{C}$. Put $\varphi_{k, t}(x) \stackrel{\text { def }}{=} \frac{\left((x-t)^{+}\right)^{k+1}}{(k+1)!}$ for $k \geq 1$ and $t \in[0, \infty)$. Note that $\varphi_{k, t}^{1 /(k+1)}$ is convex for each t. Thus we infer with the help of (3.7) and the argument which proved (2.8) that

$$
\begin{aligned}
E \phi\left(M_{n}^{*}\right) & =\int_{[0, \infty)} E \varphi_{k, t}\left(M_{n}^{*}\right) Q_{\phi^{(k)}}(d t) \\
& \leq\left(\frac{k+1}{k}\right)^{k+1} \int_{[0, \infty)} E \varphi_{k, t}\left(M_{n}\right) Q_{\phi^{(k)}}(d t) \\
& =\left(\frac{k+1}{k}\right)^{k+1} E \phi\left(M_{n}\right)
\end{aligned}
$$

for each $n \geq 0$. Replacing M_{n}^{*} with M_{n}^{*} / γ_{n} in the previous estimation, where $\gamma_{n} \stackrel{\text { def }}{=} \frac{k+1}{k}\left\|M_{n}\right\|_{\phi}$, further gives (2.14) by a similar argument as in the proof of Proposition 1.1.

Proof of Theorem 2.4. If $\phi(x)=x$, then $\Phi_{1}(x)=x \log x-x+1$ and $\Phi_{1}^{\prime}(x)=\log x$ for $x>0$. Inequality (3.4) with these functions reads

$$
\begin{aligned}
E M_{n}^{*} & \leq b+\frac{\lambda}{1-\lambda} \int_{\left\{M_{n}>\lambda b\right\}}\left(\frac{M_{n}}{\lambda} \log \left(\frac{M_{n}}{\lambda}\right)-\frac{M_{n}}{\lambda}+b-\log b \frac{M_{n}}{\lambda}\right) d P \\
& =b+\frac{1}{1-\lambda} \int_{\left\{M_{n}>\lambda b\right\}}\left(M_{n} \log M_{n}-M_{n}(\log \lambda+\log b+1)+\lambda b\right) d P
\end{aligned}
$$

for all $b>0$ and $\lambda \in(0,1)$. Choose $b>1$ and $\lambda=\frac{1}{b}$ to obtain (2.15) in its equivalent form (2.18). (2.16) follows by elementary calculus. Finally, if $\left(M_{n}\right)_{n \geq 0}$ is a positive martingale with $M_{n+1} \leq c M_{n}$ for some $c>0$ and all $n \geq 0$, and if $E M_{0} \log ^{+} M_{0}<\infty$, then a use of the first inequality in (3.6) gives after partial integration

$$
\begin{aligned}
E M_{n}^{*} & \geq \int_{1}^{\infty} \frac{1}{c t}\left(\int_{\left\{M_{n}>t\right\}} M_{n} d P-\int_{\left\{M_{0}>t\right\}} M_{0} d P\right) d t \\
& =\frac{1}{c} E\left(M_{n} \int_{1}^{M_{n} \vee 1} \frac{1}{t} d t-M_{0} \int_{1}^{M_{0} \vee 1} \frac{1}{t} d t\right) \\
& =\frac{1}{c}\left(E M_{n} \log ^{+} M_{n}-E M_{0} \log ^{+} M_{0}\right)
\end{aligned}
$$

for all $n \geq 1$ and hence the asserted inequality (2.17).

Appendix 1

Inequality (2.12) from which Proposition 1.1 was deduced may be viewed as a specialization of inequality (A.2) below to the pair $(X, Y)=\left(M_{n}, M_{n}^{*}\right)$. The purpose of this short
appendix is to provide a proof of (A.2) based upon a Choquet representation of the involved convex function ϕ.

Lemma A.1. Let X, Y be nonnegative random variables satisfying Doob's inequality

$$
\begin{equation*}
t P(Y \geq t) \leq E 1_{\{Y \geq t\}} X \tag{A.1}
\end{equation*}
$$

for all $t \geq 0$. Then

$$
\begin{equation*}
E \phi(Y) \leq E \phi(q X) \tag{A.2}
\end{equation*}
$$

holds for each Orlicz function ϕ, where $q \stackrel{\text { def }}{=} q_{\phi}=\frac{p_{\phi}}{p_{\phi}-1}$.
Proof. If $p=p_{\phi}=1$, thus $q=\infty$, there is nothing to prove. So let $p>1$ and put $V=q X$. Write ϕ in Choquet decomposition, that is

$$
\phi(x)=\int_{[0, \infty)}(x-t)^{+} \phi^{\prime}(d t), \quad x \geq 0
$$

Then we obtain

$$
\begin{aligned}
E \phi(V)-E \phi(Y) & =E\left(\int_{[0, \infty)}(V-t)^{+}-(Y-t)^{+} \phi^{\prime}(d t)\right) \\
& =E\left(\int_{[0, V]}(V-t) \phi^{\prime}(d t)-\int_{[0, Y]}(Y-t) \phi^{\prime}(d t)\right) \\
& =E\left(\int_{[0, V]}(V-t) \phi^{\prime}(d t)-\int_{[0, Y]}(V-t) \phi^{\prime}(d t)\right) \\
& +E\left(\int_{[0, Y]}(V-t) \phi^{\prime}(d t)-\int_{[0, Y]}(Y-t) \phi^{\prime}(d t)\right) \\
& =E\left(\mathbf{1}_{\{V \geq Y\}} \int_{(Y, V]}(V-t) \phi^{\prime}(d t)+\mathbf{1}_{\{V<Y\}} \int_{(V, Y]}(t-V) \phi^{\prime}(d t)\right) \\
& +E\left(\int_{[0, Y]}(V-Y) \phi^{\prime}(d t)\right) \\
& =I_{1}+I_{2} .
\end{aligned}
$$

It is easily seen that $I_{1} \geq 0$. So it remains to prove that $I_{2}=E V \phi^{\prime}(V)-E Y \phi^{\prime}(Y) \geq 0$. To this end write

$$
\begin{aligned}
E Y \phi^{\prime}(Y) \geq p E \phi(Y) & =p E\left(\int_{[0, \infty)}(Y-t)^{+} \phi^{\prime}(d t)\right) \\
& =p E Y \phi^{\prime}(Y)-p E\left(\int_{\{Y \geq t\}} t \phi^{\prime}(d t)\right)
\end{aligned}
$$

which, after rearranging terms and using (A.1), leads to

$$
E Y \phi^{\prime}(Y) \leq q E\left(\int_{\{Y \geq t\}} t \phi^{\prime}(d t)\right) \leq q E\left(\int_{\{Y \geq t\}} X \phi^{\prime}(d t)\right)=E V \phi^{\prime}(Y)
$$

and thus the desired conclusion.

Appendix 2

We claimed in Section 2 that

$$
\begin{equation*}
\frac{y-1}{x-1}\left(\frac{y}{y-1}\right)^{y} \leq\left(\frac{x}{x-1}\right)^{y} \tag{A.3}
\end{equation*}
$$

holds true for all $y \geq x>1$ and that the inequality is strict unless $x=y$. (A.3) may be rewritten as

$$
\left(\frac{x-1}{y-1}\right)^{y-1} \leq\left(\frac{x}{y}\right)^{y}
$$

Taking logarithms we arrive at

$$
(y-1)(\log (x-1)-\log (y-1)) \leq y(\log x-\log y)
$$

The desired conclusion is now an immediate consequence of the following lemma.
Lemma A.2. For each $y>1$, the function $f_{y}:(1, y] \rightarrow \mathbb{R}$,

$$
f_{y}(x) \stackrel{\text { def }}{=}(y-1)(\log (x-1)-\log (y-1))-y(\log x-\log y)
$$

is strictly increasing with $f_{y}(y)=0$.
Proof. It suffices to note that

$$
f_{y}^{\prime}(x)=\frac{y-1}{x-1}-\frac{y}{x}>0
$$

for all $x \in(1, y)$.

References

[1] ALSMEYER, G. and RÖSLER, U. (2003). The best constant in the Topchii-Vatutin inequality for martingales. To appear in Statist. Probab. Letters.
[2] BINGHAM, N.H., GOLDIE, C.M. and TEUGELS, J.L. (1987). Regular Variation. Cambridge Univ. Press, Cambridge.
[3] BURKHOLDER, D.L. (1991). Explorations in martingale theory and applications. Ecole d'Eté de Probabilité de Saint Flour XIX -1989, Ed. P. Hennequin, Lect. Notes Math. 1464, 1-66. Springer, Berlin.
[4] CHOW, Y.S. and TEICHER, H. (1997). Probability Theory: Independence, Interchangeability, Martingales (3rd Edition). Springer, New York.
[5] DELLACHERIE, C. and MEYER, P.A. (1982). Probabilities and Potential B. Theory of Martingales. North-Holland, Amsterdam.
[6] GUNDY, R.F. (1969). On the class $L \log L$, martingales, and singular integrals. Studia Math. 33, 109-118.
[7] LONG, R. (1993). Martingale Spaces and Inequalities. Peking University Press and Vieweg, Wiesbaden.
[8] NEVEU, J. (1975). Discrete-Parameter Martingales. North-Holland, Amsterdam.

