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A result by Elton [6] states that iterated function systems
My = Fn(Mnfl)a n 2> 1,

of i.i.d. random Lipschitz maps F7, F5, ... on a locally compact, complete
separable metric space (X,d) converge weakly to its unique stationary
distribution 7 if the pertinent Liapunov exponent is a.s. negative and
Elog™ d(Fi(xg),z0) < oo for some x¢ € X. Diaconis and Freedman [5]
showed the convergence rate be geometric in the Prokhorov metric if
ELY < oo and Ed(Fi(zo),z0)? < oo for some p > 0, where L1 de-
notes the Lipschitz constant of F;. The same and also polynomial rates
have been recently obtained in [1] by different methods. In this arti-
cle, necessary and sufficient conditions are given for the positive Harris
recurrence of (Mp),>0 on some absorbing subset H of X. If H = X
and the support of m has nonempty interior, we further show that the
same respective moment conditions ensuring the weak convergence rate
results mentioned above now lead to polynomial, respectively geometric
rate results for the convergence to 7 in total variation || - | or f-norm
|-l f(x) =1+ d(z,20)" for some n € (0,p]. The results are applied
to various examples that have been discussed in the literature, including
the Beta walk, multivariate ARMA models and matrix recursions.
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1. INTRODUCTION

Consider a sequence of the form
M, = F(0,,M,_1), n=>1, (1.1)

which satisfies the following assumptions:
(1) My, 01,0, ... are independent random elements on a common probability space (£2, 2, P);
(2) 61,09, ... are identically distributed with common distribution A and take values in a
measurable space (0, .A);
(3) My, My, ... take values in a locally compact, complete separable metric space (X, d) with
Borel-o-field 9B(X);
(4) F: (0 xX, A2 B(X)) — (X,B(X)) is jointly measurable and Lipschitz continuous in

the second argument.

(M,,)n>0 clearly defines a temporally homogeneous Markov chain called an iterated function
system (IFS) of i.i.d. Lipschitz maps hereafter. Its (n-step) transition kernel is denoted P (P™).
For xz € X| let P, be the probability measure on the underlying measurable space under which
My = x a.s. The associated expectation is denoted E,, as usual. For an arbitrary distribution
v on X, we put P,(+) def [ P,(-) v(dz) with associated expectation E,. We use P and E for
probabilities and expectations, respectively, that do not depend on the initial distribution.
Let us write F, for F(0,,-). Given a Lipschitz map f : X — X| define its Lipschitz

constant as

1(f) & gup 2L
(f) i;él; e

Put further
L, < I(F,) (1.2)

for n > 1 and note that (L, ),>1 forms a sequence of i.i.d. random variables which is indepen-
dent of My. Its distribution does therefore not depend on the distribution of My, that is, it is
the same under every P,.

Elton [6] showed that, under every P, (M,,),>0 converges weakly to a stationary distri-

bution 7 provided that its Liapunov exponent [* is a.s. negative, i.e.

Y lim ntlogl(Fpo...0Fy) < 0, (1.3)
and furthermore
Elogt L; < oo and Elog™ d(Fy(zo),z0) < 00 (1.4)

for some zy € X. He further showed that 7 is unique and (M,),>0 ergodic under P.. By
Birkhoff’s ergodic theorem, the latter implies for each B € B(X)

lim 31500 = w(B) (1.5
k=1
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P.-a.s. and thus also P,-a.s. for m-almost all x € X. Hence, if 7(B) > 0, then
P,(M, € Bio.) =1 (1.6)

for m-almost all x € X and we would like to conclude that every m-positive set B is recurrent.
Unfortunately, the m-null set of x € X for which (1.6) fails to hold generally depends on the set
B. On the other hand, if it does not, we infer the m-irreducibility of the chain (My,), >0 on some
H with 7(H) = 1 and then, because of (1.6) for each w-positive B, further its Harris recurrence
on H. Provided additionally aperiodicity, this in turn implies that P, (M, € -) converges to
7 in total variation for every x € H which, of course, is a much stronger conclusion than
Elton’s result. With regard to a further analysis of IFS, for instance the rate of convergence
towards stationarity (in total variation), it also gives access to the highly developed theory for
irreducible and Harris recurrent Markov chains on general state spaces.

Given an IFS of i.i.d. Lipschitz maps satisfying (1.3) and (1.4), two questions will be con-
sidered in this article and discussed in various examples. In Section 2, we state two equivalent
conditions for the positive Harris recurrence on some absorbing subset H of X (Theorem 2.1)
and also provide a sufficient condition for H = X (Theorem 2.2). These conditions are quite
often easy to check in applications when the stationary distribution is known to some extent.
The proofs of Theorem 2.1 and 2.2 can be found in Section 4. Section 3 deals with the con-
vergence towards stationarity for Harris recurrent IFS. Under additional moment conditions
on Ly and d(Fi(xp),xp), we will show f-regularity and f-ergodicity for suitable functions f
(Theorem 3.1) and provide polynomial as well as geometric rates of convergence towards sta-
tionarity (Theorem 3.2). While Theorem 3.1 is a rather straightforward consequence of results
in [9], the proof of Theorem 3.2, given in Section 5, will take some effort and will be based
upon regenerative arguments developed in [1] in combination with the use of Liapunov drift
functions. It also requires the additional assumptions H = X and supp © # (), where supp 7

denotes the support of . Again, the result will be illustrated in a number of examples.

2. NECESSARY AND SUFFICIENT CRITERIA FOR HARRIS RECURRENCE

The following theorem and first main result of this article confirms that, given (1.3)
and (1.4), the conclusions mentioned after (1.6) are indeed true under an additional absolute
continuity condition on the transition kernel P. A set B € B(X) is called m-positive, if
m(B) > 0, w-full, if 7(B) = 1, and (P-)absorbing, if P(z,B) = 1 for all x € B. Given two
non-zero o-finite measures v, A on X, we say that v possesses a A-continuous component if
v(dz) > g(x)A(dz) for some measurable function g : X — [0,00) with [gd\ > 0. For the
definitions of irreducibility, Harris recurrence and related notions for Markov chains on general
state spaces not explicitly repeated here, we always refer to the excellent and by now standard

monograph by Meyn and Tweedie [9].
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THEOREM 2.1.  Suppose (My,)n>0 is an IF'S of i.i.d. Lipschitz maps satisfying (1.3) and
(1.4). Let m denote its stationary distribution. Consider the following assertions:

(a) There exists a w-positive set X and a non-zero o-finite measure A on (X,B(X)) such that
each P(x,-), © € X, possesses a \-continuous component.

(b) There exists a m-positive set X and a non-zero o-finite measure A on (X, B(X)) such that
each Y, -, 27"P"(x,-), v € X, possesses a A-continuous component.

(c) There exists a m-full, absorbing set H € B(X), such that (My,)n>0 s an aperiodic, positive
Harris chain on H.

Then (a)=(b)<(c) holds true.

Provided that (M, ),>0 is a Harris chain on a set H as described in Theorem 2.1(c), this
set is called a Harris set (for (My)n>0). It is well-known that in this case there always exists
a maximal absorbing set with this property, called mazximal Harris set. Our second theorem
contains some information on when this latter set is the whole space X. Let int(B) denote the
interior of a set B € B(X).

THEOREM 2.2.  Given the situation of Theorem 2.1, suppose (My)n>0 is Harris recur-
rent with mazximal Harris set H. Then the following assertions hold:
(a) Either w(int(H)) =0, or H = X.
(b) If (a) or (b) in Theorem 2.1 holds for some X with 7(int(X)) > 0 and if int(supp 7) # 0,
then H = X.

In order to put our results in the right place within the extensive and well-established
theory of Markov chains on general state spaces, the following comments and corollaries might
be helpful.

REMARK A. Suppose we are given any Markov chain (M,,),>0 on (X, B (X)) with tran-
sition kernel P and stationary distribution 7 under which it forms an ergodic sequence. If
(M) n>0 is m-irreducible on some P-absorbing set X; then, by the recurrence/transience di-
chotomy [9, Theorem 8.3.4], (M,,)n>0 is also recurrent on Xy, i.e. U(x, B) o Y onso P (x,B) =
oo for all m-positive B € B(X;). Indeed, if it were not, there would be a uniformlgf transient, -
positive B, which thus satisfied sup,c5 U(x, B) < co. On the other hand, the ergodic theorem
ensures lim, .o n~!'>")_, P*(z, B) = n(B) > 0 and therefore U(z, B) = oo for m-almost all
x € B. Hence B must be recurrent. We thus see that the m-irreducibility of the chain already
entails its recurrence, which in turn [9, Theorem 9.0.1] implies its positive Harris recurrence
on an absorbing and 7w-full set H. Consequently, Theorem 2.1 is really about necessary and

sufficient conditions for the w-irreducibility of (M, )n>0-

COROLLARY 2.3.  Given the situation of Theorem 2.1, its assertions (b),(c) hold if, and

only if, (M, )n>0 is T-irreducible.
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REMARK B. Condition 2.1(a) may be reformulated as P(z,dy) > 1x(x)g(z,y) A(dy) for
some m-positive set X, a non-zero o-finite measure A on (X, B(X)) and a product measurable
function g : X* — [0,00) satisfying [, g(x,y) A(dy) > 0 for all z € X. The product measura-
bility of g follows from the fact that B(X) is countably generated. An equivalent statement of
condition 2.1(b) is that, for each = € X, there exists n(x) > 1 such that P™*)(z,) is nonsin-
gular with respect to A. Since at least one of the sets X,, o {zr € X:n(x) =n}, n>1, must
be m-positive, 2.1(b) is also equivalent to condition 2.1(a) with P, X replaced with P™, X,, for
some n > 1, i.e.

P'(z,dy) = 1x,(x)gn(z,y) A(dy) (2.1)
for some product measurable function g, : X? — [0,00) satisfying [; gn(z,y) A(dy) > 0 for
all x € X,,. We will show in the proof of Theorem 2.1 that A can be chosen in such a way
that A < w. Notice that X,, forms a small set, if inf,ex, gn(z,y) > 0 for some § > 0, but
that neither this nor the existence of any other small set is generally implied by (2.1). On the
other hand, each Harris chain with stationary distribution 7 possesses m-positive small sets.

We hence note as another nontrivial consequence of Theorem 2.1:

COROLLARY 2.4.  Given the situation of Theorem 2.1, its assertions (b),(c) hold if, and

only if, (My)n>0 possesses a mw-positive small set.

REMARK C. As we are dealing with a special class of ergodic Markov chains, namely IF'S
of i.i.d. Lipschitz maps under an average contraction condition, the question seems natural, how
this enters into our results. Obviously, (M,,),>0 is weak Feller, i.e. Pf(x) def [ f(y) P(x,dy) =
E, f(M;) is a bounded continuous function whenever f has this property. However, (M, )n>0
even has a stronger property not shared by all weak Feller chains: Let 7 be any a.s. finite
ot E, f(M,). Then we see upon noting P(™) f(x) = EfoFy.. ()

that P(") f is a also a bounded continuous function if f has this property. Of course, the

stopping time and put P(7) f(x)

nontrivial part of this implication is the inheritance of continuity.

REMARK D. Given the Harris recurrence of (M,,),>0 on some Harris set H, the sta-
tionary distribution is clearly a maximal irreducibility measure. On the other hand, the proof
of Theorem 2.1 will show that (M,,),>0 is also A(- N X’)-irreducible for some A-positive X’ and
every A such that 2.1(a) or 2.1(b) holds. Consequently, 7 dominates A(- N X’), which in turn
shows that supp m has inner points whenever this holds true for supp A(- N X’). The latter may

sometimes be easier to check, for instance, if A is Lebesgue measure on Euclidean space.

REMARK E. The verification of 2.1(a) or 2.1(b) requires some knowledge of the station-
ary distribution 7 as we must be able to check m-positivity of the set X. This can be a problem.
On the other hand, in many examples like 2.6(a)—(d) below this becomes unnecessary because
X = X. If further X is Euclidean and X in 2.1(a) or 2.1(b) is Lebesgue measure, then, by the
previous remark, supp m has nonempty interior, whence Theorem 2.2(c) renders the positive

Harris recurrence of (M,,),>0 on whole X.
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REMARK F. It should be clear that H can be small compared to X in a set theoretic
or topological sense. Take the trivial deterministic example where F,(z) = (1 + 2%)/2 on
X =1[0,1] for all n > 1. Then m = §; and P(z,-) = 6(1442)/2. We infer Harris recurrence on
H = {1} but on no larger subset of [0, 1].

REMARK G. Let us finally point out that, given the situation of Theorem 2.1, we must
have that > -, 27" P"(z,-) and 7 are mutually singular for m-almost all z € X if 2.1(b) and
thus also 2.1((:_),(b) fail to hold. Consequently, P™(z,-) converges weakly to 7 in this situation
by Elton’s result, while total variation convergence fails to hold for m-almost all x € X. This
may be rephrased as the following zero-one law in which - denotes weak convergence and

|| - || the total variation distance.

COROLLARY 2.5.  Given the situation of Theorem 2.1, P"(z,-) = 7 for all x € X and
W({x eX: lim |P"(z,") — 7| = 0}> — 0orl,
the probability being 1 iff 2.1(c)-(c) hold true.

2.6. EXAMPLES. In the following, F' always denotes a generic copy of Fi, F5,... and A
Lebesgue measure on R (or some subset).
(a) This is the motivating example in [5], called Beta walk, see 2.1 and 6.3 there. Let

X (0,1, $u(e) = ur, vu(0) € ¢+ u(l — ) for u € [0,1] and

F(z) = Zoy(z)+ (1 - Z2)yu(x) (2.2)

for independent random variables U, Z with a uniform distribution on [0, 1] and a Bernoulli(1/2)
distribution, respectively. It is not difficult to verify that (M,,),>0 satisfies the assumptions of
Theorem 2.1 and has stationary distribution m =Beta(1/2,1/2) with Lebesgue density f(z) =

\/% on (0,1), also called arcsine distribution. (Plainly, 7 in the denominator of f means

the constant 3.14...) Now observe that P(z, ) is a mixture of a uniform distribution on [0, z] and
a uniform distribution on [z,1]. So it possesses a A-continuous component for each z € [0, 1].
Theorem 2.1 and 2.2 therefore imply the Harris recurrence of (My,),>0 on H = X = [0, 1]. The
conclusion remains true in the biased case where Z has a Bernoulli(p) distribution for some
p # 1/2. The stationary distribution in this case is a Beta(p, q) distribution with Lebesgue

density FF(;’;;EE];) 2?11 — )77 on (0, 1), where ¢ 41 _ pand T is Euler’s gamma function.

(b) Another well-studied example is the autoregressive process of order 1 (AR(1)-process)
M, = pM,_ 1+6,, n>1 (2.3)
on state space X = R, where 61,05, ... are i.i.d. with distribution G, say. Hence

F(z) = px+0 (2.4)
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with § ~ G. Here ”"~” means equality in distribution. Given |p| < 1 and Elog™ |6;| < oo,
the conditions of Theorem 2.1 hold and the stationary distribution is easily identified as the
distribution of ) ., p"0,. Now, if G possesses an absolutely continuous component, then so
does P(x,-) = G(-_— pz) for every x € R. We hence infer the positive Harris recurrence of
(My)pn>0 on H=X=R.

(c) The so-called threshold AR(1)-process is like the previous example of some interest in

time series analysis, see [12, Example 4.4]. Consider

p+Mn_1 + Hn, if M,_1>0

M, = , n>1 (2.6)
p-My,_1+6,, ifM, <0

on X = R, where 61, 05, ... are again i.i.d. with some distribution G. Obviously,

F(z) = (pat +0)10,00)(x) + (0-7 + )1 so.0)(2) (2.7)

with 8 ~ G in this case. Similar to the previous example, the conditions of Theorem 2.1 hold
if |p4| < 1,]p—| < 1 and Elog" |0;] < co. The positive Harris recurrence of the chain on
H = X = R follows if G possesses an absolutely continuous component. However, concerning
our assumptions on p4,p_, a stronger result was obtained by Petrucelli and Woolford [11].
Given Ef; = 0 and the absolute continuity of G with everywhere positive Lebesgue density,
they showed that (M,,), >0 is actually a positive Harris chain iff p; < 1,p_ <1 and pyp_ < 1.

(d) Let us next take a look at matriz recursions which have been studied by many authors,

see 2.2 in [5] and the references given there. The defining equation is
M, = A,M, 1+ B,, n>1 (2.8)

on X = R™ for some m > 1, where (A1, By), (A2, Bs), ... are i.i.d.; A,, is a m X m matrix and

B, am x 1 vector. So the associated random Lipschitz map is

F(z) = Az + B (2.9)
with (A, B) being a generic copy of (A1, Bi). Let || - || be any norm on R™, define ||A|| o
sup{||Az||;x € R™, ||z|| < 1} for m x m matrices A and suppose that

Elog™ ||A|| < oo and RElog™ ||B| < oc.
Suppose further an a.s. negative Liapunov exponent [*, here given by
I* = inf{n 'Elog||A; -...- A,||;n > 1}.

Then the conditions of Theorem 2.1 are satisfied (with zo = 0) whence, by Elton’s result (for
this situation earlier obtained by Vervaat [13]|, Brandt [3], see also [2] for a converse), M,

possesses a unique stationary distribution 7 which is the distribution of any solution M., of
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the stochastic fixed point equation Mo, ~ AM., + B, where (A, B) and M, are independent.

As one can easily see, we may take

My =Y <:1:[ Ak>Bn. (2.10)

n>1 =1

If we now additionally assume that (A, B) is nonsingular with respect to A™*™ @ A", then
all P(z,-), z € R™, are evidently nonsingular with respect to A", whence Theorems 2.1 and
2.2 show the positive Harris recurrence of (M,,),>0 on whole X = R"™. The same conclusion
holds true provided that A, B are independent and B is nonsingular with respect to A™.

(e) Let us finally look at an example, in fact a one-dimensional special case of the previous
one (A = (a) and B,, = 6,,) and again taken from [5], with a negative answer as to Harris

recurrence. Put fo(z) oz —1, fi(z) 4z +1 for z € R and some a € (0,1) and consider

F(z) = fo(x) (2.11)

where 6 is 0 or 1 with probability 1/2 each. The associated IFS (M,,),>0 with state space

X = R thus satisfies the recursive equation
M, = aM,_,+0,, n>1 (2.12)

where 61,05, ... are independent symmetric variables on {—1,1}. Its unique stationary distri-
bution 7 is the distribution of the infinite series > -, a™ '6,,. It is known that 7 is continuous
for every a € (0,1), singular for a € (0,1/2) U N,_N C (1/2,1) a nonempty A-null set, and
absolutely continuous, otherwise. If a = 1/2, 7 is the uniform distribution on [—2,2]. The
question which values of a € (1/2,1) give a singular 7 remains open, see 2.5 in [5] for further
information and references.

We claim that (M,,),>0 is never Harris recurrent. If it were, by Theorem 2.1, we could
find a m-positive set Xy, necessarily uncountable because 7 is continuous, such that the

1 1

P(x7 ) = idam—kl + §5am—1a UIS XO

were dominated by some o-finite measure \. By a well-known result of Halmos and Savage
[7], we could then find a countable subset X; of X such that (P(z,-)).ex, and (P(x,"))zex,
were equivalent, that is P(z, N) = 0 for all z € Xy iff P(z,N) = 0 for all z € X;. On the
other hand, given any countable X1 = {z,,;n > 1}, the set of z such that P(x,-) is nonsingular
with respect to some P(z,,-) is easily identified as X1 U {z € X : 2 = z,, + 2 for some n}
which is again countable. Consequently, the uncountable Xy contains elements x such that
P(z,-) is orthogonal to each P(z,,-), a contradiction to the equivalence of (P(z,"))zex, and
(P(x,-))zex,- We conclude with the help of Corollary 2.5 that M,, converges to 7 in distribution

under every P, while convergence in total variation fails to hold for m-almost all x.
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3. THE RATE OF CONVERGENCE TOWARDS STATIONARITY

As already mentioned above, Theorem 2.1(c) implies, by invoking the ergodic theorem

for aperiodic, positive Harris chains, see [9, Theorem 13.0.1], that

lim ||P,(M, €-)—m|] = 0 (3.1)
for all z € H where || - || denotes the total variation distance. A weaker metric considered in [5]

and [1] is the Prokhorov metric associated with d. Following [5], the latter is also denoted d

and defined, for two probability measures A1, A2 on X, as the infimum over all § > 0 such that
M(B) < X(B%)+6 and Mo(B) < \M(B°)+46

for all B € B(X), where B’ e {r e X:d(x,y) < 0 for some y € B}. It has been shown in [1]
that, for each p > 0,

Flogt L <0 (3.2)
together with
ElogP™ (14 L;) < oo and ElogP™ d(Fi(z0),z0) < oo (3.3)
implies
/X log?(1 + d(x, z0)) 7(dz) < oo (3.4)
and
d(P"(v,-),m) < Ag(n+1)77 (3.5)

for all x € X, n > 0 and a constant A, of the form max{A, 2d(x,zq)} for some A € (0,00) and
xo € X. If (3.2) and

ELY < oo and Ed(Fi(zg),z0)? < o0 (3.6)

for some p > 0 are satisfied, then

/X d(z, 20)" (dz) < oo (3.7)

for some 0 < n < p and

hold true for all z € X, n > 0, some r € (0,1) not depending on = and a constant A, of the
same form as in (3.5). This result is due to Diaconis and Freedman [5] and reproved in [1]
by different methods. If (M,,),>¢ is Harris recurrent, it is natural to ask in view of (3.5) and
(3.8), whether or not similar conclusions hold when replacing the Prokhorov distance with the
total variation distance. The positive answer is provided in Theorem 3.2 for the case H = X
and under the additional assumption that the support of the stationary distribution 7 has

nonempty interior.



10

Weaker conclusions, stated as Theorem 3.1, can be drawn much more easily from (3.4)
and (3.7) concerning the f-regularity of (M,,),>0. Following [9], a set C' € B(X) is called
f-regular for a function f : X — [1, 00) if for each m-positive B € B(X)

o(B)—1
supEm( 3 f(Mn)> < o,
n=0

zeC

where o(B) dof inf{n >1: M, € B}. (M,)n>0 is called f-regular on a P-absorbing set H if it

is m-irreducible and H admits a countable cover of f-regular sets. Defining the f-norm |jv||;

for a signed measure v as

def def
vl sup lutg)l, vie) < [ g av
lgl<f
(M,,)n>0 is called f-ergodic on H if it is positive Harris on H with invariant distribution =
satisfying 7(f) < oo and if
lim [P (") =, = 0

for all z € H. Now put

f(z) = 141logf(1+ d(z,x0)) (3.9)

if (3.3) holds for p > 0, and

F@) €1+ d(z, 20)" (3.10)

if (3.6) holds for p > 0 and with n defined by (3.7). These will be standing definitions in
the sequel. Observe that (3.4) and (3.7) may then be restated as 7(f) < co. By using Meyn
and Tweedie’s main result on f-regularity, see [9, Theorem 14.3.3], the following result is now

immediate and hence stated without proof.

THEOREM 3.1. Let (M,)n>0 be an IFS of i.i.d. Lipschitz maps satisfying (1.3) and
(1.4). Suppose further that (M,,)n>0 is an aperiodic positive Harris chain on a w-full, absorbing
set H and that either (3.3) or (3.6) holds for some p > 0. Then H may be chosen such that
(My)n>0 is f-reqular and f-ergodic on H with f according to (3.9), respectively (3.10).

It is to be understood that the Harris set H on which (M,,),>0 is f-regular need not be
the maximal Harris set.

Let us now turn to the rate of convergence towards stationarity for (M,,),>0. As already
mentioned above, our result will need H = X and the interior of supp m be nonempty. In order
to get some feeling for the problem, the reader should notice that the contractive behavior
of an IFS (M, )n>0, even in the strictly contractive case Ly < v < 1 a.s., is a topological
property which does not automatically translate into rapid convergence in the very strong
total variation norm. When thinking in terms of coupling rates, the latter property means
that two appropriately constructed versions (M7Y),>o and (MY),,>o of (M, ),>0 with different

starting points z,y € H may be ezactly coupled in very short time, i.e. M? = MY foralln > T
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with a coupling epoch T satisfying some high order moment condition. Strict contraction,
on the other hand, only ensures that the distance d(MZ*, MY) can be made decreasing at
a geometric rate (by just choosing M? = F,.1(x) and MY = F,,.1(y)), but this may come
along with one process rapidly entering a small or petite set (the sets for regeneration and thus
canonical candidates for coupling attempts, see [9] for definitions) while the other process takes
a much longer time to get there so that the overall time it takes to glue both processes together
may be large (although they have been close for a long time already). For this unfortunate
case to happen we must envisage Harris recurrent IFS for which all small and petite sets look
topologically "bad”. As it turns out, this means that they all have empty interior. Indeed, the
proof of Theorem 3.2 in Section 5 will require the existence of at least one x € X and € > 0
such that the e-ball B.(x) is m-positive and (1-)regular, which by [9, Theorem 14.2.4] implies
that B.(x) is petite. Unfortunately, this condition seems difficult to verify in general. We will
therefore resort to a further result of Meyn and Tweedie [8, Theorem 3.4] which yields that
all compact subsets of X, and thus all e-balls (X locally compact) as well, are petite provided
H = X and int(supp 7) # 0. Note, however, that our results still apply if H is a closed subset of
X and supp 7 has nonempty interior in the relative topology on H. We then consider (M,,)n>0

as an IF'S on the reduced state space H which inherits all topological properties of X.

THEOREM 3.2. Let (My)n>0 be an IFS of i.i.d. Lipschitz maps with a.s. negative Lia-
punov exponent I* and stationary distribution w. Suppose further that (My)n,>0 is a positive
Harris chain on all of X and that int(supp ) # 0. Then the following assertions hold:

(a) If (My)n>0 satisfies (3.3) for some p > 0, then

> P Pa(M, €)= 7| < o0 (3.11)
n>1
as well as
lim n?||P,(M, € ) — x| = 0. (3.12)
for all x € X.

(b) If (My,)n>0 satisfies (3.6) for some p > 0, then

> r P (M € ) —7|f < oo (3.13)
n>0

for all z € X and somer € (0,1) not depending on x € X, where f is defined as in (3.10).

3.3. EXAMPLES. (a) [5, Section 6.3] The Beta- Walk is a generalization of Example 2.6(a)

and obtained by replacing the uniform variable U in (2.2) by a Beta(«, o) variable V', a € [0, 00].
def 1 def

Here Beta(0,0) = 5(do + 01) and Beta(oco,00) = 6;/2. Example 2.6(a) is the case o = 1. As

one can easily see with Theorem 2.1 and 2.2, (M,,),>0 is a positive Harris chain on X = [0, 1]
for a € (0, 00|, but is not for @« = 0. Diaconis and Freedman [5, Theorem 6.1] show that =

equals Beta(a%rp ) for a € {0,1, 00}, but differs from it otherwise, although sharing the
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first three moments. Except for the case o = 0, where m = %(50 + 61), m is further absolutely
continuous with therefore nonempty int(supp 7). Since X is compact, condition (3.6) with
xg = 0 holds for every p > 0, whence Theorem 3.2 implies geometric ergodicity of the chain
for every a € (0,00). If @ = 0, the same conclusion yields by observing that, starting from any
x € [0,1], it takes a geometric time to enter the absorbing closed Harris set suppm = {0,1}
and that Theorem 3.2 gives geometric ergodicity on that set.

(b) We next take a look at multivariate ARMA models as discussed in [12, Section 4.3.1]
and [2, Section 4], where our presentation follows the latter source. Example 2.6(b) forms a
very simple, univariate special case of such models. Given real matrices F;, 1 <i <k, and G},
0 < j <, of dimension d x d and d x m, respectively, a R%-valued random process (Y;,)n>_#

is a nonanticipative solution of an ARMA(k, 1) equation, if
k l
Yn == Z I‘Plen_Z + Z ngn—ja n Z 1, (314)
i=1 §=0

where 0,,, n > —I, are i.i.d. R™-valued and independent of (Y_j41, ..., Yp).

With I; denoting the d-dimensional identity matrix, put

def

k l
F(2) = I — ZFizi and G(z) 4 Zszj, z e C.
j=1

=1

Suppose that F(2)"!G(z) is irreducible in the sense that every matrix function D(z) which
is a common left divisor of F(z) and G(z), has a constant determinant. It is shown in [2,

Theorem 4.1] that, under the assumptions

(b.1) 6 is not carried by a fixed hyperplane,
(b.2)  Elog™ [|61]] < co (|| - | any norm on R™),

(b.3)  F(2)"'G(z) is irreducible,
(3.14) possesses a stationary nonanticipative solution iff

(b.4)  all zeros of the polynomial detF(z) lie outside the closed unit disk of C.

Let M denote the transpose of a matrix M. In order to discuss (3.14) within our
framework of IF'S of i.i.d. Lipschitz functions, we first need a so-called state space representation

of the model, given by

Mpi1 = AM, + Bb,.1, n>0 (3.15)

and

Yn+1 == CMTL + D9n+1, TLZO, (316)
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where M, € (1Y, . Y i1, 0, ey WOn1s1),

v dgf (Fla“ka—l)v r déf (Gla“'le—l)a
U Fy r G, Gy

I. 1y O 0 0 0

A def (k—1) , B def 7

0 0 0 0 I,
0 0 I,g-1) O 0

c Y (v, F.T,G), D ¥ q,

see [2]. The dimensions of A and B are (kd+(m) x (kd+Im) and (kd+Im) x m, respectively.

Now, (M,)n>0 clearly defines an IFS of i.i.d. Lipschitz maps. Under conditions (b.1-4),
which are always assumed hereafter, its Liapunov exponent is a.s. negative. Indeed, all eigen-
values of A have modulus less than 1, as following from [2, Theorem 4.1] in combination with
2, eq. (15)]

F(2)"'G(2) = C(z"*Iyaytm — A)™'B + D.
The latter implies that z is an eigenvalue of A iff detF(1/z) = 0.

Following [2], let H = w + V be the minimal affine subspace of R*¥¥+" such that the
stationary distribution 7 of (M,,), >0 is concentrated on H. Since 7 is unique, H is also the affine
subspace of minimal dimension which is invariant for (M,,),>0, i.e. A(w+V)+ B, Cw+V
a.s. It follows that Aw —w € V, AV C V and Im(B) C V. Hence, for some invertible matrix
S, SM, takes the form SM, =*(*M,,0) for each n > 0 and satisfies

SM,., = SAS 'SM, + SB6,,,, n>0, (3.17)

L A Ay B, L1
SAS™ = , SB = and S(Aw—w) = ,
0 Ao 0 0

where A11, By and x; have dimensions s x s, s x d and s x 1, respectively (s défdim(V)). Now,
(M,)n>0 satisfies

with

My = AuM, + Bib,1 + z1, n>0, (3.18)

and forms again an IFS of i.i.d. Lipschitz maps with a.s. negative Liapunov exponent. Its
state space is R® and its unique stationary distribution # ~ 3 o, Ay (B0, + 1) is not
concentrated on any proper affine subspace of R®; by minimality of H. Consequently, the linear
hull of Im(B;), Im(Ay; By),..., Im(A37 ' B;) must be R® and, by (b.1) and the independence
of the 6, the distribution of > _ AT 1 B16,, cannot be carried by a fixed hyperplane of R®.
Replacing (b.1) with the stronger condition

(b.1’) the distribution of 6 is nonsingular with respect to X%,
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we infer that the distribution of Y37, A7 'Bi6, is nonsingular with respect to \°. Since
further

s s—1
Mn—i—s = Aian + ZAil_jBlen—s—j + ZAjlliUl, n207
Jj=1 7=0

validity of condition (c) of Theorem 2.1 with X = R® and A = A® is now easily verified. This
in turn shows the positive Harris recurrence of (Mn)nzo on X = R? by invoking Theorems
2.1 and 2.2(b). Note that supp T has nonempty interior because 7 dominates a A\*-continuous
measure, see Remarks D and E. We further infer that part (a), respectively part (b) of Theorem

3.2 applies to (M, )n>0, provided that
(b.5)  Elog"*!(1+ ||B161]) < oo,
respectively
(b.6) E|B161]? < o0
are satisfied in addition to (b.1’) and (b.2-4). The function f arising in (3.13) here takes the
form f(z) = 1+ ||z||? for an arbitrary norm || - || on R®. Corresponding conclusions for the

ARMA process (Y,)n>0 then follow under the same respective conditions because

IP(M,, € -|My = z) — 7| = |P(SM, € |SMy ="(z,0)) — 7 "™
= [IP(M, € -|My = S7'z) — |
> |P(Y, € |My =8 ) = ¢
and

IP(M, € [My=2) =7y > |P(Y, € |Mo=5"2)— £l

where g(y) dof c(1 4 ||ly||P) for an arbitrary norm || - || on R% and a sufficiently small constant

¢ > 0 depending on the function f.
(c) Returning to Example 2.6(d) of matriz recursions M,, = A, M, _1 + By, n > 1, with

a.s. negative Liapunov exponent and satisfying

(c.1)  Elog™ ||A| < oo and Elog™ || B|| < oo,
we recall that its positive Harris recurrence on whole X = R follows if further

(c.2)  (Aq, By) is nonsingular with respect to A™*™ @ A™,
or

(c.2’) Ay, B; are independent and Bj is nonsingular with respect to A™
holds true. Given any p > 0, it is then immediate to conclude the assertion of Theorem 3.2(a)
and of 3.2(b) with f(z) = ||z||P, provided that additionally

(c.3)  Elog’™ 1+ ||A1]]) < oo and Elog?™ (1 4 || By]|) < oo,
respectively

(c.4) E|A1||P < 0o and E||By||P < 0.

(d) We finally consider stochastic difference equations with additive noise

Mn—|—1 = T(Mn) + ‘9n+17 77,20,
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for which ergodicity results were obtained by Chan and Tong [4]. Here T': R™ — R™ is a
(nonrandom) Lipschitz function and the 6,, n > 1, are i.i.d. random vectors in R™. Hence
(M,,)n>0 is an IFS of i.i.d. Lipschitz maps F,,, n > 1, with generic element F(x) = T'(x) + 6.
As one can easily see, it satisfies Elton’s conditions (1.3), (1.4) and is thus ergodic provided
that

(d.1) T is strictly contractive, i.e. [(T) < 1;

(d.2) Elog™ [|61] < oo.

If furthermore

(d.3) 6 is nonsingular with respect to m-dimensional Lebesgue measure A",

we infer, for some A"-positive X', the A\ (- N X’)-irreducibility and the positive Harris re-
currence of (M,,),>0 on some absorbing set H (Remark D and Theorem 2.1 with X = X =
R™). Moreover, int(supp w) # () because 7 (as a maximal irreducibility measure) dominates
A™(-NX"). Hence H = R™ by Theorem 2.2(b). Now Theorem 3.2(a), respectively 3.2(b) with
f(x) = ||z||P applies, provided additionally

(d.4)  Elog?™ 1+ ||61]) < oo,
respectively

(d.5) El|61]? < oc.
Notice that the threshold AR(1)-model in 2.6(c) with |p4+| < 1 and |p_| < 1 is a special case
of the given model.

Geometric ergodicity of (M,,)n>0 is shown in [4] for the situation where (d.1) and (d.3)

are replaced with

(d.1’) T(0) =0 and T is exponentially stable in the large, i.e. [|[T"(z)|| < ke™"||x|| for

all x € R™ and some constants K, ¢ € (0, 00),

(d.3’) 6y is absolutely continuous with respect to A with an everywhere positive density,
and where (d.5) holds with p = 1. Plainly, (d.1’) is weaker than (d.1), while (d.3’) is stronger
than (d.3) and ensures the irreducibility of the model. The Harris recurrence and geometric
ergodicity may then be inferred from (d.1’) by showing the existence of a suitable Liapunov

function and applying Theorem 15.0.1 in [9], see [4] for details and also Section 5.

4. PROOFS OF THEOREMS 2.1 AND 2.2

PROOF OF THEOREM 2.1. Since ”(a)=-(b)” is trivial we first show ”(b)=-(c)”. So we
suppose (b) which provides us with the existence of some ng > 1, a non-zero o-finite measure
A(m0) " a product measurable function Gno : X% — [0,00) and a substochastic kernel Q™) such
that

P (z,dy) = gn,(z,y) A" (dy) + Q") (z,dy), z€X, (4.1)
where [y gn (z,y) A (dy) > 0 for all « € X. By stationarity,

m(dy) = G, (WA (dy) + Q") (dy)
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where g, () L J gno (@, y) w(dz). So 7 > o) def G, A™) and the latter measure is nonzero

because
17l (no) T (no) m(dx .
/gno(y))\ (dy) > /x/gno( ,y) A (dy) m(dx) > 0

Possibly after replacing X with the m-positive set X N{g,, > 0}, we may thus assume hereafter
that A("0) is absolutely continuous w.r.t. .

For an arbitrary stopping time 7 = h((M,,)n>0) for (M,,)n>0, let 97 o k+h((Mg+n)n>0)
for k € Ny and P()(z,") ef P,(M, € ) for x € X, hence P") = PT if T is a.s. constant. We
claim that, given any P-a.s. finite stopping time 7 for (M, ),>0, the family (P77 (2, -)),cx

is nonsingular with respect to A("0:7) defined through
Am(B) S B € B) A @), B e B,
X
This follows because

P (2, B) = / PO (y, B)gn, (2,9) A7 (dy) + / POy, B) Q) (w, dy)
X X

=/ﬁmﬂwem%uwAWMw+/fwme%me
X X

for all B € ®B(X). The measure defined by the first integral in the previous line (as a function
of B) is clearly absolutely continuous with respect to A("0:7) with density Ong,r» say. Let Q(o:7)
be the measure defined by the second integral. It follows that

PO (@ dy) = gnyr (@) A (dy) + QU0 (z,dy), wEX, (4.2)

where [y gno,r(z,y) A" (dy) > 0 for all z € X. We have thus particularly shown that, if
(c) holds for some ng > 1, then it also holds for all n > ngy (with the same X but in general
different A).

Next recall from (1.6) that, for each m-positive B,

Xo(B) ¥ {z€X:P,(M, € Bio.)=1}
satisfies m(Xo(B)) = 1 and thus also P(z,X(B)) = 1 for m-almost all x € X. Recursively,

define

X1 (B) ¥ {2 € X,(B): P(z,X,(B)) = 1}

for n > 0. Then 7(X,,(B)) =1 for all n > 0 and X,,(B) | X (B) o Nk>0Xk(B), as n — oo,

giving (X (B)) = 1. X (B) is further absorbing because, by construction, P(z,X,,(B)) =1
for all x € X(B) and n > 0, and thus P(z,X(B)) = lim, o P(z,X,(B)) = 1 for all
z € X (B).

Put + & inf{n > 1: M}, € X} and notice that 7 is clearly P-a.s. finite. Since m(Xo (X))

=0, also A("0) (X (%¥)°) = 0. It is now obvious from the previous considerations that we can
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choose § > 0 sufficiently small such that

Lo L] g enen)ii, 202 X)) AWy w(ds) > o
Xoo (X) /X X0 (%)

Hence we may invoke Lemma 4.3 by Niemi and Nummelin [10] to infer the existence of a
m-positive set X; C Xoo (%) and a A(0)_positive set X5 C X0 (%) satisfying

déf . (no,T) . > >
« xexlf,l,fe% A (y € X: gngr(x,y) > 0,0n,(y,2) >6) > 0.

A combination of this result with (4.1) and (4.2) implies
POl (2, B) = / Po(y, B) P (2, dy)
x

> / o (,7) / Gno (4 2) AT (dz) Ao (dyy  (43)
X BNXso

> ad?A\0) (BN Xxy)

for all x € X; and B € B(X). By defining H o Xoo(X1), we obtain an absorbing set such
that X; is a regeneration set for (M, ),>0 restricted to H, i.e., X; is recurrent and satisfies
a minorization condition, namely (4.3). This proves the Harris recurrence of (M,,),>0 on H.
Note also that this implies that the chain is A("0) (- N Xy )-irreducible (see Remark D).

Since (M,,)n>0 possesses a stationary distribution, it is clearly positive Harris recurrent
whence we are left with the proof of aperiodicity. However, if (M,,),>0 were g-periodic with
cyclic classes X1, ..., Xy, say, then the g-skeleton (M,,4),>0 would have stationary distributions
ﬂfr&si’;), k = 1,...,q. On the other hand, the latter is also an IFS of i.i.d. Lipschitz maps
satisfying (1.3), (1.4) and thus possesses only one stationary distribution. Consequently, ¢ = 1

and (M,,)n,>0 is aperiodic.
7(c)=(b)” If (My,)n>0 is Harris recurrent then, for some m-positive X (called small set),
there exist ng > 1 and a nonzero measure A with A\(X¢) = 0 such that P™(z,-) > X\ for all

x € X. Consequently, (b) is satisfied. O

PROOF OF THEOREM 2.2. (a) We must show that if H has a w-positive interior, i.e.
B.(z) = {y € X :d(z,y) < e} C H and 7(B.(z)) > 0 for some z € H and € > 0, then
H = X. Recall that o(B) denotes the first return time to B for (M,,),>0. It suffices to prove
Py(0(Bs(z)) < o0) =1 for all y € X. Pick n € (0,¢) such that «(B,(z)) > 0. As will be
seen in the next section, (M,,),>o contains a subsequence (M,, )n>0 which is also an IFS of
i.i.d. Lipschitz maps with the same stationary distribution and further strictly contractive,
ie. L1.;;, < v < 1 as. The o, = 0,(7) are defined in (5.3) and do not depend on M.
Recalling (1.6), P, (M,, € B, (z) i.o.) =1 for m-almost all w € X. Fix any such w and put
MY def w1(y) for n > 0 and y € X. Then (MY),>0 is a copy of (My),>o under P, and
d(MY MY ) < ~y™d(y,w) a.s. for all n > 0. Consequently, {MY € B,(x)} C {M¥ € B.(z)}
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for all n sufficiently large implying
P(MY € B(x) i.0.) > P(MY €B.(z)io.) > P(M,; €B,(z)io.) =1

and thus the desired Py (o(B.(z)) < c0) =1 for all y € X.

(b) Note first that, by the previous argument, we generally have P,(M, € Bio.) =1
for all z € X and all w-positive open B C X. Hence 7(int(X)) > 0 ensures P, (o(¥X) < o0) =1
for all x € X, which together with 2.1(a) or (c) easily yields the A-irreducibility of (M,,)n>0.
Combining this with int(supp 7) # 0, we infer that every compact set is petite [8, Theorem 3.4]
and that (M,,)n>0 forms a T-chain [8, Theorem 3.2]. Now the positive Harris recurrence on X
follows if (M,,)n>0 is also nonevanescent [9, Theorem 9.2.2]. For that latter property, we must
show that P, (M,, € C i.0.) =1 for all z € X and some compact set C. But int(supp ) # 0
implies the existence of a w € X with 7(B.(w)) > 0 for all € > 0 whence P, (M,, € B.(w) i.0.) =
1 for all € > 0. We obtain the desired conclusion because the closure of some B, (w) is compact

by the local compactness of X. &

5. PROOF OF THEOREM 3.2

Throughout this section, we are always given an IFS (M,),>o of i.i.d. Lipschitz maps
satisfying (1.3) and (1.4). Since the Liapunov exponent [* is a.s. negative, the definition of [*

implies Elog™ [(F},.1) < 0 for some m > 1. Let us assume m = 1, that is
Elog™ I(Fy) < 0, (5.1)

because the modifications of the subsequent arguments in case m > 2 are totally straightfor-
ward but notationally rather tedious. Put L,, def [(F},) for n > 1 and note that these random

variables are i.i.d. and also independent of M. Moreover,
(Fim) < Lin € [[ L as. (5.2)
k=1

Given (5.1), the sequence (Y, _, log Li,),>0 forms an ordinary zero-delayed random walk with

negative drift whence, for any v € (0, 1), the level log~y ladder epochs () 10 and

k
on(7) def inf {k > op—1(7) : Z log L; < log'y} (5.3)

j:a'n—l(’y)+1
= 1nf{k > Un—l('Y) : Lan_l(’y)—i—l:k < 7}7 n=>1

are all a.s. finite. Now fix any v € (0,1) and write o, for o,(v). For (o,),>0 constitutes a

renewal process, the random mappings

; def
Fn = Fan:crn,rf—l; n > 17
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are also i.i.d. random Lipschitz functions. They are (a.s.) strictly (v-)contractive because, by
(5.2) and the definition of the oy,

d(Fi(z), F{(y)) < Lio,d(z,y) < yd(z,y) as.
for all z,y € X. Furthermore,
Elog" d(Fj(z0),x9) < o0

as has been shown in [1], see their proof of Lemma 3.2. Consequently, the subsequence
(M, )n>0 = (F1.,(Mo))n>0 is an IFS of i.i.d. strictly contractive Lipschitz maps satisfying
Elton’s conditions. Let P’ and w’ denote its transition kernel and stationary distribution,

respectively. We will show in the following lemma that actually 7’ = 7 holds true.

LEMMA 5.1. Let (My,)n>0 be an IFS of i.i.d. Lipschitz maps satisfying (1.3) and (1.4).
If (My)n>0 is an aperiodic positive Harris chain on some P-absorbing set H with stationary
distribution 7, then, given any vy € (0,1), the same holds true for the subsequence (My, )n>0,

i.e., it 1s also Harris recurrent on H and has the same stationary distribution.

It is important for the further derivation that (M, ), >0 does indeed share Harris set and
stationary distribution with (M,,),>0 because this guarantees that the additional assumptions

H = X as well as int(supp 7) # () carry over from the latter to the former sequence.

ProOF. If (M,,),>0 is aperiodic and positive Harris on H, then (P™(x,-))zecm is nonsin-
gular with respect to 7 for some m > 1. Note that o, > m and P'" = Plom)  As obtained
in the proof of Theorem 2.1, the family (P’ (z,-))zen is also nonsingular with respect to a
non-zero o-finite measure \’ whence Theorem 2.1 implies that (M,, ),>0 is an aperiodic pos-
itive Harris chain on some P’-absorbing set H’. Since H is also P’-absorbing, we can choose
H' C H.

Now consider the backward process M,, def Fi.,(My), n > 0, associated with (My,)n>0
which converges a.s. to a random variable M, with distribution 7, regardless of the initial
distribution, see [6]. Consequently, the same holds true for the subsequence ]\Zfan, n > 0. Since

the F), are i.i.d. and independent of M, we further have for all n > 0
Mg'n = F]-:U’n (MO) ~ 0'1:1 ©...0 FO",LZO'TL,]_—F].(MO) = F{'I’L(MO)7

where (FY.,,(Mo))n>0 is the backward process of (My, )n>o. Hence M,, — M., ~  a.s. implies
that FY.,(Mo) converges weakly to m (in fact, it also converges a.s. to some w-distributed
random variable) which is therefore also the stationary distribution of (M, )n>0-

In order for H' = H it must still be shown that P,(M,, € Ai.o.) =1 for all m-positive
A € B(X) and x € HNH'® which in turn holds if P,(T < o0) =1 for T o inf{n >0: M,, €
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H'} and all x € HNH'® because then, by the strong Markov property,

P,(M,, € Aio.) = / P,(M,, € Aio.) Py(My, €dy) = 1.
We will now prove the latter assertion for an arbitrary fixed x € HNH'®. To that end, we first
show the existence of a P-absorbing set Xo, C H'. Define X; & {yeH : P(y,H') =1} and
then recursively X, ;1 o {y e X, : P(y,X,,) =1} for n > 1. Using 7 = 7P and 7(H') = 1,
we inductively obtain 7(X,) = 1 for all n > 1. The X,, are obviously nonincreasing, and
Xoo def Np>1X,, satisfies P(y, X)) = limy, o0 P(y,X,,) = 1 for all y € X. Now observe that

m(Xs) = 1 implies P, (0(Xo) = 1) = 1 which in turn yields
P.(M, € Xy foralln>1) =1

because X, is P-absorbing. In particular, we infer the a.s. finiteness of T" under P,. %

Based upon the previous preliminary observations, the further derivation of Theorem 3.2
is divided into two parts: We first prove a stronger result when (M, ),> is strictly contractive
(Proposition 5.2). In the general situation, this stronger result still holds for the subsequence
(My,, )n>0, and the second part will show how this combines with certain regenerative argu-

ments similar to those in [1] in order to get Theorem 3.2.

1. THE STRICTLY CONTRACTIVE CASE. Suppose now (M, ),>0 satisfies (1.3), (1.4) and
is further strictly ~-contractive, i.e. L1 < v < 1 a.s. For our later convenience we assume
v < 1/2. Our goal is to show V-geometric ergodicity of (M,),>0 on an absorbing set H for a

suitable m-integrable function V' : H — [1, 0c0), that is

> rPM ) — 7y < oo (5.4)

n>0

for all x € H and some r € (0,1) not depending on z. Provided the moment assumptions
(3.3) (Case I) or (3.6) (Case II) for some p > 0, we define a new ”flattened”, but still complete
metric d through

iy log” (1 + li(dx(ﬁ)y)) in Case I (5.5)
, d(z,y)"" in Case II,

A

where 1 € (0, p] is as in (3.7). Let (L, )n>1 be the sequence of Lipschitz constants for (F,)n>1

under d. As one can easily check, L1 < v < 1 a.s. implies L < 4 < 1 a.s.; we may in

log?" (1+2)
logPM (14-x)

Notice that d is bounded in Case I whence Ed(F}(zg),z0)¢ < oo for all ¢ > 0. In Case II, we
have Ed(Fy (), z0)?V! < oo by (3.6). Consequently, replacing d with d leaves us with an IFS
(M,,)n>0 which still satisfies (1.3), (1.4), and furthermore condition (3.6) for some p > 1 in

fact choose 4 = max;¢[g 1 for any 3 € (v,1) in Case I and 4 = P! in Case II.
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both cases. The function V is now defined as

1+ d(z,z0) in Casel

def
{ 1+ d(x,20)™' =1+d(z,20)" in Case II

and indeed m-integrable by (3.4), respectively (3.7). Notice that V' coincides with f in (3.10)

in Case II.

PROPOSITION 5.2.  Let (My)n>0 be a strictly vy-contractive IFS satisfying (1.3), (1.4),
v <1/2 and (3.3) or (3.6) for some p > 0. If (M,)n>0 is further Harris recurrent on whole X
and int(supp w) # O holds, then (My)n>0 is V-geometrically ergodic with V' as in (5.8). More
precisely,
d P M@, ) —wlly < AV (z) (5.9)
n>0

for all x € X and suitable constants v € (0,1) and A > 0.

In Case I, the V-norm just coincides with the total variation norm || - | because V is
bounded. As already discussed in some detail, the proof of the proposition will require that
the balls Br = Br(zo) e {z € X:d(z,x0) < R} are petite for all R > 0 with 7(Bg) > 0.

PRrROOF. The result follows directly from [9, Theorem 15.0.1] if we can verify the drift

condition
AV(z) < =0V (z) + ble(z), zeX, (5.10)

for a petite set C' and constants 3,b € (0, 00), where

def

AV(z) = PV(z)-V(z) = /X(V(y)—V(w))P(rc,dy)-

We only consider Case II, the first one being similar and even a little easier. It follows upon
using Minkowski’s inequality, the y-strict contractivity, b Lof 2"Ed(Fy(xp), z0)" < oo (by (3.6))
and 3 o (1 —(2y)")/2 > 0 (since v < 1/2)

AV (x)

E.d(Fi(x),20)" — d(x,x0)"

Eq[d(Fi(z), Fi(zo)) + d(Fi(z0), x0)]" — d(z, z0)"
(2y)"=1)V(z) + 2"Ed(Fi(x0),z0)"

—BV(x) + blg,(x)

IN

(5.11)

IA

IN

for sufficiently large R > 0. So it only remains to verify the petiteness of Br which is accom-

plished by the subsequent lemma. &

LEMMA 5.3.  Under the assumptions of Proposition 5.2, each Br(z), x € X and R > 0,

18 petite.
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PROOF. Since (M,),>0 is a weak Feller chain, its m-irreducibility and int(supp ) # 0
imply that all compact subsets of X are petite, see [8, Theorem 3.4]. int(supp ) # 0 further
implies the existence of some w € X such that 7(Bgr(w)) > 0 for all R > 0. Next, the
local compactness of X guarantees the existence of a compact and thus petite neighborhood
C of w. Consequently, every Br(w) contained in C' is also petite. Fix any Ry > 0 having
Bogr, (w) petite and further an arbitrary = € X and R > 0. We must show petiteness of Bg(x).
Since m(Br,(w)) > 0, the Harris recurrence of (M,,),>0 ensures the existence of some N > 1
such that YV R < Rg and PV (x,Bg,(w)) > 0. Now pick an arbitrary y € Bgr(z), y # =,
and consider the two coupled chains M7 e F,.1(x) and MY o F,.1(y) for n > 0. Since

d(MZE, MY) < ~y"d(z,y) <y"R a.s. for all n > 0, the choice of N gives
d(M¥,w) < d(My, M%) +d(My,w) < Ro+d(My,w) as.
and therefore {M¥ € Bp, (w)} C {M}, € Bag,(w)} as. for all y € Br(x). We thus conclude
PN (y,Bag,(w)) = P(MY € Bog,(w)) > P(ME € B, (w)) = P (2,Bg,(w)) > 0

for all y € Br(z), whence the petiteness of Bog, (w) implies the same for Br(x). o

The next lemma will be needed for the proof of Theorem 3.2(b) and supplements the

previous one by showing that the m-positive Br(x) are also (1-)regular.

LEMMA 5.4.  Let (My)n>0 be a strictly contractive IFS of i.i.d. Lipschitz maps satisfying
(1.3) and (1.4). Let w € X and Ry > 0 so large that 71(Bg,(w)) > 0. Then

EroBr(w)) < Kg(1+4log(l+d(z,w)))Er. ry)o(Br,(w)) < oo (5.12)
forallz € X, R > Ry and some Kg € (0,00), where 7(:|R) o Wi&i’;). In particular,
sup E,oBgr(w)) < oo. (5.13)
zEBR(w)

Given the conditions of Proposition 5.2, Br(w) is regular.

PrOOF. Note first that (M,, &, (w))s Ont1(Br(w)) — 0n(Br(w)))n>o is stationary and
ergodic under P, ) and that E; g)01(Br(w)) < oo for all R. Moreover, by the ergodic
theorem, n~! 0, (Br(w)) — Er(|gyo(Br(w)) a.s. and in mean under P, (,|z). Hence there exists
z € B, (w) such that

SlilinflEzgn(IBRo(w)) < KEr(|ry)o(Br,(w)) (5.14)

for a suitable constant K > 0. Suppose w.l.o.g. z = w.
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Next, pick an arbitrary z € X, x # w, and consider once more the two coupled chains
Mz, MY for n > 0. Denote by o (Br(w)) and o (Bgr(w)), n > 1, the associated return times
to Br(w). Since d(MZ, M") < ~v™d(x,w) a.s. for all n > 0, we infer

UMy (85, () Moy (Brywy)) < 7"d(z,w)  as.

and therefore

d(Mgg(BRo(w))vw) < Ry +7"d(z,w) as.

which in turn implies ¢o*(Br(w)) < g"]‘\’,(m’R_RO)(BRO (w)) a.s. for all R > Ry and

B def [logd(z,w) —log(R — Ry) *
N = fo) = l08(1/7)

+1,

where [t]* o sup{k € Z : k <t} v 0. (5.12) follows easily from the inequality

EzoBr(w)) = Eo*(Br(w)) < Eon(,r—Rro)(Br,(w))
< KN(I, R — RO) ]Eﬁ(.mo)g(BRo (w)),

where (5.14) has been utilized. Given the conditions of Proposition 5.2, we have that Bg(w)
is petite (Lemma 5.3) and ”self-reqular” (property (5.13)), whence its regularity follows from
[9, Theorem 14.2.4]. %

2. THE GENERAL CASE (PROOF OF THEOREM 3.2). The assertions of Theorem 3.2 are
now fairly easily established. We begin with part (a) of the theorem.

PROOF OF THEOREM 3.2(a). For a fixed v € (0,1), let (M, )n>0 be the strictly contrac-
tive IFS with transition kernel P’ defined before Lemma 5.1 with o,, n > 0, being the level
log v ladder epochs in (5.3). Proposition 5.2 yields K & >soT P (x, ) — 7| < oo for all
xz € X and some r € (0,1). Put T'(n) e sup{k > 0: 0 <n} forn >0 and A, , L'p, P,
for x € X. Notice that the T'(n) are independent of My. We have for all B € B(X), z € X,

n>0anda>0

|P"(z,B) — 7(B)| = [Pu(M, € B) —P,(M, € B)|

(5.15)
< P(T(n) <an) + Ay (M, € B,T(n) > an)|.

Note that, given arbitrary probability measures (1,2 on a measurable space (2,2) and a
measurable partition (By)1<k<n of , the equality ||Q1— Q2| = > p_, |Q1(-NBk)—Q2(-NBy)|
holds. Therefore, we further infer for all B € B(X), x € X, n > 0 and a > 0 that

|Ay (M, € B,T(n) > an)|

< > Aux (M, € B,og = j, 041 > 1)

k>an j=1
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S

k>an j=1
n

< Z ZHAx,ﬂ(Mak €0k :])H
k>an j=1

=n 2{: HPx(A4&k S J _’Pw(ﬂ4§k 6')”

k>an

=n Yy |P"@)

k>an
< nr*"K

/Py(Mn_j € B,O’1 >n —j) Axm(Mgk € dy,O'k :j)

and thus
|P"(@,) = 7| < B(T(n) <an) + nr*"k

for all z € X, n > 0 and @ > 0. Assertions (3.11) and (3.12) are now immediate because, by
(3.3), we can choose a > 0 such that

an_IIF’(T(n) <an) < oo and lim n’P(T(n) <an) = 0.

n—00
n>1

This has been shown in [1, Lemma 3.5]. &

REMARK. If (3.6) holds, Lemma 3.5 in [1] further provides

lim b"P(T(n) <an) = 0

n—oo

for some a > 0 and b > 1. Hence the previous proof under moment assumption (3.6) immedi-
ately yields

> s P () — 7| < oo

n>0
However, this is weaker than the result asserted in (3.13) of Theorem 3.2(b) which we are going

to prove next.

PrROOF OF THEOREM 3.2(b). Recall that f(z) = V(z) = 1+ d(z,x0)?P in the present

situation. The counterpart of (5.15) for an estimation of ||P"(x,-) — 7|| s obviously reads

Pra) -~ (o)l < [ F(My) d(Ps +Py) + ‘ / 9(My) s
{T(n)<an} {T'(n)>an}

for arbitrary functions g satisfying |g| < f. Unfortunately, the first term on the right-hand side
seems to be difficult for further estimation. Therefore, instead of pursuing this argument any
further, another use of the drift condition (5.1), now verified for the m-skeleton (M, ),>0 for
suitable m > 1, appears to be more convenient. Before we can do so, we must however show
that the Br, R > 0 are also petite for these skeletons. We begin by noting that all petite sets C'

for (M,,)n>0 are also small (i.e. P"(z,-) > av, for all x € C and some n > 1, a € (0,1) and a
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probability distribution v,, concentrated on C'), because (My,),>0 is aperiodic, see [9, Theorem
5.5.7]. Aperiodicity further guarantees that small sets for (M,,),>0 are also small (and thus
petite) for each skeleton. Consequently, we are left with proof that the m-positive Bp are petite
or, equivalently [9, Theorem 14.2.4], regular for (M,,),>0. But the latter is easy with Lemma
5.4. Let ¢/(B) be the first return time to B € B(X) of (M, )n>0. Clearly, o(B) < ¢'(B) for
each B so that the regularity of Bg for (M, ),>0 (Lemma 5.4) immediately implies the same
property for (M,,)n>0-

Now we can verify the drift condition (5.10) for some m-skeleton and with V' as given.
Since Elogt L; < 0 and EL? < oo, there exists m > 1 such that 7, o ELY,, < 1/2.
Notice also that d(F1.;(zo), Fi:j—1(x0)) < L1.j—1d(Fj(x0), x0) together with the independence
of Ly.j_1 and Fj(z¢) for each j > 1 implies (setting o of 1)

def

b = (Bd(Frm(wo),20)")? < ) (Bd(F1(20), Fiij—1(0))?)"/?

I

<
I
_

M

(E[L1.j-1d(Fj(x0), x0)]") /7 (5.16)

<
Il
—

m—1
= (Ed(Fy(zo),20)")"/" Y %l/p
7=0

Hence a similar estimation as in (5.11) yields with B = (1 — (2vm)P)/2 >0
P f(x) = flx) < ((2vm)" = Df (@) + 2PEd(Frm(z0), 20)"
< —Bf(x) + (20)" 1p, ()

for sufficiently large R > 0, so that, by a further appeal to [9, Theorem 15.0.1],

D orTP M) —wly < Af(@)

n>0

for all z € X and suitable constants r € (0,1) and A > 0. The fact that condition (3.6), if
valid for one zy € X, already holds for all x € X in combination with (5.16) implies P7 f(z) =
Ed(F}.j(x0),z0)? < oo for all j > 1, whence we finally conclude

m—1
S P ) =l < o0 [ <Zr‘mnupmn<y,~>—wuf> P (a.dy)

n>0 n>0

™

.~ / Af(y) PY(z, dy)

A
N
™
?
=
>
A
8

for all z € X. The proof of (3.13) is herewith complete. &
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