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A result by Elton [6] states that iterated function systems

Mn = Fn(Mn−1), n ≥ 1,

of i.i.d. random Lipschitz maps F1, F2, ... on a locally compact, complete

separable metric space (X, d) converge weakly to its unique stationary

distribution π if the pertinent Liapunov exponent is a.s. negative and

E log+ d(F1(x0), x0) < ∞ for some x0 ∈ X. Diaconis and Freedman [5]

showed the convergence rate be geometric in the Prokhorov metric if

ELp
1 < ∞ and Ed(F1(x0), x0)p < ∞ for some p > 0, where L1 de-

notes the Lipschitz constant of F1. The same and also polynomial rates

have been recently obtained in [1] by different methods. In this arti-

cle, necessary and sufficient conditions are given for the positive Harris

recurrence of (Mn)n≥0 on some absorbing subset H of X. If H = X

and the support of π has nonempty interior, we further show that the

same respective moment conditions ensuring the weak convergence rate

results mentioned above now lead to polynomial, respectively geometric

rate results for the convergence to π in total variation ‖ · ‖ or f -norm

‖ · ‖f , f(x) = 1 + d(x, x0)η for some η ∈ (0, p]. The results are applied

to various examples that have been discussed in the literature, including

the Beta walk, multivariate ARMA models and matrix recursions.
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1. Introduction

Consider a sequence of the form

Mn = F (θn, Mn−1), n ≥ 1, (1.1)

which satisfies the following assumptions:
(1) M0, θ1, θ2, ... are independent random elements on a common probability space (Ω,A, P);
(2) θ1, θ2, ... are identically distributed with common distribution Λ and take values in a

measurable space (Θ,A);
(3) M0, M1, ... take values in a locally compact, complete separable metric space (X, d) with

Borel-σ-field B(X);
(4) F : (Θ × X,A ⊗ B(X)) → (X,B(X)) is jointly measurable and Lipschitz continuous in

the second argument.

(Mn)n≥0 clearly defines a temporally homogeneous Markov chain called an iterated function
system (IFS) of i.i.d. Lipschitz maps hereafter. Its (n-step) transition kernel is denoted P (Pn).
For x ∈ X, let Px be the probability measure on the underlying measurable space under which
M0 = x a.s. The associated expectation is denoted Ex, as usual. For an arbitrary distribution
ν on X, we put Pν(·) def=

∫
Px(·) ν(dx) with associated expectation Eν . We use P and E for

probabilities and expectations, respectively, that do not depend on the initial distribution.
Let us write Fn for F (θn, ·). Given a Lipschitz map f : X → X, define its Lipschitz

constant as

l(f) def= sup
x�=y

d(f(x), f(y))
d(x, y)

.

Put further

Ln
def= l(Fn) (1.2)

for n ≥ 1 and note that (Ln)n≥1 forms a sequence of i.i.d. random variables which is indepen-
dent of M0. Its distribution does therefore not depend on the distribution of M0, that is, it is
the same under every Pν .

Elton [6] showed that, under every Px, (Mn)n≥0 converges weakly to a stationary distri-
bution π provided that its Liapunov exponent l∗ is a.s. negative, i.e.

l∗ def= lim
n→∞n−1 log l(Fn ◦ ... ◦ F1) < 0, (1.3)

and furthermore

E log+ L1 < ∞ and E log+ d(F1(x0), x0) < ∞ (1.4)

for some x0 ∈ X. He further showed that π is unique and (Mn)n≥0 ergodic under Pπ. By
Birkhoff’s ergodic theorem, the latter implies for each B ∈ B(X)

lim
n→∞

1
n

n∑
k=1

1B(Mk) = π(B) (1.5)
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Pπ-a.s. and thus also Px-a.s. for π-almost all x ∈ X. Hence, if π(B) > 0, then

Px(Mn ∈ B i.o.) = 1 (1.6)

for π-almost all x ∈ X and we would like to conclude that every π-positive set B is recurrent.
Unfortunately, the π-null set of x ∈ X for which (1.6) fails to hold generally depends on the set
B. On the other hand, if it does not, we infer the π-irreducibility of the chain (Mn)n≥0 on some
H with π(H) = 1 and then, because of (1.6) for each π-positive B, further its Harris recurrence
on H. Provided additionally aperiodicity, this in turn implies that Px(Mn ∈ ·) converges to
π in total variation for every x ∈ H which, of course, is a much stronger conclusion than
Elton’s result. With regard to a further analysis of IFS, for instance the rate of convergence
towards stationarity (in total variation), it also gives access to the highly developed theory for
irreducible and Harris recurrent Markov chains on general state spaces.

Given an IFS of i.i.d. Lipschitz maps satisfying (1.3) and (1.4), two questions will be con-
sidered in this article and discussed in various examples. In Section 2, we state two equivalent
conditions for the positive Harris recurrence on some absorbing subset H of X (Theorem 2.1)
and also provide a sufficient condition for H = X (Theorem 2.2). These conditions are quite
often easy to check in applications when the stationary distribution is known to some extent.
The proofs of Theorem 2.1 and 2.2 can be found in Section 4. Section 3 deals with the con-
vergence towards stationarity for Harris recurrent IFS. Under additional moment conditions
on L1 and d(F1(x0), x0), we will show f -regularity and f -ergodicity for suitable functions f

(Theorem 3.1) and provide polynomial as well as geometric rates of convergence towards sta-
tionarity (Theorem 3.2). While Theorem 3.1 is a rather straightforward consequence of results
in [9], the proof of Theorem 3.2, given in Section 5, will take some effort and will be based
upon regenerative arguments developed in [1] in combination with the use of Liapunov drift
functions. It also requires the additional assumptions H = X and supp π �= ∅, where supp π

denotes the support of π. Again, the result will be illustrated in a number of examples.

2. Necessary and Sufficient Criteria for Harris Recurrence

The following theorem and first main result of this article confirms that, given (1.3)
and (1.4), the conclusions mentioned after (1.6) are indeed true under an additional absolute
continuity condition on the transition kernel P . A set B ∈ B(X) is called π-positive, if
π(B) > 0, π-full, if π(B) = 1, and (P -)absorbing, if P (x, B) = 1 for all x ∈ B. Given two
non-zero σ-finite measures ν, λ on X, we say that ν possesses a λ-continuous component if
ν(dx) ≥ g(x)λ(dx) for some measurable function g : X → [0,∞) with

∫
g dλ > 0. For the

definitions of irreducibility, Harris recurrence and related notions for Markov chains on general
state spaces not explicitly repeated here, we always refer to the excellent and by now standard
monograph by Meyn and Tweedie [9].
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Theorem 2.1. Suppose (Mn)n≥0 is an IFS of i.i.d. Lipschitz maps satisfying (1.3) and
(1.4). Let π denote its stationary distribution. Consider the following assertions:

(a) There exists a π-positive set X and a non-zero σ-finite measure λ on (X,B(X)) such that
each P (x, ·), x ∈ X, possesses a λ-continuous component.

(b) There exists a π-positive set X and a non-zero σ-finite measure λ on (X,B(X)) such that
each

∑
n≥1 2−nPn(x, ·), x ∈ X, possesses a λ-continuous component.

(c) There exists a π-full, absorbing set H ∈ B(X), such that (Mn)n≥0 is an aperiodic, positive
Harris chain on H.

Then (a)⇒(b)⇔(c) holds true.

Provided that (Mn)n≥0 is a Harris chain on a set H as described in Theorem 2.1(c), this
set is called a Harris set (for (Mn)n≥0). It is well-known that in this case there always exists
a maximal absorbing set with this property, called maximal Harris set. Our second theorem
contains some information on when this latter set is the whole space X. Let int(B) denote the
interior of a set B ∈ B(X).

Theorem 2.2. Given the situation of Theorem 2.1, suppose (Mn)n≥0 is Harris recur-
rent with maximal Harris set H. Then the following assertions hold:

(a) Either π(int(H)) = 0, or H = X.

(b) If (a) or (b) in Theorem 2.1 holds for some X with π(int(X)) > 0 and if int(supp π) �= ∅,
then H = X.

In order to put our results in the right place within the extensive and well-established
theory of Markov chains on general state spaces, the following comments and corollaries might
be helpful.

Remark A. Suppose we are given any Markov chain (Mn)n≥0 on (X,B(X)) with tran-
sition kernel P and stationary distribution π under which it forms an ergodic sequence. If
(Mn)n≥0 is π-irreducible on some P -absorbing set X1 then, by the recurrence/transience di-
chotomy [9, Theorem 8.3.4], (Mn)n≥0 is also recurrent on X1, i.e. U(x, B) def=

∑
n≥0 Pn(x, B) =

∞ for all π-positive B ∈ B(X1). Indeed, if it were not, there would be a uniformly transient, π-
positive B, which thus satisfied supx∈B U(x, B) < ∞. On the other hand, the ergodic theorem
ensures limn→∞ n−1

∑n
k=1 P k(x, B) = π(B) > 0 and therefore U(x, B) = ∞ for π-almost all

x ∈ B. Hence B must be recurrent. We thus see that the π-irreducibility of the chain already
entails its recurrence, which in turn [9, Theorem 9.0.1] implies its positive Harris recurrence
on an absorbing and π-full set H. Consequently, Theorem 2.1 is really about necessary and
sufficient conditions for the π-irreducibility of (Mn)n≥0.

Corollary 2.3. Given the situation of Theorem 2.1, its assertions (b),(c) hold if, and
only if, (Mn)n≥0 is π-irreducible.
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Remark B. Condition 2.1(a) may be reformulated as P (x, dy) ≥ 1X(x)g(x, y)λ(dy) for
some π-positive set X, a non-zero σ-finite measure λ on (X,B(X)) and a product measurable
function g : X

2 → [0,∞) satisfying
∫

X
g(x, y)λ(dy) > 0 for all x ∈ X. The product measura-

bility of g follows from the fact that B(X) is countably generated. An equivalent statement of
condition 2.1(b) is that, for each x ∈ X, there exists n(x) ≥ 1 such that Pn(x)(x, ·) is nonsin-
gular with respect to λ. Since at least one of the sets Xn

def= {x ∈ X : n(x) = n}, n ≥ 1, must
be π-positive, 2.1(b) is also equivalent to condition 2.1(a) with P , X replaced with Pn, Xn for
some n ≥ 1, i.e.

Pn(x, dy) ≥ 1Xn
(x)gn(x, y) λ(dy) (2.1)

for some product measurable function gn : X
2 → [0,∞) satisfying

∫
X

gn(x, y)λ(dy) > 0 for
all x ∈ Xn. We will show in the proof of Theorem 2.1 that λ can be chosen in such a way
that λ ≤ π. Notice that Xn forms a small set, if infx∈Xn gn(x, y) ≥ δ for some δ > 0, but
that neither this nor the existence of any other small set is generally implied by (2.1). On the
other hand, each Harris chain with stationary distribution π possesses π-positive small sets.
We hence note as another nontrivial consequence of Theorem 2.1:

Corollary 2.4. Given the situation of Theorem 2.1, its assertions (b),(c) hold if, and
only if, (Mn)n≥0 possesses a π-positive small set.

Remark C. As we are dealing with a special class of ergodic Markov chains, namely IFS
of i.i.d. Lipschitz maps under an average contraction condition, the question seems natural, how
this enters into our results. Obviously, (Mn)n≥0 is weak Feller, i.e. Pf(x) def=

∫
f(y)P (x, dy) =

Exf(M1) is a bounded continuous function whenever f has this property. However, (Mn)n≥0

even has a stronger property not shared by all weak Feller chains: Let τ be any a.s. finite
stopping time and put P (τ)f(x) def= Exf(Mτ ). Then we see upon noting P (τ)f(x) = Ef◦F1:τ (x)
that P (τ)f is a also a bounded continuous function if f has this property. Of course, the
nontrivial part of this implication is the inheritance of continuity.

Remark D. Given the Harris recurrence of (Mn)n≥0 on some Harris set H, the sta-
tionary distribution is clearly a maximal irreducibility measure. On the other hand, the proof
of Theorem 2.1 will show that (Mn)n≥0 is also λ(· ∩X′)-irreducible for some λ-positive X′ and
every λ such that 2.1(a) or 2.1(b) holds. Consequently, π dominates λ(· ∩ X′), which in turn
shows that supp π has inner points whenever this holds true for supp λ(· ∩X′). The latter may
sometimes be easier to check, for instance, if λ is Lebesgue measure on Euclidean space.

Remark E. The verification of 2.1(a) or 2.1(b) requires some knowledge of the station-
ary distribution π as we must be able to check π-positivity of the set X. This can be a problem.
On the other hand, in many examples like 2.6(a)–(d) below this becomes unnecessary because
X = X. If further X is Euclidean and λ in 2.1(a) or 2.1(b) is Lebesgue measure, then, by the
previous remark, supp π has nonempty interior, whence Theorem 2.2(c) renders the positive
Harris recurrence of (Mn)n≥0 on whole X.
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Remark F. It should be clear that H can be small compared to X in a set theoretic
or topological sense. Take the trivial deterministic example where Fn(x) = (1 + x2)/2 on
X = [0, 1] for all n ≥ 1. Then π = δ1 and P (x, ·) = δ(1+x2)/2. We infer Harris recurrence on
H = {1} but on no larger subset of [0, 1].

Remark G. Let us finally point out that, given the situation of Theorem 2.1, we must
have that

∑
n≥1 2−nPn(x, ·) and π are mutually singular for π-almost all x ∈ X if 2.1(b) and

thus also 2.1(c),(b) fail to hold. Consequently, Pn(x, ·) converges weakly to π in this situation
by Elton’s result, while total variation convergence fails to hold for π-almost all x ∈ X. This
may be rephrased as the following zero-one law in which w→ denotes weak convergence and
‖ · ‖ the total variation distance.

Corollary 2.5. Given the situation of Theorem 2.1, Pn(x, ·) w→ π for all x ∈ X and

π
(
{x ∈ X : lim

n→∞ ‖Pn(x, ·) − π‖ = 0}
)

= 0 or 1,

the probability being 1 iff 2.1(c)-(c) hold true.

2.6. Examples. In the following, F always denotes a generic copy of F1, F2, ... and λλ

Lebesgue measure on R (or some subset).

(a) This is the motivating example in [5], called Beta walk, see 2.1 and 6.3 there. Let
X

def= [0, 1], φu(x) def= ux, ψu(x) def= x + u(1 − x) for u ∈ [0, 1] and

F (x) = ZφU (x) + (1 − Z)ψU (x) (2.2)

for independent random variables U, Z with a uniform distribution on [0, 1] and a Bernoulli(1/2)
distribution, respectively. It is not difficult to verify that (Mn)n≥0 satisfies the assumptions of
Theorem 2.1 and has stationary distribution π =Beta(1/2, 1/2) with Lebesgue density f(x) =

1

π
√

x(1−x)
on (0, 1), also called arcsine distribution. (Plainly, π in the denominator of f means

the constant 3.14...) Now observe that P (x, ·) is a mixture of a uniform distribution on [0, x] and
a uniform distribution on [x, 1]. So it possesses a λλ-continuous component for each x ∈ [0, 1].
Theorem 2.1 and 2.2 therefore imply the Harris recurrence of (Mn)n≥0 on H = X = [0, 1]. The
conclusion remains true in the biased case where Z has a Bernoulli(p) distribution for some
p �= 1/2. The stationary distribution in this case is a Beta(p, q) distribution with Lebesgue
density Γ(p+q)

Γ(p)Γ(q)x
p−1(1 − x)q−1 on (0, 1), where q

def= 1 − p and Γ is Euler’s gamma function.

(b) Another well-studied example is the autoregressive process of order 1 (AR(1)-process)

Mn = ρMn−1 + θn, n ≥ 1 (2.3)

on state space X = R, where θ1, θ2, ... are i.i.d. with distribution G, say. Hence

F (x) = ρx + θ (2.4)
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with θ ∼ G. Here ”∼” means equality in distribution. Given |ρ| < 1 and E log+ |θ1| < ∞,
the conditions of Theorem 2.1 hold and the stationary distribution is easily identified as the
distribution of

∑
n≥0 ρnθn. Now, if G possesses an absolutely continuous component, then so

does P (x, ·) = G(· − ρx) for every x ∈ R. We hence infer the positive Harris recurrence of
(Mn)n≥0 on H = X = R.

(c) The so-called threshold AR(1)-process is like the previous example of some interest in
time series analysis, see [12, Example 4.4]. Consider

Mn =

{
ρ+Mn−1 + θn, if Mn−1 > 0

ρ−Mn−1 + θn, if Mn−1 ≤ 0
, n ≥ 1 (2.6)

on X = R, where θ1, θ2, ... are again i.i.d. with some distribution G. Obviously,

F (x) = (ρ+x + θ)1(0,∞)(x) + (ρ−x + θ)1(−∞,0](x) (2.7)

with θ ∼ G in this case. Similar to the previous example, the conditions of Theorem 2.1 hold
if |ρ+| < 1, |ρ−| < 1 and E log+ |θ1| < ∞. The positive Harris recurrence of the chain on
H = X = R follows if G possesses an absolutely continuous component. However, concerning
our assumptions on ρ+, ρ−, a stronger result was obtained by Petrucelli and Woolford [11].
Given Eθ1 = 0 and the absolute continuity of G with everywhere positive Lebesgue density,
they showed that (Mn)n≥0 is actually a positive Harris chain iff ρ+ < 1, ρ− < 1 and ρ+ρ− < 1.

(d) Let us next take a look at matrix recursions which have been studied by many authors,
see 2.2 in [5] and the references given there. The defining equation is

Mn = AnMn−1 + Bn, n ≥ 1 (2.8)

on X = R
m for some m ≥ 1, where (A1, B1), (A2, B2), ... are i.i.d.; An is a m × m matrix and

Bn a m × 1 vector. So the associated random Lipschitz map is

F (x) = Ax + B (2.9)

with (A, B) being a generic copy of (A1, B1). Let ‖ · ‖ be any norm on R
m, define ‖A‖ def=

sup{‖Ax‖;x ∈ R
m, ‖x‖ ≤ 1} for m × m matrices A and suppose that

E log+ ‖A‖ < ∞ and E log+ ‖B‖ < ∞.

Suppose further an a.s. negative Liapunov exponent l∗, here given by

l∗ = inf{n−1
E log ‖A1 · ... ·An‖;n ≥ 1}.

Then the conditions of Theorem 2.1 are satisfied (with x0 = 0) whence, by Elton’s result (for
this situation earlier obtained by Vervaat [13], Brandt [3], see also [2] for a converse), Mn

possesses a unique stationary distribution π which is the distribution of any solution M∞ of
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the stochastic fixed point equation M∞ ∼ AM∞ +B, where (A, B) and M∞ are independent.
As one can easily see, we may take

M∞ =
∑
n≥1

(
n−1∏
k=1

Ak

)
Bn. (2.10)

If we now additionally assume that (A, B) is nonsingular with respect to λλm×m ⊗ λλm, then
all P (x, ·), x ∈ R

m, are evidently nonsingular with respect to λλm, whence Theorems 2.1 and
2.2 show the positive Harris recurrence of (Mn)n≥0 on whole X = R

m. The same conclusion
holds true provided that A, B are independent and B is nonsingular with respect to λλm.

(e) Let us finally look at an example, in fact a one-dimensional special case of the previous
one (A = (a) and Bn = θn) and again taken from [5], with a negative answer as to Harris
recurrence. Put f0(x) def= ax − 1, f1(x) def= ax + 1 for x ∈ R and some a ∈ (0, 1) and consider

F (x) = fθ(x) (2.11)

where θ is 0 or 1 with probability 1/2 each. The associated IFS (Mn)n≥0 with state space
X = R thus satisfies the recursive equation

Mn = aMn−1 + θn, n ≥ 1 (2.12)

where θ1, θ2, ... are independent symmetric variables on {−1, 1}. Its unique stationary distri-
bution π is the distribution of the infinite series

∑
n≥1 an−1θn. It is known that π is continuous

for every a ∈ (0, 1), singular for a ∈ (0, 1/2) ∪ N , N ⊂ (1/2, 1) a nonempty λλ-null set, and
absolutely continuous, otherwise. If a = 1/2, π is the uniform distribution on [−2, 2]. The
question which values of a ∈ (1/2, 1) give a singular π remains open, see 2.5 in [5] for further
information and references.

We claim that (Mn)n≥0 is never Harris recurrent. If it were, by Theorem 2.1, we could
find a π-positive set X0, necessarily uncountable because π is continuous, such that the

P (x, ·) =
1
2
δax+1 +

1
2
δax−1, x ∈ X0

were dominated by some σ-finite measure λ. By a well-known result of Halmos and Savage
[7], we could then find a countable subset X1 of X0 such that (P (x, ·))x∈X0 and (P (x, ·))x∈X1

were equivalent, that is P (x, N) = 0 for all x ∈ X0 iff P (x, N) = 0 for all x ∈ X1. On the
other hand, given any countable X1 = {xn;n ≥ 1}, the set of x such that P (x, ·) is nonsingular
with respect to some P (xn, ·) is easily identified as X1 ∪ {x ∈ X : x = xn ± 2

a for some n}
which is again countable. Consequently, the uncountable X0 contains elements x such that
P (x, ·) is orthogonal to each P (xn, ·), a contradiction to the equivalence of (P (x, ·))x∈X0 and
(P (x, ·))x∈X1 . We conclude with the help of Corollary 2.5 that Mn converges to π in distribution
under every Px while convergence in total variation fails to hold for π-almost all x.
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3. The Rate of Convergence Towards Stationarity

As already mentioned above, Theorem 2.1(c) implies, by invoking the ergodic theorem
for aperiodic, positive Harris chains, see [9, Theorem 13.0.1], that

lim
n→∞ ‖Px(Mn ∈ ·) − π‖ = 0 (3.1)

for all x ∈ H where ‖ · ‖ denotes the total variation distance. A weaker metric considered in [5]
and [1] is the Prokhorov metric associated with d. Following [5], the latter is also denoted d

and defined, for two probability measures λ1, λ2 on X, as the infimum over all δ ≥ 0 such that

λ1(B) < λ2(Bδ) + δ and λ2(B) < λ1(Bδ) + δ

for all B ∈ B(X), where Bδ def= {x ∈ X : d(x, y) < δ for some y ∈ B}. It has been shown in [1]
that, for each p > 0,

E log+ L1 < 0 (3.2)

together with

E logp+1(1 + L1) < ∞ and E logp+1 d(F1(x0), x0) < ∞ (3.3)

implies ∫
X

logp(1 + d(x, x0)) π(dx) < ∞ (3.4)

and

d(Pn(x, ·), π) ≤ Ax(n + 1)−p (3.5)

for all x ∈ X, n ≥ 0 and a constant Ax of the form max{A, 2d(x, x0)} for some A ∈ (0,∞) and
x0 ∈ X. If (3.2) and

ELp
1 < ∞ and Ed(F1(x0), x0)p < ∞ (3.6)

for some p > 0 are satisfied, then ∫
X

d(x, x0)η π(dx) < ∞ (3.7)

for some 0 < η ≤ p and

d(Pn(x, ·), π) ≤ Axrn (3.8)

hold true for all x ∈ X, n ≥ 0, some r ∈ (0, 1) not depending on x and a constant Ax of the
same form as in (3.5). This result is due to Diaconis and Freedman [5] and reproved in [1]
by different methods. If (Mn)n≥0 is Harris recurrent, it is natural to ask in view of (3.5) and
(3.8), whether or not similar conclusions hold when replacing the Prokhorov distance with the
total variation distance. The positive answer is provided in Theorem 3.2 for the case H = X

and under the additional assumption that the support of the stationary distribution π has
nonempty interior.
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Weaker conclusions, stated as Theorem 3.1, can be drawn much more easily from (3.4)
and (3.7) concerning the f -regularity of (Mn)n≥0. Following [9], a set C ∈ B(X) is called
f-regular for a function f : X → [1,∞) if for each π-positive B ∈ B(X)

sup
x∈C

Ex

(
�(B)−1∑

n=0

f(Mn)

)
< ∞,

where �(B) def= inf{n ≥ 1 : Mn ∈ B}. (Mn)n≥0 is called f -regular on a P -absorbing set H if it
is π-irreducible and H admits a countable cover of f -regular sets. Defining the f -norm ‖ν‖f

for a signed measure ν as

‖ν‖f
def= sup

|g|≤f

|ν(g)|, ν(g) def=
∫

g dν,

(Mn)n≥0 is called f-ergodic on H if it is positive Harris on H with invariant distribution π

satisfying π(f) < ∞ and if
lim

n→∞ ‖Pn(x, ·) − π‖f = 0

for all x ∈ H. Now put
f(x) def= 1 + logp(1 + d(x, x0)) (3.9)

if (3.3) holds for p > 0, and
f(x) def= 1 + d(x, x0)η (3.10)

if (3.6) holds for p > 0 and with η defined by (3.7). These will be standing definitions in
the sequel. Observe that (3.4) and (3.7) may then be restated as π(f) < ∞. By using Meyn
and Tweedie’s main result on f -regularity, see [9, Theorem 14.3.3], the following result is now
immediate and hence stated without proof.

Theorem 3.1. Let (Mn)n≥0 be an IFS of i.i.d. Lipschitz maps satisfying (1.3) and
(1.4). Suppose further that (Mn)n≥0 is an aperiodic positive Harris chain on a π-full, absorbing
set H and that either (3.3) or (3.6) holds for some p > 0. Then H may be chosen such that
(Mn)n≥0 is f-regular and f-ergodic on H with f according to (3.9), respectively (3.10).

It is to be understood that the Harris set H on which (Mn)n≥0 is f -regular need not be
the maximal Harris set.

Let us now turn to the rate of convergence towards stationarity for (Mn)n≥0. As already
mentioned above, our result will need H = X and the interior of supp π be nonempty. In order
to get some feeling for the problem, the reader should notice that the contractive behavior
of an IFS (Mn)n≥0, even in the strictly contractive case L1 ≤ γ < 1 a.s., is a topological
property which does not automatically translate into rapid convergence in the very strong
total variation norm. When thinking in terms of coupling rates, the latter property means
that two appropriately constructed versions (Mx

n )n≥0 and (My
n)n≥0 of (Mn)n≥0 with different

starting points x, y ∈ H may be exactly coupled in very short time, i.e. Mx
n = My

n for all n ≥ T



11

with a coupling epoch T satisfying some high order moment condition. Strict contraction,
on the other hand, only ensures that the distance d(Mx

n , My
n) can be made decreasing at

a geometric rate (by just choosing Mx
n = Fn:1(x) and My

n = Fn:1(y)), but this may come
along with one process rapidly entering a small or petite set (the sets for regeneration and thus
canonical candidates for coupling attempts, see [9] for definitions) while the other process takes
a much longer time to get there so that the overall time it takes to glue both processes together
may be large (although they have been close for a long time already). For this unfortunate
case to happen we must envisage Harris recurrent IFS for which all small and petite sets look
topologically ”bad”. As it turns out, this means that they all have empty interior. Indeed, the
proof of Theorem 3.2 in Section 5 will require the existence of at least one x ∈ X and ε > 0
such that the ε-ball Bε(x) is π-positive and (1-)regular, which by [9, Theorem 14.2.4] implies
that Bε(x) is petite. Unfortunately, this condition seems difficult to verify in general. We will
therefore resort to a further result of Meyn and Tweedie [8, Theorem 3.4] which yields that
all compact subsets of X, and thus all ε-balls (X locally compact) as well, are petite provided
H = X and int(supp π) �= ∅. Note, however, that our results still apply if H is a closed subset of
X and supp π has nonempty interior in the relative topology on H. We then consider (Mn)n≥0

as an IFS on the reduced state space H which inherits all topological properties of X.

Theorem 3.2. Let (Mn)n≥0 be an IFS of i.i.d. Lipschitz maps with a.s. negative Lia-
punov exponent l∗ and stationary distribution π. Suppose further that (Mn)n≥0 is a positive
Harris chain on all of X and that int(supp π) �= ∅. Then the following assertions hold:
(a) If (Mn)n≥0 satisfies (3.3) for some p > 0, then

∑
n≥1

np−1‖Px(Mn ∈ ·) − π‖ < ∞ (3.11)

as well as

lim
n→∞np‖Px(Mn ∈ ·) − π‖ = 0. (3.12)

for all x ∈ X.
(b) If (Mn)n≥0 satisfies (3.6) for some p > 0, then

∑
n≥0

r−n‖Px(Mn ∈ ·) − π‖f < ∞ (3.13)

for all x ∈ X and some r ∈ (0, 1) not depending on x ∈ X, where f is defined as in (3.10).

3.3. Examples. (a) [5, Section 6.3] The Beta-Walk is a generalization of Example 2.6(a)
and obtained by replacing the uniform variable U in (2.2) by a Beta(α, α) variable V , α ∈ [0,∞].
Here Beta(0, 0) def= 1

2 (δ0 + δ1) and Beta(∞,∞) def= δ1/2. Example 2.6(a) is the case α = 1. As
one can easily see with Theorem 2.1 and 2.2, (Mn)n≥0 is a positive Harris chain on X = [0, 1]
for α ∈ (0,∞], but is not for α = 0. Diaconis and Freedman [5, Theorem 6.1] show that π

equals Beta( α
α+1 , α

α+1 ) for α ∈ {0, 1,∞}, but differs from it otherwise, although sharing the
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first three moments. Except for the case α = 0, where π = 1
2 (δ0 + δ1), π is further absolutely

continuous with therefore nonempty int(supp π). Since X is compact, condition (3.6) with
x0 = 0 holds for every p > 0, whence Theorem 3.2 implies geometric ergodicity of the chain
for every α ∈ (0,∞). If α = 0, the same conclusion yields by observing that, starting from any
x ∈ [0, 1], it takes a geometric time to enter the absorbing closed Harris set supp π = {0, 1}
and that Theorem 3.2 gives geometric ergodicity on that set.

(b) We next take a look at multivariate ARMA models as discussed in [12, Section 4.3.1]
and [2, Section 4], where our presentation follows the latter source. Example 2.6(b) forms a
very simple, univariate special case of such models. Given real matrices Fi, 1 ≤ i ≤ k, and Gj ,
0 ≤ j ≤ l, of dimension d × d and d × m, respectively, a R

d-valued random process (Yn)n>−k

is a nonanticipative solution of an ARMA(k, l) equation, if

Yn =
k∑

i=1

FiYn−i +
l∑

j=0

Gjθn−j , n ≥ 1, (3.14)

where θn, n > −l, are i.i.d. R
m-valued and independent of (Y−k+1, ..., Y0).

With Id denoting the d-dimensional identity matrix, put

F (z) def= Id −
k∑

i=1

Fiz
i and G(z) def=

l∑
j=1

Gjz
j , z ∈ C.

Suppose that F (z)−1G(z) is irreducible in the sense that every matrix function D(z) which
is a common left divisor of F (z) and G(z), has a constant determinant. It is shown in [2,
Theorem 4.1] that, under the assumptions

(b.1) θ1 is not carried by a fixed hyperplane,

(b.2) E log+ ‖θ1‖ < ∞ (‖ · ‖ any norm on R
m),

and

(b.3) F (z)−1G(z) is irreducible,

(3.14) possesses a stationary nonanticipative solution iff

(b.4) all zeros of the polynomial detF (z) lie outside the closed unit disk of C.

Let tM denote the transpose of a matrix M . In order to discuss (3.14) within our
framework of IFS of i.i.d. Lipschitz functions, we first need a so-called state space representation
of the model, given by

Mn+1 = AMn + Bθn+1, n ≥ 0 (3.15)

and

Yn+1 = CMn + Dθn+1, n ≥ 0, (3.16)
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where Mn
def= t(tYn, ..., tYn−k+1,

tθn, ..., tθn−l+1),

Ψ def= (F1, ...,Fk−1), Γ def= (G1, ...,Gl−1),

A
def=




Ψ Fk Γ Gl

I(k−1)d 0 0 0

0 0 0 0

0 0 Im(l−1) 0


 , B

def=




G0

0

Im

0


 ,

C
def= (Ψ,Fk,Γ,Gl), D

def= G0,

see [2]. The dimensions of A and B are (kd+ lm)× (kd+ lm) and (kd+ lm)×m, respectively.
Now, (Mn)n≥0 clearly defines an IFS of i.i.d. Lipschitz maps. Under conditions (b.1–4),

which are always assumed hereafter, its Liapunov exponent is a.s. negative. Indeed, all eigen-
values of A have modulus less than 1, as following from [2, Theorem 4.1] in combination with
[2, eq. (15)]

F (z)−1G(z) = C (z−1Ikd+lm −A)−1B + D .

The latter implies that z is an eigenvalue of A iff detF (1/z) = 0.
Following [2], let H = w + V be the minimal affine subspace of R

kd+lm such that the
stationary distribution π of (Mn)n≥0 is concentrated on H. Since π is unique, H is also the affine
subspace of minimal dimension which is invariant for (Mn)n≥0, i.e. A(w + V) + Bθn ⊂ w + V

a.s. It follows that Aw − w ∈ V, AV ⊂ V and Im(B) ⊂ V. Hence, for some invertible matrix
S , SMn takes the form SMn = t(tM̃n, 0) for each n ≥ 0 and satisfies

SMn+1 = SAS−1SMn + SBθn+1, n ≥ 0, (3.17)

with

SAS−1 =

(
A11 A12

0 A22

)
, SB =

(
B1

0

)
and S(Aw − w) =

(
x1

0

)
,

where A11, B1 and x1 have dimensions s× s, s×d and s× 1, respectively (s def=dim(V)). Now,
(M̃n)n≥0 satisfies

M̃n+1 = A11M̃n + B1θn+1 + x1, n ≥ 0, (3.18)

and forms again an IFS of i.i.d. Lipschitz maps with a.s. negative Liapunov exponent. Its
state space is R

s and its unique stationary distribution π̃ ∼ ∑
n≥1 An−1

11 (B1θn + x1) is not
concentrated on any proper affine subspace of R

s, by minimality of H. Consequently, the linear
hull of Im(B1), Im(A11B1),..., Im(As−1

11 B1) must be R
s and, by (b.1) and the independence

of the θn, the distribution of
∑s

n=1 An−1
11 B1θn cannot be carried by a fixed hyperplane of R

s.
Replacing (b.1) with the stronger condition

(b.1’) the distribution of θ1 is nonsingular with respect to λλd,
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we infer that the distribution of
∑s

n=1 An−1
11 B1θn is nonsingular with respect to λλs. Since

further

M̃n+s = As
11M̃n +

s∑
j=1

As−j
11 B1θn+j +

s−1∑
j=0

Aj
11x1, n ≥ 0,

validity of condition (c) of Theorem 2.1 with X = R
s and λ = λλs is now easily verified. This

in turn shows the positive Harris recurrence of (M̃n)n≥0 on X = R
s, by invoking Theorems

2.1 and 2.2(b). Note that supp π̃ has nonempty interior because π̃ dominates a λλs-continuous
measure, see Remarks D and E. We further infer that part (a), respectively part (b) of Theorem
3.2 applies to (M̃n)n≥0, provided that

(b.5) E logp+1(1 + ‖B1θ1‖) < ∞,
respectively

(b.6) E‖B1θ1‖p < ∞
are satisfied in addition to (b.1’) and (b.2–4). The function f arising in (3.13) here takes the
form f(x) = 1 + ‖x‖p for an arbitrary norm ‖ · ‖ on R

s. Corresponding conclusions for the
ARMA process (Yn)n≥0 then follow under the same respective conditions because

‖P(M̃n ∈ ·|M̃0 = x) − π̃‖ = ‖P(SMn ∈ ·|SM0 = t(x, 0)) − π̃ ⊗ δ
(kd+lm)−s
0 ‖

= ‖P(Mn ∈ ·|M0 = S−1x) − π‖
≥ ‖P(Yn ∈ ·|M0 = S−1x) − ξ‖

and
‖P(M̃n ∈ ·|M̃0 = x) − π̃‖f ≥ ‖P(Yn ∈ ·|M0 = S−1x) − ξ‖g

where g(y) def= c(1 + ‖y‖p) for an arbitrary norm ‖ · ‖ on R
d and a sufficiently small constant

c > 0 depending on the function f .
(c) Returning to Example 2.6(d) of matrix recursions Mn = AnMn−1 + Bn, n ≥ 1, with

a.s. negative Liapunov exponent and satisfying

(c.1) E log+ ‖A‖ < ∞ and E log+ ‖B‖ < ∞,

we recall that its positive Harris recurrence on whole X = R
m follows if further

(c.2) (A1, B1) is nonsingular with respect to λλm×m ⊗ λλm,
or

(c.2’) A1, B1 are independent and B1 is nonsingular with respect to λλm

holds true. Given any p > 0, it is then immediate to conclude the assertion of Theorem 3.2(a)
and of 3.2(b) with f(x) = ‖x‖p, provided that additionally

(c.3) E logp+1(1 + ‖A1‖) < ∞ and E logp+1(1 + ‖B1‖) < ∞,
respectively

(c.4) E‖A1‖p < ∞ and E‖B1‖p < ∞.

(d) We finally consider stochastic difference equations with additive noise

Mn+1 = T (Mn) + θn+1, n ≥ 0,
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for which ergodicity results were obtained by Chan and Tong [4]. Here T : R
m → R

m is a
(nonrandom) Lipschitz function and the θn, n ≥ 1, are i.i.d. random vectors in R

m. Hence
(Mn)n≥0 is an IFS of i.i.d. Lipschitz maps Fn, n ≥ 1, with generic element F (x) = T (x) + θ.
As one can easily see, it satisfies Elton’s conditions (1.3), (1.4) and is thus ergodic provided
that

(d.1) T is strictly contractive, i.e. l(T ) < 1;
(d.2) E log+ ‖θ1‖ < ∞.

If furthermore
(d.3) θ1 is nonsingular with respect to m-dimensional Lebesgue measure λλm,

we infer, for some λλm-positive X′, the λλm(· ∩ X′)-irreducibility and the positive Harris re-
currence of (Mn)n≥0 on some absorbing set H (Remark D and Theorem 2.1 with X = X =
R

m). Moreover, int(supp π) �= ∅ because π (as a maximal irreducibility measure) dominates
λλm(· ∩X′). Hence H = R

m by Theorem 2.2(b). Now Theorem 3.2(a), respectively 3.2(b) with
f(x) = ‖x‖p applies, provided additionally

(d.4) E logp+1(1 + ‖θ1‖) < ∞,
respectively

(d.5) E‖θ1‖p < ∞.

Notice that the threshold AR(1)-model in 2.6(c) with |ρ+| < 1 and |ρ−| < 1 is a special case
of the given model.

Geometric ergodicity of (Mn)n≥0 is shown in [4] for the situation where (d.1) and (d.3)
are replaced with

(d.1’) T (0) = 0 and T is exponentially stable in the large, i.e. ‖Tn(x)‖ ≤ ke−cn‖x‖ for
all x ∈ R

m and some constants K, c ∈ (0,∞),
(d.3’) θ1 is absolutely continuous with respect to λλm with an everywhere positive density,

and where (d.5) holds with p = 1. Plainly, (d.1’) is weaker than (d.1), while (d.3’) is stronger
than (d.3) and ensures the irreducibility of the model. The Harris recurrence and geometric
ergodicity may then be inferred from (d.1’) by showing the existence of a suitable Liapunov
function and applying Theorem 15.0.1 in [9], see [4] for details and also Section 5.

4. Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1. Since ”(a)⇒(b)” is trivial we first show ”(b)⇒(c)”. So we
suppose (b) which provides us with the existence of some n0 ≥ 1, a non-zero σ-finite measure
λ(n0), a product measurable function gn0 : X

2 → [0,∞) and a substochastic kernel Q(n0) such
that

Pn0(x, dy) = gn0(x, y)λ(n0)(dy) + Q(n0)(x, dy), x ∈ X, (4.1)

where
∫

X
gn0(x, y) λ(n0)(dy) > 0 for all x ∈ X. By stationarity,

π(dy) = gn0
(y)λ(n0)(dy) + πQ(n0)(dy)
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where gn0
(y) def=

∫
gn0(x, y)π(dx). So π ≥ λ

(n0) def= gn0
λ(n0) and the latter measure is nonzero

because ∫
gn0

(y) λ(n0)(dy) ≥
∫

X

∫
gn0(x, y) λ(n0)(dy) π(dx) > 0.

Possibly after replacing X with the π-positive set X∩{gn0 > 0}, we may thus assume hereafter
that λ(n0) is absolutely continuous w.r.t. π.

For an arbitrary stopping time τ = h((Mn)n≥0) for (Mn)n≥0, let ϑkτ
def= k+h((Mk+n)n≥0)

for k ∈ N0 and P (τ)(x, ·) def= Px(Mτ ∈ ·) for x ∈ X, hence P (τ) = P τ if τ is a.s. constant. We
claim that, given any Pπ-a.s. finite stopping time τ for (Mn)n≥0, the family (P (ϑn0τ)(x, ·))x∈X

is nonsingular with respect to λ(n0,τ) defined through

λ(n0,τ)(B) def=
∫

X

P(Fτ :1(y) ∈ B) λ(n0)(dy), B ∈ B(X).

This follows because

P (ϑn0τ)(x, B) =
∫

X

P (τ)(y, B)gn0(x, y) λ(n0)(dy) +
∫

X

P (τ)(y, B) Q(n0)(x, dy)

=
∫

X

P(Fτ :1(y) ∈ B)gn0(x, y) λ(n0)(dy) +
∫

X

P (τ)(y, B) Q(n0)(x, dy)

for all B ∈ B(X). The measure defined by the first integral in the previous line (as a function
of B) is clearly absolutely continuous with respect to λ(n0,τ) with density gn0,τ , say. Let Q(n0,τ)

be the measure defined by the second integral. It follows that

P (ϑn0τ)(x, dy) = gn0,τ (x, y)λ(n0,τ)(dy) + Q(n0,τ)(x, dy), x ∈ X, (4.2)

where
∫

X
gn0,τ (x, y)λ(n0,τ)(dy) > 0 for all x ∈ X. We have thus particularly shown that, if

(c) holds for some n0 ≥ 1, then it also holds for all n ≥ n0 (with the same X but in general
different λ).

Next recall from (1.6) that, for each π-positive B,

X0(B) def= {x ∈ X : Px(Mn ∈ B i.o.) = 1}

satisfies π(X0(B)) = 1 and thus also P (x, X0(B)) = 1 for π-almost all x ∈ X. Recursively,
define

Xn+1(B) def= {x ∈ Xn(B) : P (x, Xn(B)) = 1}
for n ≥ 0. Then π(Xn(B)) = 1 for all n ≥ 0 and Xn(B) ↓ X∞(B) def= ∩k≥0Xk(B), as n → ∞,
giving π(X∞(B)) = 1. X∞(B) is further absorbing because, by construction, P (x, Xn(B)) = 1
for all x ∈ X∞(B) and n ≥ 0, and thus P (x, X∞(B)) = limn→∞ P (x, Xn(B)) = 1 for all
x ∈ X∞(B).

Put τ
def= inf{n ≥ 1 : Mk ∈ X} and notice that τ is clearly Pπ-a.s. finite. Since π(X∞(X)c)

= 0, also λ(n0)(X∞(X)c) = 0. It is now obvious from the previous considerations that we can
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choose δ > 0 sufficiently small such that∫
X∞(X)

∫
X

∫
X∞(X)

1{gn0,τ≥δ}(x, y)1{gn0≥δ}(y, z) λ(n0)(dz) λ(n0,τ)(dy) π(dx) > 0.

Hence we may invoke Lemma 4.3 by Niemi and Nummelin [10] to infer the existence of a
π-positive set X1 ⊂ X∞(X) and a λ(n0)-positive set X2 ⊂ X∞(X) satisfying

α
def= inf

x∈X1,z∈X2
λ(n0,τ)(y ∈ X : gn0,τ (x, y) ≥ δ, gn0(y, z) ≥ δ) > 0.

A combination of this result with (4.1) and (4.2) implies

P (ϑn0 (τ+n0))(x, B) =
∫

X

Pn0(y, B) P (ϑn0τ)(x, dy)

≥
∫

X

gn0,τ (x, y)
∫

B∩X2

gn0(y, z) λ(n0)(dz) λ(n0,τ)(dy)

≥ αδ2λ(n0)(B ∩ X2)

(4.3)

for all x ∈ X1 and B ∈ B(X). By defining H
def= X∞(X1), we obtain an absorbing set such

that X1 is a regeneration set for (Mn)n≥0 restricted to H, i.e., X1 is recurrent and satisfies
a minorization condition, namely (4.3). This proves the Harris recurrence of (Mn)n≥0 on H.
Note also that this implies that the chain is λ(n0)(· ∩ X2)-irreducible (see Remark D).

Since (Mn)n≥0 possesses a stationary distribution, it is clearly positive Harris recurrent
whence we are left with the proof of aperiodicity. However, if (Mn)n≥0 were q-periodic with
cyclic classes X1, ..., Xq, say, then the q-skeleton (Mnq)n≥0 would have stationary distributions
π(·∩Xk)
π(Xk) , k = 1, ..., q. On the other hand, the latter is also an IFS of i.i.d. Lipschitz maps

satisfying (1.3), (1.4) and thus possesses only one stationary distribution. Consequently, q = 1
and (Mn)n≥0 is aperiodic.

”(c)⇒(b)” If (Mn)n≥0 is Harris recurrent then, for some π-positive X (called small set),
there exist n0 ≥ 1 and a nonzero measure λ with λ(Xc) = 0 such that Pn0(x, ·) ≥ λ for all
x ∈ X. Consequently, (b) is satisfied. ♦

Proof of Theorem 2.2. (a) We must show that if H has a π-positive interior, i.e.
Bε(x) = {y ∈ X : d(x, y) ≤ ε} ⊂ H and π(Bε(x)) > 0 for some x ∈ H and ε > 0, then
H = X. Recall that �(B) denotes the first return time to B for (Mn)n≥0. It suffices to prove
Py(�(Bε(x)) < ∞) = 1 for all y ∈ X. Pick η ∈ (0, ε) such that π(Bη(x)) > 0. As will be
seen in the next section, (Mn)n≥0 contains a subsequence (Mσn)n≥0 which is also an IFS of
i.i.d. Lipschitz maps with the same stationary distribution and further strictly contractive,
i.e. L1:σ1 ≤ γ < 1 a.s. The σn = σn(γ) are defined in (5.3) and do not depend on M0.
Recalling (1.6), Pw(Mσn ∈ Bη(x) i.o.) = 1 for π-almost all w ∈ X. Fix any such w and put
My

n
def= Fn:1(y) for n ≥ 0 and y ∈ X. Then (My

n)n≥0 is a copy of (Mn)n≥0 under P, and
d(My

σn
, Mw

σn
) ≤ γnd(y, w) a.s. for all n ≥ 0. Consequently, {Mw

σn
∈ Bη(x)} ⊂ {My

σn
∈ Bε(x)}
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for all n sufficiently large implying

P(My
n ∈ Bε(x) i.o.) ≥ P(My

σn
∈ Bε(x) i.o.) ≥ P(Mw

σn
∈ Bη(x) i.o.) = 1

and thus the desired Py(�(Bε(x)) < ∞) = 1 for all y ∈ X.

(b) Note first that, by the previous argument, we generally have Px(Mn ∈ B i.o.) = 1
for all x ∈ X and all π-positive open B ⊂ X. Hence π(int(X)) > 0 ensures Px(�(X) < ∞) = 1
for all x ∈ X, which together with 2.1(a) or (c) easily yields the λ-irreducibility of (Mn)n≥0.
Combining this with int(supp π) �= ∅, we infer that every compact set is petite [8, Theorem 3.4]
and that (Mn)n≥0 forms a T -chain [8, Theorem 3.2]. Now the positive Harris recurrence on X

follows if (Mn)n≥0 is also nonevanescent [9, Theorem 9.2.2]. For that latter property, we must
show that Px(Mn ∈ C i.o.) = 1 for all x ∈ X and some compact set C. But int(supp π) �= ∅
implies the existence of a w ∈ X with π(Bε(w)) > 0 for all ε > 0 whence Px(Mn ∈ Bε(w) i.o.) =
1 for all ε > 0. We obtain the desired conclusion because the closure of some Bε(w) is compact
by the local compactness of X. ♦

5. Proof of Theorem 3.2

Throughout this section, we are always given an IFS (Mn)n≥0 of i.i.d. Lipschitz maps
satisfying (1.3) and (1.4). Since the Liapunov exponent l∗ is a.s. negative, the definition of l∗

implies E log+ l(Fm:1) < 0 for some m ≥ 1. Let us assume m = 1, that is

E log+ l(F1) < 0, (5.1)

because the modifications of the subsequent arguments in case m ≥ 2 are totally straightfor-
ward but notationally rather tedious. Put Ln

def= l(Fn) for n ≥ 1 and note that these random
variables are i.i.d. and also independent of M0. Moreover,

l(F1:n) ≤ L1:n
def=

n∏
k=1

Lk a.s. (5.2)

Given (5.1), the sequence (
∑n

k=1 log Lk)n≥0 forms an ordinary zero-delayed random walk with
negative drift whence, for any γ ∈ (0, 1), the level log γ ladder epochs σ0(γ) def= 0 and

σn(γ) def= inf

{
k > σn−1(γ) :

k∑
j=σn−1(γ)+1

log Lj ≤ log γ

}
(5.3)

= inf{k > σn−1(γ) : Lσn−1(γ)+1:k ≤ γ}, n ≥ 1

are all a.s. finite. Now fix any γ ∈ (0, 1) and write σn for σn(γ). For (σn)n≥0 constitutes a
renewal process, the random mappings

F ′
n

def= Fσn:σn−1+1, n ≥ 1,
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are also i.i.d. random Lipschitz functions. They are (a.s.) strictly (γ-)contractive because, by
(5.2) and the definition of the σn,

d(F ′
1(x), F ′

1(y)) ≤ L1:σ1d(x, y) ≤ γd(x, y) a.s.

for all x, y ∈ X. Furthermore,

E log+ d(F ′
1(x0), x0) < ∞

as has been shown in [1], see their proof of Lemma 3.2. Consequently, the subsequence
(Mσn)n≥0 = (F ′

1:n(M0))n≥0 is an IFS of i.i.d. strictly contractive Lipschitz maps satisfying
Elton’s conditions. Let P ′ and π′ denote its transition kernel and stationary distribution,
respectively. We will show in the following lemma that actually π′ = π holds true.

Lemma 5.1. Let (Mn)n≥0 be an IFS of i.i.d. Lipschitz maps satisfying (1.3) and (1.4).
If (Mn)n≥0 is an aperiodic positive Harris chain on some P -absorbing set H with stationary
distribution π, then, given any γ ∈ (0, 1), the same holds true for the subsequence (Mσn)n≥0,
i.e., it is also Harris recurrent on H and has the same stationary distribution.

It is important for the further derivation that (Mσn)n≥0 does indeed share Harris set and
stationary distribution with (Mn)n≥0 because this guarantees that the additional assumptions
H = X as well as int(supp π) �= ∅ carry over from the latter to the former sequence.

Proof. If (Mn)n≥0 is aperiodic and positive Harris on H, then (Pm(x, ·))x∈H is nonsin-
gular with respect to π for some m ≥ 1. Note that σm ≥ m and P ′m = P (σm). As obtained
in the proof of Theorem 2.1, the family (P ′m(x, ·))x∈H is also nonsingular with respect to a
non-zero σ-finite measure λ′ whence Theorem 2.1 implies that (Mσn

)n≥0 is an aperiodic pos-
itive Harris chain on some P ′-absorbing set H

′. Since H is also P ′-absorbing, we can choose
H

′ ⊂ H.

Now consider the backward process M̂n
def= F1:n(M0), n ≥ 0, associated with (Mn)n≥0

which converges a.s. to a random variable M̂∞ with distribution π, regardless of the initial
distribution, see [6]. Consequently, the same holds true for the subsequence M̂σn , n ≥ 0. Since
the Fn are i.i.d. and independent of M0, we further have for all n ≥ 0

M̂σn = F1:σn(M0) ∼ Fσ1:1 ◦ ... ◦ Fσn:σn−1+1(M0) = F ′
1:n(M0),

where (F ′
1:n(M0))n≥0 is the backward process of (Mσn)n≥0. Hence M̂σn → M̂∞ ∼ π a.s. implies

that F ′
1:n(M0) converges weakly to π (in fact, it also converges a.s. to some π-distributed

random variable) which is therefore also the stationary distribution of (Mσn)n≥0.

In order for H
′ = H it must still be shown that Px(Mσn ∈ A i.o.) = 1 for all π-positive

A ∈ B(X) and x ∈ H ∩ H
′c which in turn holds if Px(T < ∞) = 1 for T

def= inf{n ≥ 0 : Mσn ∈
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H
′} and all x ∈ H ∩ H

′c because then, by the strong Markov property,

Px(Mσn ∈ A i.o.) =
∫

H′
Py(Mσn ∈ A i.o.) Px(MσT

∈ dy) = 1.

We will now prove the latter assertion for an arbitrary fixed x ∈ H∩H
′c. To that end, we first

show the existence of a P -absorbing set X∞ ⊂ H
′. Define X1

def= {y ∈ H
′ : P (y, H′) = 1} and

then recursively Xn+1
def= {y ∈ Xn : P (y, Xn) = 1} for n ≥ 1. Using π = πP and π(H′) = 1,

we inductively obtain π(Xn) = 1 for all n ≥ 1. The Xn are obviously nonincreasing, and
X∞

def= ∩n≥1Xn satisfies P (y, X∞) = limn→∞ P (y, Xn) = 1 for all y ∈ X∞. Now observe that
π(X∞) = 1 implies Px(�(X∞) = 1) = 1 which in turn yields

Px(Mn ∈ X∞ for all n ≥ 1) = 1

because X∞ is P -absorbing. In particular, we infer the a.s. finiteness of T under Px. ♦

Based upon the previous preliminary observations, the further derivation of Theorem 3.2
is divided into two parts: We first prove a stronger result when (Mn)n≥0 is strictly contractive
(Proposition 5.2). In the general situation, this stronger result still holds for the subsequence
(Mσn)n≥0, and the second part will show how this combines with certain regenerative argu-
ments similar to those in [1] in order to get Theorem 3.2.

1. The strictly contractive case. Suppose now (Mn)n≥0 satisfies (1.3), (1.4) and
is further strictly γ-contractive, i.e. L1 ≤ γ < 1 a.s. For our later convenience we assume
γ < 1/2. Our goal is to show V -geometric ergodicity of (Mn)n≥0 on an absorbing set H for a
suitable π-integrable function V : H → [1,∞), that is

∑
n≥0

r−n‖Pn(x, ·) − π‖V < ∞ (5.4)

for all x ∈ H and some r ∈ (0, 1) not depending on x. Provided the moment assumptions
(3.3) (Case I) or (3.6) (Case II) for some p > 0, we define a new ”flattened”, but still complete
metric d̂ through

d̂(x, y) def=

{
logp∧1(1 + d(x,y)

1+d(x,y) ) in Case I

d(x, y)η∧1 in Case II,
(5.5)

where η ∈ (0, p] is as in (3.7). Let (L̂n)n≥1 be the sequence of Lipschitz constants for (Fn)n≥1

under d̂. As one can easily check, L1 ≤ γ < 1 a.s. implies L̂1 ≤ γ̂ < 1 a.s.; we may in
fact choose γ̂ = maxt∈[0,1]

logp∧1(1+βx)
logp∧1(1+x)

for any β ∈ (γ, 1) in Case I and γ̂ = γp∧1 in Case II.

Notice that d̂ is bounded in Case I whence Ed̂(F1(x0), x0)q < ∞ for all q > 0. In Case II, we
have Ed̂(F1(x0), x0)p∨1 < ∞ by (3.6). Consequently, replacing d with d̂ leaves us with an IFS
(Mn)n≥0 which still satisfies (1.3), (1.4), and furthermore condition (3.6) for some p ≥ 1 in
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both cases. The function V is now defined as

V (x) def=

{
1 + d̂(x, x0) in Case I

1 + d̂(x, x0)η∨1 = 1 + d(x, x0)η in Case II
(5.8)

and indeed π-integrable by (3.4), respectively (3.7). Notice that V coincides with f in (3.10)
in Case II.

Proposition 5.2. Let (Mn)n≥0 be a strictly γ-contractive IFS satisfying (1.3), (1.4),
γ < 1/2 and (3.3) or (3.6) for some p > 0. If (Mn)n≥0 is further Harris recurrent on whole X

and int(supp π) �= ∅ holds, then (Mn)n≥0 is V -geometrically ergodic with V as in (5.8). More
precisely, ∑

n≥0

r−n‖Pn(x, ·) − π‖V ≤ AV (x) (5.9)

for all x ∈ X and suitable constants r ∈ (0, 1) and A > 0.

In Case I, the V -norm just coincides with the total variation norm ‖ · ‖ because V is
bounded. As already discussed in some detail, the proof of the proposition will require that
the balls BR = BR(x0)

def= {x ∈ X : d(x, x0) ≤ R} are petite for all R > 0 with π(BR) > 0.

Proof. The result follows directly from [9, Theorem 15.0.1] if we can verify the drift
condition

∆V (x) ≤ −βV (x) + b1C(x), x ∈ X, (5.10)

for a petite set C and constants β, b ∈ (0,∞), where

∆V (x) def= PV (x) − V (x) =
∫

X

(V (y) − V (x))P (x, dy).

We only consider Case II, the first one being similar and even a little easier. It follows upon
using Minkowski’s inequality, the γ-strict contractivity, b

def= 2η
Ed(F1(x0), x0)η < ∞ (by (3.6))

and β
def= (1 − (2γ)η)/2 > 0 (since γ < 1/2)

∆V (x) = Exd(F1(x), x0)η − d(x, x0)η

≤ Ex[d(F1(x), F1(x0)) + d(F1(x0), x0)]η − d(x, x0)η

≤ ((2γ)η − 1)V (x) + 2η
Ed(F1(x0), x0)η

≤ −βV (x) + b1BR
(x)

(5.11)

for sufficiently large R > 0. So it only remains to verify the petiteness of BR which is accom-
plished by the subsequent lemma. ♦

Lemma 5.3. Under the assumptions of Proposition 5.2, each BR(x), x ∈ X and R > 0,
is petite.
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Proof. Since (Mn)n≥0 is a weak Feller chain, its π-irreducibility and int(supp π) �= ∅
imply that all compact subsets of X are petite, see [8, Theorem 3.4]. int(supp π) �= ∅ further
implies the existence of some w ∈ X such that π(BR(w)) > 0 for all R > 0. Next, the
local compactness of X guarantees the existence of a compact and thus petite neighborhood
C of w. Consequently, every BR(w) contained in C is also petite. Fix any R0 > 0 having
B2R0(w) petite and further an arbitrary x ∈ X and R > 0. We must show petiteness of BR(x).
Since π(BR0(w)) > 0, the Harris recurrence of (Mn)n≥0 ensures the existence of some N ≥ 1
such that γNR < R0 and PN (x, BR0(w)) > 0. Now pick an arbitrary y ∈ BR(x), y �= x,
and consider the two coupled chains Mx

n
def= Fn:1(x) and My

n
def= Fn:1(y) for n ≥ 0. Since

d(Mx
n , My

n) ≤ γnd(x, y) ≤ γnR a.s. for all n ≥ 0, the choice of N gives

d(My
N , w) ≤ d(Mx

N , My
N ) + d(Mx

N , w) < R0 + d(Mx
N , w) a.s.

and therefore {Mx
N ∈ BR0(w)} ⊂ {My

N ∈ B2R0(w)} a.s. for all y ∈ BR(x). We thus conclude

PN (y, B2R0(w)) = P(My
N ∈ B2R0(w)) ≥ P(Mx

N ∈ BR0(w)) = PN (x, BR0(w)) > 0

for all y ∈ BR(x), whence the petiteness of B2R0(w) implies the same for BR(x). ♦

The next lemma will be needed for the proof of Theorem 3.2(b) and supplements the
previous one by showing that the π-positive BR(x) are also (1-)regular.

Lemma 5.4. Let (Mn)n≥0 be a strictly contractive IFS of i.i.d. Lipschitz maps satisfying
(1.3) and (1.4). Let w ∈ X and R0 > 0 so large that π(BR0(w)) > 0. Then

Ex�(BR(w)) ≤ KR(1 + log(1 + d(x, w)))Eπ(·|R0)�(BR0(w)) < ∞ (5.12)

for all x ∈ X, R > R0 and some KR ∈ (0,∞), where π(·|R) def= π(·∩BR)
π(BR) . In particular,

sup
x∈BR(w)

Ex�(BR(w)) < ∞. (5.13)

Given the conditions of Proposition 5.2, BR(w) is regular.

Proof. Note first that (M�n(BR(w)), �n+1(BR(w)) − �n(BR(w)))n≥0 is stationary and
ergodic under Pπ(·|R) and that Eπ(·|R)�1(BR(w)) < ∞ for all R. Moreover, by the ergodic
theorem, n−1�n(BR(w)) → Eπ(·|R)�(BR(w)) a.s. and in mean under Pπ(·|R). Hence there exists
z ∈ BR0(w) such that

sup
n≥1

n−1
Ez�n(BR0(w)) ≤ K Eπ(·|R0)�(BR0(w)) (5.14)

for a suitable constant K > 0. Suppose w.l.o.g. z = w.
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Next, pick an arbitrary x ∈ X, x �= w, and consider once more the two coupled chains
Mx

n , Mw
n for n ≥ 0. Denote by �x

n(BR(w)) and �w
n (BR(w)), n ≥ 1, the associated return times

to BR(w). Since d(Mx
n , Mw

n ) ≤ γnd(x, w) a.s. for all n ≥ 0, we infer

d(Mx
�w

n (BR0 (w)), M
w
�w

n (BR0 (w))) ≤ γnd(x, w) a.s.

and therefore

d(Mx
�w

n (BR0 (w)), w) ≤ R0 + γnd(x, w) a.s.

which in turn implies �x(BR(w)) ≤ �w
N(x,R−R0)

(BR0(w)) a.s. for all R > R0 and

N(x, R − R0)
def=

[
log d(x, w) − log(R − R0)

log(1/γ)

]+

+ 1,

where [t]+ def= sup{k ∈ Z : k ≤ t} ∨ 0. (5.12) follows easily from the inequality

Ex�(BR(w)) = E�x(BR(w)) ≤ E�N(x,R−R0)(BR0(w))

≤ KN(x, R − R0) Eπ(·|R0)�(BR0(w)),

where (5.14) has been utilized. Given the conditions of Proposition 5.2, we have that BR(w)
is petite (Lemma 5.3) and ”self-regular” (property (5.13)), whence its regularity follows from
[9, Theorem 14.2.4]. ♦

2. The general case (Proof of Theorem 3.2). The assertions of Theorem 3.2 are
now fairly easily established. We begin with part (a) of the theorem.

Proof of Theorem 3.2(a). For a fixed γ ∈ (0, 1), let (Mσn)n≥0 be the strictly contrac-
tive IFS with transition kernel P ′ defined before Lemma 5.1 with σn, n ≥ 0, being the level
log γ ladder epochs in (5.3). Proposition 5.2 yields K

def=
∑

n≥0 r−n‖P ′n(x, ·)− π‖ < ∞ for all

x ∈ X and some r ∈ (0, 1). Put T (n) def= sup{k ≥ 0 : σk ≤ n} for n ≥ 0 and ∆x,π
def= Px − Pπ

for x ∈ X. Notice that the T (n) are independent of M0. We have for all B ∈ B(X), x ∈ X,
n ≥ 0 and a > 0

|Pn(x, B) − π(B)| = |Px(Mn ∈ B) − Pπ(Mn ∈ B)|
≤ P(T (n) ≤ an) + |∆x,π(Mn ∈ B, T (n) > an)|.

(5.15)

Note that, given arbitrary probability measures Q1, Q2 on a measurable space (Ω,A) and a
measurable partition (Bk)1≤k≤n of Ω, the equality ‖Q1−Q2‖ =

∑n
k=1 ‖Q1(·∩Bk)−Q2(·∩Bk)‖

holds. Therefore, we further infer for all B ∈ B(X), x ∈ X, n ≥ 0 and a > 0 that

|∆x,π(Mn ∈ B, T (n) > an)|

≤
∑

k>an

n∑
j=1

|∆x,π(Mn ∈ B, σk = j, σk+1 > n)|
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=
∑

k>an

n∑
j=1

∣∣∣∣
∫

Py(Mn−j ∈ B, σ1 > n − j) ∆x,π(Mσk
∈ dy, σk = j)

∣∣∣∣
≤

∑
k>an

n∑
j=1

‖∆x,π(Mσk
∈ ·, σk = j)‖

= n
∑

k>an

‖Px(Mσk
∈ ·) − Pπ(Mσk

∈ ·)‖

= n
∑

k>an

‖P ′k(x, ·) − π‖

≤ nranK

and thus

‖Pn(x, ·) − π‖ ≤ P(T (n) ≤ an) + nrank

for all x ∈ X, n ≥ 0 and a > 0. Assertions (3.11) and (3.12) are now immediate because, by
(3.3), we can choose a > 0 such that

∑
n≥1

np−1
P(T (n) ≤ an) < ∞ and lim

n→∞np
P(T (n) ≤ an) = 0.

This has been shown in [1, Lemma 3.5]. ♦

Remark. If (3.6) holds, Lemma 3.5 in [1] further provides

lim
n→∞ bn

P(T (n) ≤ an) = 0

for some a > 0 and b > 1. Hence the previous proof under moment assumption (3.6) immedi-
ately yields ∑

n≥0

sn‖Pn(x, ·) − π‖ < ∞.

However, this is weaker than the result asserted in (3.13) of Theorem 3.2(b) which we are going
to prove next.

Proof of Theorem 3.2(b). Recall that f(x) = V (x) = 1 + d(x, x0)p in the present
situation. The counterpart of (5.15) for an estimation of ‖Pn(x, ·) − π‖f obviously reads

|Png(x) − π(g)| ≤
∫
{T (n)≤an}

f(Mn) d(Px + Pπ) +
∣∣∣∣
∫
{T (n)>an}

g(Mn) d∆x,π

∣∣∣∣
for arbitrary functions g satisfying |g| ≤ f . Unfortunately, the first term on the right-hand side
seems to be difficult for further estimation. Therefore, instead of pursuing this argument any
further, another use of the drift condition (5.1), now verified for the m-skeleton (Mmn)n≥0 for
suitable m ≥ 1, appears to be more convenient. Before we can do so, we must however show
that the BR, R > 0 are also petite for these skeletons. We begin by noting that all petite sets C

for (Mn)n≥0 are also small (i.e. Pn(x, ·) ≥ ανn for all x ∈ C and some n ≥ 1, α ∈ (0, 1) and a
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probability distribution νn concentrated on C), because (Mn)n≥0 is aperiodic, see [9, Theorem
5.5.7]. Aperiodicity further guarantees that small sets for (Mn)n≥0 are also small (and thus
petite) for each skeleton. Consequently, we are left with proof that the π-positive BR are petite
or, equivalently [9, Theorem 14.2.4], regular for (Mn)n≥0. But the latter is easy with Lemma
5.4. Let �′(B) be the first return time to B ∈ B(X) of (Mσn)n≥0. Clearly, �(B) ≤ �′(B) for
each B so that the regularity of BR for (Mσn)n≥0 (Lemma 5.4) immediately implies the same
property for (Mn)n≥0.

Now we can verify the drift condition (5.10) for some m-skeleton and with V as given.
Since E log+ L1 < 0 and ELp

1 < ∞, there exists m ≥ 1 such that γm
def= ELp

1:m < 1/2.
Notice also that d(F1:j(x0), F1:j−1(x0)) ≤ L1:j−1d(Fj(x0), x0) together with the independence
of L1:j−1 and Fj(x0) for each j ≥ 1 implies (setting γ0

def= 1)

b
def= (Ed(F1:m(x0), x0)p)1/p ≤

m∑
j=1

(Ed(F1:j(x0), F1:j−1(x0))p)1/p

≤
m∑

j=1

(E[L1:j−1d(Fj(x0), x0)]p)1/p

= (Ed(F1(x0), x0)p)1/p
m−1∑
j=0

γ
1/p
j < ∞.

(5.16)

Hence a similar estimation as in (5.11) yields with β
def= (1 − (2γm)p)/2 > 0

Pmf(x) − f(x) ≤ ((2γm)p − 1)f(x) + 2p
Ed(F1:m(x0), x0)p

≤ −βf(x) + (2b)p 1BR
(x)

for sufficiently large R > 0, so that, by a further appeal to [9, Theorem 15.0.1],

∑
n≥0

r−n‖Pmn(x, ·) − π‖f ≤ Af(x)

for all x ∈ X and suitable constants r ∈ (0, 1) and A > 0. The fact that condition (3.6), if
valid for one x0 ∈ X, already holds for all x ∈ X in combination with (5.16) implies P jf(x) =
Ed(F1:j(x0), x0)p < ∞ for all j ≥ 1, whence we finally conclude

∑
n≥0

r−n‖Pn(x, ·) − π‖f ≤
m−1∑
j=0

r−j

∫ ( ∑
n≥0

r−mn‖Pmn(y, ·) − π‖f

)
P j(x, dy)

≤
m−1∑
j=0

r−j

∫
Af(y) P j(x, dy)

≤ A

m−1∑
j=0

P jf(x) < ∞

for all x ∈ X. The proof of (3.13) is herewith complete. ♦
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