ANGEWANDTE MATHEMATIK UND

INFORMATIK

$\begin{array}{c} {\rm Maximal} \ \phi {\rm -Inequalities} \\ {\rm for \ Nonnegative \ Submartingales} \end{array}$

G. Alsmeyer und U. Rösler

Universität Münster und Universität Kiel e-mail: gerolda@math.uni-muenster.de, roesler@math.uni-kiel.de

Bericht Nr. 04/03-S

UNIVERSITÄT MÜNSTER

Maximal ϕ -Inequalities for Nonnegative Submartingales

GEROLD ALSMEYER

Institut für Mathematische Statistik Fachbereich Mathematik Westfälische Wilhelms-Universität Münster Einsteinstraße 62 D-48149 Münster, Germany

UWE RÖSLER

Mathematisches Seminar Christian-Albrechts-Universität Kiel Ludewig-Meyn-Straße 4 D-24098 Kiel, Germany

Let $(M_n)_{n\geq 0}$ be a nonnegative submartingale and $M_n^* \stackrel{\text{def}}{=} \max_{0\leq k\leq n} M_k$, $n\geq 0$ the associated maximal sequence. For nondecreasing convex functions $\phi : [0,\infty) \to [0,\infty)$ with $\phi(0) = 0$ (Orlicz functions) we provide various inequalities for $E\phi(M_n^*)$ in terms of $E\Phi_a(M_n)$ where, for $a\geq 0$,

$$\Phi_a(x) \stackrel{\text{def}}{=} \int_a^x \int_a^s \frac{\phi'(r)}{r} \, dr \, ds, \quad x > 0.$$

Of particular interest is the case $\phi(x) = x$ for which a variational argument leads us to

$$EM_n^* \leq \left(1 + \left(E\left(\int_1^{M_n \vee 1} \log x \ dx\right)\right)^{1/2}\right)^2.$$

A further discussion shows that the given bound is better than Doob's classical bound $\frac{e}{e-1}(1+EM_n\log^+ M_n)$ whenever $E(M_n-1)^+ \ge e-2 \approx 0.718$.

AMS 1991 subject classifications. 60G42, 60E15.

Keywords and phrases. Nonnegative submartingale, maximal sequence, Orlicz and Young function, Choquet representation, convex function inequality.

1. INTRODUCTION

Let $(M_n)_{n\geq 0}$ be a nonnegative submartingale and $M_n^* \stackrel{\text{def}}{=} \max_{0\leq k\leq n} M_k$, $n\geq 0$ the associated maxima. Moment inequalities for the sequence $(M_n^*)_{n\geq 0}$ in terms of $(M_n)_{n\geq 0}$ are usually based on Doob's maximal inequality which states that

$$P(M_n^* > t) \leq \frac{1}{t} \int_{\{M_n^* > t\}} M_n \, dP \tag{1.1}$$

for $n \ge 0$ and t > 0. If p > 1, a combination of (1.1) with Hölder's inequality shows

$$EM_n^{*p} \leq \left(\frac{p}{p-1}\right)^p EM_n^p \tag{1.2}$$

for $n \ge 0$ [4, p. 255f], the constant being sharp (see [3, p. 14]). In case p = 1 one finds with (1.1) that

$$EM_n^* \leq \frac{e}{e-1} \left(1 + EM_n \log^+ M_n \right) \tag{1.3}$$

for $n \ge 0$. Clearly, these results apply to $(|M_n|)_{n\ge 0}$ if $(M_n)_{n\ge 0}$ is a martingale.

ORLICZ AND YOUNG FUNCTIONS. (1.2) and (1.3) are only special cases within a whole class of convex function inequalities based on Doob's inequality which is the main topic of this paper. Let \mathfrak{C} denote the class of *Orlicz functions*, that is unbounded, nondecreasing convex functions $\phi : [0, \infty) \to [0, \infty)$ with $\phi(0) = 0$. If the right derivative ϕ' is also unbounded then ϕ is called a *Young function* and we denote by \mathfrak{C}' the subclass of such functions. Given any probability space $(\Omega, \mathfrak{A}, P)$, each $\phi \in \mathfrak{C}$ induces the semi-Banach space $(\mathfrak{L}^{\phi}(P), \|\cdot\|_{\phi})$ of ϕ -integrable random variables X on $(\Omega, \mathfrak{A}, P)$, where

$$||X||_{\phi} \stackrel{\text{def}}{=} \inf\{\lambda > 0: E\Phi(|X|/\lambda) \le 1\}$$

defines the underlying semi-norm. $(\mathfrak{L}^{\phi}(P), \|\cdot\|_{\phi})$ is called an *Orlicz space* and equals the space of α -times integrable functions $(\mathfrak{L}^{\alpha}(P), \|\cdot\|_{\alpha})$ in case $\phi(x) = x^{\alpha}$ for some $\alpha \in [1, \infty)$.

Since $\phi(x) = \int_0^x \phi'(s) \, ds \le x \phi'(x)$ by convexity, the numbers

$$p = p_{\phi} \stackrel{\text{def}}{=} \inf_{x>0} \frac{x\phi'(x)}{\phi(x)} \quad \text{and} \quad p^* = p_{\phi}^* \stackrel{\text{def}}{=} \sup_{x>0} \frac{x\phi'(x)}{\phi(x)} \tag{1.4}$$

are both in $[1, \infty]$. ϕ is called *moderate* [5, p. 162] if $p^* < \infty$ or, equivalently [7, Thm. 3.1.1], if for some (and then all) $\lambda > 1$ there exists a finite constant c_{λ} such that

$$\phi(\lambda x) \leq c_{\lambda}\phi(x), \quad x \geq 0. \tag{1.5}$$

This property is shared by all $\phi \in \mathfrak{C}$ which are also regularly varying at infinity at order $\alpha \ge 1$ [2], thus including $\phi(x) = x^{\alpha}$ for $\alpha \in [1, \infty)$. Examples of non-moderate Orlicz functions are $\phi(x) = \exp(x^{\alpha}) - 1$ for any $\alpha \ge 1$. Given a Young function ϕ , the right continuous inverse $\psi'(x) \stackrel{\text{def}}{=} \inf\{y : \phi'(y) > x\}$ of ϕ' is also unbounded and thus $\psi(x) \stackrel{\text{def}}{=} \int_0^x \psi'(s) \, ds$ again an element of \mathfrak{C}' , called the *conjugate* Young function to ϕ . Obviously, this conjugation is reflexive. A simple geometric argument shows [5, p. 163] that

$$x\phi'(x) = \phi(x) + \int_0^{\phi'(x)} \psi'(s) \, ds = \phi(x) + \psi(\phi'(x)), \quad x \ge 0.$$
(1.6)

and, by reflexivity, the same identity holds true with the roles of ϕ and ψ interchanged. With the help of (1.6), $\psi(x) \geq \frac{1}{p_{\psi}^*} x \psi'(x)$ and $\psi'(\phi'(x)) \geq x$ we infer as in [5, p. 169] that

$$x\phi'(x) = \phi(x) + \psi(\phi'(x)) \ge \phi(x) + \frac{1}{p_{\psi}^*}\phi'(x)\psi'(\phi'(x)) \ge \phi(x) + \frac{1}{p_{\psi}^*}x\phi'(x)$$

for $x \ge 0$ and thus $p_{\phi} = \inf_{x>0} \frac{x\phi'(x)}{\phi(x)} \ge \frac{p_{\psi}^*}{p_{\psi}^* - 1}$. The reverse inequality can also be shown [7, Thm. 3.1.1] so that we have the identity

$$p_{\phi} = \frac{p_{\psi}^*}{p_{\psi}^* - 1}, \text{ or equivalently } \frac{1}{p_{\phi}} + \frac{1}{p_{\psi}^*} = 1.$$
 (1.7)

As further results stated in [7, Thm. 3.1.1] we mention that for any $\phi \in \mathfrak{C}$ with $p = p_{\phi}$ the assertions

$$\phi(\lambda x) \ge \lambda^p \phi(x) \quad \text{for all } \lambda > 1 \text{ and } x > 0;$$
 (1.8)

$$\frac{\phi(x)}{x^p} \nearrow \tag{1.9}$$

hold true, and that for moderate ϕ with $p^*=p_\phi^*$ furthermore

$$\phi(\lambda x) \leq \lambda^{p^*} \phi(x) \quad \text{for all } \lambda > 1 \text{ and } x > 0;$$
 (1.10)

$$\frac{\phi(x)}{x^{p^*}} \searrow . \tag{1.11}$$

The following two inequalities, the first of which may also be found in [5, p. 169], are easily deduced from another inequality stated as (2.12) in the next section. This latter inequality emerges as a special case of one of our results, see Corollary 2.2, but can also be derived by different arguments based on Doob's inequality and the Choquet representation of a function in \mathfrak{C} . For the interested reader this is briefly demonstrated in Appendix 1.

PROPOSITION 1.1. Let ϕ be an Orlicz function with $p = p_{\phi} > 1$ and $(M_n)_{n \ge 0}$ be a nonnegative submartingale. Then

$$\|M_n^*\|_{\phi} \leq \frac{p}{p-1} \|M_n\|_{\phi}$$
(1.12)

for each $n \ge 0$. If ϕ is also moderate, i.e. $p^* = p_{\phi}^* < \infty$, then furthermore

$$E\phi(M_n^*) \leq \left(\frac{p}{p-1}\right)^{p^*} E\phi(M_n) \tag{1.13}$$

for each $n \geq 0$.

2. Main Results

Inequalities of type (1.13) are also the content of our main results to be presented in this section. They are based upon integration of a variational variant of Doob's inequality (1.1) to be proved in Proposition 3.2, namely

$$P(M_n^* > t) \leq \frac{\lambda}{(1-\lambda)t} \int_t^\infty P(M_n/\lambda > s) \, ds = \frac{\lambda}{(1-\lambda)t} E\left(\frac{M_n}{\lambda} - t\right)^+ \tag{2.1}$$

for all $n \ge 0$, t > 0 and $\lambda \in (0,1)$. Under additional contraints on ϕ we will see that by good choices of λ the constant in (1.13) can be improved considerably. We will also derive an inequality for EM_n^* in terms of $EM_n \log^+ M_n$ which in many situations strictly beats (1.3).

The following two subclasses of \mathfrak{C} will be of interest hereafter. We shall denote by \mathfrak{C}^* the set of all differentiable $\phi \in \mathfrak{C}$ whose derivative is concave or convex, and by \mathfrak{C}_0 the set of $\phi \in \mathfrak{C}$ such that $\frac{\phi'(x)}{x}$ is integrable at 0 and thus in particular $\phi'(0) = 0$. Put $\mathfrak{C}_0^* \stackrel{\text{def}}{=} \mathfrak{C}_0 \cap \mathfrak{C}^*$.

Given $\phi \in \mathfrak{C}$ and $a \ge 0$, define

$$\Phi_a(x) \stackrel{\text{def}}{=} \int_a^x \int_a^s \frac{\phi'(r)}{r} \, dr \, ds, \quad x > 0 \tag{2.2}$$

and note that $\Phi_a \mathbf{1}_{[a,\infty)} \in \mathfrak{C}$ for a > 0. If $\phi \in \mathfrak{C}_0$ the same holds true for $\Phi \stackrel{\text{def}}{=} \Phi_0$, whereas $\Phi \equiv \infty$ otherwise. The function Φ will be of great importance in our subsequent analysis. If $\phi \in \mathfrak{C}_0$ then Φ is obviously again an element from this class. If in addition ϕ' is concave or convex the same holds true for $\Phi'(x) = \int_0^x \frac{\phi'(r)}{r} dr$, hence $\phi \in \mathfrak{C}_0^*$ implies $\Phi \in \mathfrak{C}_0^*$. Use $\Phi''(x) = \frac{\phi'(x)}{x}$ to see that ϕ and Φ are related through the differential equation

$$x\Phi'(x) - \Phi(x) = \phi(x), \quad x \ge 0$$
 (2.3)

under the initial conditions $\phi(0) = \phi'(0) = \Phi(0) = \Phi'(0) = 0$. If $\phi(x) = x^p$ for some p > 1, then $\Phi(x) = \frac{1}{p-1}x^p$, in particular $\Phi = \phi$ in case $\phi(x) = x^2$. If $\phi(x) = x$ then $\Phi \equiv \infty$, but we have $\Phi_1(x) = (x \log x - x + 1)$. Further properties of Φ and its relation to ϕ are collected in Lemma 3.1 at the beginning of Section 3 where it will be seen particularly that Φ and ϕ grow at the same order of magnitude unless ϕ or its conjugate are non-moderate.

THEOREM 2.1. Let $(M_n)_{n\geq 0}$ be a nonnegative submartingale and $\phi \in \mathfrak{C}$. Then

$$E\phi(M_n^*) \leq \phi(a) + \frac{\lambda}{1-\lambda} E\Phi_a(M_n/\lambda)$$
 (2.4)

for all $a \ge 0$, $\lambda \in (0, 1)$ and $n \ge 0$, in particular $(\lambda = \frac{1}{2})$

$$E\phi(M_n^*) \leq \phi(a) + E\Phi_a(2M_n) \tag{2.5}$$

for all a > 0 and $n \ge 0$. If $(M_n)_{n\ge 0}$ is a positive martingale with $M_{n+1} \le cM_n$ for some c > 0and all $n \ge 0$, and if $E\Phi_a(M_0) < \infty$, then

$$E\phi(M_n^*) \ge c^{-1} \Big(E\Phi_a(M_n) - E\Phi_a(M_0) \Big)$$
(2.6)

for all $n \geq 0$.

Of course, inequality (2.4) with a = 0 is of interest only when $\Phi_0 < \infty$, thus for $\phi \in \mathfrak{C}_0$. The conditions on $(M_n)_{n\geq 0}$ implying (2.6) were given by Gundy [6] to demonstrate that the bound in (1.3) cannot be much improved, see (2.17) below and also [8, p. 71f].

If $\phi(x) = x^p$ for some p > 1, then $\Phi(x) = \frac{1}{p-1}x^p$ implies in (2.4) with a = 0

$$EM_n^{*p} \leq \frac{\lambda^{1-p}}{(1-\lambda)(p-1)} EM_n^p \tag{2.7}$$

for all $n \ge 0$ and $\lambda \in (0, 1)$. Elementary calculus shows that

$$\lambda^*(p) \stackrel{\text{def}}{=} \operatorname{argmin}_{\lambda \in (0,1)} \frac{\lambda^{1-p}}{(1-\lambda)} = \frac{p-1}{p}$$

With this value of λ in (2.7) Doob's \mathfrak{L}^p -inequality (1.2) comes out again. For an extension of it consider nonnegative increasing functions ϕ on $[0,\infty)$ such that $\phi^{1/\gamma}$ is also convex for some $\gamma > 1$. As before let $(M_n)_{n\geq 0}$ be a nonnegative submartingale. Then the same holds true for $(\phi^{1/\gamma}(M_n))_{n\geq 0}$, the associated sequence of maxima being $(\phi^{1/\gamma}(M_n^*))_{n\geq 0}$. Consequently, (1.2) implies

$$E\phi(M_n^*) \leq \left(\frac{\gamma}{\gamma-1}\right)^{\gamma} E\phi(M_n)$$
 (2.8)

for each $n \ge 0$. Interesting examples are $\phi(x) = x^p \log^r (1+x)$ for p > 1 and $r \ge 0$ (choose $\gamma = p$), as well as $\phi(x) = e^{rx}$ for r > 0. For the latter example any $\gamma > 0$ will do and since $(\frac{\gamma}{\gamma-1})^{\gamma}$ decreases to e as $\gamma \to \infty$, we obtain

$$Ee^{rM_n^*} \le e Ee^{rM_n} \tag{2.9}$$

for all $n \ge 0$ and r > 0.

We will show in the next section that $\Phi(x) \leq \frac{1}{p-1}\phi(x)$ for each $\phi \in \mathfrak{C}$ with $p = p_{\phi} > 1$ ($\Rightarrow \phi \in \mathfrak{C}_0$). With this at hand the subsequent corollary follows from Theorem 2.1.

COROLLARY 2.2. Given the situation of Theorem 2.1, let $\phi \in \mathfrak{C}$ be such that $p = p_{\phi} > 1$. Then

$$E\phi(M_n^*) \leq \frac{\lambda}{(1-\lambda)(p-1)} E\phi(M_n/\lambda)$$
 (2.10)

for all $\lambda \in (0,1)$ and $n \ge 0$. If ϕ is also moderate $(p^* < \infty)$ then

$$E\phi(M_n^*) \leq \frac{p^* - 1}{p - 1} \left(\frac{p^*}{p^* - 1}\right)^{p^*} E\phi(M_n)$$
 (2.11)

for each $n \geq 0$.

A comparison of the constants going with $E\phi(M_n)$ in (2.11) and (1.13) shows that the one in (2.11) is strictly better unless $p = p^*$ (see Lemma A.2 in Appendix 2 for a rigorous proof). For large p, p^* and $\beta \stackrel{\text{def}}{=} p^*/p$ we also have that $\frac{p^*-1}{p-1}(\frac{p^*}{p^*-1})^{p^*} \approx \beta e$, while $(\frac{p}{p-1})^{p^*} \approx e^{\beta}$.

Putting $q = \frac{p}{p-1}$ and choosing $\lambda = \frac{1}{q}$ in (2.10), we obtain

$$E\phi(M_n^*) \leq E\phi(qM_n) \tag{2.12}$$

for each $n \ge 0$ and any $\phi \in \mathfrak{C}$ with p > 1. It is this inequality which will easily give the assertions of Proposition 1.1 (see Section 3).

By a similar argument as the one leading to (2.8), Doob's inequality (1.2) can be used to get refinements of (1.13) and (2.11) for functions $\phi \in \mathfrak{C}^*$. However, the main tool for this is not (2.1) but rather a suitable Choquet representation of ϕ exploited in a similar manner as in [1] for the special case of $\phi \in \mathfrak{C}^*$ with concave derivative.

THEOREM 2.3. Given the situation of Theorem 2.1, let $\phi \in \mathfrak{C}$, $k \ge 1$ and $\phi^{(k)}$ the k-th order derivative of ϕ . Then $\phi^{(k)} \in \mathfrak{C} \ (\Rightarrow \phi \in \mathfrak{C}^*)$ implies

$$E\phi(M_n^*) \leq \left(\frac{k+1}{k}\right)^{k+1} E\phi(M_n) \tag{2.13}$$

as well as

$$||M_n^*||_{\phi} \leq \frac{k+1}{k} ||M_n||_{\phi}$$
(2.14)

for each $n \geq 0$.

In case $\phi(x) = x^p$ for integral p > 1 we have $\phi^{(p-1)} \in \mathfrak{C}$ and thus that (2.13) coincides with (1.2).

We finally turn to the case $\phi(x) = x$ for which $\Phi \equiv \infty$ but $\Phi_1(x) = x \log x - x + 1$ as mentioned earlier. A more general version of inequality (2.4) proved in Section 3 (Proposition 3.2) will be used to derive the following alternative to Doob's \mathfrak{L}_1 -inequality (1.3).

THEOREM 2.4. If $(M_n)_{n\geq 0}$ is a nonnegative submartingale, then

$$EM_n^* \leq b + \frac{b}{b-1} E\left(\int_1^{M_n \vee 1} \log x \ dx\right)$$
(2.15)

for all b > 1 and $n \ge 1$. The value of b which minimizes the right hand side equals $b^* \stackrel{\text{def}}{=} 1 + \left(E(\int_1^{M_n \vee 1} \log x \, dx)\right)^{1/2}$ and gives

$$EM_n^* \leq \left(1 + \left(E\left(\int_1^{M_n \vee 1} \log x \ dx\right)\right)^{1/2}\right)^2 \tag{2.16}$$

If $(M_n)_{n\geq 0}$ is a positive martingale with $M_{n+1} \leq cM_n$ for some c > 0 and all $n \geq 0$, and if $EM_0 \log^+ M_0 < \infty$, then

$$EM_n^* \ge \frac{1}{c} \Big(EM_n \log^+ M_n - EM_0 \log^+ M_0 \Big)$$
 (2.17)

for all $n \geq 0$.

Since $\int_1^x \log y \, dy = x \log^+ x - (x - 1)$ for $x \ge 1$, inequality (2.15) may be restated as

$$EM_n^* \le b + \frac{b}{b-1} \Big(EM_n \log^+ M_n - E(M_n - 1)^+ \Big)$$
 (2.18)

for all $n \ge 1$ and b > 1. For the special choices $b = E(M_n - 1)^+ + 1$ and b = e, this yields for each $n \ge 1$

$$EM_n^* \leq \frac{1 + E(M_n - 1)^+}{E(M_n - 1)^+} EM_n \log^+ M_n$$
 (2.19)

and

$$EM_n^* \le e + \frac{e}{e-1} \Big(EM_n \log^+ M_n - E(M_n - 1)^+ \Big),$$
 (2.20)

respectively, where the right hand side of (2.19) is to be interpreted as 1 if $M_n \leq 1$ a.s. Note that even the choice b = e, though only suboptimal, leads to a better bound for EM_n^* than in (1.3) whenever $E(M_n - 1)^+ \geq e - 2 \approx 0.718$.

The previous upper bounds for EM_n may be further improved if $m \stackrel{\text{def}}{=} EM_0 > 1$. To see this note that $(\hat{M}_n)_{n\geq 0} \stackrel{\text{def}}{=} (1, \frac{M_0}{m}, \frac{M_1}{m}, ...)$ forms again a nonnegative submartingale whose maxima \hat{M}_n^* satisfy

$$\hat{M}_n^* = \frac{M_{n-1}^*}{m} \vee 1$$

for $n \ge 1$. Consequently, (2.15) and (2.18) for $(\hat{M}_n)_{n\ge 0}$ give

COROLLARY 2.5. If $(M_n)_{n\geq 0}$ is a nonnegative submartingale with $m = EM_0 > 1$, then

$$EM_n^* \leq E\hat{M}_{n+1}^* \leq b + \frac{b}{b-1}E\left(\int_1^{(M_n/m)\vee 1}\log x \, dx\right)$$

$$\leq b + \frac{b}{b-1}\left(E\left(\frac{M_n}{m}\log^+\left(\frac{M_n}{m}\right)\right) - E\left(\frac{M_n}{m} - 1\right)^+\right)$$
(2.21)

for all b > 1 and $n \ge 1$, in particular

$$EM_n^* \leq \left(1 + \left(E\left(\int_1^{(M_n/m)\vee 1} \log x \ dx\right)\right)^{1/2}\right)^2$$
 (2.22)

when choosing the minimizing b^* (compare (2.16)).

3. Proofs

We begin with a collection of some useful properties of the function $\Phi = \Phi_0$ in (2.2) associated with an element ϕ of \mathfrak{C}_0 .

LEMMA 3.1. For each $\phi \in \mathfrak{C}_0$ with $p = p_{\phi} > 1$ the function Φ satisfies

$$\Phi(x) \leq \frac{1}{p-1}\phi(x), \quad x \geq 0.$$
(3.1)

If ϕ is moderate, i.e. $p^* = p_{\phi}^* < \infty$, then

$$\Phi(x) \geq \frac{1}{p^* - 1} \phi(x), \quad x \ge 0.$$
(3.2)

Finally, for each $\phi \in \mathfrak{C}_0$ the inequality

$$\liminf_{x \to \infty} \frac{\Phi(x)}{x \log x} > 0 \tag{3.3}$$

 \diamond

holds true.

The final inequality shows that $\lim_{x\to\infty} \frac{\Phi(x)}{x} = \infty$ whenever $\phi \in \mathfrak{C}_0$ is a function "close to the identity" in the sense that $\phi(x) = o(x \log x)$ as $x \to \infty$. Another class of examples comprises $\phi(x) = rx \log^{r-1}(1+x) - \log^r(1+x)$ for $r \ge 1$ in which case $\Phi(x) = (1+x) \log^r(1+x)$ (use the differential equation (2.3)).

PROOF. Using $x\phi'(x) \ge p\phi(x)$, we obtain by partial integration

$$\int_0^s \frac{\phi'(r)}{r} dr = \frac{\phi(s)}{s} + \int_0^s \frac{\phi(r)}{r^2} dr \le \frac{\phi(s)}{s} + \frac{1}{p} \int_0^s \frac{\phi'(r)}{r} dr$$

and thus $\int_0^s \frac{\phi'(r)}{r} dr \leq \frac{p}{p-1} \frac{\phi(s)}{s} \leq \frac{1}{p-1} \phi'(s)$ for $s \geq 0$. An integration of this inequality with respect to s obviously implies (3.1). The second inequality (3.2) is obtained analogously when utilizing that $p^* < \infty$ implies $x\phi'(x) \leq p^*\phi(x)$ for all $x \geq 0$. As to (3.3), choose a > 0 such that $\phi'(a) > 0$. Then

$$\Phi(x) \ge \Phi_a(x) = \int_a^x \int_a^s \frac{\phi'(1)}{r} dr ds = \phi'(a) \Big(x \log(x/a) - x + a \Big)$$

for all $x \ge a$.

The proofs of Theorem 2.1 and 2.4 are based on the following more general proposition.

PROPOSITION 3.2. Let $(M_n)_{n\geq 0}$ be a nonnegative submartingale and $\phi \in \mathfrak{C}$. Then inequality (2.1) holds true and furthermore

$$E\phi(M_n^*) \leq \phi(b) + \frac{\lambda}{1-\lambda} \int_{\{M_n/\lambda > b\}} \left(\Phi_a\left(\frac{M_n}{\lambda}\right) - \Phi_a(b) - \Phi_a'(b)\left(\frac{M_n}{\lambda} - b\right) \right) dP \qquad (3.4)$$

for all $n \ge 0$, a, b > 0 and $\lambda \in (0, 1)$. If $\frac{\phi'(x)}{x}$ is integrable at 0, i.e. $\phi \in \mathfrak{C}_0$, then (3.4) remains valid for b = 0.

PROOF. Doob's maximal inequality gives

$$P(M_n^* > t) \leq \frac{1}{t} \int_{\{M_n^* > t\}} M_n \, dP$$

= $\frac{1}{t} \int_0^\infty P(M_n^* > t, M_n > s) \, ds$
= $\frac{1}{t} \int_0^{\lambda t} P(M_n^* > t) \, ds + \frac{1}{t} \int_{\lambda t}^\infty P(M_n > s) \, ds$
 $\leq \lambda P(M_n^* > t) + \frac{\lambda}{t} \int_t^\infty P(M_n/\lambda > s) \, ds$ (3.5)

and thus

$$P(M_n^* > t) \leq \frac{\lambda}{(1-\lambda)t} \int_t^\infty P(M_n/\lambda > s) \, ds$$

for all $n \ge 0, t > 0$ and $\lambda \in (0, 1)$, which is (2.1). With this result we further infer

$$\begin{split} E\phi(M_n^*) &\leq \phi(b) + \int_b^\infty \phi'(t) P(M_n^* > t) \ dt \\ &\leq \phi(b) + \frac{\lambda}{1-\lambda} \int_b^\infty \frac{\phi'(t)}{t} \int_t^\infty P(M_n/\lambda > s) \ ds \ dt \\ &= \phi(b) + \frac{\lambda}{1-\lambda} \int_b^\infty \left(\int_b^s \frac{\phi'(t)}{t} \ dt \right) P(M_n/\lambda > s) \ ds \\ &= \phi(b) + \frac{\lambda}{1-\lambda} \int_b^\infty \left(\Phi_a'(s) - \Phi_a'(b) \right) P(M_n/\lambda > s) \ ds \\ &= \phi(b) + \frac{\lambda}{1-\lambda} \int_{\{M_n/\lambda > b\}} \left(\Phi_a\left(\frac{M_n}{\lambda}\right) - \Phi_a(b) - \Phi_a'(b) \left(\frac{M_n}{\lambda} - b\right) \right) \ dP \end{split}$$

for all $n \ge 0, b, t > 0, \lambda \in (0, 1)$ and a > 0, where a = 0 may also be chosen if $\frac{\phi'(x)}{x}$ is integrable at 0.

PROOF OF THEOREM 2.1. Inequality (2.4) follows directly from Proposition 3.2 if we choose b = a and recall that $\Phi_a(a) = \Phi'_a(a) = 0$. Hence we are left with the proof of (2.6). If $(M_n)_{n\geq 0}$ is a positive martingale satisfying $M_{n+1} \leq cM_n$ for all $n \geq 0$ and some c > 0, then

$$P(M_n^* > t) \geq \frac{1}{ct} \int_{\{M_n^* > t\}} M_n \ dP \ - \ \frac{1}{ct} \int_{\{M_0 > t\}} M_0 \ dP$$

for all $n \ge 0$ and t > 0, see [8, p. 72]. Consequently,

$$P(M_{n}^{*} > t) \geq \frac{1}{ct} \int_{\{M_{n} > t\}} M_{n} dP - \frac{1}{ct} \int_{\{M_{0} > t\}} M_{0} dP$$

$$= \frac{1}{ct} \int_{t}^{\infty} \left(P(M_{n} > s) - P(M_{0} > s) \right) ds$$

$$+ \frac{1}{c} \left(P(M_{n} > t) - P(M_{0} > t) \right)$$
(3.6)

for all $n \ge 0$ and t > 0. Assuming $E\Phi_a(M_0) < \infty$, and also $E\phi(M_n^*) < \infty$ (there is nothing to prove otherwise), (2.6) now follows upon integration over $(0, \infty)$ with respect to t of both sides of (3.6) multiplied with $\phi'(t)$. We must only note that

$$\int_0^\infty \phi'(t) \Big(P(M_n > t) - P(M_0 > t) \Big) dt = E\phi(M_n) - E\phi(M_0) \ge 0$$

 \diamond

because ϕ is convex and $E\phi(M_k) \leq E\phi(M_n) < \infty$ for $0 \leq k \leq n$.

We continue with a short proof of Proposition 1.1 stated in the Introduction.

PROOF OF PROPOSITION 1.1. Let $\phi \in \mathfrak{C}$ with $p = p_{\phi} > 1$, put $q \stackrel{\text{def}}{=} \frac{p}{p-1}$ and recall from (2.12) that $E\phi(M_n^*) \leq E\phi(qM_n)$ for each $n \geq 0$. Setting $\gamma_n \stackrel{\text{def}}{=} \|M_n\|_{\phi}$, this inequality implies

$$E\phi(M_n^*/q\lambda_n) \leq E\phi(M_n/\lambda_n) = 1$$

as well as (use also (1.10))

$$E\phi(M_n^*) \leq E\phi(qM_n) \leq q^{p^*}E\phi(M_n).$$

The second inequality proves (1.13) while the first one yields $||M_n^*||_{\phi} \leq q\lambda_n$ and thus assertion (1.12).

PROOF OF THEOREM 2.3. The basic tool for the proof of Theorem 2.3 is to convert the assumption of smooth convexity ($\phi^{(k)} \in \mathfrak{C}$) into a suitable Choquet decomposition of ϕ . Each $\phi \in \mathfrak{C}$ can be written as

$$\phi(x) = \int_{[0,\infty)} (x-t)^+ Q_{\phi}(dt)$$

where $Q_{\phi}(dt) = \phi'(0)\delta_0 + \phi'(dt)$. Hence, if $\phi' \in \mathfrak{C}$, then

$$\begin{split} \phi(x) &= \int_0^x \phi'(y) \, dy \\ &= \int_0^x \int_{[0,\infty)} (y-t)^+ \, Q_{\phi'}(dt) \, dy \\ &= \int_{[0,\infty)} \int_0^x (y-t)^+ \, dy \, Q_{\phi'}(dt) \\ &= \int_{[0,\infty)} \frac{((x-t)^+)^2}{2} \, Q_{\phi'}(dt). \end{split}$$

An inductive argument now gives that

$$\phi(x) = \int_{[0,\infty)} \frac{((x-t)^+)^{k+1}}{(k+1)!} Q_{\phi^{(k)}}(dt)$$
(3.7)

for each $\phi \in \mathfrak{C}$ with $\phi^{(k)} \in \mathfrak{C}$. Put $\varphi_{k,t}(x) \stackrel{\text{def}}{=} \frac{((x-t)^+)^{k+1}}{(k+1)!}$ for $k \ge 1$ and $t \in [0,\infty)$. Note that $\varphi_{k,t}^{1/(k+1)}$ is convex for each t. Thus we infer with the help of (3.7) and the argument which proved (2.8) that

$$E\phi(M_n^*) = \int_{[0,\infty)} E\varphi_{k,t}(M_n^*) Q_{\phi^{(k)}}(dt)$$

$$\leq \left(\frac{k+1}{k}\right)^{k+1} \int_{[0,\infty)} E\varphi_{k,t}(M_n) Q_{\phi^{(k)}}(dt)$$

$$= \left(\frac{k+1}{k}\right)^{k+1} E\phi(M_n)$$

for each $n \ge 0$. Replacing M_n^* with M_n^*/γ_n in the previous estimation, where $\gamma_n \stackrel{\text{def}}{=} \frac{k+1}{k} ||M_n||_{\phi}$, further gives (2.14) by a similar argument as in the proof of Proposition 1.1.

PROOF OF THEOREM 2.4. If $\phi(x) = x$, then $\Phi_1(x) = x \log x - x + 1$ and $\Phi'_1(x) = \log x$ for x > 0. Inequality (3.4) with these functions reads

$$EM_{n}^{*} \leq b + \frac{\lambda}{1-\lambda} \int_{\{M_{n} > \lambda b\}} \left(\frac{M_{n}}{\lambda} \log \left(\frac{M_{n}}{\lambda} \right) - \frac{M_{n}}{\lambda} + b - \log b \frac{M_{n}}{\lambda} \right) dP$$

$$= b + \frac{1}{1-\lambda} \int_{\{M_{n} > \lambda b\}} \left(M_{n} \log M_{n} - M_{n} \left(\log \lambda + \log b + 1 \right) + \lambda b \right) dP$$

for all b > 0 and $\lambda \in (0, 1)$. Choose b > 1 and $\lambda = \frac{1}{b}$ to obtain (2.15) in its equivalent form (2.18). (2.16) follows by elementary calculus. Finally, if $(M_n)_{n\geq 0}$ is a positive martingale with $M_{n+1} \leq cM_n$ for some c > 0 and all $n \geq 0$, and if $EM_0 \log^+ M_0 < \infty$, then a use of the first inequality in (3.6) gives after partial integration

$$EM_{n}^{*} \geq \int_{1}^{\infty} \frac{1}{ct} \left(\int_{\{M_{n}>t\}} M_{n} \, dP - \int_{\{M_{0}>t\}} M_{0} \, dP \right) \, dt$$

$$= \frac{1}{c} E \left(M_{n} \int_{1}^{M_{n}\vee 1} \frac{1}{t} \, dt - M_{0} \int_{1}^{M_{0}\vee 1} \frac{1}{t} \, dt \right)$$

$$= \frac{1}{c} \left(EM_{n} \log^{+} M_{n} - EM_{0} \log^{+} M_{0} \right)$$

for all $n \ge 1$ and hence the asserted inequality (2.17).

Appendix 1

Inequality (2.12) from which Proposition 1.1 was deduced may be viewed as a specialization of inequality (A.2) below to the pair $(X, Y) = (M_n, M_n^*)$. The purpose of this short

 \diamond

appendix is to provide a proof of (A.2) based upon a Choquet representation of the involved convex function ϕ .

LEMMA A.1. Let X, Y be nonnegative random variables satisfying Doob's inequality

$$t P(Y \ge t) \le E \mathbf{1}_{\{Y \ge t\}} X \tag{A.1}$$

for all $t \geq 0$. Then

$$E\phi(Y) \leq E\phi(qX)$$
 (A.2)
 $\det_{p_{\phi}} p_{\phi}$

holds for each Orlicz function ϕ , where $q \stackrel{\text{def}}{=} q_{\phi} = \frac{p_{\phi}}{p_{\phi}-1}$.

PROOF. If $p = p_{\phi} = 1$, thus $q = \infty$, there is nothing to prove. So let p > 1 and put V = qX. Write ϕ in Choquet decomposition, that is

$$\phi(x) = \int_{[0,\infty)} (x-t)^+ \phi'(dt), \quad x \ge 0.$$

Then we obtain

$$\begin{split} E\phi(V) - E\phi(Y) &= E\bigg(\int_{[0,\infty)} (V-t)^{+} - (Y-t)^{+} \phi'(dt)\bigg) \\ &= E\bigg(\int_{[0,V]} (V-t) \phi'(dt) - \int_{[0,Y]} (Y-t) \phi'(dt)\bigg) \\ &= E\bigg(\int_{[0,V]} (V-t) \phi'(dt) - \int_{[0,Y]} (V-t) \phi'(dt)\bigg) \\ &+ E\bigg(\int_{[0,Y]} (V-t) \phi'(dt) - \int_{[0,Y]} (Y-t) \phi'(dt)\bigg) \\ &= E\bigg(\mathbf{1}_{\{V \ge Y\}} \int_{(Y,V]} (V-t) \phi'(dt) + \mathbf{1}_{\{V < Y\}} \int_{(V,Y]} (t-V) \phi'(dt)\bigg) \\ &+ E\bigg(\int_{[0,Y]} (V-Y) \phi'(dt)\bigg) \\ &= I_1 + I_2. \end{split}$$

It is easily seen that $I_1 \ge 0$. So it remains to prove that $I_2 = EV\phi'(V) - EY\phi'(Y) \ge 0$. To this end write

$$EY\phi'(Y) \geq p E\phi(Y) = p E\left(\int_{[0,\infty)} (Y-t)^+ \phi'(dt)\right)$$
$$= p EY\phi'(Y) - p E\left(\int_{\{Y \geq t\}} t \phi'(dt)\right)$$

which, after rearranging terms and using (A.1), leads to

$$EY\phi'(Y) \leq q E\left(\int_{\{Y \geq t\}} t \phi'(dt)\right) \leq q E\left(\int_{\{Y \geq t\}} X \phi'(dt)\right) = EV\phi'(Y)$$

12

and thus the desired conclusion.

 \diamond

Appendix 2

We claimed in Section 2 that

$$\frac{y-1}{x-1}\left(\frac{y}{y-1}\right)^y \leq \left(\frac{x}{x-1}\right)^y \tag{A.3}$$

holds true for all $y \ge x > 1$ and that the inequality is strict unless x = y. (A.3) may be rewritten as

$$\left(\frac{x-1}{y-1}\right)^{y-1} \leq \left(\frac{x}{y}\right)^y.$$

Taking logarithms we arrive at

$$(y-1)\Big(\log(x-1) - \log(y-1)\Big) \leq y\Big(\log x - \log y\Big).$$

The desired conclusion is now an immediate consequence of the following lemma.

LEMMA A.2. For each y > 1, the function $f_y : (1, y] \to \mathbb{R}$,

$$f_y(x) \stackrel{\text{def}}{=} (y-1) \Big(\log(x-1) - \log(y-1) \Big) - y \Big(\log x - \log y \Big)$$

is strictly increasing with $f_y(y) = 0$.

PROOF. It suffices to note that

$$f'_y(x) = \frac{y-1}{x-1} - \frac{y}{x} > 0$$

for all $x \in (1, y)$.

References

- [1] ALSMEYER, G. and RÖSLER, U. (2003). The best constant in the Topchii-Vatutin inequality for martingales. To appear in *Statist. Probab. Letters*.
- [2] BINGHAM, N.H., GOLDIE, C.M. and TEUGELS, J.L. (1987). *Regular Variation*. Cambridge Univ. Press, Cambridge.
- [3] BURKHOLDER, D.L. (1991). Explorations in martingale theory and applications. Ecole d'Eté de Probabilité de Saint Flour XIX -1989, Ed. P. Hennequin, Lect. Notes Math. 1464, 1-66. Springer, Berlin.
- [4] CHOW, Y.S. and TEICHER, H. (1997). Probability Theory: Independence, Interchangeability, Martingales (3rd Edition). Springer, New York.
- [5] DELLACHERIE, C. and MEYER, P.A. (1982). Probabilities and Potential B. Theory of Martingales. North-Holland, Amsterdam.
- [6] GUNDY, R.F. (1969). On the class L log L, martingales, and singular integrals. Studia Math. 33, 109-118.
- [7] LONG, R. (1993). Martingale Spaces and Inequalities. Peking University Press and Vieweg, Wiesbaden.
- [8] NEVEU, J. (1975). Discrete-Parameter Martingales. North-Holland, Amsterdam.

 \diamond