

# Studies on $\eta$ meson production in dp collisions at the ANKE spectrometer

#### **Christopher Fritzsch for the ANKE collaboration**

Westfälische Wilhelms-Universität Münster, Institut für Kernphysik 21st International Conference on Few-Body Problems in Physics (Reactions and Structure)





#### "COoler SYnchrotron" - COSY

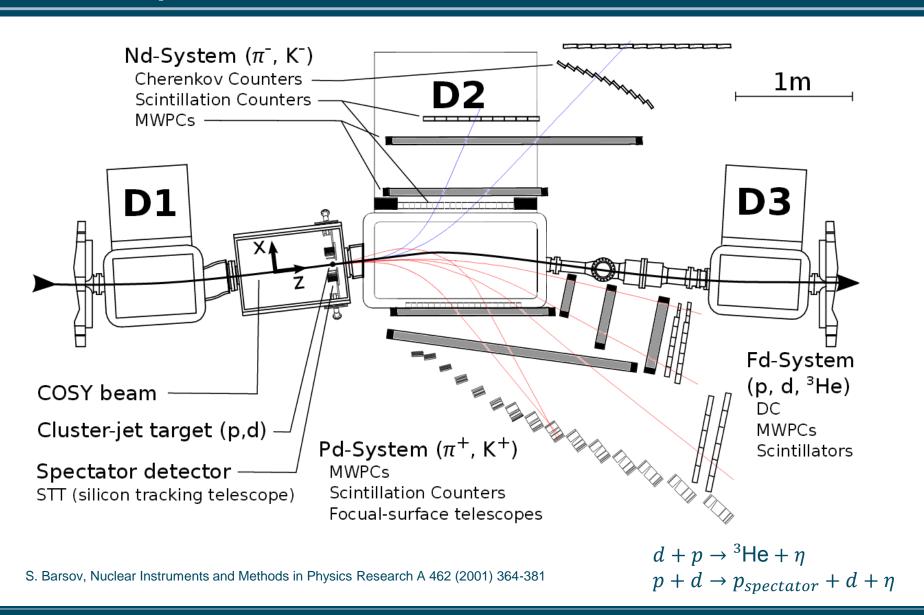


pre-accelerator JULIC

⇒ protons: 45 MeV

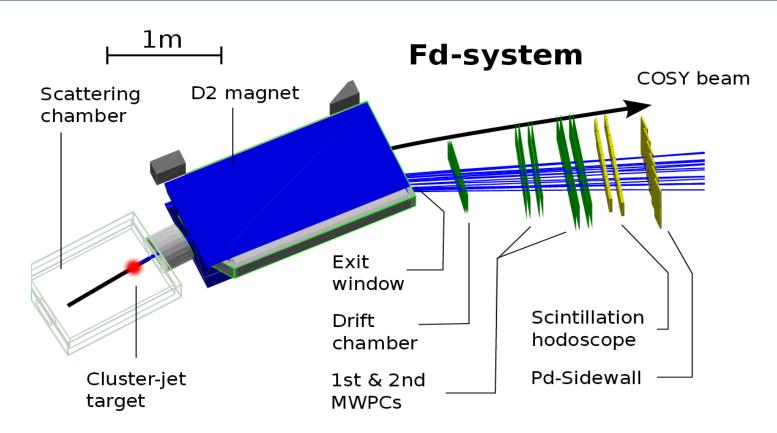
⇒ deuterons: 90 MeV

- storage ring COSY
  - ⇒ circumference: 184 m
  - $\Rightarrow$  momenta up to 3,7 GeV/c achievable
  - ⇒ energy variation (ramping & supercycle mode)
- two cooling systems
  - ⇒ stochastic cooling


$$\Rightarrow$$
 p<sub>beam</sub> = (1.5 - 3.3) GeV/c

- ⇒ electron cooling
  - ⇒ whole energy range of COSY
- possible momentum spread  $^{\Delta p}/_{p} < 10^{-4}$



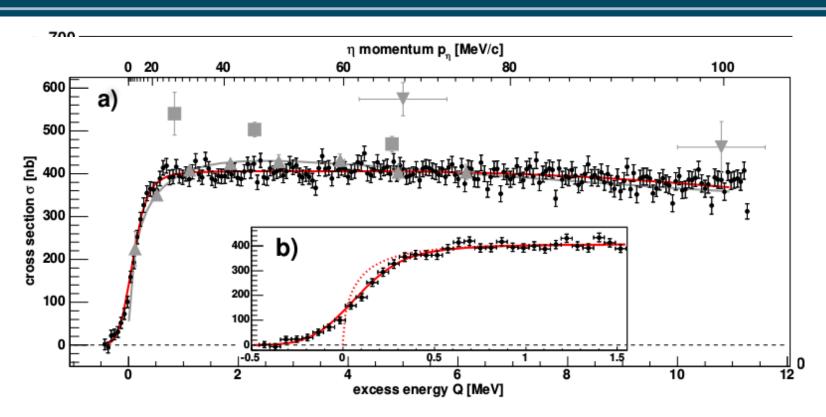

### ANKE spectrometer





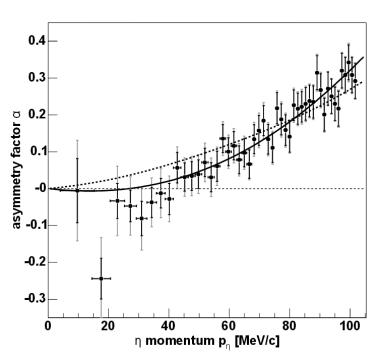
### Forward detection system (Fd)






- track reconstruction
  - ⇒ one multiwire drift chamber and two multiwire proportional chambers
- energy loss and time-of-flight measurements
  - ⇒ two layers of scintillator hodoscopes




$$d + p \rightarrow {}^{3}\text{He} + \eta$$

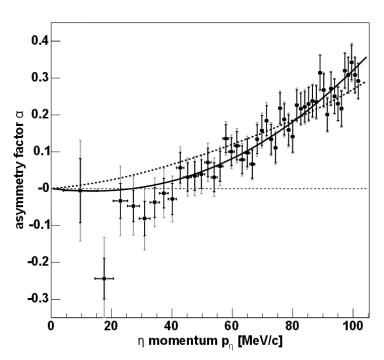




- total and differential cross sections of the reaction  $dp \rightarrow {}^{3}{\rm He}\eta$  are of special interest
- indication of a quasi bound state of the  ${}^{3}\text{He}\eta$ -system






$$\alpha = \left. \frac{\mathrm{d}}{\mathrm{d}(\cos \theta_{\eta})} \ln \left( \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \right) \right|_{\cos \theta_{\eta} = 0}$$

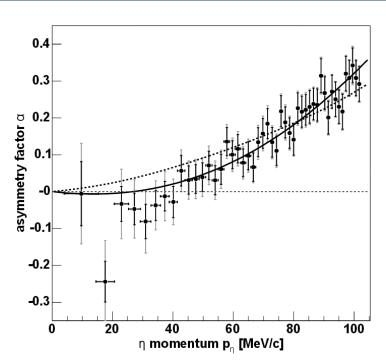
- data show a distinct effect of a s- and p-wave interference
  - ⇒ rapid variation of the phase
  - ⇒ expected for a pole near threshold

C. Wilkin, Physical Letters B 654:92-96 (2007) DOI 10.1016/j.physletb.2007.08.041

- total and differential cross sections of the reaction  $dp \rightarrow {}^{3}\text{He}\eta$  are of special interest
- indication of a quasi bound state of the  ${}^{3}\text{He}\eta$ -system






$$\alpha = \left. \frac{\mathrm{d}}{\mathrm{d}(\cos \theta_{\eta})} \ln \left( \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \right) \right|_{\cos \theta_{\eta} = 0}$$

- data show a distinct effect of a s- and p-wave interference
  - ⇒ rapid variation of the phase
  - ⇒ expected for a pole near threshold

C. Wilkin, Physical Letters B 654:92-96 (2007) DOI 10.1016/j.physletb.2007.08.041

- total and differential cross sections of the reaction  $dp \rightarrow {}^{3}\text{He}\eta$  are of special interest
- indication of a quasi bound state of the  ${}^{3}\text{He}\eta$ -system
- new high precision data from the ANKE spectrometer at COSY up to  $Q=15~{\rm MeV}$





$$\alpha = \left. \frac{\mathrm{d}}{\mathrm{d}(\cos \theta_{\eta})} \ln \left( \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \right) \right|_{\cos \theta_{\eta} = 0}$$

- data show a distinct effect of a s- and p-wave interference
  - ⇒ rapid variation of the phase
  - ⇒ expected for a pole near threshold

C. Wilkin, Physical Letters B 654:92-96 (2007) DOI 10.1016/j.physletb.2007.08.041

- total and differential cross sections of the reaction  $dp \rightarrow {}^{3}\text{He}\eta$  are of special interest
- indication of a quasi bound state of the  ${}^{3}\text{He}\eta$ -system
- new high precision data from the ANKE spectrometer at COSY up to  $Q=15~{\rm MeV}$ 
  - ⇒ extraction of total and differential cross sections
    - ⇒ careful luminosity determination is necessary

#### Measurements: experimental conditions



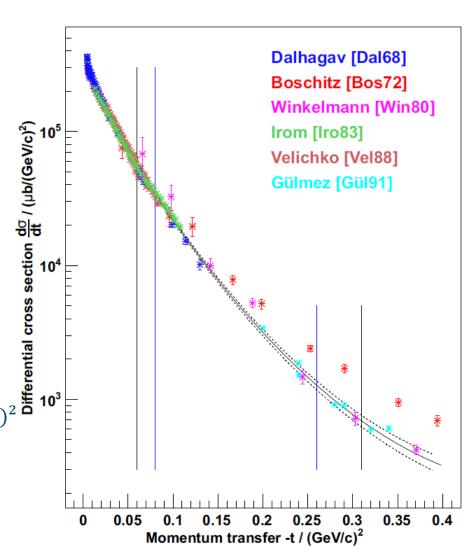
- data used for: high precision determination of the  $\eta$  meson mass  $(dp \to {}^3{\rm He}\eta)$  and studies on the two pion production  $(dp \to {}^3{\rm He}\pi^+\pi^-)$
- supercycle mode: one supercycle consists of up to 7 different beam momenta
  - $\Rightarrow$  19 beam momenta close to  $\eta$  production threshold

| flattop | 1st supercycle $p_d$ / (MeV/ $c$ ) | 2nd supercycle $p_d$ / (MeV/ $c$ ) | 3rd supercycle $p_d$ / (MeV/ $c$ ) |
|---------|------------------------------------|------------------------------------|------------------------------------|
| 0       | 3120.17(17)                        | 3120.00(22)                        | 3125                               |
| 2       | 3146.41(17)                        | 3147.35(17)                        | 3146                               |
| 3       | 3148.45(17)                        | 3150.42(17)                        |                                    |
| 4       | 3152.45(17)                        | 3154.49(17)                        | 3157.48(22)                        |
| 5       | 3158.71(17)                        | 3162.78(17)                        | 3160.62(22)                        |
| 6       | 3168.05(17)                        | 3172.15(17)                        |                                    |
| 7       | 3177.51(17)                        | 3184.87(17)                        | 3204.16(23)                        |

#### Measurements: experimental conditions



below  $\eta$  threshold ( $dp \rightarrow {}^{3}\text{He}\eta$ ) for a smooth model independent background description

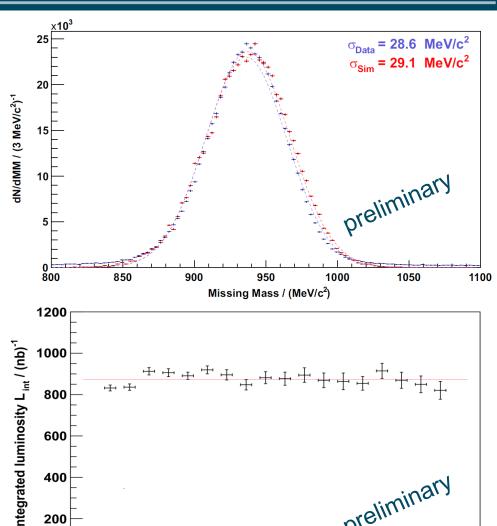

| flattop | 1st supercycle $p_d$ (MeV/ $c$ ) | 2nd supercycle $p_d$ / (MeV/ $c$ ) | 3rd supercycle $p_d$ / (MeV/ $c$ ) |
|---------|----------------------------------|------------------------------------|------------------------------------|
| 0       | 3120.17(17)                      | 3120.00(22)                        | 3125                               |
| 2       | 3146.41(17)                      | 3147.35(17)                        | 3146                               |
| 3       | 3148.45(17)                      | 3150.42(17)                        |                                    |
| 4       | 3152.45(17)                      | 3154.49(17)                        | 3157.48(22)                        |
| 5       | 3158.71(17)                      | 3162.78(17)                        | 3160.62(22)                        |
| 6       | 3168.05(17)                      | 3172.15(17)                        |                                    |
| 7       | 3177.51(17)                      | 3184.87(17)                        | 3204.16(23)                        |

### Luminosity via $dp \rightarrow dp$



- advantages of the dp-elastic scattering as normalization reaction:
  - ⇒ broad data base of available differential cross sections
  - ⇒ high differential cross sections ensure good statistics
  - ⇒ excellent signal-to-background ratio
- differential cross section as function of momentum transfer
  - ⇒ independent of beam momentum
- ANKE acceptance:  $-t = (0.06 0.31) (\text{GeV/}c)^2$
- range for luminosity determination

$$-t = (0.08 - 0.26) (\text{GeV/}c)^2$$




### Results for $dp \rightarrow dp$



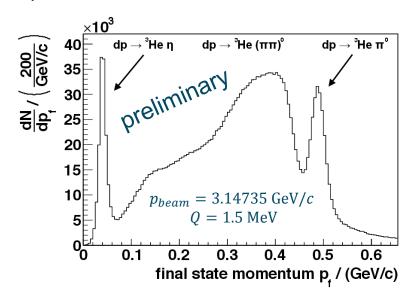
- identification of the reaction via the missing mass technique
- luminosity should be independent of momentum transfer
- determination performed for 18 momentum transfer bins ( $\Delta t = 0.01 \, (\text{GeV}/c)^2$ )
  - ⇒ for each of the 19 beam momenta
- Iuminosity precision achieved:

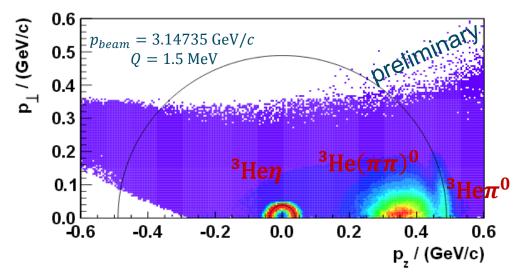
 improvement by at least a factor of two

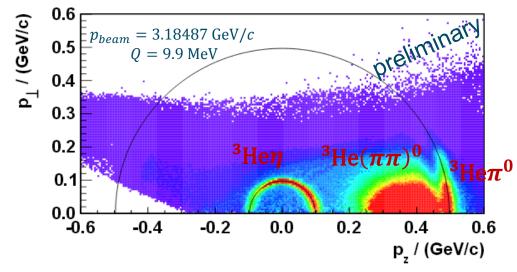


Momentum transfer -t / (GeV/c)<sup>2</sup>

400


200

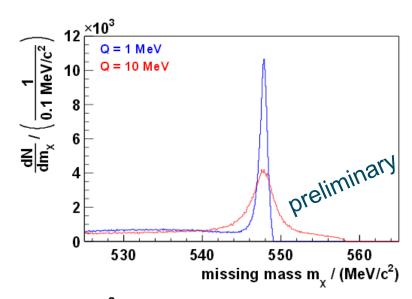

preliminary

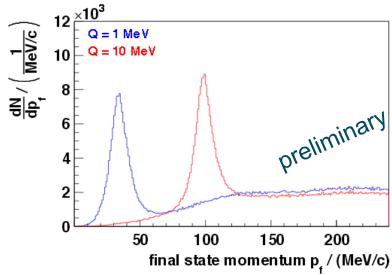

### The reaction $dp \rightarrow {}^{3}\text{He}\eta$



- solid lines indicate the expected kinematical loci for  $dp \rightarrow {}^{3}{\rm He}\eta$  and  $dp \rightarrow {}^{3}{\rm He}\pi^{0}$
- ANKE has full geometrical acceptance for the reaction  $dp \rightarrow {}^{3}\text{He}\eta$
- clear separation from other reactions possible



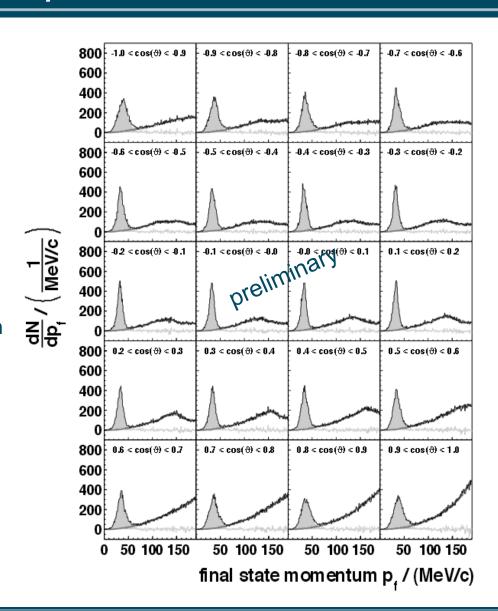



### The reaction $dp \rightarrow {}^{3}\text{He}\eta$



- solid lines indicate the expected kinematical loci for  $dp \rightarrow {}^{3}{\rm He}\eta$  and  $dp \rightarrow {}^{3}{\rm He}\pi^{0}$
- ANKE has full geometrical acceptance for the reaction  $dp \rightarrow {}^{3}\text{He}\eta$
- clear separation from other reactions possible
- distinct  $\eta$  signal for each beam momentum
- high statistics of more than  $10^5$   $^3{\rm He}\eta$  events per energy






### The reaction $dp \rightarrow {}^{3}\text{He}\eta$



- solid lines indicate the expected kinematical loci for  $dp \rightarrow {}^{3}{\rm He}\eta$  and  $dp \rightarrow {}^{3}{\rm He}\pi^{0}$
- ANKE has full geometrical acceptance for the reaction  $dp \rightarrow {}^{3}\text{He}\eta$
- clear separation from other reactions possible
- distinct  $\eta$  signal for each beam momentum
- high statistics of more than  $10^5$  <sup>3</sup>He $\eta$  events per energy
- accurate investigation of the angular dependence possible
- background description using data taken below the η production threshold





$$p + n \rightarrow d + \eta$$

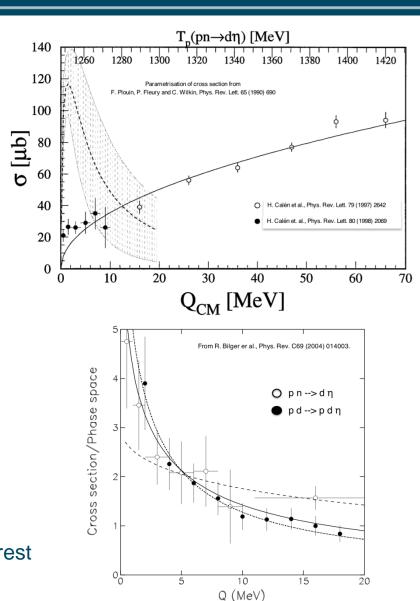
via the reaction

$$p + d \rightarrow p_{spectator} + d + \eta$$



- indication of a quasi bound state of the  ${}^{3}\text{He}\eta$ -system
- study of A-dependency of the Final State Interaction (FSI) important
  - $\Rightarrow$  investigation of the  $d\eta$ -system
- pole near threshold would influence the  $\eta N$  production above threshold
  - ⇒ described by a FSI-ansatz (S-wave)

$$\frac{p_i}{p_f} \cdot \frac{d\sigma}{d\Omega} = |f|^2 = |f_s \cdot FSI|^2$$


$$FSI = \frac{1}{1 - i \cdot a \cdot p_f + \frac{1}{2} r_0 a p_f^2} = \frac{1}{(1 - p_f/p_1)(1 - p_f/p_2)}$$

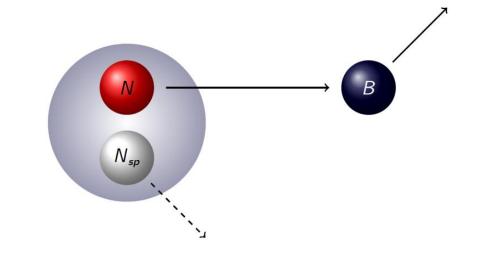


- current database on  $pn \rightarrow d\eta$ :
  - ✓ PINOT:  $\eta$  production much stronger in pn than in pp collisions
  - ✓ two measurements by PROMICE-WASA at CELSIUS  $pn \rightarrow d\eta$  via  $pn \rightarrow d\eta p_{spectator}$

H.Calén et al., Phys.Rev.Lett. 79 (1997) 2642 H.Calén et al., Phys.Rev.Lett. 80 (1998) 2069

- near threshold data show clear FSI enhancement
- steep rise of cross section up to  $30 \mu b$
- more detailed and independent data of high interest

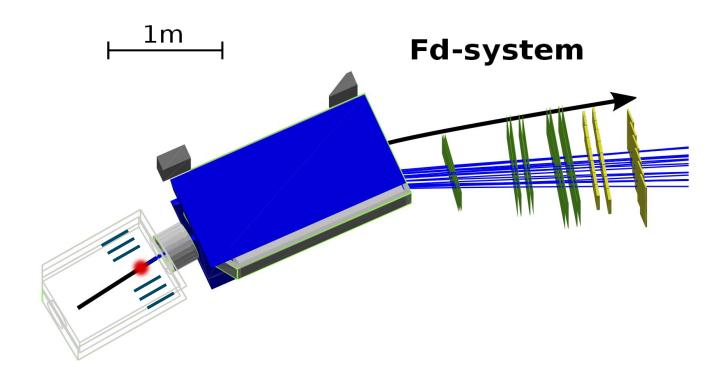



#### Measurements: experimental conditions



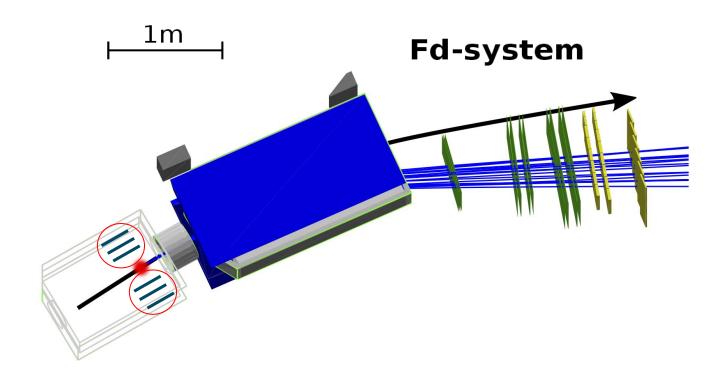
- main goals: extraction of scattering length a with data close to threshold and investigation of the influence of N\*(1535) on the  $\eta$  production process at higher energies
- reaction used:  $p + d \rightarrow p_{spectator} + d + \eta$   $\Rightarrow$  quasi free reaction  $p + n \rightarrow d + \eta$
- $p_{SPEC}$  = fermi motion within nucleus
- supercycle mode: alternate between two different beam momenta

$$p_{\mathsf{beam}} = 2.09 \, \mathsf{GeV}/c$$


$$p_{\text{beam}} = 2.25 \text{ GeV}/c$$

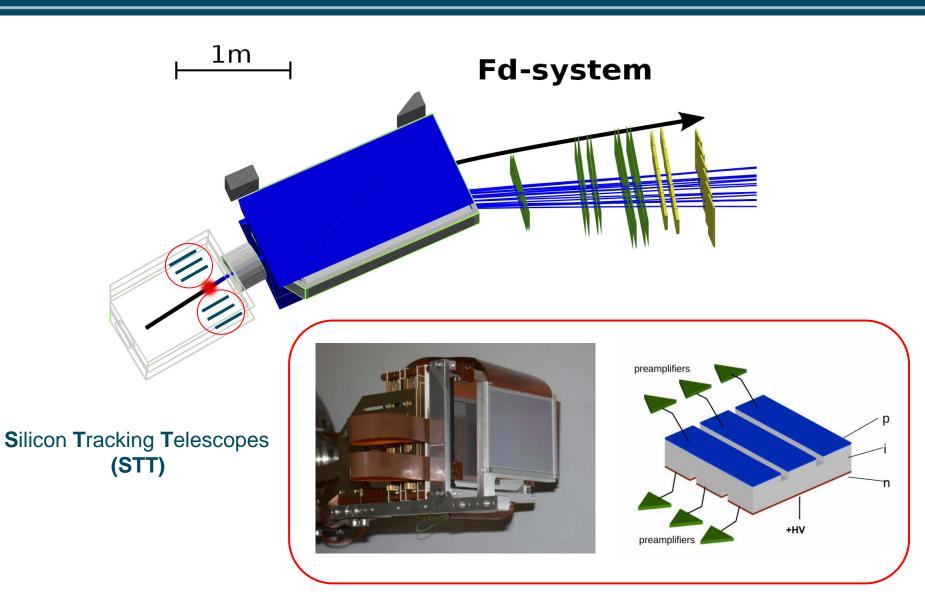


• setup allows to determine cross sections in an excess energy range from threshold up to  $Q=100\,\mathrm{MeV}$ 


### Fd-system with STT



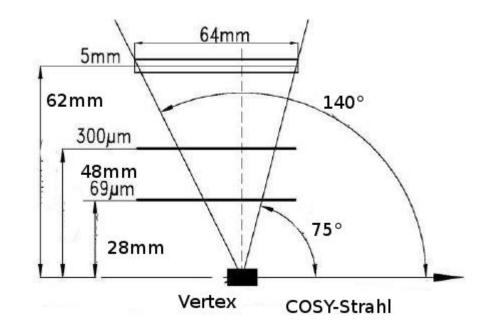



### Fd-system with STT





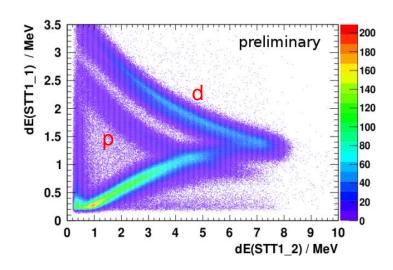
### Fd-system with STT

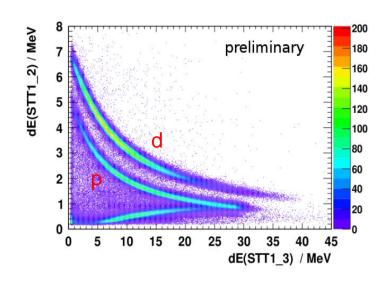





# Particle identification ( $p_{spectator}$ )



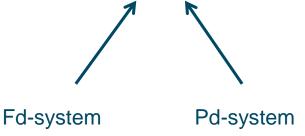

- determination of excess energy on an event-by-event basis
  - ⇒ one beam momentum = wide excess energy range
- identification of spectator protons mandatory
- use of two Silicon Tracking Telescopes (STT)
- consist of three layers of semiconductor
  - ⇒ track reconstruction
  - ⇒ energy loss measurements
- cover polar angles between 75° and 140°



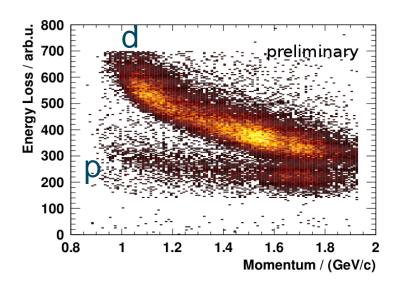

# Particle identification ( $p_{spectator}$ )

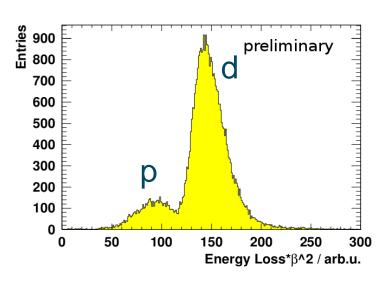


- determination of excess energy on an event-by-event basis
  - ⇒ one beam momentum = wide excess energy range
- identification of spectator protons mandatory
- use of two Silicon Tracking Telescopes (STT)
- · consist of three layers of semiconductor
  - ⇒ track reconstruction
  - ⇒ energy loss measurements
- cover polar angles between 75° and 140°







### Particle identification (d)

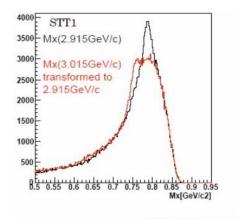


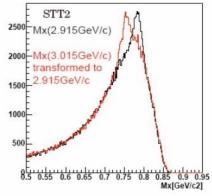

- detection of fast deuteron in the Fd-system
- separation from protons using energy loss and time of flight measurements
- cut parameters determined via the reaction  $p + d \rightarrow d + \pi^+ + X$

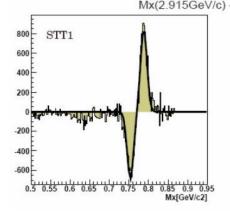


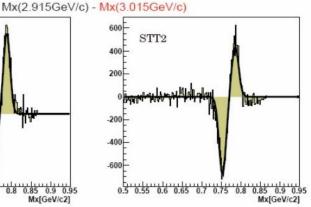
event selection via missing mass technique







### Background description



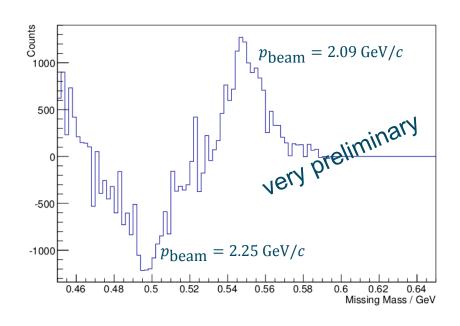


- background mainly multi pion production
- model-independent approach for background subtraction
- analyze data with "false" beam momentum
  - ⇒ event-by-event Lorentz
     transformation of measured
     particle to "false" laboratory system
  - ⇒ same kinematical limit

#### example for $p+d \rightarrow p_{spectator}+d+\omega$










### Background description



- background mainly multi pion production
- model-independent approach for background subtraction
- analyze data with "false" beam momentum
  - ⇒ event-by-event Lorentztransformation of measuredparticle to "false" laboratory system
  - ⇒ same kinematical limit
- very preliminary results for a small data sample
- approximately 100k  $\eta$  -events

$$p+d \rightarrow p_{spectator}+d+\eta$$



### Summary & Outlook



- $d + p \Rightarrow {}^{3}\text{He} + \eta$ :
  - luminosities were determined via dp-elastic scattering for each of the 19 beam momenta
  - high precision of  $\Delta L_{\rm stat}=1\%$  and  $\Delta L_{\rm sys}=6\%$  achieved  $\Rightarrow$  improvement by at least a factor of two compared to previous calculations
  - ANKE has full geometrical acceptance for the reaction  $dp \rightarrow {}^{3}{\rm He}\eta$
  - clear separation from other reactions possible
  - high statistics of more than  $10^5$  <sup>3</sup>He $\eta$  events per energy
- in progress:
  - extraction of total and differential cross sections
  - determination of asymmetry parameter  $\alpha$ 
    - $\Rightarrow$  shed new light on the near threshold region of  $\eta$  production

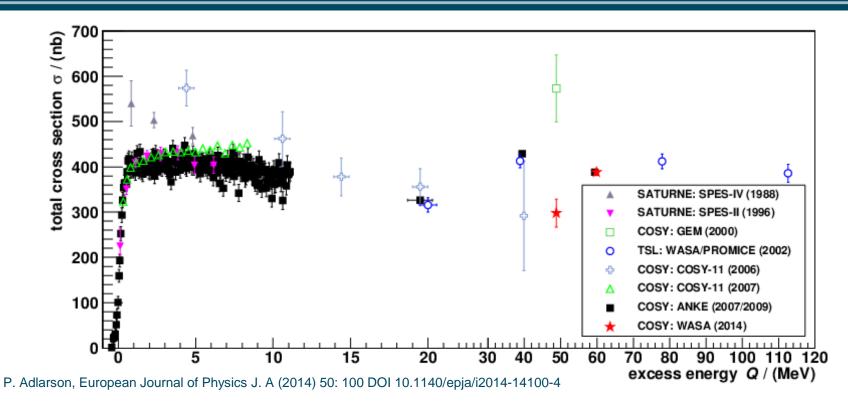
### Summary & Outlook



- $p + d \Rightarrow p_{spectator} + d + \eta$ :
  - approximately 100k events between  $Q=0~{\rm MeV}$  and  $Q=100~{\rm MeV}$
  - reconstruction of spectator protons with STTs
    - ⇒ STT calibration almost finalized
  - identification of deuterons with Fd-system in progress
    - ⇒ preliminary calibration of Fd-system
- in progress:
  - fine calibration of the Fd-system
  - luminosity determination via elastic scattering
  - extraction of total and differential cross sections
  - determination of limit for s-wave FSI-ansatz
  - constrain allowed region for the scattering length of the  $d\eta$ -system



### Thank you for your attention!


### **Acknowledgements:**

work presented was done or supported by:

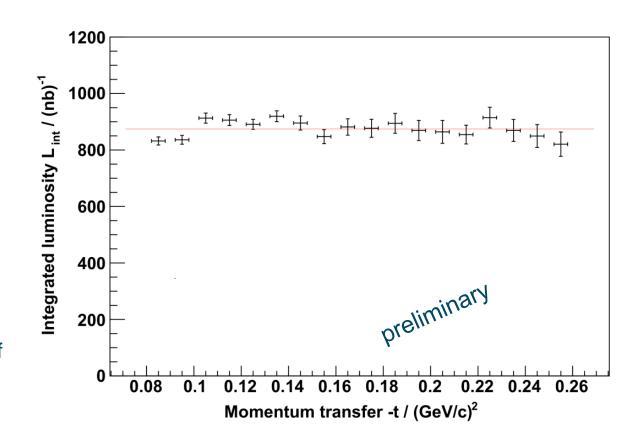
Christopher Fritzsch, III Alfons Khoukaz,
Marcel Rump,
Daniel Schröer,
and the ANKE collaboration

This work has been supported by the COSY-FFE program of the Forschungszentrum Jülich





- total and differential cross sections of the reaction  $dp \rightarrow {}^{3}\text{He}\eta$  are of special interest
- indication of a quasi bound state of the  ${}^{3}\text{He}\eta$ -system



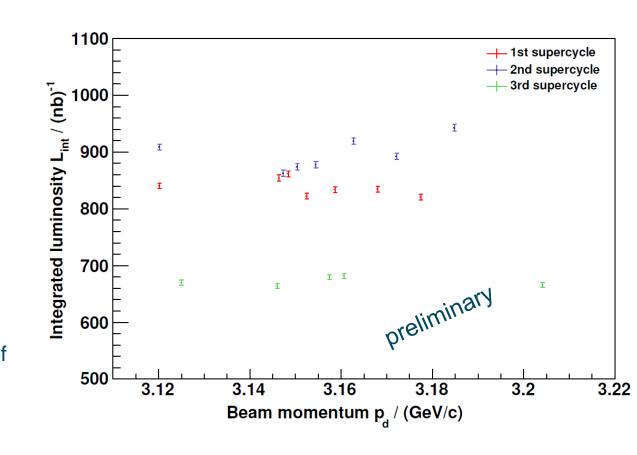

- · luminosity should be independent of momentum transfer
- determination performed for 18 momentum transfer bins ( $\Delta t = 0.01 \, (\text{GeV}/c)^2$ )  $\Rightarrow$  for each of the 19 beam momenta
- luminosity precision achieved:

$$\Delta L_{\text{Stat}} = 1\%$$

$$\Delta L_{\text{SyS}} = 6\%$$

- improvement by at least a factor of two
- relative normalization via the reactions dp → p<sub>spec</sub>X by determination of the number of spectator protons in the Fd-system





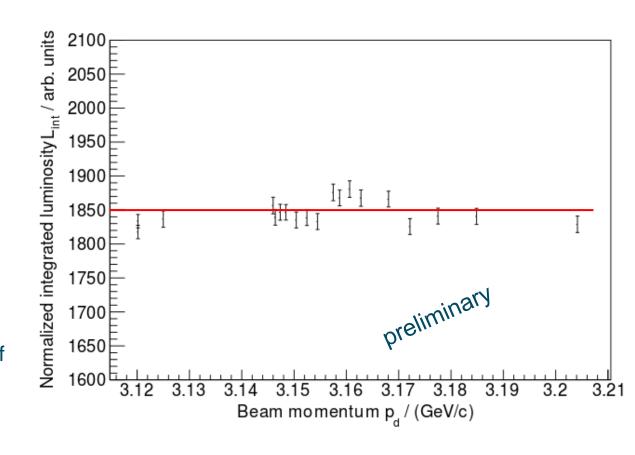

- luminosity should be independent of momentum transfer
- determination performed for 18 momentum transfer bins ( $\Delta t = 0.01 \, (\text{GeV}/c)^2$ )  $\Rightarrow$  for each of the 19 beam momenta
- luminosity precision achieved:

$$\Delta L_{\text{Stat}} = 1\%$$

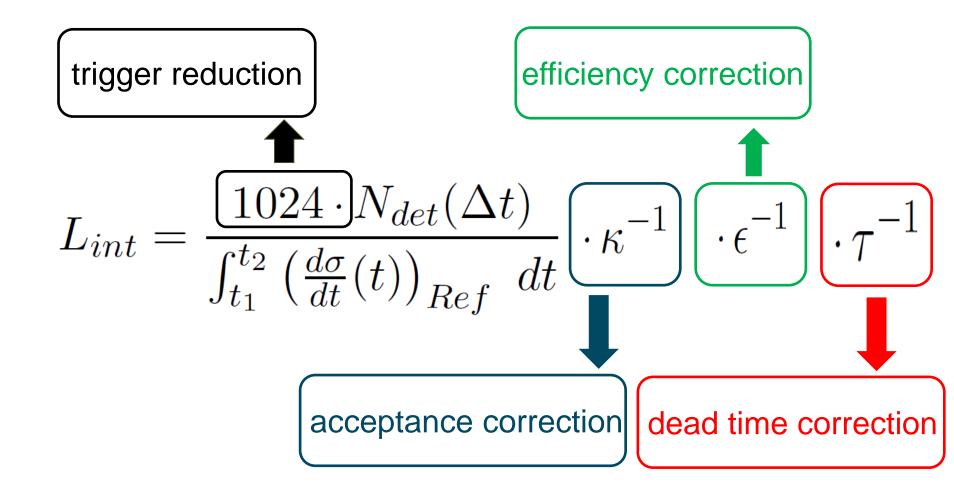
$$\Delta L_{\text{SyS}} = 6\%$$

- improvement by at least a factor of two
- relative normalization via the reactions dp → p<sub>spec</sub>X by determination of the number of spectator protons in the Fd-system






- luminosity should be independent of momentum transfer
- determination performed for 18 momentum transfer bins ( $\Delta t = 0.01 \, (\text{GeV}/c)^2$ )  $\Rightarrow$  for each of the 19 beam momenta
- luminosity precision achieved:


$$\Delta L_{\text{stat}} = 1\%$$

$$\Delta L_{\text{sys}} = 6\%$$

- improvement by at least a factor of two
- relative normalization via the reactions dp → p<sub>spec</sub>X by determination of the number of spectator protons in the Fd-system





