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6.6 Growth of Populations with Sexual Reproduction
G. Alsmeyer

In Section 5.9, we studied the effect of sexual reproduction on criticality and ex-
tinction risk of branching processes. Here, we consider the ultimately supercritical
case (m∞ > 1) and take a look at the question of how such populations grow in the
event of survival. Since m∞ describes the asymptotic growth rate per generation
if the population becomes large, it is not unreasonable to believe that Zn grows as
mn∞ in the event of survival. However, even for the simple Galton–Watson process,
the famous Kesten–Stigum theorem has already shown that this is true only under
an additional condition on the offspring distribution. Defining the normalized pro-
cess

Wn = Zn

mn∞
, n ≥ 0 , (6.100)

we have that

E[Wn+1|Wn = im−n
∞ ] = E[Wn+1|Zn = i]

= m−(n+1)
∞ E[Zn+1|Zn = i] = imi m

−(n+1)
∞ ≤ im−n

∞ (6.101)

for all i . Thus, (Wn)n≥0 constitutes a non-negative supermartingale and, there-
fore, converges to a finite random variable W with expectation E[W |Z0 = i] ≤
E[W0|Z0 = i] = i for all i . In other words, the long-run population growth rate is
at most m∞. This should not come as a surprise, because the average unit repro-
duction means are bounded by this value. However, when is mn∞ also the correct
normalization in the sense that the limiting variable W is positive in the event of
survival?

The difficulty of this question is best understood when the approximation of
Zn by Wmn∞ is considered as a two-step result. Writing Zn as the product

Zn
Zn−1

· Zn−1

Zn−2
· . . . · Z1

Z0
, replace first each factor Zk

Zk−1
with its conditional expectation

given Zk−1, that is m Zk−1 , and then the latter with its limit (and upper bound) m∞
as Zk−1 tends to infinity. We thus arrive at the decomposition

Wn = Vn ·
n−1∏

k=0

m Zk

m∞
, (6.102)

where V0 = Z0 and

Vn = Zn

m Z0 · . . . · m Zn−1

, n ≥ 1 . (6.103)

Now, since

Vn+1 = Vn
Zn+1

Znm Zn

, (6.104)

and the conditional expectation of Zn+1

Zn
given Z0, . . . , Zn equals m Zn , a similar

computation as in Equation (6.101) shows that (Vn)n≥0 constitutes a non-negative
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martingale, that is, E[Vn+1|Vn = v] = v for all n and v. Hence Vn converges to
a random variable V , which is at least as large as W because Vn ≥ Wn for all n.
Taking limits in Equation (6.102) now yields

W = V ·
∏

k≥0

m Zk

m∞
. (6.105)

So Zn indeed grows as mn∞ in the event of survival, provided that both the mar-
tingale limit V and the infinite product

∏
k≥0

m Zk
m∞ are positive in that event. The

latter obviously holds true if mj converges to m∞ sufficiently quickly. However,
without a restriction to special mating functions it seems difficult to translate these
requirements into conditions on the offspring distribution (pj,k)j,k≥0. González and
Molina (1996, 1997) did some related work for general ζ , but circumvented the
problem by directly imposing conditions on the derived quantities dj = mj − m∞,
essential ones being that dj ≤ g( j) for all j and a suitable concave function g that
satisfies

∑
j≥1 j−1g( j) < ∞. By adding further conditions not reported here they

could prove that Zn grows as mn∞ (W is positive) in an event of positive probability,
but not necessarily the full event of survival.

At least for monogamous populations with mating function ζ(x, y) =
min(x, y), Bagley (1986) was able to provide a satisfactory answer, stated in The-
orem 6.9 below, which is actually the perfect analog of the corresponding result
for asexual populations described by simple Galton–Watson processes. Recall that
pF

j and pM
k denote the probabilities that a couple has exactly j female and k male

offspring, respectively, and hence pF
j = ∑

k≥0 pj,k and pM
k = ∑

j≥0 pj,k .

Theorem 6.9 Let (Zn)n≥0 be an ultimately supercritical Galton–Watson process
with a monogamous mating function ζ and an offspring distribution (pj,k)j,k≥0 that
satisfies Assumption 5.2 (Section 5.9), then

∑
k≥1 pF

k k ln k < ∞ implies that W is
positive in the event of survival, that is, P(W > 0|Z0 = i) = 1 − Qi for all i ,
while

∑
k≥1 pF

k k ln k = ∞ implies W = 0.

As one can verify easily,
∑

k≥1 pF
k k ln k < ∞ and

∑
k≥1 pM

k k ln k < ∞ are
equivalent conditions under Assumption 5.2 because 0 < θ < 1.

Sketch of Proof. We content ourselves with the following very intuitive heuristic argument
under the additional assumption m F �= m M or, equivalently, θ �= 1

2 . To be specific, suppose
m F < m M . If the population survives and hence grows to infinity, eventually the total
number of female offspring produced by a generation is always smaller than the respective
number of male offspring. In fact, the Law of Large Numbers even shows that

1

Zn
(Mn+1 − Fn+1) = 1

Zn

Zn∑

k=1

(Yn+1,k − Xn+1,k) (6.106)

tends to m M − m F > 0, if Zn → ∞. Consequently, for large n the number of couples
that form the (n + 1)th generation just equals the number of female offspring of the previ-
ous one, whence (Zn)n≥0 ultimately behaves as the simple branching process obtained by
considering only the females. The assertions of the theorem now follow by invoking the
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Kesten–Stigum theorem. It is quite clear that the heuristic just given remains true if the
offspring distribution satisfies Assumption 5.3 (Section 5.9). Since m∞ = min(m F , mG),
Theorem 6.9 shows that, even if m F = m M , a surviving monogamous population grows at
the same order of magnitude as one of its associated asexual counterparts in which females
and males, respectively, reproduce without mating. Of course, the probability of survival is
always smaller in the case with sexual reproduction. The same heuristic becomes exact for
(unilateral) promiscuous populations because, in the case of survival, the number of couples
precisely equals the number of females in each generation. The male subpopulation enters
into the analysis only by causing an increased chance of extinction.

♦ ♦ ♦

6.7 Immigration in Subcritical Populations
In Section 2.10 we calculated the expected size of populations with recurrent im-
migration. Here we continue to study the properties of such populations and con-
centrate on the situation in which the local branching process is subcritical. From
Section 2.10 we know that in that case the average number of individuals stabilizes.
Here we show that, moreover, the distribution of the population size is stationary.

Let f (s) be the local reproduction generating function and denote the probabil-
ity generating function of the number of invaders per period by g(s). We denote
the probability generating function of the number of individuals in generation n in
the resultant branching process with immigration by F(n, s) = E[ s Zn ]. Applying
the conditional expectation argument (see the Appendix), we obtain

F(n, s) = E[ sξ1+ξ2+···+ξZn−1 +Yn ]
= E[ E[ sξ1+ξ2+···+ξZn−1 +Yn |Zn−1 ]]
= E[ E[ sξ1sξ2 · · · sξZn−1 sYn |Zn−1 ]] , (6.107)

where, as before, ξi is the number of children of the i th individual in generation
(n − 1), and Yn is the number of immigrants in the nth generation. Since Yn is
independent of Zn−1

F(n, s) = E[ E[ sξ1sξ2 · · · sξZn−1 | Zn−1 ]]E[sYn ] = E[ f (s)Zn−1]g(s)

= F(n − 1, f (s))g(s) = F(n − 2, f2(s))g( f (s))g(s) = · · ·
= F(0, fn(s))g( fn−1(s))g( fn−2(s)) · · · g(s) . (6.108)

Thus, if the population is initiated at n = 0 by a random number of invaders
distributed according to the probability generating function F(0, s) = g(s),

F(n, s) =
n∏

k=0

g( fk(s)) , (6.109)

and if there were a non-random number z0 of individuals at n = 0,

F(n, s) = ( fn(s))
z0

n−1∏

k=0

g( fk(s)) . (6.110)
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