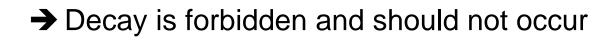


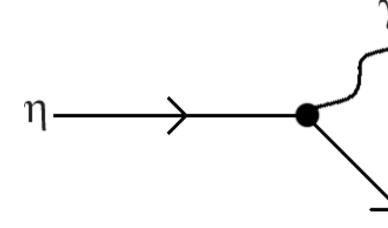
Analysis of the forbidden decay $\eta \rightarrow \pi^0 + e^+ + e^-$ with WASA-at-COSY

Florian Bergmann

23.03.2011

Reminder: C-parity

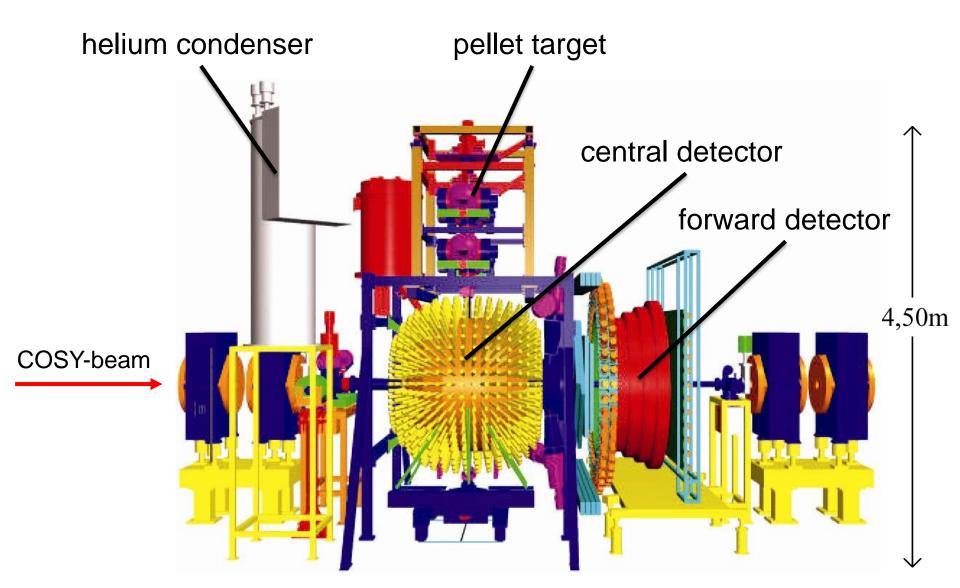

- \hat{C} -operator: turns particle into antiparticle
 - E.g.: $\hat{C}|e^{-}\rangle = C|e^{-}\rangle$

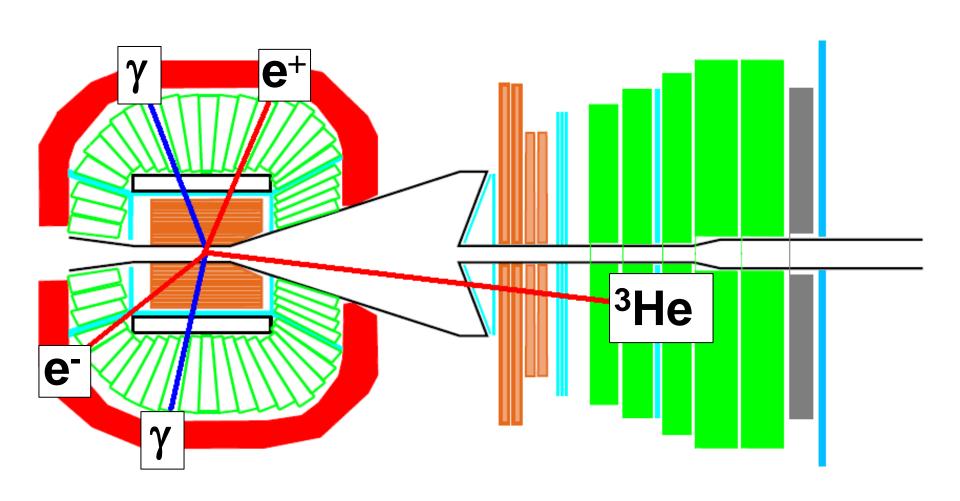

C: phase factor

- Majorana particle: Eigenstate of the \hat{C} -operator with the eigenvalue $C=\pm 1$
 - Necessary condition: Q = I = B = S = L = 0
 - E.g.: $\hat{C}|\gamma\rangle = -|\gamma\rangle$
 - η-meson: $\hat{C}|\eta\rangle = \hat{C}|\gamma\gamma\rangle = \hat{C}|\gamma\rangle \cdot \hat{C}|\gamma\rangle$ = $(-1)|\gamma\rangle \cdot (-1)|\gamma\rangle$ = $(-1)^2|\gamma\gamma\rangle = (+1)|\eta\rangle$
 - η-decay into 3 photons not observed yet
- C-parity violation in el. magn. / strong interaction not observed yet

Motivation for the analysis

• Decay $\eta \to \pi^0 + e^+ + e^-$ would violate the *C*-parity conservation $\eta \to \pi^0 + \gamma^* \Rightarrow \mathcal{C}(\pi^0 + \gamma^*) = (+1) \cdot (-1) = -1 \neq \mathcal{C}(\eta)$




Current value:

$$BR(\eta \to \pi^0 + e^+ + e^-) < 4 \cdot 10^{-5}$$

WASA – Wide Angle Shower Apparatus

$p + d \rightarrow {}^{3}He + \eta \rightarrow {}^{3}He + \pi^{0} + e^{+} + e^{-}$

Analysis

- Goal of the analysis: Determination of the branching ratio of the forbidden decay $\eta \to \pi^0 + e^+ + e^-$
- Analysed data:
 - 1.7 · 10⁸ events from p + d → 3 He + X -beam time
 - Oct../Nov. 2008, 10^7 events with $X = \eta$
- Demands on the analysis:
 - Suppress background as much as possible
 - Suppress decay of interest as little as possible
- Background:
 - Direct pion productions: $X = \pi^0$, 2π , 3π , 4π
 - η -decays: $X = \eta$, $\eta \rightarrow 2\gamma$, $3\pi^0$, $\pi^+\pi^-\pi^0$, ...

1. Simulation

Simulated reactions:

η-decays:

$$\eta \to \pi^0 e^+ e^-$$

$$\eta \rightarrow \gamma \gamma$$

$$\eta \to \pi^0 \pi^0 \pi^0$$

$$\eta \rightarrow \pi^0 \pi^+ \pi^-$$

$$\eta \to \pi^+\pi^-\gamma$$

$$\eta \rightarrow e^+e^-\gamma$$

$$\eta \rightarrow \pi^+\pi^-e^+e^-$$

$$\eta \to \mu^+ \mu^- \gamma$$

$$\eta \to \pi^0 \gamma \gamma$$

$$\eta \rightarrow \mu^{+}\mu^{-}$$

Direct pion productions:

$$\pi^0$$

$$\pi^0\pi^0$$

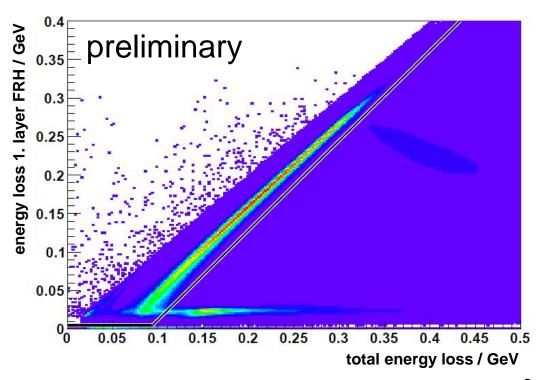
$$\pi^+\pi^-$$

$$\pi^0\pi^0\pi^0$$

$$\pi^0\pi^+\pi^-$$

$$\pi^0\pi^0\pi^0\pi^0$$

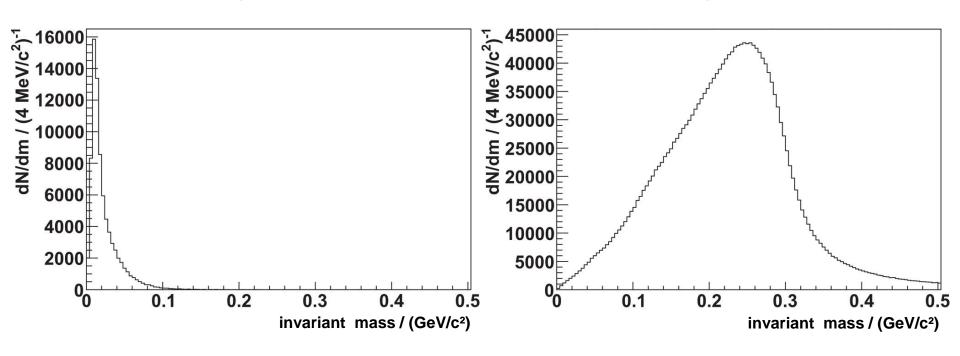
$$\pi^{0}\pi^{0}\pi^{+}\pi^{-}$$


$$\pi^+\pi^-\pi^+\pi^-$$

+ dalitz decays of the π^0 ($\pi^0 \rightarrow e^+e^-\gamma$)

2. Preselection of the data

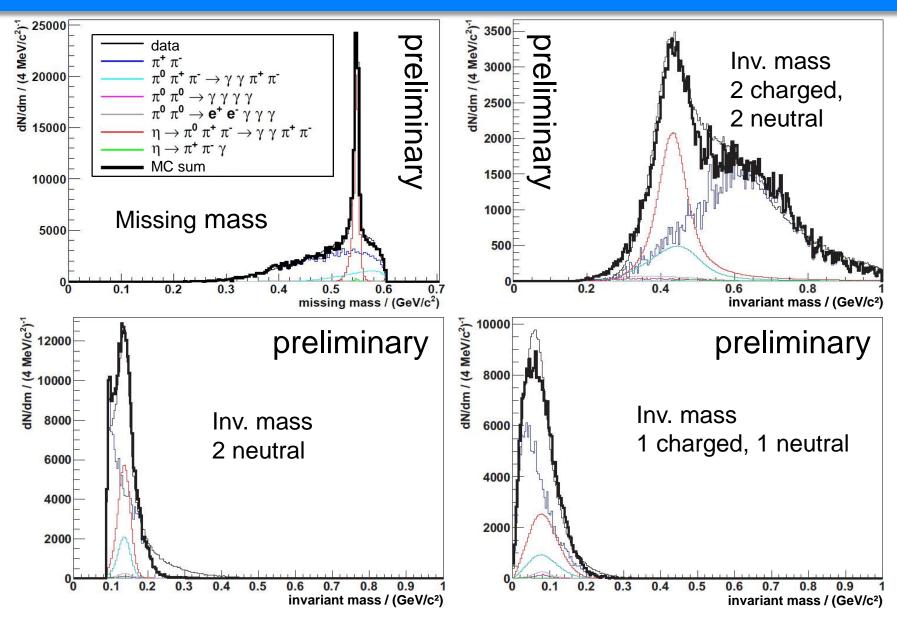
Preselection on the signature:


- $p + d \rightarrow {}^{3}He + \eta$
- 1 charged particle in the forward detector (³He)
- or (³He) ↓ tector (e⁺) π⁰ + e⁺ + e⁻
- 1 pos. charged particle in the central detector (e⁺)
 - <u>,</u>_)
- 1 neg. charged particle in the central detector (e⁻)
 - $\gamma + \gamma$
- 2 neutral particles in the central detector (2 γ)
- Cut on the energy loss to identify the ³He
- Invariant mass of the photons > 90 MeV/c²
- Data reduced by a factor of 300

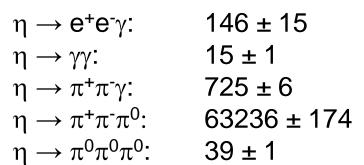
- Cut 1, 2: Preselection
- Cut 3: Invariant mass of 2 charged particles

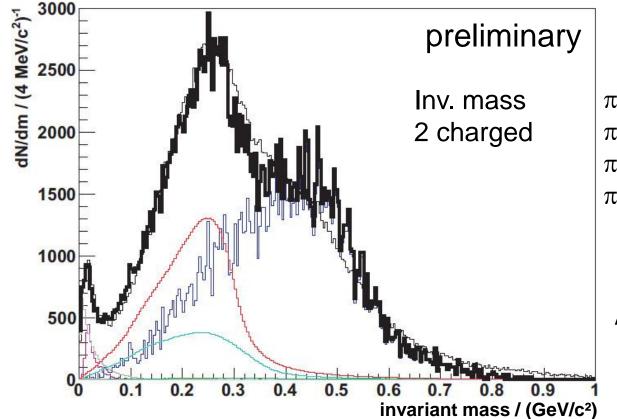
MC:
$$\eta \rightarrow \pi^0 e^+ e^-$$

MC:
$$\eta \rightarrow \pi^0 \pi^+ \pi^-$$



Cut 4: Energy vs. momentum of the charged particles


- Cut 5: Invariant mass of 2 neutral particles (π⁰-meson)
- Cut 6: Min. invariant mass of 1 charged and 1 neutral particle (Bremsstrahlung)
- Cut 7: Missing mass of the ³He
 (η-production)
- Cut 8: Invariant mass of all particles in the central detector (η-meson)


4. Fit of the MC data to the measured data

4. Fit of the MC data to the measured data

 Total number of events in the preselected data according to the fit:

$$\pi^{0}\pi^{0} \rightarrow \gamma\gamma\gamma\gamma$$
: 2378 ± 11
 $\pi^{0}\pi^{0} \rightarrow e^{+}e\gamma\gamma\gamma$: 4697 ± 23
 $\pi^{+}\pi^{-}$: 132035 ± 200
 $\pi^{+}\pi^{-}\pi^{0} \rightarrow \pi^{+}\pi^{-}\gamma\gamma$: 22973 ± 228

All other reactions: 0

5. Optimization of the cuts

- Software varies cuts and calculates evaluation function for every set of cuts
- Evaluation function: $G = S_R \frac{S_R}{B_R}$ S_R : relative signal

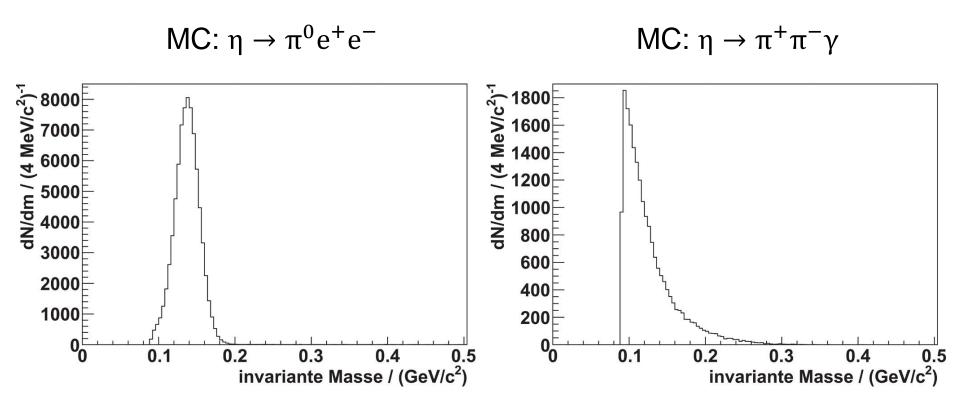
 B_R : relative background

- Goal: maximization of G
- Cuts also change the shape of the other distributions
- → Several iterations required
- Result of the simulations:
 - With optimised cuts exactly 1 event should remain in the measured data; from the reaction $\pi^0\pi^0 \rightarrow e^+e^-\gamma\gamma\gamma$
 - Remaining $\eta \to \pi^0 e^+ e^-$ -events: 9920 out of 10^6
 - Signal to background ratio: 1 / 1.7 · 10⁶

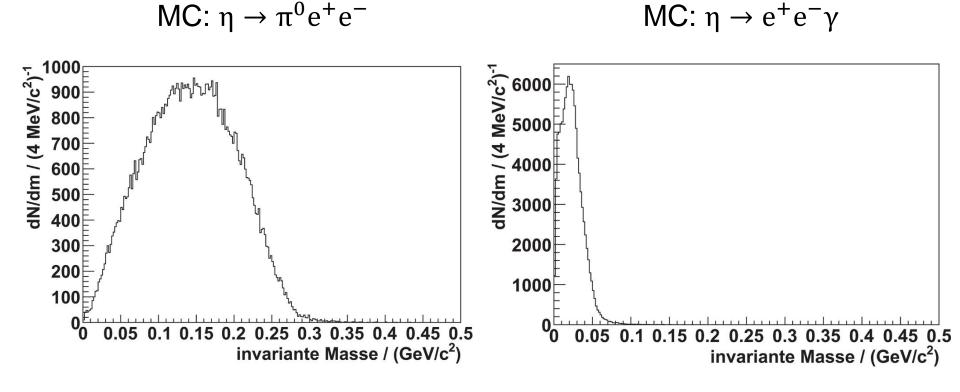
6. Application of the cuts on the measured data

- Cuts are applied to the measured data
- Number of total events remaining after cuts in MC and measured data should be roughly the same

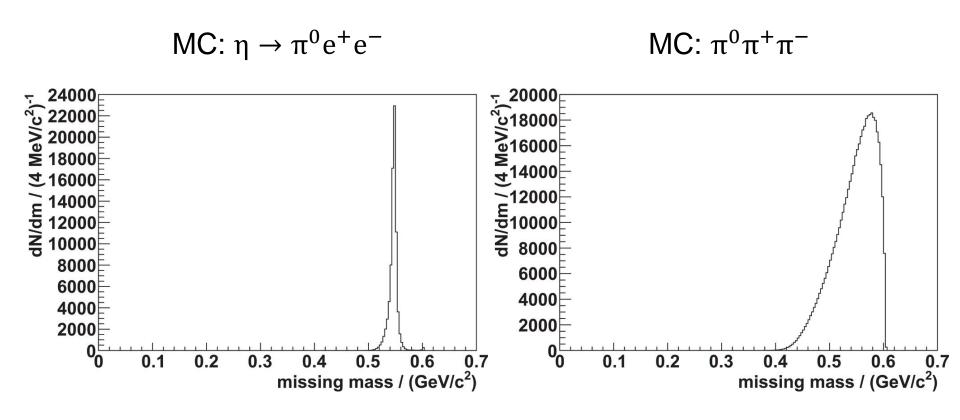
Cut	Number of remaining events
No cut	1.7 · 10 ⁸
Preselection	229601
Cut 3: Inv. mass 2 charged	3671
Cut 4: E _{dep} vs. momentum charged	2991
Cut 5: Inv. mass 2 neutral	1108
Cut 6: Inv. masse 1 ch., 1 neutr.	154
Cut 7: Missing mass	17
Cut 8: Inv. mass 2 ch., 2 neutr.	1

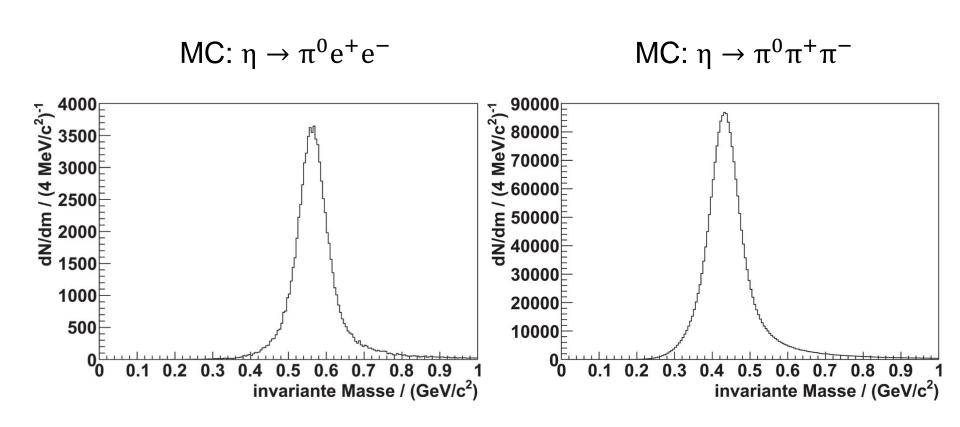

Summary / Outlook

- Result of the analysis of 1.7 · 10⁸ events:
 - Signal to background ratio: $1/1.7 \cdot 10^6$
 - Monte Carlo: After all cuts 1 event remains; from the reaction $\pi^0\pi^0 \rightarrow e^+e^-\gamma\gamma\gamma$
 - Measured: After all cuts 1 event remains
- Data will allow for highest precision for the decay


$$\eta \rightarrow \pi^0 + \gamma^* \rightarrow \pi^0 + e^+ + e^-$$

- More measured data: 20 · 10⁶ pd → ³He + η events from Aug./Sep. 2009
- Many more η-events from pp → pp + X data
- · Cut optimization: n-dimensional instead of iterative
- \rightarrow Lowering the upper limit of the decay $\eta \rightarrow \pi^0 + e^+ + e^-$


Cut 5: Invariant mass of 2 neutral particles


Cut 6: Min. invariant mass of 1 charged and 1 neutral particle

Cut 7: Missing mass of the ³He

Cut 8: Invariant mass of all particles in the central detector

