

Instabilities of Spatially Coupled Nd:YVO₄ Microchip Lasers

M. Möller, B. Forsmann, W. Lange Institut für Angewandte Physik Westfälische Wilhelms-Universität Münster, Germany

Phase-synchronized lasers

Situation

- Closely spaced lasers in a one- or twodimensional arrangement
- Weak lateral coupling through overlap of electrical fields

Possible systems

- Semiconductor lasers
 - Stripe arrays
 - VCSEL arrays
- Solid state lasers
 - Nd:YAG lasers
 - Nd:YVO₄ (microchip) lasers

Items of interest

- Conditions for phase locking
- Types of phase locking
- Dynamics of phase locking

Two laterally coupled lasers

Coupled-mode equations for 2 coupled lasers

$$\frac{dE_1}{dT} = \frac{1}{\tau_c} [(G_1 - \alpha_1) E_1 - \kappa E_2] + i\omega_1 E_1$$

$$\frac{dG_1}{dT} = \frac{1}{\tau_f} (p_1 - G_1 - G_1 |E_1|^2)$$

$$\frac{dE_2}{dT} = \frac{1}{\tau_c} [(G_2 - \alpha_2) E_2 - \kappa E_1] + i\omega_2 E_2$$

$$\frac{dG_2}{dT} = \frac{1}{\tau_f} (p_2 - G_2 - G_2 |E_2|^2)$$

- E_k complex electrical field amplitude
- G_k gain

 a_k resonator loss

 p_k pump coefficient

 au_c resonator round-trip time

 τ_f fluorescence time

Control Parameters:

 ω_k frequency detuning $\kappa \equiv -e^{-d^2/2\sigma^2}$ coupling strength

Theoretical Predictions

- Stationary solutions with constant optical phase difference $\Phi = 0, \pi, ...$
- $\Phi = 0$ is unstable at finite detuning
- $\Phi = \pi$ is stable
- an amplitude instability with synchronized optical phase – should occur for intermediate coupling strengths and detunings

Numerical Results

Maximum pulsation amplitude as a function of: Detuning $\Delta\omega$ / Laser spacing d

Previous Results

Ar⁺-laser pumped Nd:YAG rod

- The instability does appear in the vicinity of the stationary phase synchronization regime
- There is good agreement with the predicted parameter regime
- Only short bursts of oscillations can be observed:

 The bursting behavior is caused by strong detuning fluctuations – as shown by comparison to simulations including such fluctuations:

K.S. Thornburg, Jr., M. Mller, R. Roy, T.W. Carr, R.-D. Li, and T. Erneux, Phys. Rev. E 55, 3865 (1997)

Adjustment of control parameters:

- spacing: translation of reflecting prism RP
- detuning: tilt of output coupler

Simultaneous measurement of

- Ti:Sa Pump beam power
- Ti:Sa Pump beam spacing
- Nd:YVO₄ optical spectrum \rightarrow single mode operation?
- Nd:YVO₄ heterodyne spectrum \rightarrow detuning
- Nd:YVO₄ fringes \rightarrow degree of phase synchronization
- Nd:YVO₄ time series \rightarrow instability?
- Nd:YVO₄ near field image \rightarrow beam spacing
- Nd:YVO₄ far field image \rightarrow type of phase correlation

Unsynchronized Lasers

Near field: Sum of intensities

Far field: Gaussian

Fringes: Visibility V = 0

Synchronized Lasers

Near field: Destructive interference

Far field

Fringes: Visibility V = 1

- pulsation frequency is of the order of laser relaxation oscillation frequency
- laser pulsations are in phase
- long undisturbed intervals of pulsations can be observed

- laser pulsations are out of phase
- pulsation amplitudes alternate
- system is sensitive to detuning fluctuations

Summary

- A semimonolithic Nd:YVO₄ microchip resonator is very well suited for studying the dynamics of coupled lasers
- Different types of instabilities can be found in the vicinity of the emergence of phase synchronization of two lasers
- For the first time, a type of amplitude pulsations resembling the recently predicted 'localized synchronization' type could be observed

Outlook

- Replacement of free-space pump setup by single-mode glass fibers
- Study of larger numbers of lasers in one- and two-dimensional arrangements
- Use of laser diode(s) as pump source
- → Nd:YVO₄ microchip laser array pumped by VCSEL array

to appear in Chaos, Solitons and Fractals, forthcoming issue on 'Pattern formation in nonlinear optical systems'

Three coupled lasers

