

Investigation of the quasi-free reaction $p+d\to d+\eta+p_{\text{sp}} \text{ close to threshold at ANKE}$

Daniel Schröer

Westfälische Wilhelms-Universität Münster for the ANKE collaboration

March 21, 2014 DPG Spring Meeting

(Quasi-)bound η-mesic nuclei

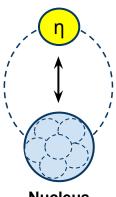
Attractice S-wave ηN interaction

R.S. Bhalerao and L.C. Liu, Phys. Rev. Lett. 54 (1985) 685

 Possible formation of η-nucleus bound states

Q. Haider and L.C. Liu, Phys. Lett. B172 (1986) 257

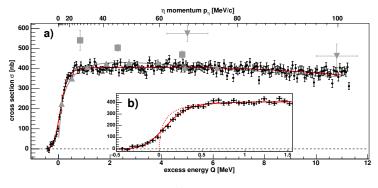
C. Wilkin, Phys. Rev. C47 (1993) 938


η -mesic nuclei program at COSY

• A > 4: GEM(η^6 Li and η^{25} Mg)

η⁴He: ANKE, GEM, WASA@COSY

η³He: ANKE, COSY-11, GEM, WASA@COSY


ηd: ANKE

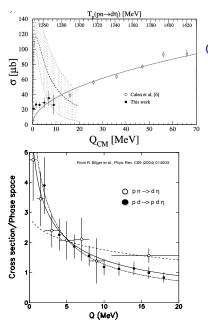
Nucleus

Good candidate: ³Heη system

- Precisely measured at ANKE
- Strong FSI observed
- Evidence for pole at $|Q_0| \approx 0.37 \, \mathrm{MeV}$

Two ways to search for signals from η -mesic nuclei

- No clear signal from such a state below the ηA threshold
- ▶ Pole near threshold should influence the ηA production above threshold \rightarrow described by a FSI-ansatz


S-wave FSI-ansatz:

$$\begin{split} &\frac{p_i}{p_f} \cdot \frac{d\sigma}{d\Omega} = |f|^2 = |f_s \cdot FSI|^2 \quad \text{with} \\ &\text{FSI} = \frac{1}{1 - i \cdot a \cdot p_f + \frac{1}{2} r_0 a p_f^2} = \frac{1}{(1 - p_f/p_1)(1 - p_f/p_2)} \end{split}$$

- Quasi-bound or virtual state?
- \rightarrow Study of A-dependency of the FSI important, especially the light nuclei
- $\rightarrow \text{ pn} \rightarrow \text{d}\eta \text{ ; pd} \rightarrow {}^{3}\text{He}\eta \text{ ; dd} \rightarrow {}^{4}\text{He}\eta;...$

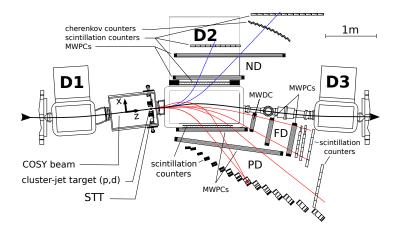
3

Available Data on pn \to d η

Current database on pn \to $d\eta$

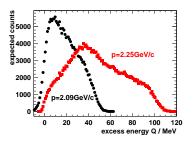
- ▶ PINOT: η production much stronger in pn than in pp collisions
- Two measurements by PROMICE-WASA at CELSIUS pn \rightarrow d η via pd \rightarrow d η p_{sp} H.Calén et al., Phys.Rev.Lett. 79 (1997) 2642 H.Calén et al., Phys.Rev.Lett. 80 (1998) 2069
- Near threshold data show clear FSI enhancement, steep rise up to 30μb
- lacktriangle WASA: η and deuteron measured

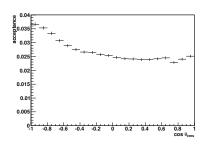
The η nucleon scattering length


- Lots of possible η nucleon scattering lengths
- Huge range of dη scattering lengths still possible
- ► ANKE measurement will dwarf allowed region
 → More knowledge about
 - elementary interaction between η and nucleon

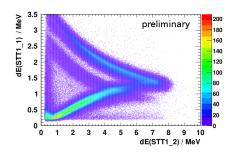
ηN input	Exact $A_{\eta d}$ (fm)
$a_{\eta N}$ (fm)	AGS
0.25 + i0.16	0.73 + i0.56
0.27 + i0.22	0.71 + i0.84
0.291 + i0.360	$0.38 + i \cdot 1.36$
0.30 + i0.30	$0.61 + i \cdot 1.22$
0.430 + i0.394	0.50 + i2.07
0.44 + i0.30	1.15 + i1.89
0.46 + i0.29	1.31 + i1.99
0.476 + i0.279	1.49 + i2.06
0.51 + i0.21	2.37 + i1.77
0.55 + i0.30	1.64 + i2.99
0.579 + i0.399	0.34 + i3.31
0.62 + i0.30	1.80 + i4.30
0.876 + i0.274	-8.81+i4.30
0.888 + i0.274	-8.63+i3.49
0.98 + i0.37	-4.69+i1.59

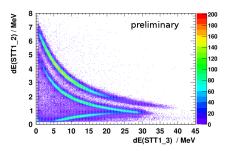
N.V. Shevchenko et al., Phys. Rev. C 58 (1998), R3055


The reaction pn \rightarrow d η at ANKE via pd \rightarrow d η p_{sp}

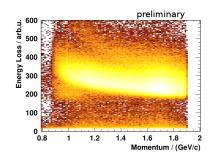

- ▶ pn \rightarrow dη is studied by measuring pd \rightarrow dηp_{sp}
- Identification by missing-mass method
- ▶ Determination of the excess energy on an event-by-event basis
- Measurement at two beam momenta ($p_1 = 2.09 \, \mathrm{GeV/c}$ and $p_2 = 2.25 \, \mathrm{GeV/c}$)

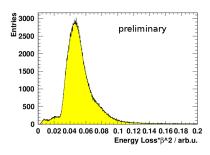
The reaction pn \rightarrow d η at ANKE via pd \rightarrow d η p_{sp}


- lacktriangle Acceptance for an excess energy range from $Q=0\,\mathrm{MeV}$ to $Q=110\,\mathrm{MeV}$
- Acceptance for whole angular range
- Limit for S-wave FSI-ansatz

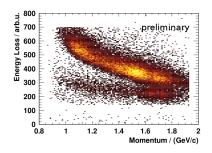


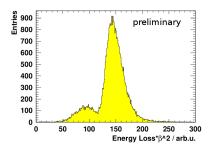
Identification of particles in the STTs


- Measurement with two Silicon Tracking Telescopes (STT)
- ► Placed 2.8 cm away from the target
- Cover polar angles from 75° to 140°
- $egin{aligned} egin{aligned} \Delta E &pprox 160 \,\mathrm{keV}(\sigma) \ \mathrm{and} \ \Delta artheta &pprox 3.5^\circ(\sigma) \end{aligned}$



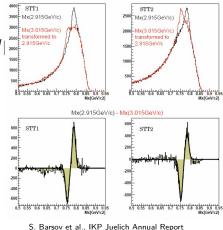
Identification of deuterons


- Via energy loss in forward counter
- Challenging because of huge proton background
- Small deuteron band can be seen
- Good energy calibration needed



Extraction of cut parameters

- ▶ Use of reaction $pd \to \pi^+ dX$
- \blacktriangleright π^+ in Positive Detector and particle in Forward Detector
- Identification of Pions via energy loss
- ToF allows separation of protons and deuterons
- Cut parameters are independent of reactions
- Huge reduction of proton background



Missing Mass for pn \rightarrow d η

$$\qquad \mathbf{M_{x}} = |P_{p}^{beam} + P_{d}^{target} - P_{sp} - P_{d}^{final}|$$

- Proton in one of the STTs
- Deuteron in Foward Detector
 - Analyze data at higher beam momentum as if taken at lower ones
 - Subtract resulting missing mass spectra
- Peak at η mass, negative peak at lower mass

S. Barsov et al., IKP Juelich Annual Report 2010

ANKE beam time

- 3 weeks of measurement at ANKE
- lacktriangle Approximately 100000 events between $Q=0\,\mathrm{MeV}$ and $Q=110\,\mathrm{MeV}$

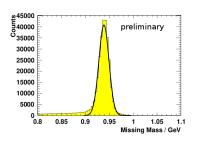
Aims of beam time

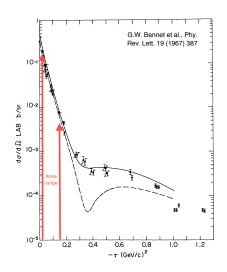
- Calculate scattering length with a precision of 5%
- Measure differential cross section
- lacktriangle Influence of N^* will be investigated at higher excess energies

Summary

- Spectator protons can be identified and reconstructed
- \blacktriangleright Use of data with special trigger allows for extraction of cut parameters in Forward Detector \to huge reduction of proton background
- More than 50000 (60000) events expected for lower (higher) energy → in agreement with preliminary results
- ightarrow Total and differential cross sections in a excess energy range from $Q=0\,\mathrm{MeV}$ to $Q=110\,\mathrm{MeV}$
- → Determination of limit for S-wave FSI-Ansatz
- \rightarrow Constrain allowed region of ηN scattering length

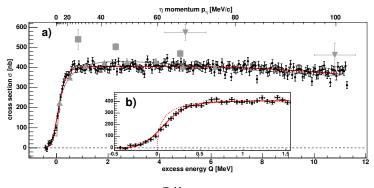
Thank you for your attention

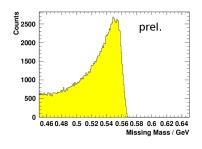


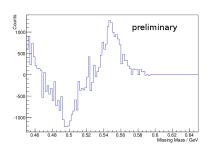

Additional Slides

Additional Slides

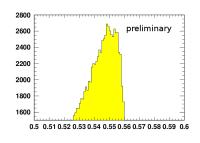
Elastic scattering

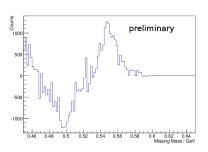

- Measured in parallel for an absolute normalization
- Deuteron measured in STT


Good candidate: ³Heη system


- Precisely measured at ANKE
- Strong FSI observed
- Evidence for pole at $|Q_0| \approx 0.37 \, \mathrm{MeV}$

Uncorrected Missing Mass


- ► Huge Background
- Small enhancement at η mass can be suspected
- Background description challenging



Uncorrected Missing Mass

- ► Huge Background
- Small enhancement at η mass can be suspected
- Background description challenging

