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ABSTRACT

Optical pattern formation is studied far beyond threshold in a single-mirror feedback scheme using sodium vapor as
the nonlinear medium. Patterns with twelve fundamental wave vectors arise from hexagons in a secondary bifurcation.
Besides irregular patterns, quasipatterns and superlattices are obtained. Even after a tertiary bifurcation the patterns
remain stationary. Fourier filtering experiments show that the harmonics of the fundamental wave vectors are essential
for the stability of the secondary and tertiary patterns. A novel Fourier filtering technique is used for a measurement
of the neutral stability curve and proves experimentally the existence of multiple instability regions existing due to
the periodicity of the Talbot effect.
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1. INTRODUCTION

It is a well established fact by now that many of the inhomogeneous spatial states which emerge in the transverse
cross section of nonlinear optical systems arise from self-organization phenomena (see e.g.1,2 for recent reviews). If
applications demand a high spatial and temporal coherence of the light field, these phenomena are often annoying.
On the other hand, they present beautiful examples for the rather universal phenomenon of spontaneous pattern
formation which occurs in many spatially extended nonlinear dissipative systems in nature which are driven far away
from thermal equilibrium.3

Commonly the uniform state of a pattern forming system is unstable against periodic perturbations with a well
defined critical wave number qc and the resulting patterns are rather simple (stripes, squares, hexagons).3 More
complex behavior might arise from secondary or tertiary bifurcations of these primary patterns. The emergent states
are often time dependent and can show an irregular behavior in space and/or time. Probably best studied are the
secondary bifurcations from a stripe pattern in Rayleigh-Bénard convection (see3–5 for reviews). Systems in which the
inversion symmetry is broken display hexagonal patterns at threshold.3,4 A generic secondary bifurcation of these
hexagons involves a transition to stripes (e.g. in non-Boussinesq Rayleigh-Bénard convection6). The resulting stripe
pattern might be ideal and stationary but complex patterns irregular in space and time are also found in the transient
or as the asymptotic state (e.g.7–9). Related observations were made for a hexagon-square transition.10 In a special
class of optical pattern forming systems (Kerr slice with feedback from a single mirror11,12) also a direct transition
from a hexagonal to a ‘turbulent’ state was observed in experiments as well as in numerical simulations.12–15

In this paper we report on experimental results on pattern formation far beyond threshold in which the resulting
patterns are rather complex but remain regular in space and stationary in time. The resulting patterns have either
a high rotational symmetry and are quasiperiodic in space, or a low (six- or fourfold) rotational symmetry but a
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complex periodicity. The latter patterns are superlattices.16 Since the experiments indicate that high order instability
regions might be of importance, we implement a Fourier filtering technique for a direct measurement of the linear
instability properties of the system after the first pattern forming threshold. Optical Fourier filtering techniques open
a possibility for investigations of mechanisms of pattern formation which does not exist in non-optical system to our
knowledge. However, complex periodic patterns are not confined to optics, they are recently intensively discussed
in Faraday experiments in which two instabilities are present simultaneously.17–20 Quasiperiodic and superlattice
patterns were also observed in optical systems with broken rotational symmetry.21

2. EXPERIMENTAL SETUP AND THE OPTICAL PUMPING NONLINEARITY

The experiment (cf. Fig. 1) is based on the single feedback mirror arrangement,11,12 which is an archetypal system
for optical pattern formation (cf. the reviews1,2,22). We use sodium vapor in a buffer gas atmosphere as the nonlinear
medium (see below).

The light source is a cw ring dye laser which is stabilized in frequency and power. The beam is carefully spatially
filtered by transmitting it through a single-mode optical fiber. After the fiber, the beam is collimated (beam waist
w0 = 1.5 mm), circularly polarized and injected into a vapor cell. The use of an additional telescope consisting of two
f = 100 mm-lenses allows for a precise adjustment of the position of the beam waist which is placed at the entrance
face of the vapor. The cell contains sodium in a nitrogen buffer gas atmosphere (pressure of buffer gas 200-300 hPa).
The buffer gas provides strong homogeneous broadening, which masks both the hyperfine splitting and the Doppler
broadening of the sodium D1-line. The length of the heated interaction zone is 15 mm, typical cell temperatures are
310 to 320◦C corresponding to a sodium particle density of about 2 to 5 · 1013 cm−3. A weak longitudinal magnetic
field is applied in order to define the axis of quantization.

laserspatial filter

CCD

CCD

LP λ/4 λ/4SC M

T

d

Figure 1. Schematic experimental setup: T: telescope, LP: linear polarizer, λ/4: quarter-wave plate, SC: sodium
cell, M: feedback mirror, CCD: charge coupled camera device.

The transmitted light is fed back into the medium by a plane mirror (reflectivity R ≈ 0.92) placed at a distance
d = 45...90 mm behind the medium. A quarter-wave plate is inserted between the cell and the mirror.23 Its role
is discussed below. The intensity distributions of the near field and the far field, which corresponds to the Fourier
transform of the former, are monitored with two CCD cameras and are recorded simultaneously.

The experimental conditions are carefully chosen such that the D1-line can be described as a homogeneously
broadened J=1/2→J’=1/2-transition. A formal derivation of the model is given in24–26; here we intend only a
qualitative discussion. Fig. 2a shows a Kastler diagram of a J=1/2→J’=1/2-transition. Both the excited and the
ground state have a two-fold degeneracy. Due to angular momentum selection rules circularly polarized light (let
us assume σ+-light for definiteness) will only induce transitions from the mJ = −1/2-state of the ground state to
the mJ = 1/2-state of the excited state. However, for a sufficiently high buffer gas pressure collisions of sodium
with the buffer gas rapidly equalize the population between the Zeeman substates of the excited state, so that the
repopulation of the ground state sublevels by relaxation is isotropic. Therefore pumping with circularly polarized
light will induce a population difference or orientation between the Zeeman sublevels of the ground state.

The complex susceptibility of the vapor depends linearly on the orientation, i.e. there is nonlinear absorption
and nonlinear dispersion. The latter one usually dominates since we use detuned excitation.23,26 The origin of the
spatial instability is the fact that any spatial variation of the orientation and hence of the refractive index will cause
a phase modulation of the transmitted wave. Diffraction occurring during the propagation in free space from the
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Figure 2. a) Kastler diagram of a J=1/2→J’=1/2-transition driven by σ+-, respectively σ+-, light (represented
by the solid black, respectively the dashed grey, arrows). b) Typical marginal stability curves for a single-mirror
feedback system in a plane spanned by the modulus of the transverse wave vector and the pump rate. The closed
lines denote the situation for a negative detuning, the dashed lines for a positive one. The parameters correspond to
a typical experimental situation (cf. to Fig. 3, detuning ∆ = +3.6 GHz), see23 for the model equations).

medium to the mirror and back converts the phase modulation to amplitude modulation. This closes a feedback loop
since the orientation depends on the intensity of the reentrent light field.

The exchange between amplitude and phase-variation of a periodically modulated plane carrier wave during
propagation is known as the Talbot effect.27,28 The wave number for which this conversion is perfect at a given
propagation distance 2d will have minimal threshold. For the parameters of Fig. 2b this is the case for qc ≈ 13 mm−1

for negative detuning and for qc ≈ 23 mm−1 for positive one. If the power is increased beyond threshold, positive
gain is also possible for non-perfect feedback and a whole interval of wave numbers is unstable. This leads to the
formation of the tongue-like instability region depicted in Fig. 2b. Within this region the homogeneous state is
unstable versus a perturbation at the corresponding wave number and a macroscopic spatial pattern can develop.

Furthermore, the Talbot effect is periodic in the direction of propagation, i.e. the original phase modulation is
restored exactly at a certain distance. From there, the whole sequence of conversion to amplitude modulation starts
again. This implies that – for a given mirror distance d – also considerably higher wave number might experience
gain. This leads to the appearance of the additional instability regions depicted in Fig. 2b. For motionless atoms all
instability regions would have the same threshold, however the thermal motion of the atoms in a vapor cell leads to
a diffusive damping of higher wave numbers.11,26

If the vapor is driven by a single circular polarization component, the optical pumping nonlinearity saturates
already at rather low input intensities since the relaxation constant γ is small. It turns out that saturation inhibits
also pattern formation at high pump power, if there is no additional polarization-changing element in the feedback
loop; i.e., it causes the instability regions to close again.26,29 Hence, pattern formation far beyond threshold cannot
be investigated. ∗ The presence of the quarter-wave plate between the cell and the mirror exchanges the polarization
state from σ+ or σ− in the forward beam to σ− or σ+, respectively, in the counterpropagating beam (Fig. 1). Since
the two polarization components pump antagonistically (Fig. 2a), a complete saturation of the optical nonlinearity
is inhibited. Furthermore, a close inspection shows that the saturation even contributes positively to the pattern
formation instability in this specific polarization configuration,26 thus lowering the threshold. Therefore, the system
is very well suited for experimental investigations of pattern formation far above threshold.

3. EXPERIMENTAL RESULTS

The most important control parameters in the experiment are the input power, the detuning from the atomic
resonance and the sodium particle density. The latter is a prefactor of the susceptibility and thus parametrizes the

∗Actually, it turns out that without the quarter-wave plate the combination of saturation and diffusion even inhibits any

instability for the considered parameters26.
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Figure 3. Schematic bifurcation diagram in dependence on the detuning from the sodium-D1-line and the input
power. The boundaries are determined by increasing the power from zero in small steps for fixed detuning. Pa-
rameters: nitrogen buffer gas pressure pN2

= 200 hPa, sodium cell temperature T = 318 ◦C, distance between the
sodium cell and the feedback mirror d = 88 mm, reflectivity of the feedback mirror R = 0.915. The lines have been
added to guide the eyes and to roughly separate the regions of different patterns, which are: I homogeneous state,
II hexagons, III stripes (negative detuning), IV patterns with 12 fundamental wave vectors, V squares and stripes.
The open squares connected by a dotted line indicate the power at which hexagons give way to the homogeneous
state if the power is reduced.

strength of the nonlinearity. We vary it stepwise in the experiment. If the particle density has reached its new
equilibrium value, we perform a quasi-continuous scan of power and detuning for fixed cell temperature.

We did not determine the threshold value of the particle density for pattern formation, but for a cell temperature
of 280◦C patterns are already formed. Since hexagons are the generic patterns at threshold for systems in which the
inversion symmetry is broken, hexagons occur. For low particle density, hexagons are the only pattern observed. If
the particle density is increased, the complexity of the bifurcation diagram increases: For about 300◦ a secondary
bifurcation of hexagons to stripes occurs, if the laser power is increased beyond the first threshold. The bifurcation
diagram for 318◦C is depicted in Fig. 3. The parameter space can roughly be divided into five regions.

For increasing input power the homogeneous state (region I) bifurcates to hexagonal patterns (region II). This
bifurcation takes place for both signs of detuning. The minimal threshold is about 17 mW for negative detuning
and 30 mW for positive detuning. The asymmetry in the first threshold between the two sides of the resonance is
explained by the fact that the wave number and therefore the damping by diffusion is higher (cf. to Fig. 2b, also23).

If the power is increased from zero for zero detuning, one does not encounter patterns up to the highest power
level experimentally accessible. However, patterns persist even at resonance, if the detuning is reduced to zero at
fixed power after the threshold for pattern formation was crossed for a high value of the detuning. The values of
power were they vanish, if the power is reduced again, is denoted in Fig. 3 by the open squares connected by the
dotted line. This demonstrates that there is a rather extended region with bistability between the homogeneous state
and hexagons in the vicinity of the resonance, i.e. the bifurcation is clearly subcritical.

The rather low value of the threshold enables one to perform investigations up to twelve, respectively six (de-
pending on the sign of detuning), times the threshold power. For negative detuning only a secondary bifurcation to
stripes occurs (region III).

For positive detuning the behavior is more complex. In the region of parameter space denoted by IV in Fig. 3
patterns consisting of twelve wave vectors with the same or nearly the same wave number emerge in a secondary
bifurcation of hexagons. Depending on the exact configuration of wave vectors the resulting patterns might be
irregular, quasiperiodic or complex periodic (superlattices). At the maximum input power (in region V) there is



Figure 4. Experimentally observed near field intensity distributions (a, d, g), contrast enhanced near field image
after binary thresholding (b, e, h) and far field intensity distribution of quasipatterns (c, f, i) for constant parameters.
The image on the right (j) shows a numerically generated ideal quasipattern after binary thresholding. Parameters:
pN2

= 200 hPa, T = 281 ◦C (but L = 40 mm), ∆ = +4.1 GHz, d = 97 mm, P0 = 47 mW.

another transition to patterns which are ‘simple periodic’ again. We observe square and stripe patterns. Their
modulation depth is very high and the transition between bright and dark regions very abrupt. Correspondingly,
the far field images show a strong excitation of harmonics. It can be noted that – though the system has undergone
already a quite complicated sequence of bifurcations – the patterns are still stationary and this last (within the
experimentally accessible range of power) bifurcation lowers the apparent spatial complexity again.

As already mentioned the common characteristic of the patterns in region IV is that they consist of twelve
fundamental wave vectors of nearly the same wave number. Which of these patterns dominates in specific parts of
region IV depends on other parameters, e.g. the mirror distance. Furthermore, there is the possibility of multistability.
A detailed characterization has to be left to a future paper.

In a typical scenario a first transition occurs from hexagons to patterns in which the wave numbers of the twelve
wave vectors and the angle between neighboring wave vectors are the same within the experimental resolution.30

This implies a 12fold rotational symmetry. The far field images are displayed in the third column of Fig. 4. From
theoretical considerations it is known that a rotational symmetry higher than six is incompatible with translational
symmetry, the corresponding pattern in real space is a quasiperiodic pattern (e.g.31). An example is depicted in
Fig. 4j which was obtained by superimposing numerically six cosine waves of the same amplitude and phase at a
mutual angle of 30◦. Binary thresholding was applied to emphasize the main features. Locally, there is a rather high
degree of order and one can identify certain features which appear again and again in the pattern (some prominent
ones are highlighted in the image). However, there is no long-range order or periodicity.

In the experiment we observe different near field patterns for constant parameters (and the same far field image)
which appear to be rather irregular (first column of Fig. 4). However, comparing contrast enhanced versions of these
patterns (second column of Fig. 4) with the ideal quasipattern in Fig. 4j, one realizes that the experimentally observed
images are parts of a spatially extended quasipattern: The four-fold structure in Fig. 4b appears, for example, close
to the upper right of the center, the pentagon surrounded by a twelve-fold ring (Fig. 4e) just below the center, and
the three-fold cross (Fig. 4h) in the upper left part of Fig. 4j. The corresponding structures are emphasized to guide
the eye in Fig. 4j.

In the more general case, the wave number and the angles between the wave vectors are not necessarily equal
but show small deviations from each other. A rather complicated situation is depicted in Fig. 5 which corresponds
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Figure 5. Wave number of modes in Fourier space in dependence on input power. For each input power about 20
images were analyzed. Single dots denote the wave number of one single mode, the crosses are obtained by averaging
over all wave numbers. Note that the large spread is due to the fact that several patterns with different wave numbers
coexist typically for the same power for these parameters. Parameters as in Fig. 3, ∆ = 3.6 GHz.

approximately to the detuning with the minimal threshold in Fig. 3. The figure shows a kind of diagram in the
space spanned by the transverse wave number and power, in which each of the small dots represents the modulus
of a single fundamental wave vector of about 20 images which were acquired and analyzed for each power level. It
is obvious that the spread in wave number increases with increasing power. The maximum ratio between the lowest
and the highest wave number observed occurs at 190 mW and amounts to about 1.2. This spread in wave number
probably reflects the fact that intervals of wave numbers with increasing width become linearly unstable after the
first threshold is crossed (cf. Fig. 2b), i.e. there are more degrees of freedom available for pattern formation. At the
same time the average wave number decreases. The interpretation of this observation is unclear in the present stage
of investigation.

The observation that the distribution of the observed wave numbers in Fig. 5 appears to be more or less dense
indicates that different kinds of patterns with different configurations of wave vectors coexist at the same power level.
Indeed, in many patterns there is no apparent regularity in the deviations from the 12-fold arrangements. These do
not have a regularity in real space, either, and we are not aware of any tools to provide a further characterization.
However, the twelve wave vectors can also rearrange such that they lie again on a lattice in Fourier space. The
modulus of the wave vectors spanning this lattice – i.e. the wave vectors of the reciprocal grid – is much smaller than
the wave number of the fundamental wave vectors. This is the fingerprint of a superlattice. We observe two kinds of
superlattices. One of them is based on a four-fold symmetry in Fourier space, the other on a six-fold symmetry. A
detailed characterization and discussion of these superlattices will be provided in a forthcoming paper.

4. FOURIER FILTERING

4.1. Modification of Experimental Setup

A close inspection of the far field images in Fig. 4 reveals that harmonics of the fundamental wave vectors are excited.
In order to investigate the relevance of these harmonics in the stabilization of the complex patterns, we set up a Fourier
filtering experiment. Wave number-selective feedback was suggested32 and experimentally demonstrated15,33–36 to
be a very powerful tool for stabilizing and tracking unstable states. Furthermore it was demonstrated that it can be
used to investigate and validate scenarios of pattern formation which are difficult to access otherwise.34,35

A telescope in a 4f -setup consisting of AR-coated, plano-convex, f = 100 mm-lenses is inserted in the feedback
loop (Fig. 6). An iris is placed in the focal plane between the lenses at which the Fourier transform of the optical
field is accessible.



Figure 6. Modified setup with a 1:1 telescope focused to infinity inserted in the feedback loop.

4.2. Experimental Results: Fourier Filtering of Complex Patterns

The filtering operation is illustrated for twelvefold quasipatterns in Fig. 7. If the aperture is open, the pattern is not
affected (Fig. 7a,g). It survives also if an aperture with a sufficiently large radius is introduced (Fig. 7b,h), but gives
way to a hexagonal pattern if the cut-off frequency is decreased to about two times the fundamental wave vector.
The subfigures i and j of Fig. 7 were taken at the same radius of the aperture, one shows quasipatterns, the other
hexagons. There is a slight increase in wave number (about 1%) if the hexagon forms. Obviously, the harmonics
formed by addition of two neighboring wave vectors on the intersection of the angle start to ‘feel’ the iris due to
their finite width (They are positioned at q3 = 2 cos (π/12)q0 ≈ 1.93q0.). If the radius of the aperture is reduced
further, hexagons are still stable (Fig. 7e,k and Fig. 7f,l). This observation demonstrates clearly that harmonics are
not necessary for the stabilization of hexagons.

a) b) c) d) e) f)

g) h) i) j) k) l)

Figure 7. Sequence of images demonstrating the destabilization of quasipatterns if the cut-off frequency of a low-
pass filter in Fourier space is reduced. Upper row: near field intensity distributions (size 4.44 mm × 4.44 mm); lower
row: far field intensity distributions (qmax = 76.9 mm−1). Parameters: pN2

= 200 hPa, T = 318 ◦C, ∆ = +5 GHz,
d = 87 mm, P0 = 70 mW. The cut-off wave number is indicated in the far field images by the white circle. Its ratio
compared to the wave number of the unperturbed wave number q0 (in image g) is in g) ∞, h) 2.57, i) 2.02, j) 2.02,
k) 1.94, l) 1.02.

In a very similar way, the superlattices give way to hexagons if the iris is closed far enough to suppress the Fourier
components at approximately 2q0. This indicates a stabilization mechanism of the complex periodic patterns via
higher harmonics. Also for the patterns in region V in Fig. 3, a suppression of the higher harmonics in a Fourier
filtering experiment results in the formation of hexagonal patterns.

4.3. Measurement of Instability Regions

Since the analysis of Fig. 5 indicates that the width of the fundamental instability region might be of importance for
the process of pattern selection, the question arises whether the width of the first instability region can be determined
experimentally. Furthermore, the positions of the minima of the dashed instability regions depicted in Fig. 2 suggest
that the importance of the harmonics of the fundamental modes revealed in the filtering experiment in Fig. 7 might



be due to a near-resonance of the harmonics with the third instability region. This motivates the search for an
experimental method to determine also threshold, shape and width of the high order instability regions. In general,
this is difficult since Fig. 10b represents the growth rate of an inhomogeneous perturbation from the homogeneous
state. After the first threshold, however, a pattern already developed and one cannot isolate a growth rate from a
homogeneous state anymore. Obviously, one has to confine the dynamics to wave vectors with a single wave number.
Furthermore it appears to be beneficial to suppress the possibility of bistability or other cooperative dynamics by
selecting a single wave vector (and its complex conjugate). This means that one has to develop a filter to select a
single stripe pattern with arbitrary wave number. †

Fig. 8 illustrates the steps in the filter design. The upper row displays the schematics of the filter, the middle row
the resulting pattern in near field and the lower row the corresponding wave vectors in Fourier space. The left column
shows the situation without filtering, for which hexagons are stable for the parameters chosen. By introducing a slit
stripes can be stabilized (second column to the left in Fig. 8). This result is well known.15,34,35 Since the far field
spots can be considered to arise from the diffraction of the input field at a stationary refractive index grating in the
medium,22 any wave vector appearing in the observed patterns is accompanied by its complex conjugate. Therefore
it is sufficient to do the filtering with a half-plane and still a stripe pattern is selected (second column to the right in
Fig. 8). However, its wave vector still corresponds to the minimum qc of the instability region. The magnitude of the
wave vector can be controlled, if an additional band pass filter is introduced. By this means, one can obtain stripe
patterns of arbitrary wave number (as long as the underlying wave number becomes linear unstable for some power
level). This result is demonstrated in the rightmost column of Fig. 8. The wave number of the evolving Fourier
modes is considerably higher and the period of the stripes in real space shorter than without the band pass.

a) b) c) d)

e) f) g) h)

i) j) k) l)

Figure 8. Sequence of images demonstrating the method used to select stripe patterns with a chosen wave number.
Upper row: filtering aperture, black denotes opaque parts, white transparent; middle row: near field intensity
distributions; lower row: far field intensity distributions. Parameters: pN2

= 309 hPa, T = 311.4◦ C, ∆ = +8 GHz,
d = 77 mm, e) P0 = 160 mW, f) P0 = 50 mW, g) P0 = 45 mW, h) P0 = 187 mW.

In the experiment, the half-plane was implemented by a blade and the band-pass by wires. Different diameters
of wires have to be used in order to be able to change the wave number over all the interesting area up to about

†If the goal of the experiment is not only to check for the instability of the homogeneous state but also to determine the

true stripe solution, one has to allow also for the harmonics to pass.



55 mm−1. For higher wave numbers the available laser power is not sufficient to induce an instability. The lowest
instability region is depicted in Fig. 9. It has the typical nearly parabolic shape expected from the linear stability
analysis and its minimal threshold agrees to the one of the hexagons in the system without a filter.

Within the accessible range we obtain three instability regions. Their thresholds increase with increasing wave
number. All these features are in very good qualitative agreement with the prediction of Fig. 2b. However, a
close comparison reveals quantitative differences. The results show that in tendency the damping is higher in the
experiment than predicted by the linear stability analysis. Numerical simulations show that this discrepancy can be
traced back to the fact that in the experiment a Gaussian beam is used whereas the linear stability analysis assumes
an infinite homogeneous state. Detailed experimental and theoretical results will be presented in a forth-coming
paper, if a semi-analytical analysis of finite-size effects is accomplished.
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Figure 9. Threshold in dependence on wave number for the first instability region. Parameters: pN2
= 306 hPa,

T = 316◦ C, ∆ = +5.4 GHz, d = 77 mm, R = 0.99.

The experiments show that the third instability region is still damped if the secondary bifurcation to the patterns
with twelve wave vector occurs. The threshold of the third region, however, corresponds nicely to the threshold for
the formation of the stripes and squares (region V), i.e. they seem to form if the third region becomes active. We did
not see a correspondence between the threshold for the second region and any bifurcation in the unfiltered system.
This might be due to the fact that the second region does not participate in resonant interactions.

5. INTERPRETATION

In this Subsection, we want to convey the idea, why the stability of these structures might depend on the presence
of their harmonics. Pattern selection beyond threshold is usually described by amplitude equations for the complex
amplitudes Ai of the involved Fourier modes with wave vectors qi (|qi| = q0

‡ ). If the nonlinearities provide
saturation already at cubic order, the amplitude equation for the mode 1 is given by4,31,37

∂A1

∂t
= µA1 +

∑

i,j

ηA?
i A

?
j δ(q1 + qi + qj) − γA1|A1|

2 + A1

N∑

i=2

ζ(αi)|Ai|
2. (1)

The equations for the other modes are obtained by proper permutations of the indices. The linear term describes the
linear growth of a single mode from the homogeneous state. The quadratic terms result in a resonant wave vector
interaction (hexagonal triad) that is responsible for the formation of hexagons.4 The two last terms describe self-
and cross-saturation in cubic order. The cross-saturating term depends on the angle αi between the wave vector of
the mode i and the one of mode 1. Fig. 10a illustrates the wave vector coupling leading to the cross-saturation of
the mode q1 by the mode q2. It involves the harmonics Q2 = q1 + q2 or Q1 = q1 − q2 as intermediate states.
The measurement of the threshold of the high order instability regions discussed in the previous Subsection showed
that the harmonics of the quasipatterns are still passive, i.e. their growth rate is smaller than zero. Thus their
amplitude dynamics can be adiabatically eliminated. This justifies also the restriction to equations of motion for

‡Due to this limitation to equal wave numbers we have to confine to the discussion of quasipatterns for the moment. For

the superlattices with different wave numbers the usual theory needs to be extended. However, the physical mechanism is

expected to remain the same.



the fundamental modes assumed in Eq. (1). Under these conditions it turns out that the linear growth coefficient
for each of these harmonics enters the expression for the cross-coupling coefficient in the denominator (e.g.38). This
means that the cross-coupling coefficient depends on the angle α between the two modes since the modulus of the
harmonics and thus the growth rate depends on α. If the wave number of the harmonics is only weakly damped,
the coupling can be resonantly enhanced. This is reminiscent of the relevance of virtual levels for multi-photon
processes in conventional nonlinear optics. Fig. 10b shows that this situation is encountered in the system under
investigation if the angle between the wave vectors is 30◦, i.e. for a 12fold quasipattern. In that case the harmonics are
nearly resonant with the third instability region. Due to the resonance-like dependence this might have considerable
consequences even if the harmonics are still passive.
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Figure 10. a) Wave vector diagram illustrating the wave vector coupling leading to cross-saturation of the mode
q1 by the mode q2. b) Growth rate for Fourier modes with a wave vector (qx, qy) determined from a linear stability
analysis of the homogeneous state at threshold. The coding is in a linear grey level scale with white denoting zero (i.e.
maximum) growth rate. The wave vector diagram illustrates that the harmonics of two fundamental wave vectors
of a 12fold quasipattern are resonant with a local maximum of the linear growth rate. Parameters: pN2

= 200 hPa,
T = 317 ◦C, ∆ = +3.6 GHz, d = 88 mm, P0 = 51 mW.

This qualitative reasoning has to be put on firm mathematical ground, of course, by calculating the coefficients
of the amplitude equations by a nonlinear stability analysis. For the system without the quarter wave-plate (and
a simplified description of the atomic diffusion) Le Berre et al. predicted the appearance of 12fold quasipatterns at
threshold for low diffusion rates and negative detuning.37 Since the quarter-wave plate compensates – at least in
the limit of no absorption and no diffusion – the exchange of wave numbers taking place if the sign of detuning
changes,23,26,39 the instability regions considered by Le Berre el al. are essentially the ones which are also relevant in
our experiment. Therefore a modification of their calculations might explain the secondary bifurcation from hexagons
to quasipatterns in our system, too. The fact that passive high order instability regions existing in optical systems
are beneficial for obtaining quasipatterns was noticed before.37,40,41 Also the stabilization of superlattices (with
only one wave vector) was related to passive higher harmonics in a recent paper.38

6. INFLUENCE OF WAVEFRONT CURVATURE

In the beginning of the experiments the beam parameters of the input beam were determined only by the outcoupling
lens of the optical fiber used as spatial filter. In this setup it was sometimes difficult to reproduce details of the
bifurcation diagram, e.g. the formation of squares. The insertion of the additional telescope (cf. Section 2) gave the
necessary degrees of freedom for a fine adjustment of the position of the beam waist. It turns out that one has to
control the position of the waist on the level of about 30 cm in order to achieve reproducible results. §

We performed preliminary experiments in which the input beam was adjusted to be slightly convergent or diver-
gent on purpose. We observe quantitative corrections compared to the situation of best collimation, e.g. the width

§This positioning accuracy has to be compared with the Rayleigh length of the beam which is about 11 m.



in detuning space of the region IV with secondary patterns changes. Qualitatively new features also exist, e.g. a new
superlattice on a rhombic grid appears for a slightly diverging beam. This indicates that the wavefront curvature of
the input beam is an important parameter one has to control in experiments.

7. CONCLUSION

In conclusion, we observed the formation of stationary patterns in a secondary bifurcation from hexagons and even
in a tertiary bifurcation. In the secondary bifurcation typically patterns built from 12 wave vectors of equal or
slightly unequal length occur. Fourier filtering experiments established that the harmonics are important for their
stabilization. The existence of multiple instability regions was also directly demonstrated by using a band-pass filter
in Fourier space.

Furthermore, a detailed analysis of the experiments indicates that finite-size and wavefront curvature effects have
even to be taken into account if the structures display rather well defined peaks in Fourier space. Corresponding
investigations are under way.
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