

Precision Measurement of the η-Mass at COSY-ANKE

using the Spin-Resonance Method for an Absolute Beam Momentum Determination

SPIN2010

19th International Spin Physics Symposium

Forschungszentrum Jülich, September 27th – October 2nd, 2010

Motivation for η-Mass Measurements at ANKE

• "Current" η-mass: (547.854 ± 0.024) MeV/c²

VALUE (MeV)	EVTS	DOCUMENT ID	-	TECN			
547.853 ± 0.024 OUR AVERAGE							
$547.874 \pm 0.007 \pm 0.029$		AMBROSINO	07B	KLOE		1	
$547.785 \pm 0.017 \pm 0.057$	16k	MILLER	07	CLEO		→	
$547.843 \pm 0.030 \pm 0.041$	1134	LAI	02	NA48			χ^2
 ◆ ◆ We do not use the following data for averages, fits, limits, 							
547.311±0.028±0.032		¹ ABDEL-BARY	05	SPEC }		L KLOE	30
547.12 ±0.06 ±0.25		KRUSCHE	95D	SPEC		CLEC	13
547.30 ±0.15		PLOUIN	92	SPEC	+	GEM	05 38
547.45 ±0.25		DUANE	74	SPEC	Δ.	NA48	3 02 28
548.2 ± 0.65		FOSTER	65C	HBC		MAM	II 95 3.1
549.0 ± 0.7	148	FOELSCHE	64	HBC	· · · · · · · · · · · · · · · · · · ·		
548.0 ± 1.0	91	ALFF	62	HBC	<u> </u>	SATU	RNE 92 3.3
549.0 ± 1.2	53	BASTIEN	62	HBC	<u> </u>	RL 74	4 0.24
Inconcietopoioe 212							
Inconsistencies ?!?							
					η mass (MeV)		

Motivation for η-Mass Measurements at ANKE

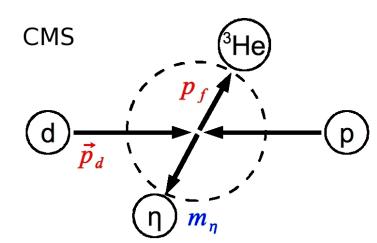
• Precise determination of the η -mass with high accuracy Aim: $\Delta m_{\eta} \le 50 \text{ keV/c}^2$

<u>Idea:</u>

- Use a method independent of
 - shape of excitation function at threshold
 - partial waves / angular distributions

to avoid inaccuracies of extrapolations

Clever solution:


Pure kinematics!

Mass Determination by Pure Kinematics

<u>ldea:</u>

- Use the two-particle reaction $d+p\rightarrow^3He+\eta$
 - masses of all other particles are very well known
 - at fixed collision momenta p_d both ejectiles (η -meson and 3 He) have same fixed momentum p_f
- Mass m_{η} can be determined with highest precision if the momenta p_d and p_f are known with high accuracy

Kinematics on the Reaction d+p→3He+η

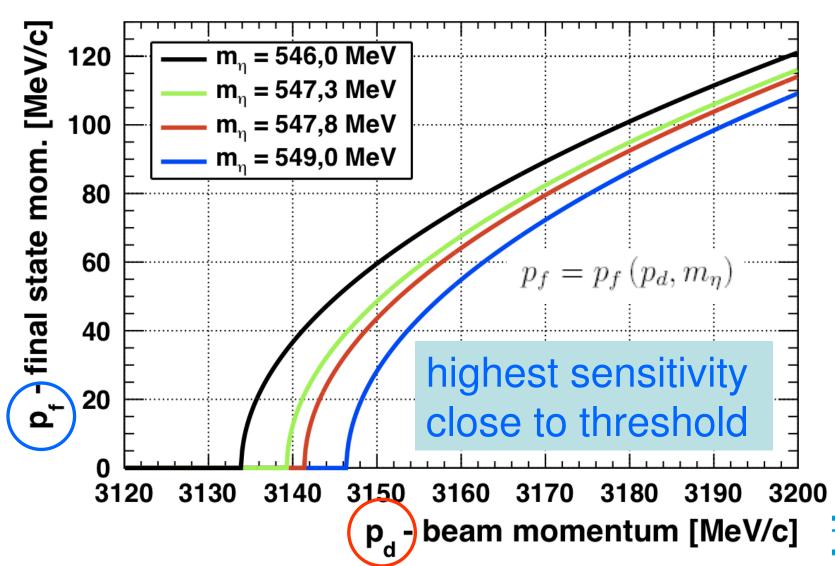
• Total energy in the CMS:

$$\sqrt{s} = \sqrt{(E_d + E_p)^2 - (\vec{p}_d + \vec{p}_p)^2}$$

$$= \sqrt{2m_p\sqrt{m_d^2 + \vec{p}_d^2} + m_d^2 + m_p^2}$$

• Final state momentum: p_f

$$=\frac{\sqrt{\left[s-(m_{^{3}\mathrm{He}}+m_{\eta})^{2}\right]\cdot\left[s-(m_{^{3}\mathrm{He}}-m_{\eta})^{2}\right]}}{2\cdot\sqrt{s}}$$


• Final state momentum depends only on p_d and $p_f!!!$

$$p_f = p_f \left(p_d, m_\eta \right)$$

All other parameters/masses are known well enough (eV level)

Kinematics on the Reaction d+p→3He+η

Kinematics on the Reaction d+p→3He+η

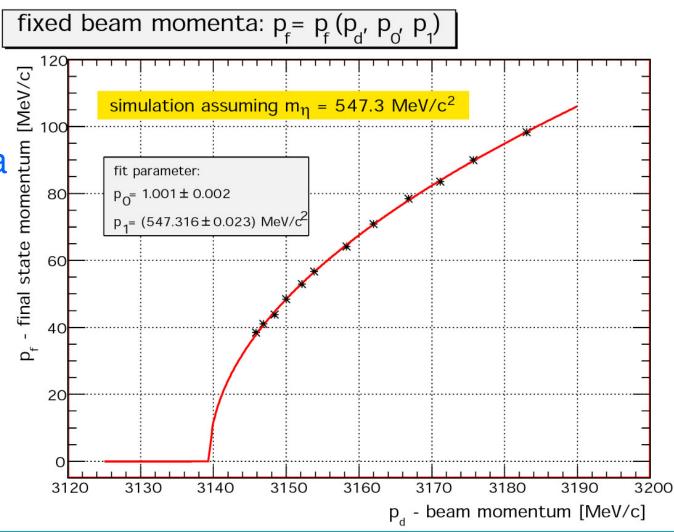
• Measure in an experiment these two momenta p_d and p_f with highest precision \to mass m_η

In principle only one measurement at one single beam

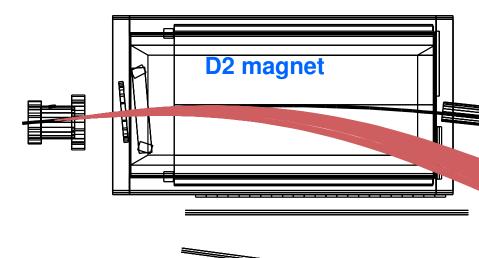
momentum is sufficient

• Measurements at different

beam momenta near the production threshold


 \rightarrow determination and exclusion of systematic uncertainties in the determination of p_f

Experiment at ANKE: Monte-Carlo Simulation

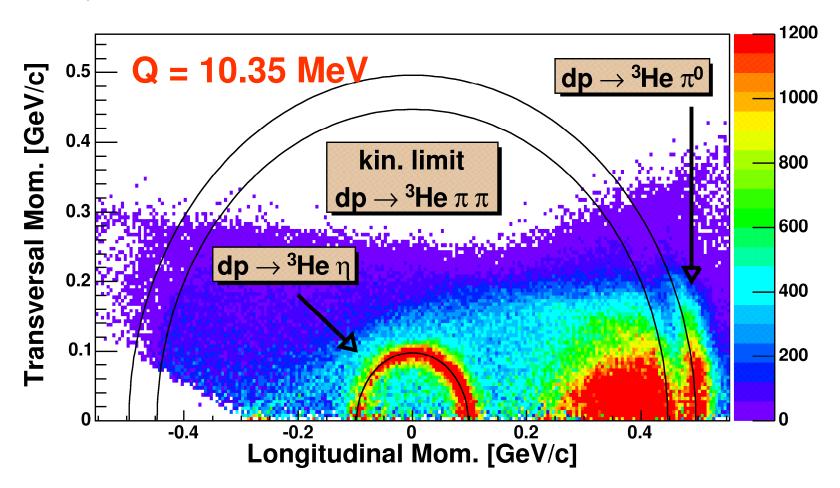

Nice feature of this method:

- If the final momenta
 p_f are wrong by a fixed factor there is NO effect on the mass m_n
- An offset in p_f appers as a bad χ^2 of the fit

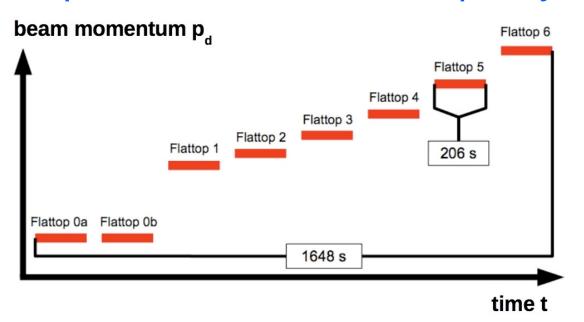
The Reaction dp→³Heη at ANKE

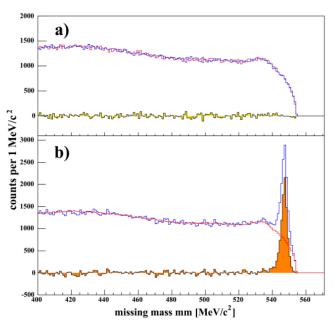
100% geometrical

acceptance for Q < 20 MeV!


³He

ANKE


The Reaction dp→3Heη at ANKE


Two-body reaction: Momentum locus!

Operation of COSY: Supercycles

- Flattop 0a / 0b: Subthreshold → background subtraction
- Flattop 1-6 : Q > 0 MeV $\rightarrow \eta$ -meson production
- 3 Supercycles : Q < 5 MeV, 15 x Q > 0 MeV (1-15 MeV)

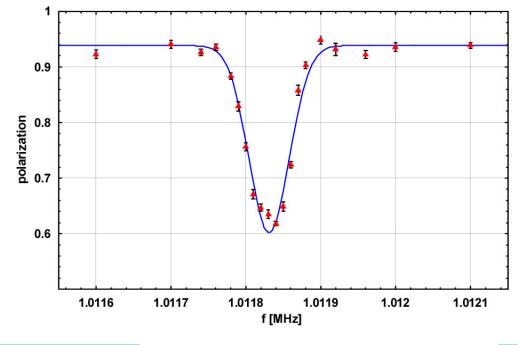
The Reaction dp→3Heη at ANKE

- ANKE allows for this reaction to determine the final state momentum with a precision of $\Delta p_f \sim 150 \text{ keV/c}$
- For the envisaged precision of $\Delta m_{\eta} \le 50 \text{ keV/c}^2$ it will be necessary to determine the COSY deuteron beam momentum with an accuracy of $\Delta p_d/p_d < 10^{-4}$!!!

Problem:

• With conventional methods it is only possible to gain a resolution of $\Delta p_d/p_d \sim 10^{-3}$

Solution: Spin resonance method


New Beam Momentum Determination at COSY

Artificial spin resonance at COSY:

- Induced by a horizontal magnetic rf-field (solenoid)
- Depolarization of a vertical polarized deuteron beam

rf solenoid at the COSY beam line

solenoid frequency f_r

New Beam Momentum Determination at COSY

• Spin resonance condition:

$$f_r = (1 + \gamma \cdot G_d) \cdot f_0$$

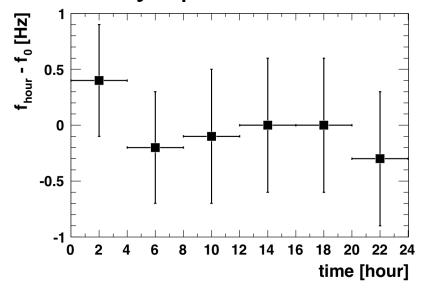
$$\gamma = \frac{1}{G_d} \cdot \left(\frac{f_r}{f_0} - 1\right)$$

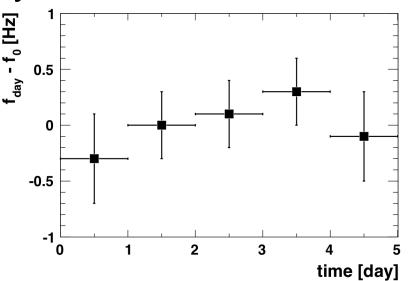
$$p_d = m_d \sqrt{\gamma^2 - 1}$$

 f_r : resonance frequency

 f_0 : revolution frequency

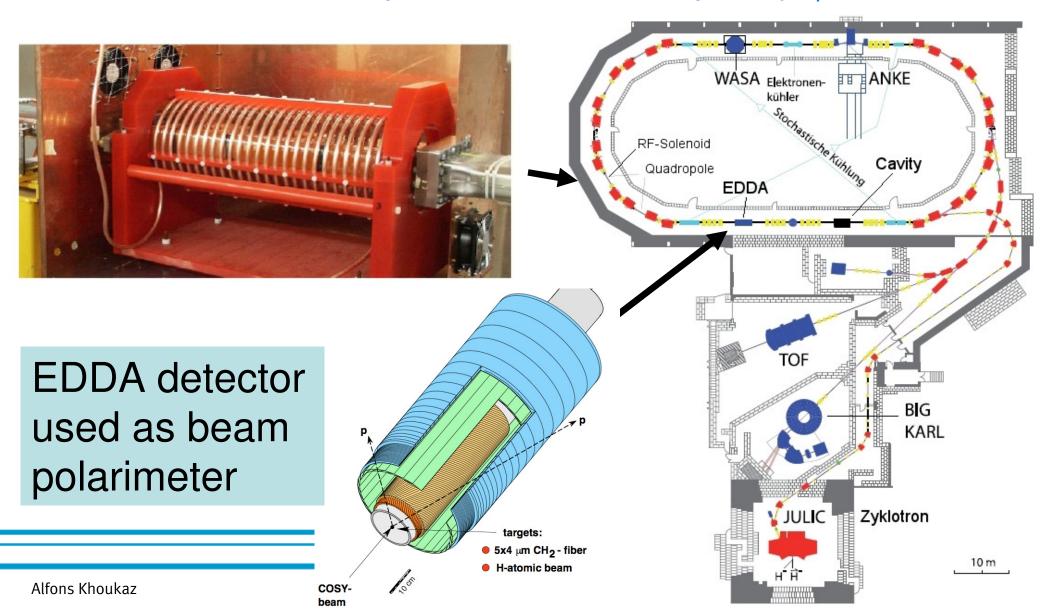
 G_d : gyramagnetic anomaly


 $G_d = -0,1429872725 \pm 0,0000000073$


- Measurement of the (fixed) beam momentum p_d by
 - determination of the revolution frequency f_0
 - determination of the resonance frequency f_r

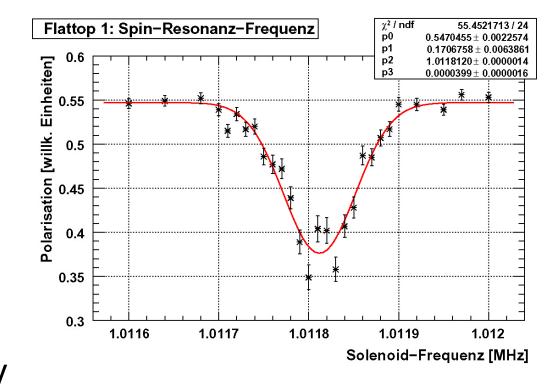
Determination of the Revolution Frequency f_0

- Use of Schottky device (1000th harmonic)
- Schottky spectra stored every ~ 30 s



- Frequency Stability (5 d) : $\Delta f_0 < \pm 1$ Hz $(f_0 \sim 1.4 \text{ MHz})$
- Systematic uncertainty : ± 6 Hz

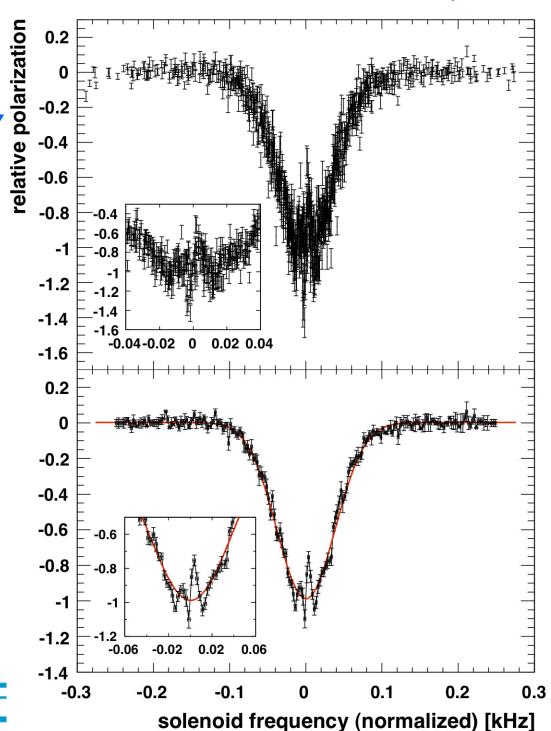
Determination of the Spin Resonance Frequency f_r


Determination of the Spin Resonance Frequency f_r

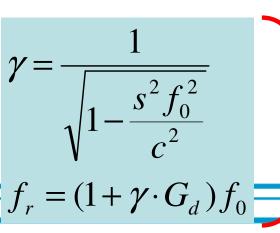
 For each single energy the spin resonance spectrum has been measured (~2h each) at the beginning and the

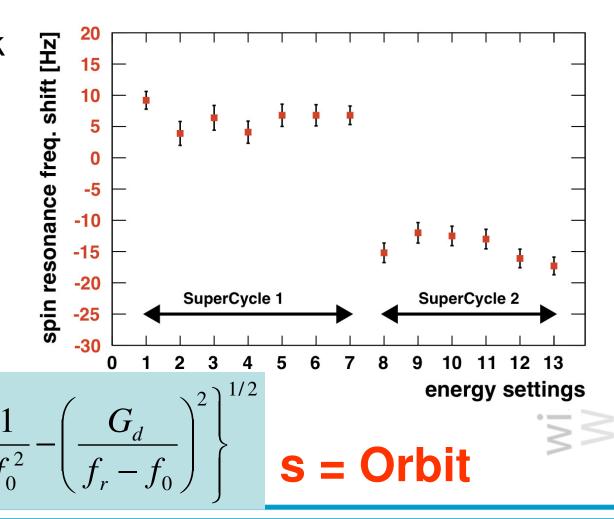
end of the beam time

Method to describe the data and to identify f_r:


- Fit each resonance curve using a gaussian + offset
- Subtract the offset
- Scale the data/curves to unity

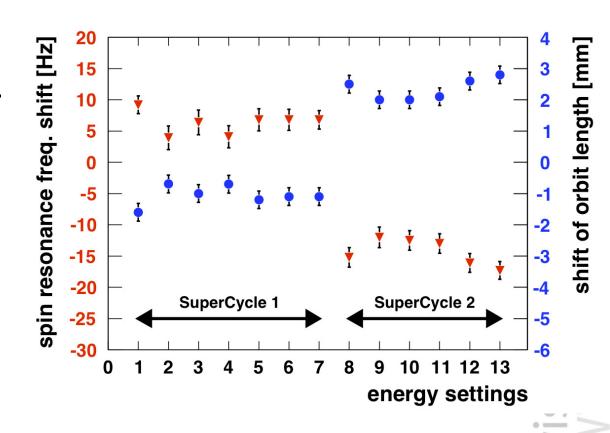
Spin Resonance at COSY


- The obtained data can be described by gaussians
- Structures in the center of the peak are caused by the used barrier bucket cavity (for compensation of energy loss in the target)
- f_r (~1 MHz) can be extracted with an accuracy of a few Hz



Long Term Stability: Spin Resonance Frequency

- During approx. one week
 f_r shifts by up to 15 Hz
 - → most probably effect of (in)stability of the COSY beam orbit
- Orbit length calculation:



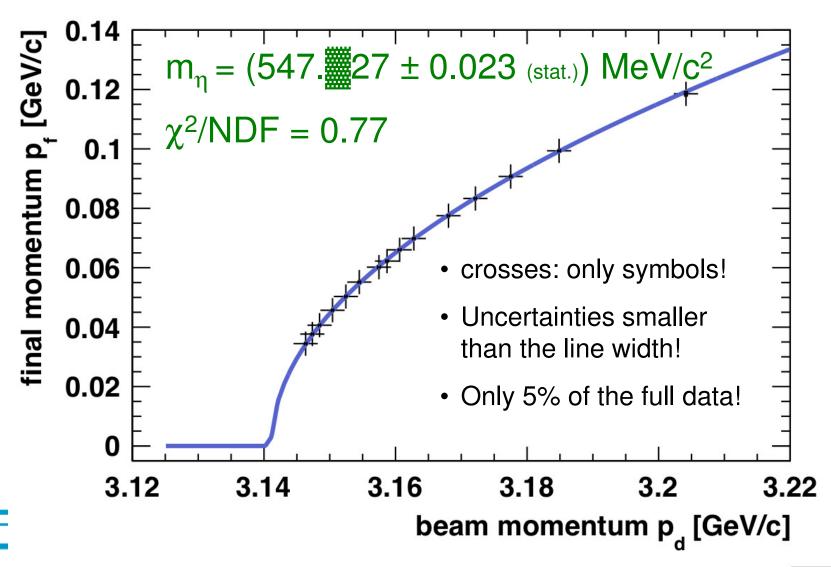
Determination of the COSY Orbit Lenth

- COSY beam orbit can be determined with an accuracy of Δs < 1 mm !!!
- Orbit changes during a week by up to δs = 3 mm
 Possible Explanation:
 Stability of cooling water of dipole power supplies

Beam Momentum Determination

$$\gamma = \frac{1}{G_d} \cdot \left(\frac{f_r}{f_0} - 1\right) \qquad p_d = m_d \sqrt{\gamma^2 - 1}$$

- Spin resonance frequency f_r: ± 15 Hz
- Beam revolution frequency f_0 : ± 6 Hz
 - → Reached accuracy for the beam momentum:


$$\Delta p_d = 170 \text{ keV/c}$$
 at $p_d \sim 3100 \text{ MeV/c}$

P. Goslawski et al., Phys. Rev. ST-AB, 13, 022803 (2010)

Together with $\Delta p_f \sim 150 \text{ keV/c}$ the design goal of of $\Delta m_{\eta} \leq 50 \text{ keV/c}^2$ can be reached!

Preliminary Results:η-Mass at ANKE

Summary

- The COSY beam momenta have been determined using the spin resonance method with an accuracy of ∆p = ±170 keV/c
- This resolution corresponds to an uncertainty for the $\eta-$ meson of Δm_n = ±40 keV/c²
- The beam orbit has been determined with an accuracy of Δs < 1 mm
- The COSY beam orbit can vary during a week by
 δs ~ 3 mm magnet cooling?

By the way...

- The presented results and the observed width of the spin resonance curve allow to estimate an upper limit for both the
 - orbit spread/distribution
 - beam momentum spread/distribution

Results:

- beam momentum:
- orbit distribution:

$$\frac{\delta p}{p} < 5 \cdot 10^{-4}$$

ds ~ 10-12 mm

Summary/Outlook

- In total more than $10^6 \, \eta$ -meson production events are on disk.
- The final analysis of the $d+p\rightarrow^3He+\eta$ reaction data is currently in progress.
- Already the preliminary result shows that the goal of the ANKE experiment ($\Delta m_{\eta} \le 50 \text{ keV/c}^2$) will be reached.

Thank you....