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It is proved that for each random walk (Sn),>0 on IR? there exists
a smallest measurable subgroup G of IR?, called minimal subgroup of
(Sn)n>0, such that P(Sp, € G) = 1 for all n > 1. G can be defined
as the set of all # € IR for which the difference of the time averages
nt Z::l P(Sy € -) and n™1! ZZ:l P(Si +z € -) converges to 0 in
total variation norm as n — oo. The related subgroup G* consisting
of all z € R? for which limy, o0 [|[P(Sp, € -) — P(Sp +2 € )| =0
is also considered and shown to be the minimal subgroup of the sym-
metrization of (Sp)p>0. In the final section we consider quasi-invariance
and admissible shifts of probability measures on IR?. The main re-
sult shows that, up to regular linear transformations, the only sub-
groups of IR* admitting a quasi-invariant measure are those of the form
G} x ... x G, x R'=F x {0}?=!, 0 < k <1 < d, with G, ..., G}, being
countable subgroups of IR. The proof is based on a result recently proved
by Kharazishvili [3] which states no uncountable proper subgroup of IR
admits a quasi-invariant measure.
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1. INTRODUCTION

Given i.i.d. random variables X1, Xs, ... taking values in IR for some d > 1, let (S,,) >0 be
the associated zero-delayed random walk, i.e. Sy = 0 and 5,, = X1+...+X,, forn > 1. If the X,,
are a.s. concentrated on a measurable subgroup G of IR? then the same holds true for (Sn)n>o0-
Although a trivial fact this is of great importance when dealing with renewal theorems or local
limit theorems for random walks on IR (see e.g. [1]) and leads to a distinction of random walks
with respect to their lattice-type, defined through the smallest closed subgroup of IR on which
all partial sums are concentrated. However, this definition appears to be inappropriate when
asking for the minimal (measurable) subgroup on which a random walk is concentrated. Take,
for example, a sequence X7, Xo, ... of i.i.d. Lapacians on {1,7}, i.e. P(X; =1) = P(X; = 7)

1

= 5. Then the minimal subgroup on which the associated random walk “lives” is evidently

G=Z+rZ% {m 4+ nm : m,n € Z} whereas the smallest closed subgroup is IR itself. More
generally, whenever the X,, take values only in a countable subset X = {x1,z2,...} of IR?, the
minimal subgroup is given by the countable set of all finite linear combinations of elements of
X with integral coefficients. The minimality of G may be expressed here by the following two
properties:

(G.1) P(S, € Gforalln>0)=1;
(G.2) If G’ is any other measurable subgroup of IR? such that P(S, € G’ for all n > 0) =1,
then G C G’. In other words,

G = N G’ (1.1)

G’ measurable subgroup of IR? satisfying (G.1)

On the other hand, for random walks with a non-discrete increment distibution there
seems to be no such obvious way to determine a measurable group G meeting conditions (G.1)
and (G.2). To see why note that the set of all measurable subgroups of IR has the cardinality of
the continuum (cf. Theorem 17 of [7], p. 149). There even exists a continuum of uncountable,
measurable subgroups G;,i € I, of IR for which G; N G; = {0} for all ¢ # j (cf. Theorem
20 of [7], p. 150). It is hence conceivable that the intersection in (1.1), as taken over an
uncountable number of subgroups G’, may give a nonmeasurable group G. The reader should
now be convinced that the question of the existence of a minimal subgroup for a general random
walk on IR? is a nontrivial problem which will be positively answered by Theorem 1 in the
next section. A number of fairly straightforward implications can be found at the end of that
section.

In Section 3, we will discuss an interesting connection between the minimal subgroup G
of (Sn)n>0 and the following zero-one law. Theorem 2 will show that

def 1
n

A, ()

i(P(Sk € )—P(Sp+ze ))H (1.2)

k=1

either equals one for all n > 1 or converges to 0, as n — 0o, and that

G = {zcR?: lim A(z) = 0}. (1.3)

n—oo
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Here || - || denotes total variation norm, i.e. | V|| = supgegpa |V (B)| for a finite signed measure
U on (IR4,B4). The result will follow by a very similar coupling argument as the one given by
Lindvall and Rogers [6] for the related stronger zero-one law® that

An(x) E |P(Sp €)= P(Sy +a € (1.4)
either equals one for all n > 1 or converges to 0, as n — oo. Theorem 3 will add to that latter
result the conclusion that

G* = {weR': lim Ay(x) =0} (1.5)
is a measurable subgroup of G which either equals G or is a null event for S;. Moreover, G*
will turn out the minimal subgroup of the symmetrization of (S,,),>0. As described in [11] in a
general framework, the convergence of the Césaro total variation A, () links to shift coupling
theory and the invariant o-field of (S, ),>0, while the convergence of A, (x) links to exact
coupling theory and the tail o-field of (S,,),>0. This will also be briefly discussed.

Given a o-finite measure ¥ on (IR%,B4), an element z € IR? is called an admissible shift
for U if U ¢, is absolutely continuous with respect to ¥ (¥ % 6, << ¥), see [10, p. 102]
for this definition in the more general context of o-finite measures on Hilbert spaces. If W is
concentrated on a measurable subgroup G of IR? and satisfies ¥ %8, << VU for all z € G then ¥
is called quasi-invariant on G (see [8, p. 297] or [3, p. 18]). Let Hy be the set of all admissible
shifts for W. It is known (see [10, p. 103]) and will be reproved in Section 4 that Hy forms a
measurable subsemigroup of IR? which is even a group if ¥ is symmetric. Since the previously
defined properties remain unaffected when W is replaced with an equivalent measure and since
every o-finite measure is equivalent to a probability measure it suffices to consider probability
measures.

Now let (Sy)n>0 be any random walk with increment distribution Q). Since @ * 0, << Q
clearly implies Aj(z) = |[|@ — Q * || < 1 we infer Hy C G*. The final Section 4 provides
a number of results concerning Hq. Its main result, Theorem 4, gives a description of all
measurable subgroups G of IR? admitting a quasi-invariant o-finite measure ¥ and states in
particular that each such G is locally compact (not necessarily in the topology induced by IRY)
with a Haar measure Ng, say, equivalent to W. The proof is basically a reduction to the one-
dimensional case (d = 1) and a subsequent use of the result that no uncountable measurable
proper subgroup G of IR admits a quasi-invariant o-finite measure. This was recently shown
by Kharazishvili [3, Theorem 3 on p. 216] by making use of rather “heavy machinery”, notably
the Mackey-Weil theorem and deep results concerning the structure of locally compact Abelian
groups. He also asked for a more elementary proof only based upon real analysis and classical
measure theory. We have tried but failed to find such an alternative.

Despite the measure theoretic rather than probabilistic nature of the problems discussed
in this article our principal technique in many of the proofs is a suitable coupling and thus
based on probabilistic reasoning. For a good introduction of the coupling technique and its
applications the reader may consult the monographs by Lindvall [5] and Thorisson [11].

) a zero-two law when defining total variation as in [6] by || ¥|| def Ut (RY) + ¥~ (IR?) where

U = U+ — ¥~ is the Jordan decomposition of .



4

2. THE MINIMAL SUBGROUP OF A RANDOM WALK

The following notation will be used hereafter. The Borel-o-field on IR? is denoted B¢.
In case d = 1 we write B instead of B!. Let B4 be the restriction of B to a subset A. Let
() denote the distribution of X; and, for n > 0, @, the distribution of S,, i.e. Q = @1 and
Qn, = Q*(”). If X = (An)n>0 is a distribution on INy, the set of nonnegative integers, then

Qx def Ym0 M@n = 3,50 AP (Sy € 1) = P(St € ), where T' is a random variable with

distribution A and independent of (S,,),>0. Finally, put @, » def Qn * 0, = P(S, +x € -) and

Qrz def Qi * 0, = P(S7 4z € -) for z € IR%. Notice that Qx.p() = [ Qr(+) Quld).

As usual, let a A b o min(a,b) and a V b e max(a,b) for real numbers a,b. For two
probability measures P;, P, on the same measurable space (£2,2), their maximal common
component (infimum) is defined as

Py A Py(de) (&(x) A ﬁ@)) (Py + Py)(dx).

If Py AP, =0 then P; and P, are mutually singular (P; L P5). We note that each pair (P, P»)
with Py A Py # 0 possesses a mazimal coupling, given by any pair of random variables (71, Z5)
on the same probability space such that

L(Zj|Zy = Z3) = ||[PL APy 'PL APy,
L(Z) = P

for i = 1,2, where £(X) stands for “distribution of X", see [5] for further details. Conversely,
if there is a coupling (Z1, Zs) of (Py, P), i.e. L(Z;) = P; for i = 1,2, with P(Z; = Z3) > 0,
thenPl/\Pg%O.

Finally, v shall hereafter always be the geometric(1/2) distribution on the positive inte-
gers, that is v9g = 0 and v,, = 27" for n € IN. Hence @), is the distribution of the first partial
sum obtained by geometrically sampling (with parameter 1/2) (S,)n>0.

THEOREM 1. Given the previous notation and assumptions, the set

G Y {(zeR:Q,AQu. #0} (2.1)
defines a measurable subgroup of IR which satisfies (G.1) and (G.2) and is thus the minimal
subgroup of (Sp)n>0-

The proof of the theorem divides into two parts, given as Lemma 2 and 4, the first of
which shows that G as defined above is indeed a measurable subset of IR?. This is furnished by
the following standard lemma based upon the separability of the Borel-o-field B8¢. In Lemma
4 we then show that G is also a group meeting the conditions (G.1) and (G.2).

LEMMA 1. There is a measurable function f : (IR* x R B% @ B¢) — ((0,1],Bo,1])
such that, for every x € IR?, f(z,-) is a density of Q, with respect to Q, + Q..
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PRrooOF. For notational ease we only consider the case d = 1. The modifications for d > 2
are easily provided.

Put B, < (k/2", (k+1)/2"] for n > 0 and k € Z and B,, < o(B,, 1k € Z) for n > 0.
Then By C By C ... and B = o (B,;n > 0). Let Q,|B,, be the restriction of @, to the o-field

B,,. For each x € IR, define f, : (IR?,B?) — ([0,1],Bj0,1]) as

def dQ, |8,
fn(l'vy) - d(QV"‘Qy,z)‘%n(y)

B QV(Ban)
— Z 1p,.(y) <Qy(Bn,k) + Qy,m(Bn,k‘))

keZ

0  def

with the convention 040

0. Notice that f,, < 1. Then

flz,y) € liminf £, (2,y)

is also jointly measurable and, for each x € IR, it defines a density of @), with respect to
Qv + Qv on B. Indeed, for each fixed z, f,(x,-) equals the conditional expectation of

% given 9B,, and with respect to % Hence (fy(z,-))n>1 is a bounded martingale
under % and thus converges (Q, + Q. »)-a.e. to f(z,y) by the martingale convergence

theorem (see e.g. [1, p. 89]), i.e.

N, € {y:liminf f,(z,y) # limsup f,(z, )}

n—oo

is a null set under ), +@Q, . Moreover, by the dominated convergence theorem (recall f,, < 1),

QV(Bn,k) = lim fn+m(x7y) (QV + Qu,x)(dy)

m— 00 By xNNE

= / f(x, y) (Qu + Qu,x)(dy)
B, xNNES

_ /B F@,9) Qv+ Qua)(dy)

for all n > 0,k € Z and = € IR, and this proves f(x,-) = % for every x € IR because
the B,, 1 generate B and form a system which is stable under intersections. &

LEMMA 2. The set G defined in (2.1) is also given by
G = {ze€R":Q,0< f(x,-) <1) >0} (2.2)
and is an element of B<.

PROOF. (2.2) is obvious in view of the definition of f. The joint measurability of f
ensures the measurability of

R'sz — Q,(0< f(z,-) <1)



and thus also of G. &

The following lemma collects some rather straightforward but useful characterizations for
x being an element of G. It is stated without proof.

LEMMA 3. Let v be as stated above. The following statements are equivalent:
(i) z € Gy
(i) Qu A Qxz # 0 for each distribution X = (An)n>0 satisfying Ay, >0 for alln € IN;
(111) Qum N Qn.» # 0 for some m,n € IN.

We are now ready to prove the second part of Theorem 1.
LEMMA 4. G is a measurable additive subgroup of IR satisfying (G.1) and (G.2).

PrOOF. For G being a group we note first that G is not empty because it contains 0
(f(0,-) = 1/2). Hence it remains to prove that z,y € G implies z — y € G. By Lemma 3(iii),
we can choose k,l,m,n € IN such that Q; AQ; . # 0 and @, AQp,y # 0. Hence we can define,
on some common probability space, maximal couplings (Y7, Y2) and (Z1, Z5) for (Qk, Q1) and
(Qm Qn.y), respectively, which are further independent. Since

£<Y1 +Z2 _y) :Qk*Qn :Qk—H”w ‘C<Y2+Zl _y) :Ql *Qm,m—y

and
PYi+Zy—y=Yo+2Z1—y) = PM+2Z: =Y+ 7))

> P(Y1=Y2)P(Z1=2Z5) > 0,

the pair (Y7 + Z3 — y, Y2 + Z; — y) provides a successful coupling for (Qr+n, Qi+m,z—y). It
follows Qp+4n N Qi+m,o—y 7 0 and thus x — y € G by another appeal to Lemma 3.

In order to prove (G.1), which can be stated as Q,(G) =), +;27"Q,(G) = 1, we first
prove @, (G) > 0. For each x € G, we have -

Quo(0< f(z,)<1) =0

because otherwise
Q0 < f(z,) < 1) > / F(2.y) Qualdy) > 0
{0< f(z,)<1}

would yield the contradiction x € G. Hence f(z,-)(1 — f(z,:)) =0 (Q, + Qo »)-a.s. for every
x € G°. Now we conclude for such x and all B € 8¢

QuB) = [ f@.9) @+ Q)
:/fg;y Q. (dy) /f:cy Qu.(dy)
_ /fxy O, (dy) /fxy (1= f(2.9) (Qu + Qu.a)(dy)
= /Bf(:v»y) Q. (dy)



and thereby f(z,:) =1 Q,-a.s.
Let T be a random variable with distribution v and independent of (S,,),>0. The simple
computation

/B E(m) O (dy) = / /B f(;y) Qu(dy) Qu(da)
- / (Qu(B) + Qua(B)) Quldz) = Qu(B)+ Quen(B)

for B € B? shows that

d(Qu + Qusv) 1
o = B(ggey) Qe

Suppose @, (G°) = 1. Then f(St,y) =1 Q,-a.s. and therefore %(y) =1Q,-a.s.

The latter implies

QV(GC) + QV*I/(GC) = QV(GC) = 1,
hence Q.+, (G) = 1. But @, dominates Q,., (since v * v << v) whence Q,(G) must also be
positive, a contradiction to @, (G°) = 1. We have thus verified that Q,(G) > 0.

In order to complete the proof of (G.1) let us assume @, (G) < 1 and produce a further
contradiction. Notice that @, (G®) > 0 implies « def Q(G®) > 0. Put Q" = o 1Q(- N G°) and
let G’ be the same group as G for a random walk with increment distribution @’. We infer
from the previous step of the proof that Q/,(G’) > 0 and thus Q!,(G' N G®) > 0. Consequently,
we can choose an element z € G'NG*®. By Lemma 3, @, A@), . # 0 holds for each distribution
p = (fn)n>0 on INg with ,, > 0 for all n € IN. Take po = 0 and p, = 5% (a/2)" for n > 1.
Using Q,, > a"@), for all n > 1, we obtain

Q = Y2, > Z(%) %= 2 q,

n>1 n>1

and thus also Q, , = Q, * 05 > ZLQL *0p = 5= :j”x. Consequently,

—«

2
QuAQuaz = (ﬁ) Q.NQ,. # 0,

which is a contradiction to z € G°.
The proof of (G.2) is easy. If Q,(G’) =1 for a measurable subgroup G’ of IR we must
conclude G’“ C G¢. But z € G'“ implies G’ — x C G’ and therefore

Qua(G) = P(S, €G —2) < Qu(G") = 0.

Hence Q) N Quo =0, i.e. x € G°. The proof of Lemma 4 and thus of Theorem 1 is herewith
complete. S

We close this section with some rather straightforward implications of Theorem 1. Recall
that every distribution @ on (IR?, B¢) can be uniquely decomposed as Q = Q@ 4 Q) + Q(¢)
where Q(® denotes the discrete part (countable support), Q®) the singular part (no atoms and
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orthogonal to d-dimensional Lebesgue measure A% on IR?) and Q(@®) the absolutely continuous
part of Q.

COROLLARY 1. Let (Sy)n>0 be a random walk on IR with minimal subgroup G. If
(Sn)n>0 is
(i) c-arithmetic for some ¢ > 0, then G = cZ;
(ii) spread out, i.e. Q(Vac) #£0, then G = IR;
(iii) nonarithmetic and discrete, i.e. QQ = QY| then G is a countable dense subgroup of IR;

(iv) nonarithmetic but neither spread out nor discrete, then G is an uncountable subgroup of
R with A(G) = 0.

PRrROOF. We only prove (iv) because (i)-(iii) are easily verified. Since Q,(G) =1 and @,
is not discrete, G must be uncountable. For A-positive sets possess the Steinhaus property
(see e.g. [3, p. 75]), either A(G) = 0 or G = IR holds. Assuming the latter we will now produce
the contradiction that (S,),>0 is spread out. Note first that P A P, is absolutely continuous
(possibly = 0) if Py or P, has this property. G = IR gives Q, A Q.. # 0, i.e. |Q, — Qo <1
for all x € IR. Let ¢ be any absolutely continuous distribution on IR so that @, * ¢ is also
absolutely continuous. The inequality

1w — Qu x| < / 190 — Quall wldz) < 1

implies Q, A @, * ¢ # 0 and thus the contradiction anc) = 0. &

An extension of Corollary 1 to higher dimensions (d > 2) could also be given but would be
more difficult because there is no straightforward definition of lattice-type for multidimensional
random walks. We confine ourselves to a consideration of the spread out case for which the
following statement can easily be obtained by adapting the final argument in the proof of
Corollary 1.

COROLLARY 2. Let (Sy)n>0 be a random walk on IR with minimal subgroup G. Then
G = R? iff (Sp)n>0 is spread out.

Returning to one-dimensional random walks, our next result considers the minimal sub-
groups of associated ladder height sequences (again random walks) providing a.s. finite perti-
nent ladder epochs.

COROLLARY 3. Let (Sp)n>0 be a random walk on IR with minimal subgroup G and let
(0n)n>0 be any pertinent sequence of a.s. finite ladder epochs. Then G is also the minimal
subgroup of the associated ladder height process (S, )n>0-

PROOF. Let G be the minimal subgroup of (S5, )n>0- Since G is clearly a subgroup of
G we must only prove G C G.

Without loss of generality let the o, be the weakly ascending ladder epochs, in particular
o1 =inf{n >1:5, > 0}. Given any z € G, we can choose, again appealing to Lemma 3, two
copies (5%);j>0 and (S7);>0 of (S;);j>0 such that, for suitable k,1 € IN, P(S;, = 5] +x) > 0
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and X; ., = X/,
ME SV VS VSV VS T inf{j > 1: 8, > MY and 77 € inf{j > 1: 57 > M}.

Then 7/, 7" are obviously ladder epochs for (S57);>0 and (S5});>0, respectively, which further

for all j > 1. With (0%);>0 and (07);>0 having the obvious meaning, put

satisfy S;, = S”, + = on the coupling event {5} = 5] + z}. Consequently, there must be
m,n,r > 1 such that P(o), = k+r,0/! =1+ r) > 0 and therefore

P(S,, =S8, +z) > P(S, =5 +z,0,,=k+r,o,=1l+r) > 0.
This proves z € G and thus G C G. &

Let us finally consider the following three symmetric random walks related to (S,)n>0,
namely
— its symmetrization (S% ), >0 with increment distribution Q¥ QxQ, Q- (B ) Q(—B);
— the random walk (S),),>0 with increment distribution (Q + Q~)/2;
— the random walk (W, ), >0 with increment distribution @, *(Q,)~ which is a symmetriza-
tion of a geometric sample of (S,,)n>0-

Clearly, each of these random walks has a minimal subgroup contained in that of (.S,,),>0, that
is G. The inclusion is proper in general for the symmetrization of (.S, ),>0. Take, for example,
X1, X2, ... be iid. Laplacians on {1,7}. Then (7 — 1)Z is the minimal subgroup of (S5 )n>0
while G = Z + nZ. However, for the other two random walks above the subsequent corollary
shows that their minimal subgroup always equals G. Its simple proof will be omitted.

COROLLARY 4. Given a random walk (Sp)n>0 on IR with minimal subgroup G, the
random walks (gn)nZO and (Wy)n>0 as defined above always have the same minimal subgroup.

3. THE MINIMAL SUBGROUP AND A ZERO-ONE LAW

In this section, we regard (S,),>0 as a temporally homogeneous Markov chain on R?
with initial state Sg = 0. Note that

L((Sn)nz0lSo = x) = L((z + Sn)nz0)

for all x € IR. Theorem 2 below provides another interesting characterization of the minimal
subgroup G as the set of all initial states x for which, in a certain sense, the random walk forgets
about its initial state. Recall from (1.2) that A, (z) = & H Z; 1 ( €)—PSj+ze- ||
= || X0_1(Qj — Qj2)]| for all 2 € IR* and n > 1

THEOREM 2.  Given a random walk (Sy)n>0 on IR? with minimal subgroup G, for each
zeG

lim A, (x) =0,

n—oo

while for x € G¢
An(z)=1 foralln>1.
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Theorem 2 is a weaker version of another zero-one law which states that, for each z € IR?,
Ap(z) = ||Qn — @Qn.| either equals 1 for all n > 1 or converges to 0 as n — oo, see [6]. In
view of the previous result it is natural to ask whether

G* ¥ {zeR: lim An(z) =0} = {vxeR: inf A, (x) < 1} (3.1)

also defines a measurable subgroup of IR? (in fact of G). Let G* be the minimal subgroup of
the symmetrization (S;),>0 and G** be the counterpart of G* for this latter random walk.

THEOREM 3. Given a random walk (Sp)n>0 on IRY with minimal subgroup G, the fol-
lowing assertions hold:
(i) The set G* defines a measurable subgroup of G.
(ii) Either Q(G*) =0, or Q(G*) =1 in which case G* = G.
(iii) G* = G** =G®* C G.

The proofs of Theorem 2 and 3 will be given below after Corollary 5 and the subsequent
two examples. In view of Theorem 3(iii), G* is nothing but the minimal subgroup of the
symmetrization (S3),>0. A combination of this fact with Corollary 1 in the previous section
immediately leads to the following corollary which is therefore stated without proof.

COROLLARY 5. Let (Sy)n>0 be a random walk on IR with minimal subgroup G. If
(Sn)nzo iS
(i) d-arithmetic for some d > 0, then G* = mdZ for some m € IN where md is the lattice
span of Q°;
(ii) spread out, i.e. Q,(,ac) # 0, then G* = IR.

Given a random walk (S,,),>0 on IR with G and G* as before, let (0y,),>0 be any pertinent
sequence of a.s. finite ladder epochs. Denote by G and G* the counterparts of G and G*,
respectively, for the associated ladder height process (S5, )n>0 With increment distribution Q.

The following two counterexamples shall demonstrate that there is no general relation between
these four groups:

EXAMPLES. (1) fQ= %5,1 + %(51, then Q% = i(S,Q + %(50 + i(sg, Q = 0; and QS = Jy.
Hence we easily obtain G* = {0}, G* = 2Z and G = G = Z, hence G* ¢ G* ¢ G = G.
2)IfQ= ano 27715, _1, then QF is a distribution concentrated on 2Z, while @ has

obviously positive mass at all positive integers and thus Qs positive mass at all elements of Z.
In this case we obtain G* = G = G = Z and G* = 27, hence G* C G* =G =G.

REMARK. (Connections to coupling theory) Given a random walk S = (.S,,)n>0 on R
with pertinent groups G and G*, let Z be the invariant o-field on the path space ((IR4)>°, (B4)>°)
of S, i.e.

T {Ae®DH®):14=1400}
where 0(xg,x1,...) def (1,22, ...) denotes the shift operator. Let further 7 be the tail o-field,

defined as

T € {Ae(BY®: ¥n>1:3 4, € (B)®:14 =14, 00"},
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Note that Z C 7 and that in our situation 7 and Z are both trivial under P(S € -) by
Kolmogorov’s zero-one law. It is shown in [11, Chapters 4 and 5] in a more general framework,
that lim,, ... A, (z) = 0 holds iff there exists a successful shift-coupling for S and x + S and
that this is further equivalent to P(S € )z = P(x + S € -)z, where P(S € -)z denotes the
restriction of P(S € -) to Z. Similarly, lim,, ..o A,(z) = 0 holds iff there exists a successful
exact coupling for S and x + S, and this is further equivalent to P(S € -)7 = P(z + S € -)r.
Hence our results show that G consists exactly of those x for which S and its translation
x 4 S have the same distribution on the invariant o-field, while G* contains those x for which
P(S € -) and P(x + S € ) coincide on the larger tail o-field. Moreover, since Z and 7 are
trivial under P(S € -), we see that P(S € ‘)¢ and P(zx + S € -)¢ are mutually singular for
¢ =T in case A, (z) =1 for all n > 1, respectively for € = 7 in case A, (z) =1 for all n > 1.

PROOF OF THEOREM 2. By definition of G, x € G iff Q,AQ, » = 0,1.e. [|Q,—Qu| = 1.
But the latter is equivalent to ||Q., —

A, (z) =1 for all n € IN as one can easily check.

Suppose now x € G so that ||Q, — Qu || < 1. Let (7(n))n>0 be a zero-delayed renewal
process independent of (S, )n>0 and with £(7(1)) = v. By using the coupling construction in
(6] (a Mineka coupling), we can construct a sequence (W), W,'),,>o such that L((W})n>0) =
LW n>0) = L((S7n))n>0) and « def inf{n > 1: W, =W,/ + 2} < co a.s. This sequence
can now easily be extended to a sequence (7'(n), 7" (n), S}, Sy)n>0 such that (57, ), 87 ,)) =
Wy, W,)) for all n > 0, L((S;,)n>0) = L((S},)n>0) = L((Sn)n>0) and S7 ., = x + S}, for

all n > 0 where T % 7/ (@) and T o 7" () are the a.s. finite coupling times. Now

n

1

An(x) = sup ;(Qj ~Qj.)(B)

1 n

= — sup P(S"e B)—P(xz+S”€eB
2 i, | RS € B) - e+ 5 € B
1 n

—— 1 _ 1 124
n;ggd (;( 5( slz+S )))‘

< T// )

1)
+ EBSélgd (1{T’\/T“<n}j;<1B )—1p(x+ S )))‘
)

< T// >
1

n
T -1 n

+ — sup E<]—{T’\/T”<n}< Z 1p(S%) + Z 13(59)))
=1

n d
BeB j=n+1—|T/—T"|

N Besyd

T'—1 n
1
+ — sup E 1{T’VT”§TL}< Z ].B({,C—l—S;/)_i_ Z 1B({L‘—|—S;/)>>
j=1 T

j=n+1—|T"—

1
< P(T'VT">n) + —<E(T’/\n)+E(T”/\n)+2E(|T’—T”|/\n))
n

and the latter line converges to 0 as n — oo. &
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Proor OoF THEOREM 3. (i) The following argument shows the measurability of G* and
provides also an alternative proof for the measurability of G although hinging on the same fact
used in the previous section, namely the separability of B<.

Let £ be the countable field of all finite unions of dyadic intervals (2%7 k;;l], k € Z and
n € INy. The tensor product £% is a countable field which generates B¢ for every d > 1.

Moreover, every finite signed measure ¥ on (IR, B9) is uniquely determined by its values on
E% in the sense that for every B € B? and every ¢ > 0 there exists a set C' € £ such that
U(BAC) < e. Consequently,

¥ = sup [¥(CO).
Cegd

Since z = |Qpn(B) — Qn.o(B)| = |Qn(B) — Qn(B — z)| is clearly measurable for all n € IN and
B € B9, we now infer the measurability of

T = H;f HQn - Qn,x“ = inf Sup ‘Qn(c) - Qn(c - :I?)|
n21 nzl cegd
and thus of G* (see (3.1)).
To prove that G* is a group, note first that it is not empty because 0 € G*. Choose
z,y € G* so that ||Q,, — Qnoll — 0 as well as ||Q,, — Qn .yl — 0 as n — co. We must show

that © —y € G*. Recall the contraction property |[(P; — P») * P3|| < ||P1 — P|| of the total
variation norm for arbitrary probability distributions P;, P, P3 on (IR%,8¢). Even equality

holds in case P; = d, for some = € IR?. Using this property and the triangular inequality, we
conclude
1Qn = Qna—yll = 1(Qny — @n,a) * 0yl
= HQn,y - Qn,wH

< HQn,y o QnH + ”Qn - Qn,m”
and thus x — y € G* because the final two expressions converge to 0 as n — oc.
(ii) Suppose Q(G*) > 0 and thus @,(G*) > 0 for all n > 1. Pick an arbitrary =z € G.
Then there exist k,l > 1, w.l.o.g. | > k, such that |Qr — Qi »

| < 1. Moreover,

10k — @il < / 1Qk — Qiyll Qi (dy)
< / 1Qk — Qryll Qi—r(dy) + Qi—k(G™°) < 1.
N

Hence we can construct two copies (.5],)n>0 and (S, )n>0 of (Sn)n>0 such that P(S), = S)'+x) >
0 and P(S; ., — S}, = Si,; —S/) > 0 which together yield

P(Sllc—i—l = Sllfl—i—l +z) > P(S, =95+ :U)P(S,;H — Sy = Sllg/+l ~-S/) >0
and thus z € G*. Consequently, G* = G and Q(G*) = 1. O

We postpone the proof of (the hardest) part (iii) of Theorem 3 after the following lemma
which may also be of interest in its own right.

LEMMA 5. Given a distribution Q on (IR*,B?), define

S, def {r€eZ:|Qrsr — Qrzll <1 for some k € IN}.
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for x € G and similarly S for the symmetrization QQ°. Then the following assertions hold:
(i) So is a subgroup of Z, i.e. Sy = soZ for some sy € INy.
(ii) r+Sg C S, for allT €S, and all x € G.
(i) Q(G*) =1, and hence G* = G, holds iff So = Z (and thus S, = 7Z for all x € G by (ii)).
(iv) There exists x € G such that 1 € S;.
(v) If Q is symmetric, i.e. Q = Q~, then So = Z if Q(G*) =1, and Sy = 27 otherwise.
(vi) S5 =7 for all x € G and hence (by (iii)) G** = G°.

PRrROOF. Note that, by the contraction property, (||Qr+r—Qk.«||)k>1 is always a decreasing
sequence so that

def .
Se & {reZ: lim ||Qrir — Qraz
k—o0
Note further that for symmetric )

1Qk — Qiell = [[(Qr)” — (Quz)” |l
= [(Qr)™ — (Q1)” * 6]

| < 1}.

= |(Qk)™ *dz — (Q1)" || (3.1)
= ||Qk * 0z — Q1|
= ||Qre — Qi

for all k,l € IN and =z € IR?. Consequently, r € S, always gives —r € S, in the symmetric
case, hence S, = —S, =S_,.

(i) We must show that Sy is a subgroup of Z. Plainly, 0 € Sg. Given r, s € Sy, there are
k,l € IN such that ||Qg+r — Qx| < 1 and ||Q14+s — Qi]] < 1. We can therefore construct two
copies (5, )n>0 and (S} )n>0 of (Sn)n>0 such that P(S; ., = S}/) > 0and P(S; ., . — S, =
Sy iiys —Sy) > 0. This implies

P(SIIH—H—T = SIICI—H-I—S) 2 P(SIIC—H“ = SIQ/)P(SI;—H—&—T - Sl/c—l—r = SI;I—H—I—S - Sl/c,) > 0

and thus ||Qgyi4r — Qrrivs|| < 1,1e.r—s € Sp.

(ii) The same coupling argument under the assumption r € S, for any € G—{0} instead
of r €Sy (hence P(S),, +x =S)) > 0) leads to the conclusion ||Qryiyre — Qriiys|l <1, ie.
r—s €S, Hence r+ Sy C S, for each x € S,.

(iii) If Q(G*) =1, then 1 € Sy and thus S, =Sy = Z for all x € G (by (ii)) follows from

Jim [Qur = Qull < [ Jim Q10 — Qull Qo) =

The reverse conclusion is trivial.
(iv) By (iii), there is nothing to prove here if Q(G*) = 1. Hence suppose Q(G*) = 0.
Then there exist k € IN and r € Z — {0} such that Q(Gg,) > 0 where

Grr ¥ {2€C: | Qrirs — Qill < 1}. (3.2)

Notice that —r € S_, for each x € G, because ||Qk+r — Qkll = [|Qk,—z — Qrtr||-
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The inequality

1Qkirir — Qull < / 1Qrire — Qill Qde)
< QGL,) + /

Gr,

(3.3)
|Qk+rz — Qul| Qldz) < 1

implies 7 + 1 € Sy and hence in combination with —r € S_, and (ii) further 1 € S_, for all
x € ka.

(v) In view of (iii) it suffices to consider the case when @ is symmetric and Q(G*) = 0.
Let Gy, be as defined in (3.2). The symmetry ensures S, = —S, = S_, for all x € IR? (see
after (3.1)) as well as Gi» = Ggyr,—r = —Gy, because (3.1) further gives

||Qk+r,m - Qk” - ”Qk—kr - Qk,m” - HQI{—}—T‘,—m - Qk”

So we may assume w.l.o.g. r > 1. By (3.3), r + 1 € Sy which in combination with r € S,
implies 1 € S, for all x € Gy ,. Another application of (3.3), now with » = 1, shows 2 € S
and thus S = 2Z (Sp # Z by (iii)).

(vi) By (iv), there exists x € G such that [|Qr+1,, — Qx| < 1 for some £ > 1. We can
therefore construct two copies (5;,),>0 and (S, )n>0 of (Sp)n>0 such that P(S;_,+x = S}/) >0
and P(S9;, o — S +2 =85, —S}/) > 0. We then obtain

P(Sék+2_2‘sl/c—|—1 = Sélk_QSl/c/) > P(Sllc+1+$ = Slg)P(Sék+2_Sllc+1+x = Sé/k_Sllfl) > 0. (3.4)

k S 1 3 S
But S5, ., —25;,, = Z]ill( i1~ Xj) ~ Qg4 and, similarly, S5, — S}’ ~ QF whence (3.4)
proves 1 € S§, that is S§ = Z, and this in turn Q*(G**) = 1, by (iii). O

PrRoOOF OF THEOREM 3(iii). Obviously, G** C G* C G. We first show G* C G**. Write
Q;, for Qp x @, and notice that Q;, , = Qn .« * Q,,. Choose any z € G* and n > 1 such that
|Qrn — @n.z|| < 1. By the contraction property,

1@, — @uzll = [(Qn = Qna) x Q| < |@n —CQnel <1

whence z € G**.

The equality of G** and G* follows directly from part (vi) of Lemma 5 but the following
arguments will even prove G* = G® and thus complete the proof of Theorem 3.

There is nothing to prove if Q(G*) = 1 whence we assume Q(G*) = 0. Since Q*(G) =1,
for each Q*-positive event C' there exist k € IN and r € Z such that Q*(C N Gg,-) > 0 where
Gy, is as defined in (3.2). Let us fix any Q*®-positive and symmetric C' (so C' = —C). The
symmetry of @Q° implies

Q(CNGy,) = Q(CN{z €G:||Qptrs — Qkll <1})
Q(CN{z €G: [|Qptr,—z — Qull <1})

= Q°(CN{z € G | Qrsr — Qrll <1})
Q* (

(CnN Gk—i—r,—r)
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whence we may assume w.l.o.g. that » > 0. We claim that there is an [ € IN which may depend
on C such that Q*(C' NGy o) > 0. Since G;0 C G* the latter implies Q*(C N G*) > 0. For
C' was chosen arbitrarily among all symmetric Q*-positive sets we then conclude Q*(G*“) =0
and thus the desired result G* = G® because Q*(G*“) > 0 would imply the impossible result
Q*(G**NG*) > 0 (G* is symmetric).
To prove our claim we assume r > 1 (there is nothing to show otherwise) and employ
a further coupling argument. Obviously, we can construct copies (S},)n>0 and (S )n>0 of
(Sn)n>0 such that
(1) L£(51,81) = Q® Q, hence L(S] — 57) = Q%;
(2) L(Siirp1—S1+y—2,8, 5781 =y,5] = 2) is a maximal coupling of (Qpyry—=, Q)
and therefore successful if y — 2z € C N Gy,

Defining

def

p(y,z) - P(S’/H-T-l-l - Si +yY—z= Sllfl—l—l - Si”Si =Y, Sil = Z)7

we obtain from our assumption that

/ lo(y —2) Q@ Q(dy,dz) = Q*(CNGky) > 0
{(w0):p(u.0)>0}

and thereby further

P(Sllc+r+1 = Sl/c/+1)

= [ P+ Sirir = S = 2+ S = S{18 =057 = 2) @ Qldy. )

> / Le(y — 2)ply — 2) Q ® Q(dy,dz) > 0.
{(u,v):p(u,v)>0}

Hence ||Qgtr+1 — Qr+1l] < 1,1ie. 7 € Sg (recall > 1). We can therefore extend our coupling
model above by further taking

(3) L(Soksrv2 = Skars1s Skgry2 — Siy1) to be any successful coupling of (Qr+1, Qi+r41)-

Now observe that

def
q(y, 2) = P(Sék+r+2 - Si Ty—z= Sé/k+r+2 - S{'[S{ =Y, Si/ = 2)
> p(y, 2)P(Sopyrio — Shars1 = Sopirio — Siy1) > 0

and thus ||Q2x+r+1,y—» — Q2r+r+1|| < 1 for all (y, 2) satisfying y — z € Gy .. Consequently,

Q*(CN Cargriro) > / Lo(y - 2) Q@ Q(dy, d2)
{(u,v):q(u,v)>0}

> / Lon, . (5 — 2) Q® Q(dy, d2)
= Qs(CﬂGkvr) > 0

which proves our claim with [ = 2k + r + 1. &
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4. ADMISSIBLE SHIFTS AND QUASI-INVARIANCE

As already defined in the Introduction, let
Hy = {xz € R*: Qe << Q}

be the set of admissible shifts for a given probability measure Q@ = @Q; on (IR, B?). By Lemma
1 in Section 2, replacing @, with @, there is a measurable function f : (IR? x IR?, B¢ @ B?) —

([0,1],B10,17) such that f(z, ) = d(éﬁ—b’iz) for all z € IRY. Consequently,

Ho = {z€ RY: Q(f(z,-) < 1) =1} (4.1)
We can now easily prove:
LEMMA 6. Hg is a measurable subsemigroup of IR®. It is a group if Q is symmetric.

PROOF. The measurability of H¢ follows directly from (4.1). Given x,y € Hg, we have
Q1,2 < Q, hence Q1 pyy = 0y * Q1,2 K 0y ¥ Q = Q1,4, Which together with @ , << @ implies
Qi o+y K Q,ie. x4y e Hp. If Q is symmetric we also have that x € Hg implies —x € Hg
because Q1 = (Q12)” K Q™ =Q.

Let (S,)n>0 be a random walk with increment distribution @ and, as before, G* = G*
the minimal subgroup of its symmetrization. In the following, we will write H for Hg, H® for
Hgs, H, for Hg, and Hj, for Hg: .

LEMMA 7. Given the previous notation, the following assertions hold:
(i) For allm € IN, H,, C H};
(ii) H=H; C Hy C ... C G*;
(117) H®* = H C Hj C ... C G*;
(iv) Huy et Un>1H, s a subsemigroup of G* and a group if Q) is symmetric;
(v) if Q has compact support then Ho, = HE = {0}.

PROOF. (i) follows because ddQQ—”;”” = de”’” *(Qn)~ for each z € H,, and n € IN. Similarly,

dc%‘:’:f = dfél: *Q gives H,, C H,,1; and H, C Hj _, foralln € IN in (ii) and (iii), respectively.
Moreover, Q. << @, implies ||Q, — Qn, 2| < 1 whence H,, C H} C G* for all n € IN. (iv)
is an immediate consequence of (ii) in combination with Lemma 6. Finally, if Q) has compact
support, then all ), and Q7 also have compact support. Therefore it suffices to show H = {0}.
To this end let K be the support of @ and note that, for every 2 € IR? — {0}, K N (z + K)
is a proper compact subset of x + K (the support of Q1 ) whence Q1 .(K N (z + K)) < 1.
Consequently, Q1 (KN (z + K)) > 0 while Q(K°N (z + K)) = 0. This clearly shows that

x ¢ H and completes the proof of (v).

We now turn to a discussion of quasi-invariant probability measures ) on measurable
subgroups G of IR?, defined through Q(G) = 1 and Q; ., << @ for all z € G. Notice that a
probability distribution () whose set of admissible shifts H forms a group needs not be quasi-
invariant because Q(H) can be less than 1 and even 0, e.g. for a continuous symmetric @) having
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compact support. However, providing Q(H) > 0, the restriction of @ to H, i.e. Q(- NH)/Q(H),
is quasi-invariant. As an immediate consequence of our previous results, we obtain:

LEMMA 8. A probability measure Q is quasi-invariant on a measurable subgroup G of IR
iff G is the minimal subgroup of a random walk with increment distribution QQ and H = G* = G.

PrRoOOF. The definition of quasi-invariance together with Lemma 7 gives G C H C G*.
On the other hand, Q(G) = 1 implies Q(G*) = 1 so that indeed H = G* = G holds with G
being the minimal subgroup of any random walk with increment distribution Q.

We are now ready to present the main result of this section:

THEOREM 4. IfG is a measurable subgroup of IR® admitting a quasi-invariant measure
then there are 0 < k <1 <d, countable infinite subgroups G, ...,G] of IR and a regular d x d-
matriz C such that C71G = G} x ... x G}, x R'™* x {0}2~!. Moreover, Q is equivalent to the
Haar measure Ag on G defined through

Ae(B) £ N, ©..@ A, @ N F@6d7(C7'B), Be B,

where Mg denotes Haar measure (i.e. counting measure) on G for 1 < j <k.
J

The proof of Theorem 4 essentially consists of a reduction to the one-dimensional case
for which the assertion comes down to the following result due to Kharazishvili:

THEOREM 5. [3, Theorem 3 on p. 216] There is no uncountable measurable proper sub-
group of IR admitting a quasi-invariant measure.

Let us also state two rather straightforward corollaries the proofs of which can be found
after that of Theorem 4. For the one-dimensional case, they were proved by different methods
in [9].

COROLLARY 6. Given a probability measure Q on IR?, the following statements are
equivalent:
(i) The family (Q1.4)zcme 15 dominated by some o-finite measure V;
(ii) Q << A%, where A denotes d-dimensional Lebesgue measure on IRY;
(iii) for all B € B4, the mapping v — Q1..(B), x € IR?, is continuous;
(iv) for all N4 -null sets N € B, the mapping v — Q1..(N), z € IR, is continuous.

COROLLARY 7. Let Q be a probability measure on IR® whose set of admissible shifts
H forms a group with Q(H) > 0. If x — Q1.(B),x € H, is continuous for all B € B9,
then there are 0 < k <1 < d, dy,...,dx, € (0,00) and a reqular d x d-matrix C such that
C'H=dZx ... xd,Z x R=* x {0}4-L.

PROOF OF THEOREM 4. Excluding the trivial case G = {0}%, there exists a unique
maximal 1 <[ < d for which we can find linearly independent ¢, ...,g; € G. Then

G/ def

i =

{tERZtng(G}, 7=1,..1,
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define measurable subgroups of IR and G = ¢1G] @ ... ® ¢/G]. W.lo.g. let g1, ..., g be labelled
in such a way that Gf,...,G} are countable and Gj,_ ,, ..., G; are uncountable for some £ > 0.

Let C be any regular d x d matrix whose first [ column vectors are g¢i,...,¢;. It is then

obvious that C™1G = G} x ... x G} x {0}9~! and that Q(B) ' Q(C~'B), B € B, defines

a quasi-invariant probability measure on C~'G. We have thus reduced the remaining work,
namely to verify G}, = ... = G; = IR (if at all [ > k), to the case where G has the form
G} x...xG)x {0}9~L. But since the quasi-invariance of Q on G entails the quasi-invariance of its
j-th marginal Q¥)(B) ¥ Q(R/~! x B x R?7), B € B, on G/, for each k < j <1, it is no loss
of generality to further restrict to the case where d = 1 (hence k =0,/ =1 and G = G)). After
these simplifications the first statement of the theorem reduces to the statement of Theorem
5 that, unless G is countable, G = IR is the only measurable subgroup of IR which supports a
quasi-invariant measure.

In order to finally see that @ and Ng are equivalent, suppose Ag(IN) = 0 for some
N € B¢, Then, by the invariance of Ag,

0= /G No(N - 2) Q(dz) — /G QN - 2) Ag(dx) (4.2)

whence Q(N — x) = 0 for N\g-almost all x € G which together with the quasi-invariance of Q)
implies Q(N) = 0. Hence @@ << Ng. The reverse conclusion follows by interchanging the roles
of  and Mg in the previous argument.

PROOF OF COROLLARY 6. “(i)=(ii)” By a well-known result of Halmos and Savage (see
e.g. [4, p.575]), (ii) implies the existence of a sequence (z,),>1 such that

A def _
Ql,x < Q - 22 an,xn

n>1
for all z € IR?. This further implies Ql,w = Zn>1 27" pta, << Q for all x € IR* and thus
the quasi-invariance of Q on IRY. Hence, by Theorem 4, () << Q < A
“(ii)=-(iii)” By quasi-invariance Q1, << Q << A% for all z € IR, and if g denotes a
N-density of Q, then g, def g(- — ) is a A-density of Q1 .. Now

lim Q1.0 = Quy | = lim I, (y—2)/2 = 0 (13)

for each x € IR% where
In(y) / Ih(z) — h(z — )| A4(dz)

for h € £!, the space of A%integrable functions on IR%. In fact, I}, is continuous at y = 0 for
every h € £'. This follows immediately for h € €y, the vector space of continuous functions
on IR? with compact support, and then for general h because ¢, forms a dense subset of £
endowed with the usual norm and A\? is shift-invariant. Plainly, (4.3) implies (iii).

The implication “(iii)=-(iv)” is trivial.

For the proof of “(iv)=-(i)” let N € B? be such that A¢(N) = 0. Use (4.2) with A\g
replaced with A? and integration over whole IR? to conclude Q1,—2 = Q(N —x) = 0 for all
z outside a A\-null set N’. Since N'“ is dense in IR? the continuity of  — Q1 ,(N) implies
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Q1.(N) = 0 for all z € IR, in particular Q(N) = 0 whence Q << A? and then further
Q1. << A for all x € IR? showing (i) with ¥ = A% &

PROOF OF COROLLARY 7. Since all assumptions on @) carry over to Q(-NH)/Q(H) which
is quasi-invariant on H as mentioned before Lemma 8, it is no loss of generality to assume @
itself be quasi-invariant on H. By Theorem 4, there are 0 < k < [ < d, countable subgroups

!, ., G} of IR and a regular d x d-matrix C such that C~'H = H} x ... x H}, x IR'=* x {0}4~L.
Hence it suffices to prove H; = d;Z for some d; € (0,00) and all 1 < i < k. Now consider the
i-th marginal Q¥ of @ which is quasi-invariant on the countable subgroup H, of IR and for
which, by assumption, z +— Q¥ (B), x € H/, is continuous for all B € B. By quasi-invariance
Q{z}) = Q1,-2({0}) > 0 for all x € H.

Suppose H # dZ for all d > 0. Then H is dense in IR and H} N [0,1] = {x,;n > 1} an
infinite set. In particular, there exists a sequence (Y, )n,>1 in this set convergent to 0. But

> QU = > Q1 ({0}) < Q(0,1]) <

n>1 n>1
implies
liminf Qu,({0}) = lim Q- ({0}) = 0 # Qo))
a contradiction to the continuity assumption. &
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