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Model description and assumptions. Classical (simple) Galton-Watson processes
(abbreviated as GWP hereafter) as well as their neighbours do not, at least not explicitly,
distinguish between sexes of individuals. This means for the populations these processes de-
scribe that they are either assumed be asexual or that their male (nonreproductive) part is
simply ignored. The latter can be overcome by using a 2-type GWP for which only type 1
individuals, the females, can produce offspring. However, such a model still ignores the fact
that reproduction in two sex populations is based on the formation of couples, called mating.
In the following we want to provide some insight in how mating may be incorporated into a
branching model without moving too far from the paradigmatic assumptions GWP are built
upon. This leads to the class of so-called bisezual Galton- Watson processes (BGWP). We will
focus on the problem of finding conditions for certain extinction, on a description of population
growth on the event of nonextinction and, finally, on a comparison of extinction probabilities

for certain mating types to the respective probabilities in the asexual case.

The fundamental contribution came in 1968, when Daley [6] introduced the following
model: Consider a population whose n-th generation consists of F),, females and M,, males
who form Z,, = ((F,, M,,) couples where F,,, M,, are random variables and ( is a determin-
istic function, called a mating function. Each couple produces offspring independently of all
other couples and according to the same distribution (p; ), x>0 on the set of pairs (j, k) of
nonnegative integers. Hence for each couple p;;, denotes the probability of begetting j female
and k male children. With X,, , and Y,, , denoting the number of female, respectively male

offspring of the k-th couple of the n-th generation (labelled in arbitrary fashion), we arrive at
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the important recursive identities

Zn Zn
Fop1 = Y Xpg and My = > Yoy (1)
k=1 k=1

for n > 0, where the (X, i, Y, ) are independent and identically distributed according to
(Pjk)j.k>0. This is the familiar structure for GWP with the one but important difference that
here the summation ranges over the number of couples of the preceding generation. Choosing
the ”asexual” mating function ((z,y) 4f  we see that Z, just equals the number of females in
the n-th generation (Z,, = F,, for all n > 0) and is indeed a classical GWP. In the general model
(Zy)n>o0 is called a bisezual Galton- Watson process with offspring distribution (p; ), x>0 and
mating function (. Like its classical counterpart, it forms a temporally homogeneous Markov

chain on the nonnegative integers with transition probabilities

P(Zatr =120 =) = P(C(Ticy Xatrs Xioa Yar1x) = ) @)

for all 4,7,n =0,1,2,.... These do not depend on n because of the independence and identical
distribution of the (X, i, Y, ) for all k,n =0,1,2, ...

From a mathematical viewpoint it is desirable to restrict further the class of offspring
distributions in order to facilitate more explicit computations. Daley [6] gave two alternative

assumptions, at least the first of which being also reasonable from a biologist’s perspective.

ASSUMPTION 1. Suppose that each couple begets children according to an offspring
distribution (p;);>0 and that, for each child, "god throws a f#-coin”, 0 < 6 < 1, to decide
whether it is a female, which happens with probability 6, or a male. All coin tosses are, of
course, independent of ”the rest of the world”, in particular independent of each other and of

the total number of children of the considered couple.

ASSUMPTION 2. Suppose that the random numbers of female and male offspring for a
couple are independent, that is, X,,  and Y,, ; are independent for each n > 0 and k > 1 with

distributions (pf');>0 and (p});>0, say.

To see what these assumptions imply for the offspring distribution (p; x); x>0, note that,
under Assumption 1, p; denotes the probability that a couple begets j + k children, which
occurs with probability p;ix, and that in exactly j of the entailed j + k 0-coin tosses "head”
comes up, which happens with the binomial probability (j ?k) 67(1 — 0)*. Consequently,

i+ k\ . )
Pik = (jj )93(1—9)%]% (3)

for all j,k > 0 (check that this is trivially correct if j = k = 0). Under Assumption 2, we

immediately have by independence that

Pik = PiDR (4)
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for all 5,k > 0. Equivalence of both assumptions can be easily verified if (pf)jzoy (pé'w)jzo
and (p;);>0 are Poisson distributions with means m?, m™ and m* +m™ | respectively, and if
0 =m% /(mf +m%). Let us stipulate without further notice that hereafter (p;x); x>0 always

satisfies Assumption 1 or 2 and further

def
ﬁ = maX(pO,Oapo,()) > 07 (5)

€

where pg o def > k>0P0,k and pe o def > i>0Pj,0 denote the respective probabilities, that a couple
has only male or (_)nly female offspring._Condition (5) holds automatically under Assumption
1 because 0 < < 1, and is equivalent to max(pf’, pd?) > 0 under Assumption 2.

So far no restrictions have been imposed on the mating function ¢ which, as should be
intuitively clear, constitutes an intrinsic parameter of the model in that the behaviour of the
process (Z,)n>0 highly depends on how ( is chosen. The following is a list of some common
sense conditions for (:

e A void generation cannot produce offspring, hence ((0,0) df ), Ruling out asexual

reproduction, the same should hold whenever a generation contains no females or no
males, i.e. {(z,y) = 0 whenever x =0 or y = 0.

e An increased number of females or males in a generation should never decrease the number
of formed couples, so we assume ¢ be nondecreasing in both arguments.

e If the numbers of both, females and males within a generation, increase to infinity, then

so does the number of formed couples, formally expressed as lim, ,—.o ((z,y) = .

Hereafter, we call ( a common sense mating function if it satisfies the previous conditions.
Various more or less realistic common sense mating functions have been proposed in the lit-
erature [6], [7], [11]. We list here four of those which allow a good interpretation in terms of

the general pattern of sexual interaction in the considered population (monogamy, polygamy,

promiscuity).
e ((z,y) = min(x,y) [monogamous mating, mating with perfect (mutual) fidelity];
e ((z,y) = min(x,dy), d > 2 an integer [polygamous mating, men can have up to d spouses|;
e ((z,y) = xmin(1,y) [(unilateral) promiscuous mating];
e ((z,y) = xy [(bilateral) promiscuous mating].

As monogamous and polygamous mating are frequently observed patterns in real world popu-
lations, the first two mating functions are of particular interest.

Towards a mathematical analysis of BGWP Hull [11] made the significant observation that
the mating functions likely to occur in real-life models are superadditive, the formal definition
being

C(@1 + 22,51 +y2) = C(z1,91) + (22, 92)

for all x1,z2,y1,y2 = 0,1,2,... Intuitively speaking, this means that if we divide a two sex

population with mating function ¢ into two parts and allow mating only within the two sub-
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populations, then the total number of formed couples cannot be larger than in the case of no

subdivision. Notice that all four mating functions above share this property.

Extinction. Let us briefly argue that the merciless dichotomy of extinction or explosion,
that is

P(Z, =0 eventually|Zy = k) + P(Z,, - o0|Zp=k) = 1 foral k=12, ..

also holds for any BGWP with common sense mating function and satisfying our standing

condition (5). Indeed, supposing the contrary, there must exist positive integers k, NV such that

~ def P(1 < Z,, < N for infinitely many n > 0|Zy = k) > 0.

It may be argued on an intuitive level and actually turned into a metatheorem that this cannot
hold for any proper population. Since for BGWP a rigorous argument is supplied rather easily
we provide it here for the interested reader. Let T7,T5, ... be the successive random times where
the population size falls below V. Recalling that (Z,,),>0 is a temporally homogeneous Markov
chain with 0 as an absorbing state, we infer with the help of the strong Markov property!) and
condition (5) that

Yn+1 o P(1 < Zp,, <N foreachl<m<n+1|Zy=k)

< P(Zrp,,+1 #0,1 < Zp, < N foreach 1 <m <n|Zy=k)

[
E

P(ZT2n+1 75 O|ZT2n = j)]P)(ZTgn = j, 1 S ZTgm S N for each 1 S m < 7’L|Z() = k‘)

<.
Il
—

I
.MZ

P(Z1 #0|Zy = j)P(Zy,, = 4,1 < Zp, < N for each 1 <m < n|Zy=k)

<
Il
_

(1 _pZ,o —p%}.)]P’(ZTzn =4j,1<Zp, < N foreach1<m < nl|Zy=k)

M-

7j=1
< (1- ﬁN)IP)(l < Zr,,, < N for each 1 <m <nl|Zy =k)
- (1 - ﬂN)’Yn
<. <(1=-8Y)'n

for all n > 1, which together with ~,, | v yields the contradiction via

0 <~y = limy, <~y lim{1-8Y)""1 =0

n—,oo

1) This means that the Markov property remains valid if fixed time epochs are replaced with random times
T having the non-anticipation property, i.e., for each n > 0, the event {T" = n} does only depend on Zy, ..., Zp,

but not on Zn41, Zn+2,... Such random times are called stopping times.
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We now turn to the fundamental question of finding conditions that guarantee certain

ultimate extinction of a BGWP (Z,,),>0. To be more precise, let

Q; def P(Z,, = 0 eventually|Zy = j)

denote the extinction probability given j > 1 ancestor couples. Then the question in its most
ambitious form may be restated as: Is there an intuitive condition for @1 = Q2 = ... = 17
For the simple GWP with offspring distribution (p;);>o and mean offspring m = > i>0JD; =
E[Z,]|Zy = 1] per individual the analysis reduces to a consideration of @ = @1, because Q; = @’
for each j > 1, and the simple and very intuitive answer is that @) = 1 if, and only if, m <1
and pg > 0. So certain extinction occurs if, and only if, each individual begets at most one
child on the average and has a positive chance of having no children.

The following example due to Hull [11] shows that one cannot expect an equally simple
answer for general BGWP. Consider the common sense, superadditive mating function ¢ defined
by ((z,y) def 0,if x =0o0ry =0, and ((x,y) L y — 1, otherwise. Let the p; be of
the form (3) for some 0 < # < 1 and with (p;);>0 defined through ps = 1, and hence p; = 0
otherwise. Then every couple has exactly three children. Nonetheless, extinction occurs if,
for some n > 0, all couples of the n-th generation produce only female or only male offspring.
By comparison with a process of an inbreeding population where couples are formed only by
children of the same parents, Hull could show that ; < 1 for all j > 1 and any choice of 0
(see Theorem 1 and its proof below). On the other hand,

m = E[Z1|Zy=1] = 2(1-6° - (1-6)°)

is strictly less than 1 if § = 0.8. However, as pointed out later by Bruss [5], one should rather
look here at the average unit reproduction means

def 1 . .
my; = ;E[Zn+1|zn:j]’ ]21:

giving the mean population growth rates per generation for the various levels j. For the simple
GWP this is disguised by the lucky coincidence that m; does not depend on j. In the given

example,

m; = 33—_(1 — 03 — (1 —0)%)

J
which, for any choice of 6, increases to 3 as j tends to infinity. In case 6 = 0.8 we thus see
that the population when originating from one ancestor couple can actually survive because
with positive probability it eventually reaches a level where the growth becomes supercritical
(m; > 1 for all sufficiently large j).
It is quite intuitive and actually confirmed by the following result of Daley et al. [7] that

this latter observation holds true more generally.
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THEOREM 1. For a BGWP (Z,,)n>0 with a common sense, superadditive mating func-

. . .. def
tion C the average reproduction means mj are convergent to the limit me = supg>; mg.
Furthermore mqo, < 1 implies certain extinction for any initial population size, i.e. Q1 = Q2 =
... = 1, while in case my > 1 (ultimate supercriticality) the population survives with positive
probability for sufficiently large initial population size, in fact 1 > Q;, > Qiy+1 > ... for some

positive integer ig.

For those readers wondering whether there are examples of ultimately supercritical BGWP
with common sense, superadditive mating functions which die out if the initial population size
is too small, we note that this happens, for instance, if the mating function ( is chosen such
that ((x,y) = 0 whenever z or y is less than some arbitrarily chosen threshold. Other, less
trivial examples can also be given, but a further discussion is omitted because the biological
relevance of any such example seems doubtful. We add in support of the latter statement
that, whenever the considered population has a positive chance of increase at any given level 7,
formally stated as P(Z,,+1 > i|Z, = i) > 0 for all i € IN, then ultimate supercriticality implies

a positive chance of survivial for all initial population sizes, so ig =1 and 1 > Q1 > Q2 > ...

By the strong law of large numbers, X ; def g1t 1:1 X1, and Y def g1 2:1 Y1
tend to m¥ % E[X1,1] and m™M def E[Y1,1], respectively, which are the average numbers of

female and male children per couple. Writing

Moo = lim E[¢( XY Yii)]/i = limjooo E[C(1 X015, 5X1,5)] /4,

j—00
it should not be surprising that one can show that

Moo = lim E[C(ij,ij)]/j = r(m%, mM)

J—00

for a suitable function r (see [7, Lemma 2.3]). We note in passing the technical point that
m¥, m™ need not be integers, but that, by linear interpolation, ((z,y) can always be defined
for all pairs (z, y) of nonnegative numbers without losing superadditivity. For the four examples
given above this is clear anyway. Although it may be generally hard to determine r explicitly,
there are many examples of ( including ours where this is easy. In fact,

e ((z,y) = min(x,dy), d € IN, implies r = ¢ and ms, = min(m?*, dm™);

e ((x,y) = zmin(1,y) implies r(z,y) = x and my, = m’;

e ((z,y) = xy implies r(z,y) = oo for all z,y and m., = oco.

ProOOF OF THEOREM 1. In the following we present the main arguments to prove

Theorem 1 but are leaving out any technicalities.

The first observation to make is that, by (2) and the monotonicity of the mating function
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¢ in each argument,
P(Z1 > k|Zo=1i) = P(C(Z;:l Xl,jaZéﬂ Y1) > k)

< P(C(SIE X1y, X5 Yig) > k) (6)
= ]P)(Zl > ]{7|ZO =1+ 1)

for all i,k € INyg. So the probability of exceeding a size k in the next generation forms an
increasing function of the current population size. A Markov chain with this property is called

stochastically monotone. By an easy inductive argument one can prove that (6) generalises to
P(Z, > k|Zy=1) < P(Z, > k|Zy=1i+1) (7)

foralli,k =0,1,2,...and n = 1, 2, ... which in turn yields the important fact that the extinction
probability @; is a decreasing function of the initial population size :. Namely, by letting n
tend to infinity in (7),

for all i € INy. Here is a more intuitive comparison argument: Suppose the population starts
with ¢+ 1 ancestor couples (Zy = i+ 1). Choose an arbitrary subset of i couples and denote by
(Z])n>0 the BGWP based on this subset, hence Z) = i. Then the Z; couples forming the first
generation of the original population are those formed by the offspring of the 7 ancestor couples
of the subpopulation plus generally some more due to the one additional ancestor couple in
the original population and the monotonicity of the mating function. This shows Z] < Z; and
finally leads to the conclusion Z/, < Z, for all n > 0 when repeating the argument for the
subsequent generations. Since the extinction probabilities of (Z,,),>0 and (Z])n>0 are Qi+1
and @);, respectively, the inequality Q); > Q;11 follows as a particular consequence.

The superadditivity of ¢ has not yet entered into our arguments and is used next to infer
the superadditivity of jm; = E[Z1|Zy = j] in j, defined by (j + k)m i > jm,; + kmy, for all
J,k > 1. Applying standard results on superadditive functions to (jm;);>1 (see e.g. [10]) then

yields the asserted convergence of the m; to me = supy>q my. Indeed,
(U +k)mjpr = E[Z1]Z0 = j + K]
= E C(Zf;k Xy, S0 Yl,l)}
> E _C( Z?:l X1, 2521 Yl,l) +E [Q( Zgi_j—&—l X1, Zgi_j—i-l Yl,l)]

= E[¢(XL Xua, X Yur) | +E[C(Z0 X T )
= E[Z1|Z = ] + E[Z:|Z0 = ]

= jm; + kmy

for all j,k > 1, where superadditivity of ( has been utilised in the third line and further

independence and identical distribution of the offspring variables (X ;,Y7 ;) in the fourth line.
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Suppose now M, < 1 and thus m; <1 for all j > 1. Then
E[Zn_|_1|Zn = Z] = @mz S 7

holds for all ¢,n > 0. A stochastic sequence with this property is called a supermartingale.
A fundamental result from the theory of stochastic processes says that every nonnegative
supermartingale converges to a finite random variable, hence Z,, — Z,, (for any given initial
population size). But then Z,, must be identically 0 by the extinction-explosion dichotomy

and so Q1 = Q2 = ... = 1 as asserted.

To see that Q; < 1 for all sufficiently large 7 in case my, > 1 is more difficult and too
technical for being presented here. However, a rather simple argument due to Hull [11] exists
under the stronger condition m; > 1 and is again based on a comparison of (Z,),>0 with
another process, in fact a supercritical simple GWP. Define Z def Zy and then recursively

Z/

n—1

def
Z, LY (Xnj Yay)

j=1

for n > 2. One may think of (Z),),>0 as describing an inbreeding population where couples
are formed according to the same mating function but only by children of the same parents.

The superadditivity of ¢ implies

Z = YR (X)) < (X XY iy) = 4

and then inductively Z] < Z,, for all n > 0. Since all ((X,, ;,Y,, ;) are independent with the
same distribution (pg)r>0, say, (Z),)n>0 is distributed as a simple GWP with offspring distri-
bution (pg)k>o0. It is further supercritical because E[((X11,Y11)] = E[Z1|Zy = 1] = m;1 > 1.
Consequently, (Z],),>0 survives with positive probability for any initial population size and so
(Zn)n>0 does also, i.e. 1 > Q1 > Q2 > ...

Growth behaviour in case of survival. We stay with the ultimately supercritical
case (Mo > 1) and take a look at the question how the considered population grows on
the event of survival. Since m., describes the asymptotic growth rate per generation if the
population becomes large, it is not unreasonable to believe that Z,, grows like m[ on the event
of survival. On the other hand, even for the simple GWP the famous Kesten-Stigum theorem
already taught us this be true only under an additional condition on the offspring distribution.

Defining the normalised process



we have that
EWpi1Wyn = im '] = E[Wyi1|Z, =]
= mZ"VE[Z, 1|2, = i
(41 (8)
= imym ")
< im
for all ¢, whence (W,,),,>0 constitutes a nonnegative supermartingale and therefore converges to
a finite random variable W with expectation E[W|Z, = i] < E[W;|Zy = i] = i for all i. In other
words, the long run population growth rate is at most mq, which should not come by surprise
because the average unit reproduction means are bounded by this value. But when is m[, also
the correct normalization in the sense that the limiting variable W is positive on the event of

survival? The difficulty of this question is best understood when viewing the approximation

of Z,, by Wml, as a two step result. Writing Z,, as the product ZZ—T_LI . % Ce g—é, replace
first each factor Zfﬁ - with its conditional expectation given Zj_;, that is my, ,, and then
the latter with its limit (and upper bound) m., as Zy_; tends to infinity. This leads to the
decomposition
n—1
mz
Wn = Vn . H kv (9)
mOO
k=0
where Vj def Zy and
Z
Va def - , n>1.
mzy,:...-mzg, _,

A similar computation as in (8) shows that (V},),>0 constitutes a nonnegative martingale, i.e.
E[Vh+41|Vs, = v] = v for all n and v, and hence converges to a random variable V' which is > W

because V;, > W, for all n. Taking limits in (9) now yields that

_ . mzy
W =V H —
k>0

So Z, grows indeed like m[ on the event of survival if the martingale limit V' as well as the
infinite product szo :nn—i’j are positive on that event, where the latter obviously holds true if
m; converges to mo, sufficiently fast. However, without a restriction to special mating func-
tions it seems difficult to translate these requirements into conditions on the model parameter
(pjk)jk>0. Gonzales and Molina [8], [9] did some related work for general ¢ but circum-
vented the problem by directly imposing conditions on the derived quantities d; def mj — Moo,
an essential one being that d; < g(j) for all j and a suitable concave function g satisfying
> i1 77 tg(j) < oo. By adding further conditions not reported here they could prove that Z,
grows like m7 (W is positive) on an event of positive probability, but not necessarily the full
event of survival.

At least for monogamous populations with mating function ((x,y) = min(z,y), Bagley
[3] was able to provide a satisfactory answer, Theorem 2 below, which is actually the perfect

analogue of the corresponding result for asexual populations described by simple GWP. Recall
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that pf and pM denote the probabilities that a couple has exactly j female, respectively k male
offspring, hence pf = Zkzopj,k and p = ijopj,k'

THEOREM 2. Let (Z,,)n>0 be an ultimately supercritical BGWP with monogamous mating
function ¢ and offspring distribution (pj i) k>0 satisfying Assumption 1. Then ), <, pEklogk
< oo implies that W is positive on the event of survival, i.e. P(W > 0|Zy =1i) =1 — Q; for all
i, while Y, Pk klogk = oo implies W = 0.

As one can easily verify, >, piklogk < oo and Y k1 pMEklogk < oo are equivalent

conditions under Assumption 1 because 0 < 6 < 1.

SKETCH OF PROOF. We will content ourselves with the following very intuitive heuristic
argument under the additional assumption mf # m™ or, equivalently, 6 # % To be specific
suppose m < m™ . If the population survives and hence grows to infinity then eventually the
total number of female offspring produced by a generation is always smaller than the respective

number of male offspring. In fact, the law of large numbers even tells us that

Z’n

1 1
_(MnJrl n+1 = = n+1 k — n+1,k)
Zn, Zn,
k:l
tends to m™ —m* > 0, if Z,, — oo. Consequently, for large n the number of couples forming

the (n+1)-st generation just equals the number of female offspring of the previous one, whence
(Zyn)n>0 ultimately behaves like the simple GWP obtained by only looking at the females. The

assertions of the theorem now follow by invoking the Kesten-Stigum theorem.

It is quite clear that the heuristic just given remains true if the offspring distribution
satisfies Assumption 2. Since ms, = min(m?, m%), Theorem 2 shows, even if mf = m™,
that a surviving monogamous population grows at the same order of magnitude as one of its
associated asexual counterparts in which females, respectively males reproduce without mating.
Of course, the probability of survival is always smaller in the bisexual case. The same heuristic
becomes exact for (unilateral) promiscuous populations because in case of survival the number
of couples precisely equals the number of females in each generation. The male subpopulation

enters into the analysis only by causing an increased chance of extinction.

Bisexual versus asexual branching: The extinction probability ratio. Given a
large initial population size, how does mating affect the extinction probability as compared
to the asexual case? This interesting and natural question appears to be a hard one from
a mathematical point of view which may serve as an explanation that only very few related
contributions are found in the literature, namely [7], [1] and [2]. For the classical GWP, the
extinction probability Q; given initial size i satisfies Q; = Q% and can be calculated exactly

because () is found as the smallest solution in [0, 1] to the fixed point equation f(s) = s
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where f(s) =>_ >0 p;s’ denotes the generating function of the offspring distribution (p;);>0.
Unfortunately, there is no such simple way to compute @); for BGWP however the mating
function is chosen.

Daley et al. [7] suggest a finite Markov chain approximation which is roughly described
as follows: Let (Z,),>0 be any BGWP with superadditive mating function ¢ and recall that
(Zy)n>0 forms a temporally homogeneous Markov chain with transition matrix P = (P;;); j>0,
ie.

Py = P(Z, = j|Zn1 =1)

denotes the conditional probability that, at any time n = 0, 1, 2, ..., the population size changes
from 4 to j. The state 0 is absorbing and thus Pyy = 1. The extinction-explosion-dichotomy
further implies that in case of survival the chain is asymptotically absorbed at co. Moreover,
the latter is more and more likely to happen if the initial population size becomes large. Hence
the probability of extinction (absorption at 0) should only change very little if, for some integer
N considerably larger than the initial state, (Z,),>0 is replaced with the finite Markov chain
(Zn(N))n>0, say, which evolves exactly like (Z,,),>0 until a state N + ¢, ¢ > 1, is hit in which
case the latter chain is absorbed at N. The extinction probabilities of both chains then only
differ by the probability of the rare event that (Z,),>¢ dies out after exceeding the high level
N. On the other hand, extinction probabilities for the finite Markov chain (Z,,(N)),>0 can be
obtained as the solutions to a finite system of linear equations.

To make this precise fix a large integer N and let (Z,,(IV)),>0 be defined as

Zy, iftn<T(N),
Zrny, ifn>T(N),

def
Zn(N) = Znin(n,7(N)) = {

where T'(N) is the first time k such that Z; > N. This chain has transition matrix

1 0 ... 0 0
Py Py ... Py 1-2N Py,
P(N) = :
Pxo Pyi ... Pyy 1=V Pni
0o 0 ... 0 1

The pertinent extinction probabilities Q;(N) o P(Z,(N) = 0 eventually| Zo(N) = i), i =

1, ..., n, satisfy the system of linear equations

N
Qi(N) = Po+ Y PyQ;(N), i=1,..,N,
j=1
which in matrix form reads

Q(N) = (I-R(N))™'Po(N),
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where

Q1(N) Py Py ... Pin

Qn(N) Pno Py1 ... Pnwn
and I is the identity matrix. Note that (I — R(N))™! = I+ R(N)+ R(N)?+ ... The following
result from [7] provides an estimate for Q; — Q;(IV) for N > i and is stated without proof.

THEOREM 3. Given a BGWP (Z,)n>0 with superadditive mating function,

Qi(i+j—1) )
"1-Qi(i+j—1)

Qi(i+j—1) < @ < min<1
for alli,j > 1.

Daley et al. used this finite chain approximation to compute the extinction probabilities
Q; of supercritical BGWP with monogamous or (unilateral) promiscuous mating function for
various initial generation sizes ¢. The numbers of female and male offspring per individual were
assumed to be independent (Assumption 2) with a Poisson distribution with mean 1.2, i.e.

pf = pj-\/[ = e‘mg, 7=0,1,2,...
4!

The simple (asexual) GWP with this offspring distribution has extinction probabilities Q°
for ¢ > 1 where Q = 0.6863. These values can be compared to the respective extinction
probabilities @; for the monogamous or (unilateral) promiscuous BGWP which are clearly
larger. Based upon the numbers in [7], the following table shows the values of the extinction

probability ratio R; def Q;/0.6863° for various initial generation sizes i.

Initial Mating type
generation size asexual monogamous ‘ promiscuous

1 0.6863° R; = Q;/0.6863"

1 0.6863 1.4530 1.2439
2 0.4710 2.0964 1.3161
3 0.3233 2.9938 1.3300
4 0.2219 4.2231 1.3308
5) 0.1523 5.8779 1.3300
6 0.1045 8.0699 1.3292
10 0.2318x107! 25.0216 1.3296
20 0.5374x1073 204.1310 1.3295
40 0.2888x10~° 2637.1191 1.3296
60 0.1552x10~° 12847.9381 1.3293
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In the monogamous case R; apparently tends to infinity. Daley et al. note that there
does not appear to be a simple way to find the precise asymptotic behaviour of R; but that,
by a very rough heuristic argument based on the central limit theorem, it seems plausible
that R; ~ exp(cx/z) for some ¢ > 0 and sufficiently large ¢. They also point out that in
the promiscuous case R; seems to rapidly converge to about 1.33, however without having a
theoretical explanation for the particular value. On the other hand, convergence of R; is quite
plausible in view of the fact that the promiscuous BGWP behaves exactly like the simple GWP
pertaining to the female subpopulation as long as at least one male is born in each generation.
An additional chance of extinction is only caused by the chance that a generation may have no
male offspring at all which becomes more and more unlikely for increasing initial population
sizes. Based on these observations [1] and [2] provide a deeper analysis of promiscuous BGWP
with offspring distributions satisfying Assumption 2. Although the mathematical details are far
beyond the scope of this survey as involving potential theoretic aspects of GWP, we summarize
the major findings from there in the Theorem 4 below.

So we consider a (unilateral) promiscuous BGWP (Z,,),,>0 with probabilities p; , = pf pM
of having j daughters and k sons per couple (see (4)). Since Z,, equals the number of females
in the n-th generation as long as at least one male is alive (but regardless how many) it follows
easily with Assumption 2 that the extinction probabilities @; depend on (pM)i>¢ only through
. pd!, the probability that a couple has no male offspring. Let f(s) = ZjZO pf s/ be
the generating function of the female offspring distribution (pf )j>0, fn its n-th iterate and
@) the extinction probability of the associated simple GWP (F},),>0, say, with this offspring
distribution. Hence @ is the smallest fixed point of f in [0,1], and f,(s) T @ for each s < Q.

THEOREM 4. Suppose that m* = Zj21jpf >1and k <1.
(a) The following assertions hold true for all i > 1:
(i) If k < pl then

1< R < 1+ (11)
Po
(ii) If k = pb then
1-@Q
1+ R, < 2 12
1+Q—pg 12
(iii) If pl < k < Q then
Kl - Q) 1 »f
1 < R, < 9 Po 13
+/~;Q—|—(1—/~;)p5 - s (n+ )(1—/<c+/<c (13)
where n is determined through f,(pt) < k < fui1(f).
(v) If Kk =Q then
1-@Q R; 1 Po

Qa—Q+(0-Q S o 10774 (14)

where a; < E(r|T < 00, Fy = 1), 7 =inf{n > 0: F,, = 0}.
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(v) If k> q then

Qi f(k)
1 < = < 1+ ————. 1
- kYT + k— f(K) (15)
(b) If 0 < Kk < Q, then convergence of R; does not hold in general, while
1 R; . R
lim 1 — ) — =1 =1 16
oo 8 (f’(Q)) a; | i logi (16)
if Kk =Q, and
lim 29— 1 (17)
71— 00 /ii o
if k> Q.

The most intriguing result stated in Theorem 4 is that for 0 < x < @ convergence of
R; fails to hold in general. This is even more surprising when noting that all computational
studies of R; for this case indicate the contrary, namely a rapid convergence to some finite
value as in the above example studied by Daley et al., see [1] for some examples. The disclosed
phenomenon belongs to the class of so-called near-constancy phenomena which also show up
in other problems in the theory of branching processes, see also [4]. It means that a considered
sequence is seemingly convergent but in fact oscillating in a very small range (of the order
10~* or smaller). The convergence results (16) and (17) are much more appealing to intuitive
thinking, their interpretation being that for k > @ extinction of a population with large initial

size is more likely to be caused by the disappearance of males than of females.

REFERENCES

[1] ALSMEYER, G. and ROSLER, U. (1996). The bisexual Galton-Watson process with
promiscuous mating: Extinction probabilities in the supercritical case. Ann. Appl. Probab.
6, 922-939.

[2] ALSMEYER, G. and ROSLER, U. (2002). Asexual versus promiscuous bisexual Galton-
Watson processes: The extinction probability ratio. Ann. Appl. Probab. 12, 125-142 (2002).
Springer,

[3] BAGLEY, J.H. (1986). On the asymptotic properties of a supercritical bisexual Galton-
Watson branching process. J. Appl. Probab. 23, 820-826.

[4] BIGGINS, J.D. and NADARAJAH, S. (1993). Near-constancy of the Harris function in the
simple branching process. Comm. Statist. - Stoch. Models 9, 435-444.

[6] BRUSS, T. (1984). A note on extinction criteria for bisexual Galton-Watson processes. J.
Appl. Probab. 21, 915-919.

[6] DALEY, D. (1968). Extinction probabilities for certain bisexual Galton-Watson branching
processes. Z. Wahrscheinlichkeitstheorie verw. Geb. 9, 315-322.

[7] DALEY, D., HULL, D.M. and TAYLOR, J.M. (1986). Bisexual Galton-Watson branching
processes with superadditive mating functions. J. Appl. Probab. 23, 585-600.

[8] GONZALES, M. and MOLINA, M. (1996). On the limit behaviour of a superadditive
bisexual Galton-Watson branching process. J. Appl. Probab. 33, 960-967.

[9] GONZALES, M. and MOLINA, M. (1997). On the L2-convergence of a superadditive
bisexual Galton-Watson branching process. J. Appl. Probab. 34, 575-582.

14



[10]

[11]

[12]
[13]

HILLE, E. and PHILLIPS, R. (1957). Functional Analysis and Semsi-Groups. Amer. Math.
Soc., Providence, RI.

HULL, D.M. (1982). A necessary condition for extinction in those bisexual Galton-Watson
branching processes governed by superadditive mating functions. J. Appl. Probab. 19,
847-850.

ADDITIONAL REFERENCES NOT MENTIONED IN THE ARTICLE

ASMUSSEN, S. (1980). On some two-sex population models. Ann. Probab. 8, 727-744.

GONZALES, M. and MOLINA, M. (1992). Some theoretical results for bisexual Galton-
Watson branching processes. Extracta Math. 7, 140-143.

GONZALES, M. and MOLINA, M. (1997). On the partial and total progeny of a bisexual
Galton-Watson branching process. Appl. Stochastic Models Data Anal. 13, 225-232.

GONZALES, M. and MOLINA, M. (1997). Some theoretical results on the progeny of a
bisexual Galton-Watson branching process. Serdica Math. J. 23, 15-24.

GONZALES, M. and MOLINA, M. (1998). A note on the L!-convergence of a superadditive
bisexual Galton-Watson process. FEzxtracta Math. 13, 69-72.

GONZALES, M., MOLINA, M. and MOTA, M. (1998). Bayesian inference for bisexual
Galton-Watson processes. Comm. Statist. Theory Methods 27, 1055-1070.

GONZALES, M., MOLINA, M. and MOTA, M. (2000). Limit behaviour for a subcritical
bisexual Galton-Watson branching process with immigration. Statist. Probab. Lett. 49,
19-24.

GONZALES, M., MOLINA, M. and MOTA, M. (2001). On the limit behavior of a su-
percritical bisexual Galton-Watson branching process with immigration of mating units.
Stochastic Anal. Appl. 19, 933-943.

GONZALES, M., MOLINA, M. and MOTA, M. (2001). A note on bisexual Galton-Watson
branching processes with immigration. Fxtracta Math. 16, 361-365.

GONZALES, M., MOLINA, M. and MOTA, M. (2001). Estimation of the offspring distri-
bution and the mean vector for a bisexual Galton-Watson process. Comm. Statist. Theory
Methods 30, 497-516.

GONZALES, M., MOLINA, M. and MOTA, M. (2002). Bisexual Galton-Watson branching
processes with immigration of females and males. Asymptotic results. Markov Proc. Rel.
Fields 8, 651-663.

HULL, D.M. (1998). A reconsideration of Galton’s problem (using a two-sex population).
Theoret. Popul. Biology 54, 105-116.

HULL, D.M. (2001). A reconsideration of Lotka’s extinction probability using a bisexual
branching process. J. Appl. Probab. 38, 776-780.

MODE, C.J. (1995). An extension of a Galton-watson process to a two-sex density-dependent
model. In: Branching Processes. Proc. of the First World Congress (Ed. C.C. Heyde), 152-
168.

MOLINA, M., MOTA, M. and RAMOS, A. (2002). Bisexual Galton-Watson branching
process with population-size-dependent mating. J. Appl. Probab. 39, 479-490.

15



