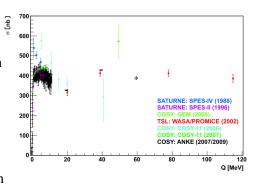
$p+d \rightarrow {}^3He + \eta \ cross \ sections$ at 49 and 60 MeV excess energy at WASA-at-COSY

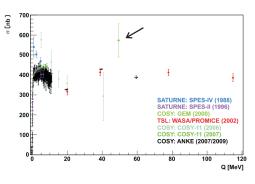
Annika Passfeld¹

¹Institut für Kernphysik WWU Münster

DPG-Frühjahrstagung 23.03.2011



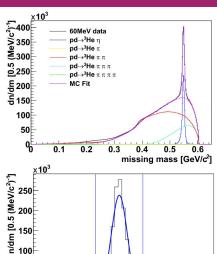
Motivation

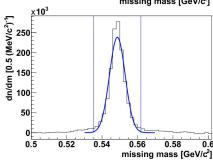

Total $p + d \rightarrow {}^{3}He + \eta$ cross sections (only statistical errors):

- Strong energy dependence within the first MeV excess energy caused by a strong final state interaction
- Strong evidence for an η³He bound state
- Excitation function is well known near the production threshold

Motivation

- Larger uncertainties at higher excess energies
- Data from WASA/PROMICE and ANKE show a cross section plateau between 40 and 120 MeV
- 49 MeV GEM data point might indicate a cross section increase above this plateau
- A peak-like structure would be of high interest for studies of the reaction and the final state interaction
- Enhancement can also be an artifact of different normalizations (≈15 %)




Database

- \Rightarrow A new measurement at 49 MeV is of high interest to clarify the situation
 - Data for the reaction $p + d \rightarrow {}^{3}He + \eta$ at 60 MeV excess energy were taken with the WASA-at-COSY setup (decay studies)
 - To verify the GEM data point additional data were taken at 49 MeV
 - Relative normalization of both data sets possible
 - Data taken at same run period August/September 2009 to minimize systematic uncertainties
 - Preselected data are used for the analysis (preselected on the ³He nucleus in the Forward Detector)
 - \bullet For the determination of the differential cross sections the number of η events are extracted from the missing mass spectra of different angular ranges

Number of η events

- The background for each $\cos(\vartheta_{CMS})$ bin is fitted with MC simulations and subtracted
- The peak is fitted with a Gaussian distribution to determine the 3 σ area
- The events are counted in this area and are corrected to 100 \%
- The extracted η numbers are corrected to the detector acceptance

Normalization

• With known luminosity L and number of η events N_{η} the differential cross section for the i-th $\cos(\vartheta_{\text{CMS}})$ bin can be determined via:

$$\left(\frac{d\sigma}{d\Omega}\right)_i = \frac{1}{4\pi} \frac{N_{\eta,i}}{L}$$

• The total cross section can be calculated by:

$$\sigma_{\text{total}} = \sum_{i} 2\pi \cdot \Delta \cos(\vartheta_{\text{CMS}}) \left(\frac{d\sigma}{d\Omega}\right)_{i}$$

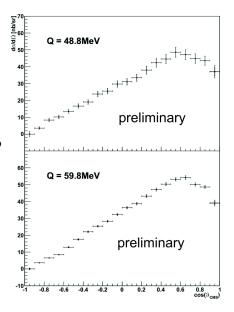
• Aim: determination of the ratio $\frac{\sigma(49 \text{ MeV})}{\sigma(60 \text{ MeV})}$

Normalization

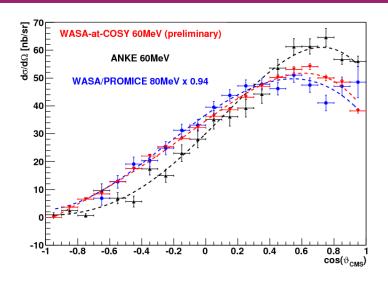
- Relative normalization is done via the single pion production $p+d \rightarrow {}^3He+\pi^0$
- The excess energies for the single pion production are $Q=462\,\mathrm{MeV}$ and $Q=473\,\mathrm{MeV}$ respectively for the two data samples
- The phase space volume changes by approximately 1 % only:

$$\sqrt{\frac{Q = 473 \,\mathrm{MeV}}{Q = 462 \,\mathrm{MeV}}} \approx 1,01$$

- \Rightarrow The π^0 ratio corresponds to the ratio of the integrated luminosities and is used as normalization factor
- ⇒ Absolute normalization to the 60 MeV ANKE cross section

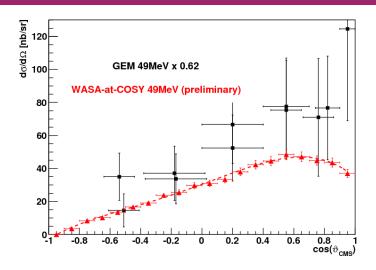

Normalization

• Preliminary result:

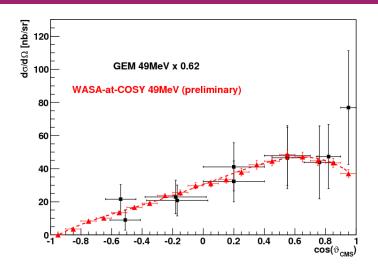

$$\frac{\sigma(49\,\text{MeV})}{\sigma(60\,\text{MeV})} = 0.98 \pm 0.06$$

 \Rightarrow No peak-like structure at 49 MeV

- $\sigma_{ANKE}(60 \, MeV) = (388.1 \pm 7.1) \, nb$
- The normalization to the 60 MeV ANKE data leads to a preliminary cross section at 49 MeV of $\sigma(49 \,\text{MeV}) = (379.3 \pm 22.8) \,\text{nb}$
- Additional normalization error of 15 %
- The measured data point agrees well with the described plateau

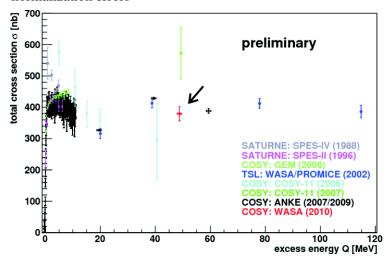


Differential cross sections

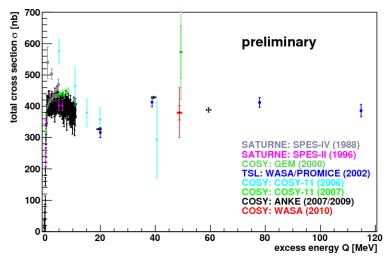

• Comparison of the differential cross sections at $Q = 60 \,\mathrm{MeV}$

Differential cross sections

• Comparison of the differential cross sections at $Q = 40 \,\mathrm{MeV}$ and $Q = 49 \,\mathrm{MeV}$


Differential cross sections

 Comparison of the differential 49 MeV WASA-at-COSY cross sections to the scaled GEM data


Total cross sections

 Total cross sections with statistical uncertainties, but without normalization errors

Total cross sections

 Total cross sections with statistical uncertainties and with normalization errors for the 49 MeV data

Conclusion

- Angular distributions of the p + d \rightarrow ³He + η reaction at 49 and 60 MeV excess energy were extracted
- With the normalization to the 60 MeV ANKE data and via the single pion production differential and total cross sections were determined
- There is no peak-like structure in the excitation function at 49 MeV
- Concerning statistical and systematical uncertainties the new 49 MeV WASA-at-COSY data are not in disagreement with the 49 MeV GEM data:
 - $\sigma_{WASA}^{prel.}(49\,MeV)=(379\pm23)\,nb+57\,nb$ normalization error $\sigma_{GEM}(49\,MeV)=(573\pm83)\,nb+69\,nb$ normalization error
- The deviation is due to different normalizations, but the angular distributions are in agreement

The End!

Thank you for your attention!