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It is proved that for each random walk (Sn)n≥0 on IRd there exists
a smallest measurable subgroup G of IRd, called minimal subgroup of
(Sn)n≥0, such that P (Sn ∈ G) = 1 for all n ≥ 1. G can be defined
as the set of all x ∈ IRd for which the difference of the time averages
n−1

∑n

k=1
P (Sk ∈ ·) and n−1

∑n

k=1
P (Sk + x ∈ ·) converges to 0 in

total variation norm as n → ∞. The related subgroup G∗ consisting
of all x ∈ IRd for which limn→∞ ‖P (Sn ∈ ·) − P (Sn + x ∈ ·)‖ = 0
is also considered and shown to be the minimal subgroup of the sym-
metrization of (Sn)n≥0. In the final section we consider quasi-invariance
and admissible shifts of probability measures on IRd. The main re-
sult shows that, up to regular linear transformations, the only sub-
groups of IRd admitting a quasi-invariant measure are those of the form

G′1 × ... × G′k × IRl−k × {0}d−l, 0 ≤ k ≤ l ≤ d, with G′1, ...,G′k being

countable subgroups of IR. The proof is based on a result recently proved

by Kharazishvili [3] which states no uncountable proper subgroup of IR
admits a quasi-invariant measure.
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1. Introduction

Given i.i.d. random variables X1, X2, ... taking values in IRd for some d ≥ 1, let (Sn)n≥0 be
the associated zero-delayed random walk, i.e. S0 = 0 and Sn = X1+...+Xn for n ≥ 1. If the Xn

are a.s. concentrated on a measurable subgroup G of IRd then the same holds true for (Sn)n≥0.
Although a trivial fact this is of great importance when dealing with renewal theorems or local
limit theorems for random walks on IR (see e.g. [1]) and leads to a distinction of random walks
with respect to their lattice-type, defined through the smallest closed subgroup of IR on which
all partial sums are concentrated. However, this definition appears to be inappropriate when
asking for the minimal (measurable) subgroup on which a random walk is concentrated. Take,
for example, a sequence X1, X2, ... of i.i.d. Lapacians on {1, π}, i.e. P (X1 = 1) = P (X1 = π)
= 1

2 . Then the minimal subgroup on which the associated random walk “lives” is evidently

G = Z + πZ def= {m + nπ : m, n ∈ Z} whereas the smallest closed subgroup is IR itself. More
generally, whenever the Xn take values only in a countable subset X = {x1, x2, ...} of IRd, the
minimal subgroup is given by the countable set of all finite linear combinations of elements of
X with integral coefficients. The minimality of G may be expressed here by the following two
properties:

(G.1) P (Sn ∈ G for all n ≥ 0) = 1;
(G.2) If G′ is any other measurable subgroup of IRd such that P (Sn ∈ G′ for all n ≥ 0) = 1,

then G ⊂ G′. In other words,

G =
⋂

G′ measurable subgroup of IRd satisfying (G.1)

G′ (1.1)

On the other hand, for random walks with a non-discrete increment distibution there
seems to be no such obvious way to determine a measurable group G meeting conditions (G.1)
and (G.2). To see why note that the set of all measurable subgroups of IR has the cardinality of
the continuum (cf. Theorem 17 of [7], p. 149). There even exists a continuum of uncountable,
measurable subgroups Gi, i ∈ I, of IR for which Gi ∩ Gj = {0} for all i 6= j (cf. Theorem
20 of [7], p. 150). It is hence conceivable that the intersection in (1.1), as taken over an
uncountable number of subgroups G′, may give a nonmeasurable group G. The reader should
now be convinced that the question of the existence of a minimal subgroup for a general random
walk on IRd is a nontrivial problem which will be positively answered by Theorem 1 in the
next section. A number of fairly straightforward implications can be found at the end of that
section.

In Section 3, we will discuss an interesting connection between the minimal subgroup G
of (Sn)n≥0 and the following zero-one law. Theorem 2 will show that

∆̄n(x) def=
1
n

∥∥∥∥∥
n∑
k=1

(P (Sk ∈ ·)− P (Sk + x ∈ ·))
∥∥∥∥∥ (1.2)

either equals one for all n ≥ 1 or converges to 0, as n→∞, and that

G = {x ∈ IRd : lim
n→∞ ∆̄(x) = 0}. (1.3)
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Here ‖ · ‖ denotes total variation norm, i.e. ‖Ψ‖ = supB∈Bd |Ψ(B)| for a finite signed measure
Ψ on (IRd,Bd). The result will follow by a very similar coupling argument as the one given by
Lindvall and Rogers [6] for the related stronger zero-one law1) that

∆n(x) def= ‖P (Sn ∈ ·)− P (Sn + x ∈ ·)‖ (1.4)

either equals one for all n ≥ 1 or converges to 0, as n→∞. Theorem 3 will add to that latter
result the conclusion that

G∗ def= {x ∈ IRd : lim
n→∞∆n(x) = 0} (1.5)

is a measurable subgroup of G which either equals G or is a null event for S1. Moreover, G∗

will turn out the minimal subgroup of the symmetrization of (Sn)n≥0. As described in [11] in a
general framework, the convergence of the Césaro total variation ∆̄n(x) links to shift coupling
theory and the invariant σ-field of (Sn)n≥0, while the convergence of ∆n(x) links to exact
coupling theory and the tail σ-field of (Sn)n≥0. This will also be briefly discussed.

Given a σ-finite measure Ψ on (IRd,Bd), an element x ∈ IRd is called an admissible shift
for Ψ if Ψ ∗ δx is absolutely continuous with respect to Ψ (Ψ ∗ δx << Ψ), see [10, p. 102]
for this definition in the more general context of σ-finite measures on Hilbert spaces. If Ψ is
concentrated on a measurable subgroup G of IRd and satisfies Ψ∗ δx << Ψ for all x ∈ G then Ψ
is called quasi-invariant on G (see [8, p. 297] or [3, p. 18]). Let HΨ be the set of all admissible
shifts for Ψ. It is known (see [10, p. 103]) and will be reproved in Section 4 that HΨ forms a
measurable subsemigroup of IRd which is even a group if Ψ is symmetric. Since the previously
defined properties remain unaffected when Ψ is replaced with an equivalent measure and since
every σ-finite measure is equivalent to a probability measure it suffices to consider probability
measures.

Now let (Sn)n≥0 be any random walk with increment distribution Q. Since Q ∗ δx << Q

clearly implies ∆1(x) = ‖Q − Q ∗ δx‖ < 1 we infer HQ ⊂ G∗. The final Section 4 provides
a number of results concerning HQ. Its main result, Theorem 4, gives a description of all
measurable subgroups G of IRd admitting a quasi-invariant σ-finite measure Ψ and states in
particular that each such G is locally compact (not necessarily in the topology induced by IRd)
with a Haar measure λλG, say, equivalent to Ψ. The proof is basically a reduction to the one-
dimensional case (d = 1) and a subsequent use of the result that no uncountable measurable
proper subgroup G of IR admits a quasi-invariant σ-finite measure. This was recently shown
by Kharazishvili [3, Theorem 3 on p. 216] by making use of rather “heavy machinery”, notably
the Mackey-Weil theorem and deep results concerning the structure of locally compact Abelian
groups. He also asked for a more elementary proof only based upon real analysis and classical
measure theory. We have tried but failed to find such an alternative.

Despite the measure theoretic rather than probabilistic nature of the problems discussed
in this article our principal technique in many of the proofs is a suitable coupling and thus
based on probabilistic reasoning. For a good introduction of the coupling technique and its
applications the reader may consult the monographs by Lindvall [5] and Thorisson [11].

1) a zero-two law when defining total variation as in [6] by ‖Ψ‖ def= Ψ+(IRd)+Ψ−(IRd) where
Ψ = Ψ+ −Ψ− is the Jordan decomposition of Ψ.
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2. The minimal subgroup of a random walk

The following notation will be used hereafter. The Borel-σ-field on IRd is denoted Bd.
In case d = 1 we write B instead of B1. Let BA be the restriction of B to a subset A. Let
Q denote the distribution of X1 and, for n ≥ 0, Qn the distribution of Sn, i.e. Q = Q1 and
Qn = Q∗(n). If λ = (λn)n≥0 is a distribution on IN0, the set of nonnegative integers, then

Qλ
def=
∑
n≥0 λnQn =

∑
n≥0 λnP (Sn ∈ ·) = P (ST ∈ ·), where T is a random variable with

distribution λ and independent of (Sn)n≥0. Finally, put Qn,x
def= Qn ∗ δx = P (Sn + x ∈ ·) and

Qλ,x
def= Qλ ∗ δx = P (ST + x ∈ ·) for x ∈ IRd. Notice that Qλ∗µ(·) =

∫
Qλ,x(·) Qµ(dx).

As usual, let a ∧ b
def= min(a, b) and a ∨ b

def= max(a, b) for real numbers a, b. For two
probability measures P1, P2 on the same measurable space (Ω,A), their maximal common
component (infimum) is defined as

P1 ∧ P2(dx) def=

(
dP1

d(P1 + P2)
(x) ∧ dP2

d(P1 + P2)
(x)

)
(P1 + P2)(dx).

If P1∧P2 = 0 then P1 and P2 are mutually singular (P1 ⊥ P2). We note that each pair (P1, P2)
with P1 ∧P2 6= 0 possesses a maximal coupling, given by any pair of random variables (Z1, Z2)
on the same probability space such that

L(Zi|Z1 = Z2) = ‖P1 ∧ P2‖−1P1 ∧ P2,

L(Zi) = Pi

for i = 1, 2, where L(X) stands for “distribution of X”, see [5] for further details. Conversely,
if there is a coupling (Z1, Z2) of (P1, P2), i.e. L(Zi) = Pi for i = 1, 2, with P (Z1 = Z2) > 0,
then P1 ∧ P2 6= 0.

Finally, ν shall hereafter always be the geometric(1/2) distribution on the positive inte-
gers, that is ν0 = 0 and νn = 2−n for n ∈ IN . Hence Qν is the distribution of the first partial
sum obtained by geometrically sampling (with parameter 1/2) (Sn)n≥0.

Theorem 1. Given the previous notation and assumptions, the set

G def= {x ∈ IRd : Qν ∧Qν,x 6= 0} (2.1)

defines a measurable subgroup of IRd which satisfies (G.1) and (G.2) and is thus the minimal
subgroup of (Sn)n≥0.

The proof of the theorem divides into two parts, given as Lemma 2 and 4, the first of
which shows that G as defined above is indeed a measurable subset of IRd. This is furnished by
the following standard lemma based upon the separability of the Borel-σ-field Bd. In Lemma
4 we then show that G is also a group meeting the conditions (G.1) and (G.2).

Lemma 1. There is a measurable function f : (IRd × IRd,Bd ⊗ Bd) → ([0, 1],B[0,1])
such that, for every x ∈ IRd, f(x, ·) is a density of Qν with respect to Qν + Qν,x.
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Proof. For notational ease we only consider the case d = 1. The modifications for d ≥ 2
are easily provided.

Put Bn,k
def= (k/2n, (k + 1)/2n] for n ≥ 0 and k ∈ Z and Bn

def= σ(Bn,k; k ∈ Z) for n ≥ 0.
Then B0 ⊂ B1 ⊂ ... and B = σ(Bn;n ≥ 0). Let Qν |Bn be the restriction of Qν to the σ-field
Bn. For each x ∈ IR, define fn : (IR2,B2)→ ([0, 1],B|[0,1]) as

fn(x, y) def=
dQν |Bn

d(Qν + Qν,x)|Bn
(y)

=
∑
k∈Z

1Bn,k(y)

(
Qν(Bn,k)

Qν(Bn,k) + Qν,x(Bn,k)

)

with the convention 0
0+0

def= 0. Notice that fn ≤ 1. Then

f(x, y) def= lim inf
n→∞ fn(x, y)

is also jointly measurable and, for each x ∈ IR, it defines a density of Qν with respect to
Qν + Qν,x on B. Indeed, for each fixed x, fn(x, ·) equals the conditional expectation of

dQν
d(Qν+Qν,x) given Bn and with respect to Qν+Qν,x

2 . Hence (fn(x, ·))n≥1 is a bounded martingale

under Qν+Qν,x
2 and thus converges (Qν + Qν,x)-a.e. to f(x, y) by the martingale convergence

theorem (see e.g. [1, p. 89]), i.e.

Nx
def= {y : lim inf

n→∞ fn(x, y) 6= lim sup
n→∞

fn(x, y)}

is a null set under Qν+Qν,x. Moreover, by the dominated convergence theorem (recall fn ≤ 1),

Qν(Bn,k) = lim
m→∞

∫
Bn,k∩Ncx

fn+m(x, y) (Qν + Qν,x)(dy)

=
∫
Bn,k∩Ncx

f(x, y) (Qν + Qν,x)(dy)

=
∫
Bn,k

f(x, y) (Qν + Qν,x)(dy)

for all n ≥ 0, k ∈ Z and x ∈ IR, and this proves f(x, ·) = dQν
d(Qν+Qν,x) for every x ∈ IR because

the Bn,k generate B and form a system which is stable under intersections. ♦

Lemma 2. The set G defined in (2.1) is also given by

G = {x ∈ IRd : Qν(0 < f(x, ·) < 1) > 0} (2.2)

and is an element of Bd.

Proof. (2.2) is obvious in view of the definition of f . The joint measurability of f

ensures the measurability of

IRd 3 x 7→ Qν(0 < f(x, ·) < 1)
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and thus also of G. ♦
The following lemma collects some rather straightforward but useful characterizations for

x being an element of G. It is stated without proof.

Lemma 3. Let ν be as stated above. The following statements are equivalent:
(i) x ∈ G;
(ii) Qν ∧Qλ,x 6= 0 for each distribution λ = (λn)n≥0 satisfying λn > 0 for all n ∈ IN ;
(iii) Qm ∧Qn,x 6= 0 for some m, n ∈ IN .

We are now ready to prove the second part of Theorem 1.

Lemma 4. G is a measurable additive subgroup of IRd satisfying (G.1) and (G.2).

Proof. For G being a group we note first that G is not empty because it contains 0
(f(0, ·) ≡ 1/2). Hence it remains to prove that x, y ∈ G implies x− y ∈ G. By Lemma 3(iii),
we can choose k, l, m, n ∈ IN such that Qk∧Ql,x 6= 0 and Qm∧Qn,y 6= 0. Hence we can define,
on some common probability space, maximal couplings (Y1, Y2) and (Z1, Z2) for (Qk, Ql,x) and
(Qm, Qn,y), respectively, which are further independent. Since

L(Y1 + Z2 − y) = Qk ∗Qn = Qk+n, L(Y2 + Z1 − y) = Ql ∗Qm,x−y

and
P (Y1 + Z2 − y = Y2 + Z1 − y) = P (Y1 + Z2 = Y2 + Z1)

≥ P (Y1 = Y2)P (Z1 = Z2) > 0,

the pair (Y1 + Z2 − y, Y2 + Z1 − y) provides a successful coupling for (Qk+n, Ql+m,x−y). It
follows Qk+n ∧Ql+m,x−y 6= 0 and thus x− y ∈ G by another appeal to Lemma 3.

In order to prove (G.1), which can be stated as Qν(G) =
∑
n≥1 2−nQn(G) = 1, we first

prove Qν(G) > 0. For each x ∈ Gc, we have

Qν,x(0 < f(x, ·) < 1) = 0

because otherwise

Qν(0 < f(x, ·) < 1) ≥
∫
{0<f(x,·)<1}

f(x, y) Qν,x(dy) > 0

would yield the contradiction x ∈ G. Hence f(x, ·)(1 − f(x, ·)) = 0 (Qν + Qν,x)-a.s. for every
x ∈ Gc. Now we conclude for such x and all B ∈ Bd

Qν(B) =
∫
B

f(x, y) (Qν + Qν,x)(dy)

=
∫
B

f(x, y) Qν(dy) +
∫
B

f(x, y) Qν,x(dy)

=
∫
B

f(x, y) Qν(dy) +
∫
B

f(x, y)(1− f(x, y)) (Qν + Qν,x)(dy)

=
∫
B

f(x, y) Qν(dy)
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and thereby f(x, ·) = 1 Qν-a.s.
Let T be a random variable with distribution ν and independent of (Sn)n≥0. The simple

computation∫
B

E

(
1

f(ST , y)

)
Qν(dy) =

∫ ∫
B

1
f(x, y)

Qν(dy) Qν(dx)

=
∫

(Qν(B) + Qν,x(B)) Qν(dx) = Qν(B) + Qν∗ν(B)

for B ∈ Bd shows that

d(Qν + Qν∗ν)
dQν

(y) = E

(
1

f(ST , y)

)
Qν-a.s.

Suppose Qν(Gc) = 1. Then f(ST , y) = 1 Qν-a.s. and therefore d(Qν+Qν∗ν)
dQν

(y) = 1 Qν-a.s.
The latter implies

Qν(Gc) + Qν∗ν(Gc) = Qν(Gc) = 1,

hence Qν∗ν(G) = 1. But Qν dominates Qν∗ν (since ν ∗ ν << ν) whence Qν(G) must also be
positive, a contradiction to Qν(Gc) = 1. We have thus verified that Qν(G) > 0.

In order to complete the proof of (G.1) let us assume Qν(G) < 1 and produce a further
contradiction. Notice that Qν(Gc) > 0 implies α

def= Q(Gc) > 0. Put Q′ = α−1Q(· ∩ Gc) and
let G′ be the same group as G for a random walk with increment distribution Q′. We infer
from the previous step of the proof that Q′ν(G′) > 0 and thus Q′ν(G′ ∩Gc) > 0. Consequently,
we can choose an element x ∈ G′∩Gc. By Lemma 3, Q′µ∧Q′µ,x 6= 0 holds for each distribution
µ = (µn)n≥0 on IN0 with µn > 0 for all n ∈ IN . Take µ0 = 0 and µn = α

2−α (α/2)n for n ≥ 1.
Using Qn ≥ αnQ′n for all n ≥ 1, we obtain

Qν =
∑
n≥1

2−nQn ≥
∑
n≥1

(
α

2

)n
Q′n =

α

2− α
Q′µ

and thus also Qν,x = Qν ∗ δx ≥ α
2−αQ′µ ∗ δx = α

2−αQ′µ,x. Consequently,

Qν ∧Qν,x ≥
(

α

2− α

)2

Q′µ ∧Q′µ,x 6= 0,

which is a contradiction to x ∈ Gc.
The proof of (G.2) is easy. If Qν(G′) = 1 for a measurable subgroup G′ of IR we must

conclude G′c ⊂ Gc. But x ∈ G′c implies G′ − x ⊂ G′c and therefore

Qν,x(G′) = P (Sν ∈ G′ − x) ≤ Qν(G′
c) = 0.

Hence Qν ∧Qν,x = 0, i.e. x ∈ Gc. The proof of Lemma 4 and thus of Theorem 1 is herewith
complete. ♦

We close this section with some rather straightforward implications of Theorem 1. Recall
that every distribution Q on (IRd,Bd) can be uniquely decomposed as Q = Q(d) +Q(s) +Q(ac)

where Q(d) denotes the discrete part (countable support), Q(s) the singular part (no atoms and
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orthogonal to d-dimensional Lebesgue measure λλd on IRd) and Q(ac) the absolutely continuous
part of Q.

Corollary 1. Let (Sn)n≥0 be a random walk on IR with minimal subgroup G. If
(Sn)n≥0 is

(i) c-arithmetic for some c > 0, then G = cZ;
(ii) spread out, i.e. Q

(ac)
ν 6= 0, then G = IR;

(iii) nonarithmetic and discrete, i.e. Q = Q(d), then G is a countable dense subgroup of IR;
(iv) nonarithmetic but neither spread out nor discrete, then G is an uncountable subgroup of

IR with λλ(G) = 0.

Proof. We only prove (iv) because (i)-(iii) are easily verified. Since Qν(G) = 1 and Qν

is not discrete, G must be uncountable. For λλ-positive sets possess the Steinhaus property
(see e.g. [3, p. 75]), either λλ(G) = 0 or G = IR holds. Assuming the latter we will now produce
the contradiction that (Sn)n≥0 is spread out. Note first that P1 ∧ P2 is absolutely continuous
(possibly ≡ 0) if P1 or P2 has this property. G = IR gives Qν ∧Qν,x 6= 0, i.e. ‖Qν −Qν,x‖ < 1
for all x ∈ IR. Let ϕ be any absolutely continuous distribution on IR so that Qν ∗ ϕ is also
absolutely continuous. The inequality

‖Qν −Qν ∗ ϕ‖ ≤
∫
‖Qν −Qν,x‖ ϕ(dx) < 1

implies Qν ∧Qν ∗ ϕ 6= 0 and thus the contradiction Q
(ac)
ν 6= 0. ♦

An extension of Corollary 1 to higher dimensions (d ≥ 2) could also be given but would be
more difficult because there is no straightforward definition of lattice-type for multidimensional
random walks. We confine ourselves to a consideration of the spread out case for which the
following statement can easily be obtained by adapting the final argument in the proof of
Corollary 1.

Corollary 2. Let (Sn)n≥0 be a random walk on IRd with minimal subgroup G. Then
G = IRd iff (Sn)n≥0 is spread out.

Returning to one-dimensional random walks, our next result considers the minimal sub-
groups of associated ladder height sequences (again random walks) providing a.s. finite perti-
nent ladder epochs.

Corollary 3. Let (Sn)n≥0 be a random walk on IR with minimal subgroup G and let
(σn)n≥0 be any pertinent sequence of a.s. finite ladder epochs. Then G is also the minimal
subgroup of the associated ladder height process (Sσn)n≥0.

Proof. Let Ĝ be the minimal subgroup of (Sσn)n≥0. Since Ĝ is clearly a subgroup of
G we must only prove G ⊂ Ĝ.

Without loss of generality let the σn be the weakly ascending ladder epochs, in particular
σ1 = inf{n ≥ 1 : Sn ≥ 0}. Given any x ∈ G, we can choose, again appealing to Lemma 3, two
copies (S′j)j≥0 and (S′′j )j≥0 of (Sj)j≥0 such that, for suitable k, l ∈ IN , P (S′k = S′l + x) > 0
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and X ′k+j = X ′′l+j for all j ≥ 1. With (σ′j)j≥0 and (σ′′j )j≥0 having the obvious meaning, put

M
def= S′1 ∨ ... ∨ S′k ∨ S′′1 ∨ ... ∨ S′′l , τ ′ def= inf{j ≥ 1 : S′j ≥ M} and τ ′′ def= inf{j ≥ 1 : S′′j ≥ M}.

Then τ ′, τ ′′ are obviously ladder epochs for (S′j)j≥0 and (S′′j )j≥0, respectively, which further
satisfy S′τ ′ = S′′τ ′′ + x on the coupling event {S′k = S′l + x}. Consequently, there must be
m, n, r ≥ 1 such that P (σ′m = k + r, σ′′n = l + r) > 0 and therefore

P (S′σ′m = S′′σ′′n + x) ≥ P (S′k = S′l + x, σ′m = k + r, σ′′n = l + r) > 0.

This proves x ∈ Ĝ and thus G ⊂ Ĝ. ♦

Let us finally consider the following three symmetric random walks related to (Sn)n≥0,
namely

— its symmetrization (Ssn)n≥0 with increment distribution Qs def= Q∗Q−, Q−(B) def= Q(−B);
— the random walk (Ŝn)n≥0 with increment distribution (Q + Q−)/2;
— the random walk (Wn)n≥0 with increment distribution Qν ∗(Qν)− which is a symmetriza-

tion of a geometric sample of (Sn)n≥0.

Clearly, each of these random walks has a minimal subgroup contained in that of (Sn)n≥0, that
is G. The inclusion is proper in general for the symmetrization of (Sn)n≥0. Take, for example,
X1, X2, ... be i.i.d. Laplacians on {1, π}. Then (π − 1)Z is the minimal subgroup of (Ssn)n≥0

while G = Z + πZ. However, for the other two random walks above the subsequent corollary
shows that their minimal subgroup always equals G. Its simple proof will be omitted.

Corollary 4. Given a random walk (Sn)n≥0 on IRd with minimal subgroup G, the
random walks (Ŝn)n≥0 and (Wn)n≥0 as defined above always have the same minimal subgroup.

3. The minimal subgroup and a zero-one law

In this section, we regard (Sn)n≥0 as a temporally homogeneous Markov chain on IRd

with initial state S0 = 0. Note that

L((Sn)n≥0|S0 = x) = L((x + Sn)n≥0)

for all x ∈ IRd. Theorem 2 below provides another interesting characterization of the minimal
subgroup G as the set of all initial states x for which, in a certain sense, the random walk forgets
about its initial state. Recall from (1.2) that ∆̄n(x) = 1

n

∥∥∑n
j=1(P (Sj ∈ ·) − P (Sj + x ∈ ·))∥∥

= 1
n

∥∥∑n
j=1(Qj −Qj,x)‖ for all x ∈ IRd and n ≥ 1.

Theorem 2. Given a random walk (Sn)n≥0 on IRd with minimal subgroup G, for each
x ∈ G

lim
n→∞ ∆̄n(x) = 0,

while for x ∈ Gc
∆̄n(x) = 1 for all n ≥ 1.
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Theorem 2 is a weaker version of another zero-one law which states that, for each x ∈ IRd,
∆n(x) = ‖Qn − Qn,x‖ either equals 1 for all n ≥ 1 or converges to 0 as n → ∞, see [6]. In
view of the previous result it is natural to ask whether

G∗ def= {x ∈ IRd : lim
n→∞∆n(x) = 0} = {x ∈ IRd : inf

n≥1
∆n(x) < 1} (3.1)

also defines a measurable subgroup of IRd (in fact of G). Let Gs be the minimal subgroup of
the symmetrization (Ssn)n≥0 and Gs∗ be the counterpart of G∗ for this latter random walk.

Theorem 3. Given a random walk (Sn)n≥0 on IRd with minimal subgroup G, the fol-
lowing assertions hold:

(i) The set G∗ defines a measurable subgroup of G.
(ii) Either Q(G∗) = 0, or Q(G∗) = 1 in which case G∗ = G.
(iii) G∗ = Gs∗ = Gs ⊂ G.

The proofs of Theorem 2 and 3 will be given below after Corollary 5 and the subsequent
two examples. In view of Theorem 3(iii), G∗ is nothing but the minimal subgroup of the
symmetrization (Ssn)n≥0. A combination of this fact with Corollary 1 in the previous section
immediately leads to the following corollary which is therefore stated without proof.

Corollary 5. Let (Sn)n≥0 be a random walk on IR with minimal subgroup G. If
(Sn)n≥0 is

(i) d-arithmetic for some d > 0, then G∗ = mdZ for some m ∈ IN where md is the lattice
span of Qs;

(ii) spread out, i.e. Q
(ac)
ν 6= 0, then G∗ = IR.

Given a random walk (Sn)n≥0 on IR with G and G∗ as before, let (σn)n≥0 be any pertinent
sequence of a.s. finite ladder epochs. Denote by Ĝ and Ĝ∗ the counterparts of G and G∗,
respectively, for the associated ladder height process (Sσn)n≥0 with increment distribution Q̂.
The following two counterexamples shall demonstrate that there is no general relation between
these four groups:

Examples. (1) If Q = 1
2δ−1 + 1

2δ1, then Qs = 1
4δ−2 + 1

2δ0 + 1
4δ2, Q̂ = δ1 and Q̂s = δ0.

Hence we easily obtain Ĝ∗ = {0}, G∗ = 2Z and Ĝ = G = Z, hence Ĝ∗ ⊂ G∗ ⊂ Ĝ = G.
(2) If Q =

∑
n≥0 2−n−1δ2n−1, then Qs is a distribution concentrated on 2Z, while Q̂ has

obviously positive mass at all positive integers and thus Q̂s positive mass at all elements of Z.
In this case we obtain Ĝ∗ = Ĝ = G = Z and G∗ = 2Z, hence G∗ ⊂ Ĝ∗ = Ĝ = G.

Remark. (Connections to coupling theory) Given a random walk S = (Sn)n≥0 on IRd

with pertinent groupsG andG∗, let I be the invariant σ-field on the path space ((IRd)∞, (Bd)∞)
of S, i.e.

I def= {A ∈ (Bd)∞) : 1A = 1A ◦ θ}
where θ(x0, x1, ...)

def= (x1, x2, ...) denotes the shift operator. Let further T be the tail σ-field,
defined as

T def= {A ∈ (Bd)∞ : ∀n ≥ 1 : ∃ An ∈ (Bd)∞ : 1A = 1An ◦ θn}.
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Note that I ⊂ T and that in our situation T and I are both trivial under P (S ∈ ·) by
Kolmogorov’s zero-one law. It is shown in [11, Chapters 4 and 5] in a more general framework,
that limn→∞ ∆̄n(x) = 0 holds iff there exists a successful shift-coupling for S and x + S and
that this is further equivalent to P (S ∈ ·)I = P (x + S ∈ ·)I , where P (S ∈ ·)I denotes the
restriction of P (S ∈ ·) to I. Similarly, limn→∞∆n(x) = 0 holds iff there exists a successful
exact coupling for S and x + S, and this is further equivalent to P (S ∈ ·)T = P (x + S ∈ ·)T .
Hence our results show that G consists exactly of those x for which S and its translation
x + S have the same distribution on the invariant σ-field, while G∗ contains those x for which
P (S ∈ ·) and P (x + S ∈ ·) coincide on the larger tail σ-field. Moreover, since I and T are
trivial under P (S ∈ ·), we see that P (S ∈ ·)C and P (x + S ∈ ·)C are mutually singular for
C = I in case ∆̄n(x) = 1 for all n ≥ 1, respectively for C = T in case ∆n(x) = 1 for all n ≥ 1.

Proof of Theorem 2. By definition of G, x ∈ Gc iff Qν∧Qν,x = 0, i.e. ‖Qν−Qν,x‖ = 1.
But the latter is equivalent to ‖Qm − Qn,x‖ = 1 for all m, n ∈ IN which in turn holds iff
∆̄n(x) = 1 for all n ∈ IN as one can easily check.

Suppose now x ∈ G so that ‖Qν − Qν,x‖ < 1. Let (τ(n))n≥0 be a zero-delayed renewal
process independent of (Sn)n≥0 and with L(τ(1)) = ν. By using the coupling construction in
[6] (a Mineka coupling), we can construct a sequence (W ′

n, W
′′
n )n≥0 such that L((W ′

n)n≥0) =

L((W ′′
n )n≥0) = L((Sτ(n))n≥0) and α

def= inf{n ≥ 1 : W ′
n = W ′′

n + x} < ∞ a.s. This sequence
can now easily be extended to a sequence (τ ′(n), τ ′′(n), S′n, S

′′
n)n≥0 such that (S′τ ′(n), S

′′
τ ′′(n)) =

(W ′
n, W

′′
n ) for all n ≥ 0, L((S′n)n≥0) = L((S′′n)n≥0) = L((Sn)n≥0) and S′T ′+n = x + S′′T ′′+n for

all n ≥ 0 where T ′ def= τ ′(α) and T ′′ def= τ ′′(α) are the a.s. finite coupling times. Now

∆̄n(x) =
1
n

sup
B∈Bd

∣∣∣∣∣
n∑
j=1

(Qj −Qj,x)(B)

∣∣∣∣∣
=

1
n

sup
B∈Bd

∣∣∣∣∣
n∑
j=1

(P (S′j ∈ B)− P (x + S′′j ∈ B))

∣∣∣∣∣
=

1
n

sup
B∈Bd

∣∣∣∣∣E
(

n∑
j=1

(
1B(S′j)− 1B(x + S′′j )

))∣∣∣∣∣
≤ P (T ′ ∨ T ′′ > n)

+
1
n

sup
B∈Bd

∣∣∣∣∣E
(

1{T ′∨T ′′≤n}
n∑
j=1

(
1B(S′j)− 1B(x + S′′j )

))∣∣∣∣∣
≤ P (T ′ ∨ T ′′ > n)

+
1
n

sup
B∈Bd

E

(
1{T ′∨T ′′≤n}

(
T ′−1∑
j=1

1B(S′j) +
n∑

j=n+1−|T ′−T ′′|
1B(S′j)

))

+
1
n

sup
B∈Bd

E

(
1{T ′∨T ′′≤n}

(
T ′′−1∑
j=1

1B(x + S′′j ) +
n∑

j=n+1−|T ′−T ′′|
1B(x + S′′j )

))

≤ P (T ′ ∨ T ′′ > n) +
1
n

(
E(T ′ ∧ n) + E(T ′′ ∧ n) + 2E

(|T ′ − T ′′| ∧ n
))

and the latter line converges to 0 as n→∞. ♦
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Proof of Theorem 3. (i) The following argument shows the measurability of G∗ and
provides also an alternative proof for the measurability of G although hinging on the same fact
used in the previous section, namely the separability of Bd.

Let E be the countable field of all finite unions of dyadic intervals ( k2n , k+1
2n ], k ∈ Z and

n ∈ IN0. The tensor product Ed is a countable field which generates Bd for every d ≥ 1.
Moreover, every finite signed measure Ψ on (IRd,Bd) is uniquely determined by its values on
Ed in the sense that for every B ∈ Bd and every ε > 0 there exists a set C ∈ E such that
Ψ(B∆C) < ε. Consequently,

‖Ψ‖ = sup
C∈Ed

|Ψ(C)|.

Since x 7→ |Qn(B)−Qn,x(B)| = |Qn(B)−Qn(B − x)| is clearly measurable for all n ∈ IN and
B ∈ Bd, we now infer the measurability of

x 7→ inf
n≥1
‖Qn −Qn,x‖ = inf

n≥1
sup
C∈Ed

|Qn(C)−Qn(C − x)|

and thus of G∗ (see (3.1)).
To prove that G∗ is a group, note first that it is not empty because 0 ∈ G∗. Choose

x, y ∈ G∗ so that ‖Qn − Qn,x‖ → 0 as well as ‖Qn − Qn,y‖ → 0 as n → ∞. We must show
that x − y ∈ G∗. Recall the contraction property ‖(P1 − P2) ∗ P3‖ ≤ ‖P1 − P2‖ of the total
variation norm for arbitrary probability distributions P1, P2, P3 on (IRd,Bd). Even equality
holds in case P3 = δx for some x ∈ IRd. Using this property and the triangular inequality, we
conclude

‖Qn −Qn,x−y‖ = ‖(Qn,y −Qn,x) ∗ δ−y‖
= ‖Qn,y −Qn,x‖
≤ ‖Qn,y −Qn‖+ ‖Qn −Qn,x‖

and thus x− y ∈ G∗ because the final two expressions converge to 0 as n→∞.
(ii) Suppose Q(G∗) > 0 and thus Qn(G∗) > 0 for all n ≥ 1. Pick an arbitrary x ∈ G.

Then there exist k, l ≥ 1, w.l.o.g. l > k, such that ‖Qk −Ql,x‖ < 1. Moreover,

‖Qk −Ql‖ ≤
∫
‖Qk −Qk,y‖ Ql−k(dy)

≤
∫
G∗
‖Qk −Qk,y‖ Ql−k(dy) + Ql−k(G∗c) < 1.

Hence we can construct two copies (S′n)n≥0 and (S′′n)n≥0 of (Sn)n≥0 such that P (S′k = S′′l +x) >

0 and P (S′k+l − S′k = S′′k+l − S′′l ) > 0 which together yield

P (S′k+l = S′′k+l + x) ≥ P (S′k = S′′l + x)P (S′k+l − S′k = S′′k+l − S′′l ) > 0

and thus x ∈ G∗. Consequently, G∗ = G and Q(G∗) = 1. ♦

We postpone the proof of (the hardest) part (iii) of Theorem 3 after the following lemma
which may also be of interest in its own right.

Lemma 5. Given a distribution Q on (IRd,Bd), define

Sx
def= {r ∈ Z : ‖Qk+r −Qk,x‖ < 1 for some k ∈ IN}.
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for x ∈ G and similarly Ssx for the symmetrization Qs. Then the following assertions hold:
(i) S0 is a subgroup of Z, i.e. S0 = s0Z for some s0 ∈ IN0.
(ii) r + S0 ⊂ Sx for all r ∈ Sx and all x ∈ G.
(iii) Q(G∗) = 1, and hence G∗ = G, holds iff S0 = Z (and thus Sx = Z for all x ∈ G by (ii)).
(iv) There exists x ∈ G such that 1 ∈ Sx.
(v) If Q is symmetric, i.e. Q = Q−, then S0 = Z if Q(G∗) = 1, and S0 = 2Z otherwise.
(vi) Ssx = Z for all x ∈ Gs and hence (by (iii)) Gs∗ = Gs.

Proof. Note that, by the contraction property, (‖Qk+r−Qk,x‖)k≥1 is always a decreasing
sequence so that

Sx
def= {r ∈ Z : lim

k→∞
‖Qk+r −Qk,x‖ < 1}.

Note further that for symmetric Q

‖Qk −Ql,x‖ = ‖(Qk)− − (Ql,x)−‖
= ‖(Qk)− − (Ql)− ∗ δ−x‖
= ‖(Qk)− ∗ δx − (Ql)−‖
= ‖Qk ∗ δx −Ql‖
= ‖Qk,x −Ql‖

(3.1)

for all k, l ∈ IN and x ∈ IRd. Consequently, r ∈ Sx always gives −r ∈ Sx in the symmetric
case, hence Sx = −Sx = S−x.

(i) We must show that S0 is a subgroup of Z. Plainly, 0 ∈ S0. Given r, s ∈ S0, there are
k, l ∈ IN such that ‖Qk+r − Qk‖ < 1 and ‖Ql+s − Ql‖ < 1. We can therefore construct two
copies (S′n)n≥0 and (S′′n)n≥0 of (Sn)n≥0 such that P (S′k+r = S′′k ) > 0 and P (S′k+l+r − S′k+r =
S′′k+l+s − S′′k ) > 0. This implies

P (S′k+l+r = S′′k+l+s) ≥ P (S′k+r = S′′k )P (S′k+l+r − S′k+r = S′′k+l+s − S′′k ) > 0

and thus ‖Qk+l+r −Qk+l+s‖ < 1, i.e. r − s ∈ S0.
(ii) The same coupling argument under the assumption r ∈ Sx for any x ∈ G−{0} instead

of r ∈ S0 (hence P (S′k+r + x = S′′k ) > 0) leads to the conclusion ‖Qk+l+r,x −Qk+l+s‖ < 1, i.e.
r − s ∈ Sx. Hence r + S0 ⊂ Sx for each x ∈ Sx.

(iii) If Q(G∗) = 1, then 1 ∈ S0 and thus Sx = S0 = Z for all x ∈ G (by (ii)) follows from

lim
k→∞

‖Qk+1 −Qk‖ ≤
∫
G∗

lim
k→∞

‖Qk,x −Qk‖ Q(dx) = 0.

The reverse conclusion is trivial.
(iv) By (iii), there is nothing to prove here if Q(G∗) = 1. Hence suppose Q(G∗) = 0.

Then there exist k ∈ IN and r ∈ Z− {0} such that Q(Gk,r) > 0 where

Gk,r
def= {x ∈ G : ‖Qk+r,x −Qk‖ < 1}. (3.2)

Notice that −r ∈ S−x for each x ∈ Gk,r because ‖Qk+r,x −Qk‖ = ‖Qk,−x −Qk+r‖.
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The inequality

‖Qk+r+1 −Qk‖ ≤
∫
‖Qk+r,x −Qk‖ Q(dx)

≤ Q(Gck,r) +
∫
Gk,r
‖Qk+r,x −Qk‖ Q(dx) < 1

(3.3)

implies r + 1 ∈ S0 and hence in combination with −r ∈ S−x and (ii) further 1 ∈ S−x for all
x ∈ Gk,r.

(v) In view of (iii) it suffices to consider the case when Q is symmetric and Q(G∗) = 0.
Let Gk,r be as defined in (3.2). The symmetry ensures Sx = −Sx = S−x for all x ∈ IRd (see
after (3.1)) as well as Gk,r = Gk+r,−r = −Gk,r because (3.1) further gives

‖Qk+r,x −Qk‖ = ‖Qk+r −Qk,x‖ = ‖Qk+r,−x −Qk‖.

So we may assume w.l.o.g. r ≥ 1. By (3.3), r + 1 ∈ S0 which in combination with r ∈ Sx
implies 1 ∈ Sx for all x ∈ Gk,r. Another application of (3.3), now with r = 1, shows 2 ∈ S0

and thus S0 = 2Z (S0 6= Z by (iii)).
(vi) By (iv), there exists x ∈ G such that ‖Qk+1,x − Qk‖ < 1 for some k ≥ 1. We can

therefore construct two copies (S′n)n≥0 and (S′′n)n≥0 of (Sn)n≥0 such that P (S′k+1+x = S′′k ) > 0
and P (S′2k+2 − S′k+1 + x = S′′2k − S′′k ) > 0. We then obtain

P (S′2k+2−2S′k+1 = S′′2k−2S′′k ) ≥ P (S′k+1+x = S′′k )P (S′2k+2−S′k+1+x = S′′2k−S′′k ) > 0. (3.4)

But S′2k+2−2S′k+1 =
∑k+1
j=1 (X ′k+j+1−X ′j) ∼ Qs

k+1 and, similarly, S′′2k−S′′k ∼ Qs
k whence (3.4)

proves 1 ∈ Ss0, that is Ss0 = Z, and this in turn Qs(Gs∗) = 1, by (iii). ♦

Proof of Theorem 3(iii). Obviously, Gs∗ ⊂ Gs ⊂ G. We first show G∗ ⊂ Gs∗. Write
Qs
n for Qn ∗Q−n and notice that Qs

n,x = Qn,x ∗Q−n . Choose any x ∈ G∗ and n ≥ 1 such that
‖Qn −Qn,x‖ < 1. By the contraction property,

‖Qs
n −Qs

n,x‖ = ‖(Qn −Qn,x) ∗Q−n ‖ ≤ ‖Qn −Qn,x‖ < 1

whence x ∈ Gs∗.
The equality of Gs∗ and Gs follows directly from part (vi) of Lemma 5 but the following

arguments will even prove G∗ = Gs and thus complete the proof of Theorem 3.
There is nothing to prove if Q(G∗) = 1 whence we assume Q(G∗) = 0. Since Qs(G) = 1,

for each Qs-positive event C there exist k ∈ IN and r ∈ Z such that Qs(C ∩ Gk,r) > 0 where
Gk,r is as defined in (3.2). Let us fix any Qs-positive and symmetric C (so C = −C). The
symmetry of Qs implies

Qs(C ∩Gk,r) = Qs(C ∩ {x ∈ G : ‖Qk+r,x −Qk‖ < 1})
= Qs(C ∩ {x ∈ G : ‖Qk+r,−x −Qk‖ < 1})
= Qs(C ∩ {x ∈ G : ‖Qk+r −Qk,x‖ < 1})
= Qs(C ∩Gk+r,−r)
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whence we may assume w.l.o.g. that r ≥ 0. We claim that there is an l ∈ IN which may depend
on C such that Qs(C ∩ Gl,0) > 0. Since Gl,0 ⊂ G∗ the latter implies Qs(C ∩ G∗) > 0. For
C was chosen arbitrarily among all symmetric Qs-positive sets we then conclude Qs(G∗c) = 0
and thus the desired result G∗ = Gs because Qs(G∗c) > 0 would imply the impossible result
Qs(G∗c ∩G∗) > 0 (G∗c is symmetric).

To prove our claim we assume r ≥ 1 (there is nothing to show otherwise) and employ
a further coupling argument. Obviously, we can construct copies (S′n)n≥0 and (S′′n)n≥0 of
(Sn)n≥0 such that
(1) L(S′1, S

′′
1 ) = Q⊗Q, hence L(S′1 − S′′1 ) = Qs;

(2) L(S′k+r+1−S′1 +y−z, S′′k+1−S′′1 |S′1 = y, S′′1 = z) is a maximal coupling of (Qk+r,y−z, Qk)
and therefore successful if y − z ∈ C ∩Gk,r.

Defining

p(y, z) def= P (S′k+r+1 − S′1 + y − z = S′′k+1 − S′′1 |S′1 = y, S′′1 = z),

we obtain from our assumption that∫
{(u,v):p(u,v)>0}

1C(y − z) Q⊗Q(dy, dz) = Qs(C ∩Gk,r) > 0

and thereby further

P (S′k+r+1 = S′′k+1)

=
∫

P (y + S′k+r+1 − S′1 = z + S′′k+1 − S′′1 |S′1 = y, S′′1 = z) Q⊗Q(dy, dz)

≥
∫
{(u,v):p(u,v)>0}

1C(y − z)p(y − z) Q⊗Q(dy, dz) > 0.

Hence ‖Qk+r+1 −Qk+1‖ < 1, i.e. r ∈ S0 (recall r ≥ 1). We can therefore extend our coupling
model above by further taking
(3) L(S′2k+r+2 − S′k+r+1, S

′′
2k+r+2 − S′′k+1) to be any successful coupling of (Qk+1, Qk+r+1).

Now observe that

q(y, z) def= P (S′2k+r+2 − S′1 + y − z = S′′2k+r+2 − S′′1 |S′1 = y, S′′1 = z)

≥ p(y, z)P (S′2k+r+2 − S′k+r+1 = S′′2k+r+2 − S′′k+1) > 0

and thus ‖Q2k+r+1,y−z −Q2k+r+1‖ < 1 for all (y, z) satisfying y − z ∈ Gk,r. Consequently,

Qs(C ∩G2k+r+1,0) ≥
∫
{(u,v):q(u,v)>0}

1C(y − z) Q⊗Q(dy, dz)

≥
∫

1C∩Gk,r (y − z) Q⊗Q(dy, dz)

= Qs(C ∩Gk,r) > 0

which proves our claim with l = 2k + r + 1. ♦
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4. Admissible shifts and quasi-invariance

As already defined in the Introduction, let

HQ = {x ∈ IRd : Q1,x << Q}

be the set of admissible shifts for a given probability measure Q = Q1 on (IRd,Bd). By Lemma
1 in Section 2, replacing Qν with Q, there is a measurable function f : (IRd× IRd,Bd⊗Bd)→
([0, 1],B[0,1]) such that f(x, ·) = dQ1,x

d(Q+Q1,x) for all x ∈ IRd. Consequently,

HQ = {x ∈ IRd : Q(f(x, ·) < 1) = 1}. (4.1)

We can now easily prove:

Lemma 6. HQ is a measurable subsemigroup of IRd. It is a group if Q is symmetric.

Proof. The measurability of HQ follows directly from (4.1). Given x, y ∈ HQ, we have
Q1,x << Q, hence Q1,x+y = δy ∗Q1,x << δy ∗Q = Q1,y, which together with Q1,y << Q implies
Q1,x+y << Q, i.e. x + y ∈ HQ. If Q is symmetric we also have that x ∈ HQ implies −x ∈ HQ
because Q1,−x = (Q1,x)− << Q− = Q.

Let (Sn)n≥0 be a random walk with increment distribution Q and, as before, G∗ = Gs

the minimal subgroup of its symmetrization. In the following, we will write H for HQ, Hs for
HQs , Hn for HQn and Hsn for HQsn .

Lemma 7. Given the previous notation, the following assertions hold:
(i) For all n ∈ IN , Hn ⊂ Hsn;
(ii) H = H1 ⊂ H2 ⊂ ... ⊂ G∗;
(iii) Hs = Hs1 ⊂ Hs2 ⊂ ... ⊂ G∗;
(iv) H∞

def= ∪n≥1Hn is a subsemigroup of G∗ and a group if Q is symmetric;
(v) if Q has compact support then H∞ = Hs∞ = {0}.

Proof. (i) follows because dQsn,x
dQsn

= dQn,x
dQn

∗(Qn)− for each x ∈ Hn and n ∈ IN . Similarly,
dQn+1,x
dQn+1

= dQn,x
dQn
∗Q givesHn ⊂ Hn+1 andHsn ⊂ Hsn+1 for all n ∈ IN in (ii) and (iii), respectively.

Moreover, Qn,x << Qn implies ‖Qn − Qn,x‖ < 1 whence Hn ⊂ Hsn ⊂ G∗ for all n ∈ IN . (iv)
is an immediate consequence of (ii) in combination with Lemma 6. Finally, if Q has compact
support, then all Qn and Qs

n also have compact support. Therefore it suffices to show H = {0}.
To this end let K be the support of Q and note that, for every x ∈ IRd − {0}, K ∩ (x + K)
is a proper compact subset of x + K (the support of Q1,x) whence Q1,x(K ∩ (x + K)) < 1.
Consequently, Q1,x(Kc ∩ (x + K)) > 0 while Q(Kc ∩ (x + K)) = 0. This clearly shows that
x 6∈ H and completes the proof of (v).

We now turn to a discussion of quasi-invariant probability measures Q on measurable
subgroups G of IRd, defined through Q(G) = 1 and Q1,x << Q for all x ∈ G. Notice that a
probability distribution Q whose set of admissible shifts H forms a group needs not be quasi-
invariant because Q(H) can be less than 1 and even 0, e.g. for a continuous symmetric Q having
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compact support. However, providing Q(H) > 0, the restriction of Q to H, i.e. Q(· ∩H)/Q(H),
is quasi-invariant. As an immediate consequence of our previous results, we obtain:

Lemma 8. A probability measure Q is quasi-invariant on a measurable subgroup G of IRd

iff G is the minimal subgroup of a random walk with increment distribution Q and H = G∗ = G.

Proof. The definition of quasi-invariance together with Lemma 7 gives G ⊂ H ⊂ G∗.
On the other hand, Q(G) = 1 implies Q(G∗) = 1 so that indeed H = G∗ = G holds with G
being the minimal subgroup of any random walk with increment distribution Q.

We are now ready to present the main result of this section:

Theorem 4. If G is a measurable subgroup of IRd admitting a quasi-invariant measure
then there are 0 ≤ k ≤ l ≤ d, countable infinite subgroups G′1, ...,G′l of IR and a regular d× d-
matrix C such that C−1G = G′1 × ...×G′k × IRl−k × {0}d−l. Moreover, Q is equivalent to the
Haar measure λλG on G defined through

λλG(B) def= λλG′1 ⊗ ...⊗ λλG′
k
⊗ λλl−k ⊗ δd−l0 (C−1B), B ∈ B

d,

where λλG′
j

denotes Haar measure (i.e. counting measure) on G′j for 1 ≤ j ≤ k.

The proof of Theorem 4 essentially consists of a reduction to the one-dimensional case
for which the assertion comes down to the following result due to Kharazishvili:

Theorem 5. [3, Theorem 3 on p. 216] There is no uncountable measurable proper sub-
group of IR admitting a quasi-invariant measure.

Let us also state two rather straightforward corollaries the proofs of which can be found
after that of Theorem 4. For the one-dimensional case, they were proved by different methods
in [9].

Corollary 6. Given a probability measure Q on IRd, the following statements are
equivalent:

(i) The family (Q1,x)x∈IRd is dominated by some σ-finite measure Ψ;
(ii) Q << λλd, where λλd denotes d-dimensional Lebesgue measure on IRd;
(iii) for all B ∈ Bd, the mapping x 7→ Q1,x(B), x ∈ IRd, is continuous;
(iv) for all λλd-null sets N ∈ Bd, the mapping x 7→ Q1,x(N), x ∈ IRd, is continuous.

Corollary 7. Let Q be a probability measure on IRd whose set of admissible shifts
H forms a group with Q(H) > 0. If x 7→ Q1,x(B), x ∈ H, is continuous for all B ∈ Bd,
then there are 0 ≤ k ≤ l ≤ d, d1, ..., dk ∈ (0,∞) and a regular d × d-matrix C such that
C−1H = d1Z× ...× dkZ× IRl−k × {0}d−l.

Proof of Theorem 4. Excluding the trivial case G = {0}d, there exists a unique
maximal 1 ≤ l ≤ d for which we can find linearly independent g1, ..., gl ∈ G. Then

G′j
def= {t ∈ IR : tgj ∈ G}, j = 1, ..., l,
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define measurable subgroups of IR and G = g1G′1 ⊕ ...⊕ glG′l. W.l.o.g. let g1, ..., gl be labelled
in such a way that G′1, ...,G′k are countable and G′k+1, ...,G′l are uncountable for some k ≥ 0.
Let C be any regular d × d matrix whose first l column vectors are g1, ..., gl. It is then
obvious that C−1G = G′1 × ... × G′l × {0}d−l and that Q̃(B) def= Q(C−1B), B ∈ Bd, defines
a quasi-invariant probability measure on C−1G. We have thus reduced the remaining work,
namely to verify G′k+1 = ... = G′l = IR (if at all l > k), to the case where G has the form
G′1×...×G′l×{0}d−l. But since the quasi-invariance of Q on G entails the quasi-invariance of its

j-th marginal Q(j)(B) def= Q(IRj−1 ×B × IRd−j), B ∈ B, on G′j for each k < j ≤ l, it is no loss
of generality to further restrict to the case where d = 1 (hence k = 0, l = 1 and G = G′1). After
these simplifications the first statement of the theorem reduces to the statement of Theorem
5 that, unless G is countable, G = IR is the only measurable subgroup of IR which supports a
quasi-invariant measure.

In order to finally see that Q and λλG are equivalent, suppose λλG(N) = 0 for some
N ∈ Bd. Then, by the invariance of λλG,

0 =
∫
G

λλG(N − x) Q(dx) =
∫
G

Q(N − x) λλG(dx) (4.2)

whence Q(N − x) = 0 for λλG-almost all x ∈ G which together with the quasi-invariance of Q

implies Q(N) = 0. Hence Q << λλG. The reverse conclusion follows by interchanging the roles
of Q and λλG in the previous argument.

Proof of Corollary 6. “(i)⇒(ii)” By a well-known result of Halmos and Savage (see
e.g. [4, p.575]), (ii) implies the existence of a sequence (xn)n≥1 such that

Q1,x << Q̂
def=

∑
n≥1

2−nQ1,xn

for all x ∈ IRd. This further implies Q̂1,x =
∑
n≥1 2−nQ1,x+xn << Q̂ for all x ∈ IRd and thus

the quasi-invariance of Q̂ on IRd. Hence, by Theorem 4, Q << Q̂ << λλd.
“(ii)⇒(iii)” By quasi-invariance Q1,x << Q << λλd for all x ∈ IRd, and if g denotes a

λλd-density of Q, then gx
def= g(· − x) is a λλd-density of Q1,x. Now

lim
y→x ‖Q1,x −Q1,y‖ = lim

y→x Igx(y − x)/2 = 0 (4.3)

for each x ∈ IRd where
Ih(y) def=

∫
|h(z)− h(z − y)| λλd(dz)

for h ∈ L1, the space of λλd-integrable functions on IRd. In fact, Ih is continuous at y = 0 for
every h ∈ L1. This follows immediately for h ∈ C0, the vector space of continuous functions
on IRd with compact support, and then for general h because C0 forms a dense subset of L1

endowed with the usual norm and λλd is shift-invariant. Plainly, (4.3) implies (iii).
The implication “(iii)⇒(iv)” is trivial.
For the proof of “(iv)⇒(i)” let N ∈ Bd be such that λλd(N) = 0. Use (4.2) with λλG

replaced with λλd and integration over whole IRd to conclude Q1,−x = Q(N − x) = 0 for all
x outside a λλd-null set N ′. Since N ′c is dense in IRd the continuity of x 7→ Q1,x(N) implies
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Q1,x(N) = 0 for all x ∈ IRd, in particular Q(N) = 0 whence Q << λλd and then further
Q1,x << λλd for all x ∈ IRd showing (i) with Ψ = λλd. ♦

Proof of Corollary 7. Since all assumptions on Q carry over to Q(·∩H)/Q(H) which
is quasi-invariant on H as mentioned before Lemma 8, it is no loss of generality to assume Q

itself be quasi-invariant on H. By Theorem 4, there are 0 ≤ k ≤ l ≤ d, countable subgroups
G′1, ...,G′l of IR and a regular d×d-matrix C such that C−1H = H′1× ...×H′k×IRl−k×{0}d−l.
Hence it suffices to prove H′i = diZ for some di ∈ (0,∞) and all 1 ≤ i ≤ k. Now consider the
i-th marginal Q(i) of Q which is quasi-invariant on the countable subgroup H′i of IR and for
which, by assumption, x 7→ Q(i)(B), x ∈ H′i, is continuous for all B ∈ B. By quasi-invariance
Q({x}) = Q1,−x({0}) > 0 for all x ∈ H′i.

Suppose H′i 6= dZ for all d > 0. Then H′i is dense in IR and H′i ∩ [0, 1] = {xn; n ≥ 1} an
infinite set. In particular, there exists a sequence (yn)n≥1 in this set convergent to 0. But∑

n≥1

Q({yn}) =
∑
n≥1

Q1,−yn({0}) ≤ Q([0, 1]) < ∞

implies
lim inf
H′
i
3y→0

Q1,y({0}) = lim
n→∞Q1,−yn({0}) = 0 6= Q({0}),

a contradiction to the continuity assumption. ♦
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