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Abstract. We investigate a reaction-diffusion system which consists of a set of
three partial differential equations. Due to the reaction kinetics the system can
be referred to as a 1-activator-2-inhibitor system. We show, that such systems are
capable of supporting localized moving structures, so called quasi-particles. For
certain parameters it is possible to predict the propagation speed of these solutions
as well as their behaviour in scattering processes. In more general cases we have
carried out simulations which reveal different scattering results depending on the
parameters. We find annihilation, reflection and merging of particles.

1 Introduction

In 1952 Turing [1] introduced a two-component reaction-diffusion model for
the morphogenesis of a growing organism in order to describe the formation
of spatially inhomogeneous structures from an initially homogeneous state.
Since then, reaction-diffusion equations have been widely used to describe
pattern formation phenomena in very different biological [2,3], chemical [4,5]
and physical [6–8] systems. Though a lot of phenomena, like pulse propaga-
tion in one-dimensional systems or the formation of stationary spatially inho-
mogeneous structures, can be explained by two-component reaction-diffusion
equations, there are certain phenomena, like the destabilization of the homo-
geneous state by a travelling wave, that require three components. This work
deals with moving, particle-like solutions of such a system described by the
following set of equations

u̇ = Du∆u− v − κ3w + f(u) + κ1, (1)
τ v̇ = Dv∆v + u− v, (2)
θẇ = Dw∆w + u− w, (3)

with u = u(r, t), v = v(r, t) and w = w(r, t) and r ∈ G ⊂ IRn with n = 2, 3
and ∆ denoting the Laplacian. For analytical considerations it is useful to
assume an infinite domain G. For numerical simulations periodic boundary
conditions or Neumann boundary conditions on box-shaped domains G are
used. The above equations can be regarded for example as a qualitative model
for the description of pattern formation processes in a two-dimensional gas-
discharge system [7], but similar phenomenological models can also arise in
other systems [8]. The function f(u) represents the only nonlinear term and



is chosen such that near (u, v, w) = (0, 0, 0) u can be referred to as an ac-
tivator and that its nonlinear part prevents a blow-up of the solutions. The
simple choice f(u) = λu − u3 fulfills these two conditions and will be used
throughout this paper, though in principle different nonlinearities could be
used. Following the structure of the reaction terms in Eqs. (1)-(3) the com-
ponent u is called activator, because it acts as a source for v and w and
at least in a certain amplitude range for itself, too. The components v and
w are referred to as inhibitors. They suppress their own production as well
as the production of the component u. Apparently, if the time constants τ
and θ and the diffusion constants Dv and Dw are of the same magnitude, it
is possible to omit one inhibitor equation. Thus we expect new features, as
compared to a two-component model only if the inhibitors have significantly
different parameters. In the following we will usually choose τ > θ, τ > 1
and Dw > Du. Corresponding to this choice we call v the slow inhibitor and
w the fast or the diffusing inhibitor.

In order to solve the Eqs. (1)-(3) numerically a finite difference scheme is
used. The domain G = [0, Lx]×[0, Ly]×[0, Lz] ⊂ IR3 is discretised with a fixed
length ∆x. For the time discretisation we implemented the Crank-Nicolson
scheme, due to advantages in stability and accuracy properties. The resulting
system is solved iteratively using the successive-overrelaxation method which
provides a reasonably fast convergence. For the task of parallelisation the
domain G is divided into boxes of equal size and, as far as possible, cubic
shape to reduce the ratio between boundary points and interior points. Every
node on the parallel computer is assigned to one box and after each change
of the components u, v and w the boundary points are updated using the
Message Passing Interface (MPI). The computational effort strongly depends
on the discretisation and on the parameters of the simulation. Calculations
with a grid of about 35× 35× 35 have been used to check existence, stability
and speed of single solutions. Typically we have used 64 nodes for about one
hour per node on the Cray T3E-900 in such cases. Simulations regarding
scattering processes had to be performed on rather large domains with up to
120×160×120 grid-points and with parameters leading to partially separated
time-scales, which slowed down our algorithm considerably. Thus the most
extensive calculations have been carried out on 256 nodes for about 8 hours
per node.

2 Single Quasi-Particles

In reaction-diffusion systems a variety of different patterns can be observed.
A very interesting phenomenon is the formation of stable localized current
density filaments, e.g. in gas-discharge systems [9,10]. These quasi-particles
can move through the system and interact with the boundaries or with
each other. While stationary filaments can be described by two-component
reaction-diffusion models, it was not possible to find moving localized spots



in these systems until now. In two-component systems with one activator
and one inhibitor there are two possible cases: If the inhibitor is fast and
diffusing, stationary structures can organize. If the inhibitor is slow, dynam-
ical structures, spirals or scroll-waves, appear. To keep a structure moving
and localized in more than one dimension, two inhibitors are at least helpful
[11]. Regarding the behaviour of moving quasi-particles in two-dimensional
systems different scattering phenomena have already been observed and de-
scribed analytically. The interaction with each other, with inhomogeneities
and the system boundaries has been studied. The following work therefore
deals with different phenomena in three-dimensional space.

Figure 1 a) shows a three-dimensional solution moving from the left to the
right. The iso-surfaces of activator u and slow inhibitor v are drawn red and
green, respectively. The direction of motion of such a solution is determined
by the direction of the shift of the slow inhibitor with respect to the activator.
In Fig. 1 b) the profile of components u, v and w in the direction of motion of
this three-dimensional solution is plotted. The slow inhibitor is shifted with
respect to the activator and gives the impression to push the activator peak.
The fast inhibitor surrounds this peak and controls the size of the spot. If
the spot grows or shrinks, the fast inhibitor immediately reacts and stabilizes
the size of the activator distribution. For a single spot the task of controlling
the size can be performed by an integral feedback as well [12–14]. However,
for multiple spots this approach fails, because antisymmetric fluctuations are
not noticed by such a mechanism.
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Fig. 1. a) Iso-surfaces of activator u (red) and slow inhibitor v (green) of a moving
spot solution. b) The components u, v and w at x = 0.25 and z = 0.25 as a
function of y of the spot of Fig. a) show the different behaviour of the two inhibitors.
Parameters are G = [0, 0.5]× [0, 0.65]× [0, 0.5], Du = 1.5× 10−4, Dv = 1.5× 10−4,
Dw = 9.6× 10−2, κ3 = 8.5, λ = 2, κ1 = −6.92, θ = 1, τ = 48 and the discretisation
in space and time was ∆x = 0.009 and ∆t = 2× 10−3.



In the case Dv = 0 and θ = 0 it is possible to derive analytical results
regarding the propagation speed of these structures [15]. If there exists a
stationary structure (ū, v̄, w̄) for τ = 0 on an infinite domain G, in any case
the onset of propagation will occur at τ = 1 and the speed of the propagating
solution is given by

c2 = (τ − 1)
〈ū2

x〉
〈ū2

xx〉
, (4)

where an index x indicates the partial derivative ∂/∂x and 〈. . .〉 denotes in-
tegration over G. It is even possible to show, that the onset of propagation is
the primary bifurcation. Figure 2 b) shows numerical results for the speed of
a travelling solution in three-dimensional space. The numerically estimated
bifurcation point is at τ = 0.992 and the slope of the speed deviates about 25
% from the theoretical result. The errors are due to the finite discretisation
length and the fact, that θ = 0.01 6= 0. To reduce the dimension and thus the
computational effort these computations have been performed using a cylin-
drical geometry. The stability of the moving spot for the parameters in Fig. 2
was checked by a three-dimensional calculation. The above description of the
onset of propagation assumes, that there exists always a stationary solution
which is unstable beyond the travelling bifurcation. This is not necessary,
however. But this analysis holds only in the vicinity of the bifurcation point.
For different parameters (very high values of τ , or Dv 6= 0) it is possible to
find a moving stable solution, without a stationary counterpart.

0.98 1.00 1.02 1.04 1.06 1.08 1.10
0

1

2

3

3D

 simulation
 analytical result
 linear fit

c2  (
 x

 1
04 )

τ

Fig. 2. Square of the speed c of a
moving spot as a function of the
parameter τ . The remaining pa-
rameters are Du = 4.67 × 10−3,
Dv = 0, Dw = 10−2, κ3 = 3.33,
λ = 5.67, κ1 = −1.126, θ = 0.01.
Spatial discretisation was ∆x =
0.02 and for the time we used
∆t = 1× 10−3.

3 Interaction of Two Quasi-Particles

The equations (1)-(3) do not contain any global feedback terms. So, if the
existence of a single moving spot is guaranteed, it is possible to construct
solutions to the differential equations with two or more moving particles,



at least if the individual patterns are well separated in space. As two spots
approach each other, there will be an interaction process, which can lead to
a variety of different scattering phenomena. In the following we will present
four different cases that can result from a collision processes and discuss the
relevant mechanisms.

3.1 Deflection of Quasi-Particles

The first phenomenon which we discuss are scattering processes, that lead to
a mere deflection of the particles. In this case the shape of the two localized
solutions does not change significantly during the process. Typically there will
be a repulsive interaction between two spots as they approach. This is due to
the fast inhibitor, which surrounds the particles and inhibits the propagation
of the activator distribution of the other spots.

This case can be described analytically starting with the assumptions
Dv = 0 and θ = 0. According to Eq. (4) the onset of propagation occurs at
τ > 1. The dynamics of a quasi particle in this regime near the bifurcation
point can be described by two quantities: The position pi of a spot i, and
the amplitude and direction of the shift αi of the slow inhibitor with respect
to the activator. While the first quantity pi results from the translational
invariance of the equations, the second quantity describes the internal degree
of freedom of a solution which is decisive for the propagation speed and
direction of a particle. A value of αi = 0 corresponds to a stationary, and
for τ > 1 unstable, solution. Using a singular perturbation approach it is
possible to derive equations for the time evolution of these quantities. For
analytical details refer to [16] and [17]. For a system of two particles 1 and 2
the following differential equations can be deduced for the motion of particle
1:

∂tp1 = α1 −W (|p2 − p1|)(p2 − p1), (5)

∂tα1 = (τ − 1)α1 − 〈ū2
xx〉

〈ū2
x〉
|α1|2α1 −W (|p2 − p1|)(p2 − p1). (6)

The function W (d) is the interaction law between two particles with the
distance d and is equal to zero for d → ∞. It can be calculated numerically
from the shape of a single spot solution ū. In the following we will restrict
ourselves to the case of a repulsive interaction law. Obviously for d = |p2 −
p1| → ∞ the above system reduces to Eq. ( 4). The stationary solution
α1 = 0 becomes unstable for τ > 1.

In Fig. 3 the trajectories of two interacting quasi-particles (spot 1 and 2)
are sketched. The solid lines are from a fully three-dimensional calculation.
The dashed line was calculated from (5) and (6). As initial conditions two
approaching spots with an angle of about 90 degrees between their velocities
have been used. As the spots approach each other the repulsive force leads
to a deflection. After the collision there is a slight divergence between the



three-dimensional numerical and the simplified numerical results, but the
agreement is still satisfying. As long as τ is small enough the perturbation
approach (5) and (6) is valid, and thus elastic scattering can be expected in
these cases.
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Fig. 3. Trajectories of two interacting quasi-particles. The solid lines indicate the
results of the three-dimensional equations, the dashed lines are from the simplified
model. a) Trajectories in three-dimensional space. b) and c) show the projections
of the trajectories on the ground and on the back plane. Parameters were chosen
as Du = 4.67 × 10−3, Dv = 0, Dw = 0.01, λ = 5.67, κ1 = −1.126, κ3 = 3.333,
κ4 = 3.333, τ = 1.03, θ = 0.01 and L = 2.25. Space and time discretisation was
∆x = 0.0288 and ∆t = 10−3.

3.2 An Overview of Typical Scattering Processes

In the previous section we have restricted the range of parameters to the
case Dv = 0, θ = 0 and τ ≈ 1. Thus we have been able to give an analytical
description of the collision process. But since the shape and stability of the
moving spots is important for this analysis certain cases are automatically
excluded: The annihilation, generation or the mergence of two spots.

Before the other examples are discussed in detail Fig. 4 shall give a sur-
vey of the qualitative behaviour of two moving spots. It was not possible to
define exact parameters separating different areas of qualitative behaviour
in parameter space, nevertheless the basic behaviour can be described. In
the following we will assume the existence of a sufficiently stable spot. Two
quantities can be used to characterize the behaviour in the course of a colli-
sion process: The speed of the structure, which can be controlled by the time
constant τ , and the strength of the interaction force between two particles,



which can be reduced for example by decreasing the ratio of the diffusion
constants Du/Dw. Of course, changing other system parameters can equally
effect the scattering phenomena, but the above mentioned can be regarded
as the most important ones. The deflection process (I.) has been described
already. This case can be found if the speed of the single particles is very low
or if the strength of particle interaction is rather strong. Thus the particles
cannot merge, but will be deflected. For slow particles, a reversal of speed
is typically possible and leads to elastic scattering. For different parameters,
e.g. if there exist only spot solutions with a certain minimal speed, one or
both spots can be annihilated (II.) because the activator distribution cannot
proceed due to the repulsive force and the slow inhibitor catches up and sup-
presses the activator. This type of annihilation process hasn’t been examined
yet in the three-dimensional case. In two-dimensional systems this mechanism
has already been observed. If the repulsive forces between two quasi parti-
cles are weaker or the speed of the solutions is high, the propagation cannot
be stopped and the activator of the two particles merges to an intermediate
activator spot. This may happen due to very high speed of the particles (e.g.
τ À 1) or due to a very flat fast inhibitor distribution w (Dw À Du, Dv). In
this situation there are two possibilities: either the activator spot is destroyed
by the inhibitor v (III.), or the activator is fast enough to escape transverse
to the original direction of motion (IV.). Note that in highly excitable media
the generation of new particles from remaining perturbations is possible after
an annihilation process. The two cases (III.) and (IV.) are described in the
next section in more detail.
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Fig. 4. Depending on the system parameters different scattering phenomena occur.



3.3 Mergence and Annihilation of Spots

In Fig. 5 the process of mergence of two spots after a head-on collision is
shown. The activator u (red) and the slow inhibitor v (green) have been
depicted as iso-surfaces. The spots approach each other in a head-on collision
in (a) and (b). The inhibitor is clearly located behind the activator. In (c)
the activator distribution merges. For the parameters given in Fig. 5 the
activator is suppressed by the slow inhibitor in (d) and the spots vanish
(e), corresponding to Fig. 4 (III.). Figure (f) shows the normalized activator
integral 〈u〉/|G| in the course of the process. The points in time corresponding
to pictures (a)-(e) are marked with circles in this plot. The number of particles
present in the system corresponds to the value of 〈u〉/|G|. At t = 0 there are
two particles (N = 2), at t > 100 there remains only the homogenous state
(N = 0). For t ≈ 52 an intermediate state forms, which can be interpreted
as a transient particle, formed by the activator and the fast inhibitor.
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Fig. 5. Pictures (a)-(e) show an annihilation process between two particles. The
iso-surfaces of the activator u are red, those of the inhibitor v are green. The
normalized activator integral 〈u〉/|G| is plotted in (f). The parameters used are
Du = 1.5×10−4, Dv = 1.86×10−4, Dw = 9.6×10−3, λ = 2, κ1 = −6.92, κ3 = 8.5,
θ = 1, τ = 25. Discretisation was chosen as ∆x = 0.085 and ∆t = 2× 10−2.



Starting from the annihilation process the time constant τ was increased
from 25 to 48. Thus the shift of the inhibitor v with respect to the activator
u is increased. This leads to a faster propagation of the spot. In Fig. 6 the re-
sults of this calculation are presented. Figures (a)-(e) show the iso-surfaces,
(f) the normalized activator integral 〈u〉/|G|. Compared to Fig. 5 the in-
hibitor tails are longer, which reflects the higher time constant τ . After the
mergence (b) the activator is fast enough to escape transverse to the direction
of motion. Due to the cylindrical symmetry of the collision process a tran-
sient activator torus forms. In Fig. 6 (c) the symmetry is already broken and
two new particles have been created. This case corresponds to (IV.) in Fig.
4. The plot of the normalized activator integral again shows the formation of
an intermediate transient one-particle solution, before it breaks up and the
two new particles form. The value of 〈u〉/|G| at the end of the calculations
was slightly higher than in the beginning, because the particles have still not
reached their final shape yet. These simulations are similar in some sense to
two-dimensional results of different groups [12,13], that were related to the
collisions of spots in two-component models with an inhibiting global feed-
back . However, the asymptotic solution is unstable in the two-component
case. In a three-dimensional space transversal scattering has to break the ini-
tial cylindrical symmetry, even if multi-particle solution are asymptotically
stable. There even is a possibility that more than two particles emerge from
the intermediate state. A further increase of the activation potential of u
could lead to such a situation, but this was not observed until now.

4 Discussion

We have presented moving localized solutions of the three-dimensional partial
differential equations (1)-(3), that can be regarded as a simple example for the
complex dynamical behaviour in reaction-diffusion systems. The mechanisms
that are necessary for the propagation of such solutions have been identified
and it was possible to give an analytical description of the propagation and
interaction properties in certain regions of the parameter space. Different
scattering phenomena like annihilation and intermediate mergence of parti-
cles have been observed. The knowledge of these basic properties provides a
basis for the study of multi-particle solutions by means of two complemen-
tary approaches: Fast parallel computers and, in suitable parameter ranges,
effective interaction equations. – We gratefully acknowledge the support of
the HLRS in Stuttgart and of the DFG.
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