Handout IRTG-4, May 27 2009

- Jan Reedijk. Leiden Institute of Chemistry
- Slide copies (selection), stored as pdf; allowed for private use only.
- From Structural Biomimetics to Functional Catalysts

Bifunctionality in ligands and coordination compounds: application in design of new materials, catalysts and drugs.

IRTG: Spring 2009, Münster

Jan Reedijk Leiden Institute of Chemistry, Gorlaeus laboratories, Leiden University, The Netherlands.

Lectures overview

- 1a. Introduction Ligands (general)
- 1b. Introduction Bifunctionality
- 2. Introduction Metal-DNA binding and anticancer drugs, followed by: Bifunctionality in M-DNA binding
- 3. Bifunctionality in Molecular Materials
- 4. Bifunctionality Homogeneous Catalysis
- Conclusions and Outlook

Lecture Content

- · Introduction group and biomimetics
- Introduction Cu proteins
- Biomimetic Oxidations with Cu compounds
- Other metals and other oxidations: Paint Drying alternatives
- · Concluding remarks

Why interest in Biomimetics? 1. Better Understanding

- a) speculative (protein structure unknown)
- b) corroborative (when structures are available for proteins)

2. Application in mind

- a) Metal transport (in vivo; waste water)
- b) Metal catalysis

Approach:

- 1. Design and synthesis
- 2. Structure and characterisation
- 3. Tests in applications (functionality)

5

Molecular roles of metal ions in living systems

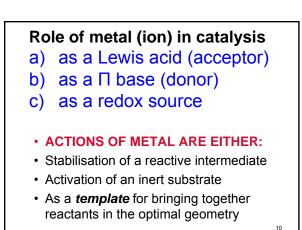
Also often called "biocoordination chemistry"

 Understanding the role of metal ions in living systems (toxic and beneficial).
 Application of knowledge of effects of metal ions (and compounds) in living systems.

Definition Bioinorganic Chemistry:

 A branch of science dealing with the study of the role and effect of metal ions and metal compounds in "living" systems.

Characteristics


- Proteins: Many contain metals or need metals
- Enzymes: Over 40% has a metal at the active site; at least another 25% require a metal ion for activation and operation

Definitions and descriptions:

· Catalysis:

The process in which a specific reaction occurs for a certain (selectively chosen) (group of) compound(s), according to a mechanism in which a unique site is involved. This site can be used repetitively.

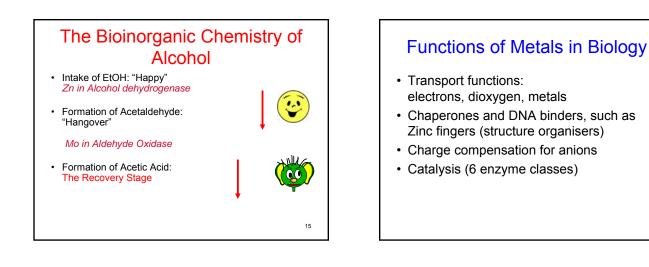
• (bio-)Catalyst: A compound (a system) that allows a certain specific reaction to take place repetitively, selectively, and efficiently.

Important reactions in biology with small molecules 1. Photosynthesis H₂O ---> O₂ 2. Cytochrome oxidase O₂ ---> H₂O 3. Nitrogenase N₂ ---> 2 NH₃ 4. Superoxide dismutase 2 O₂* ----> H₂O₂ + O₂ 5. Catalase 2 H₂O₂ ----> 2 H₂O + O₂ 6. Methane monooxygenase CH₄ ----> CH₃OH

11

 $\begin{aligned} & \textbf{Fast and specific biocatalytic ceactions} \\ \textbf{ceactions} \end{aligned}$ $\textbf{catalase (Fe containing heme)} \\ & \textbf{H}_2 \textbf{O}_2 \longrightarrow \textbf{O}_2 + \textbf{H}_2 \textbf{O} \ [2x10^6/sec] \end{aligned}$ $\textbf{superoxide Dismutase (Cu containing)} \\ & \textbf{O}_2^{-} \longrightarrow \textbf{H}_2 \textbf{O}_2 + \textbf{O}_2 \ [2x10^9/sec] \end{aligned}$

For a difficult Job Nature uses Metal Ions!!


For a VERY difficult Job, Nature uses CLUSTERS of metal Ions!

Metalloproteins, enzymes, mimics

- Selection of short examples: Zn, Fe,Mn
- Major example: Copper proteins
- Transport: electron and dioxygen
- Catalysis with Cu and Mn biomimetics

14

16

13

Metals & applications in Biology

- Structure organiser (Ca; Zn; Zn finger)
- Catalyst (Mn, Co, Fe, Zn, Cu, Mo, V)
- Drug (Au, Pt, Bi, Li, Ag)
- Diagnostic (signal from metal: Tc, Gd)
- Analytical reagent (probe; Os, Pt)
- Transporter of electrons (Cu, Fe)
- Transporter of ligands, like dioxygen

17

Reactivity and ligand exchange reactions

Kinetics versus Thermodynamics

Kinetics and Thermodynamics are influenced by:

- a) metal ion (intrinsic property)
- b) ligand (strength, covalency, steric bulk)
- c) (macro-)chelate effect
- d) solvent assistance

Mechanistic discriminations (associative, dissociative, intermediate mechanisms).

Metalloproteins and metalloenzymes

- Proteins: Transport, storage (metals, electrons) myoglobin, azurin, cytochromes, ferritin
- Enzymes: Catalytic reactions
- P-450, ascorbate oxidase, catalase
 - Co-enzyme: Agent that actives an enzyme - Apo-enzyme: Enzyme without a metal (usually
 - inactive) – Pro-enzym: Inactive enzyme, lacking the activator
 - Synzyme: Biomimetic product micking the enzyme (structure, activity)

20

22

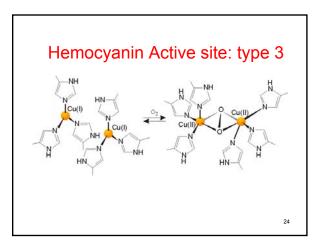
Biomimetic Copper Chemistry

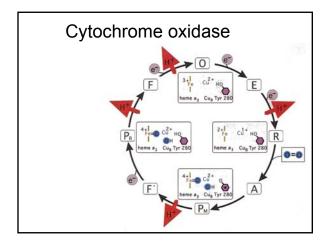
- Copper proteins (introduction)
- Why biomimetics studied?
- · Reactions with dioxygen species
- Example of stable dioxygen adducts with dinuclear Cu sites and catalytic oxidation reactions
- Applications in Oxidations

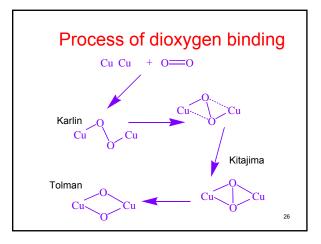
21

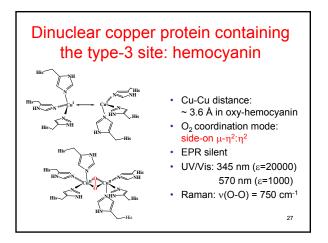
19

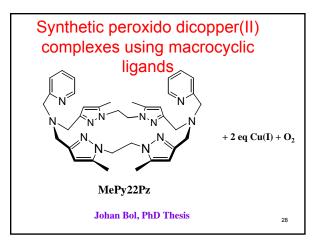
Copper Protein Examples Spectroscopic Classification Type 1: Blue; unusual EPR Type 2: Normal spectroscopy Type 3: Dinuclear; EPR silent Type A: Dinuclear Blue (purple) Type B: Mixed Fe-Cu

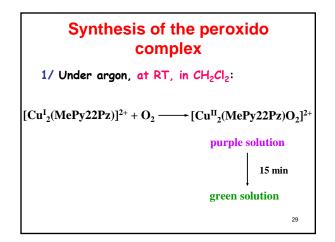

Type Z: Tetranuclear

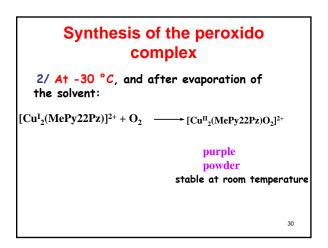

Type 4: Mixtures of types 1,2,3,A

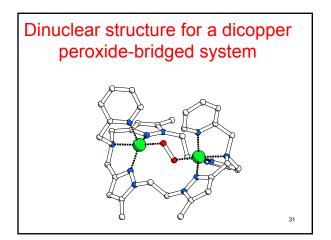

Common features in Cu redox proteins

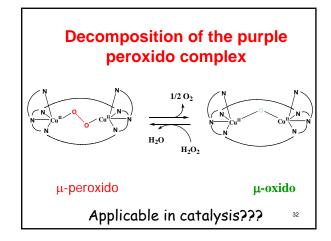

- All Cu ions have at least an imidazole ligand (from Histidine).
- Many have 2 or 3 imidazole ligands
- · In SOD Cu has 4 imidazole ligands
- Note: Non-redox Cu proteins have NO imidazole ligands (Thioneines)

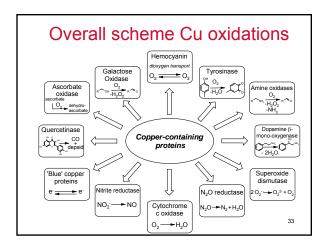

23

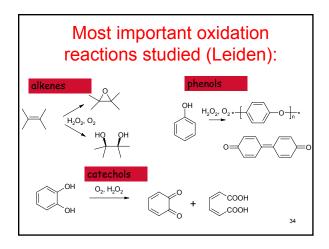


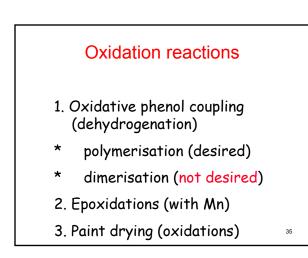


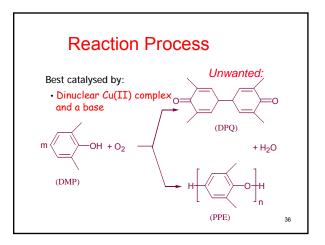












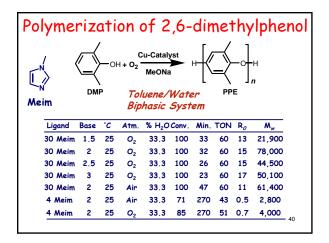
Why research on the oxidative coupling of DMP?

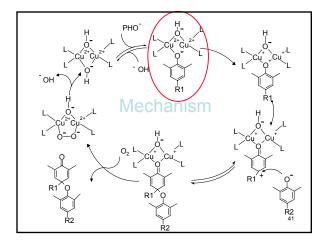
- Oxidative coupling of DMP (2,6-dimethylphenol) produces a high-performance thermoplast.
- It can provide a better understanding in type III copper proteins used in dioxygen metabolism.

37

39

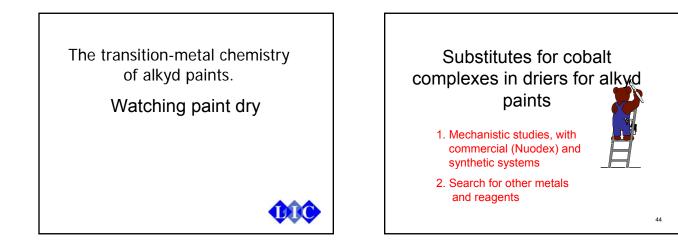
Findings in Oxidative Coupling

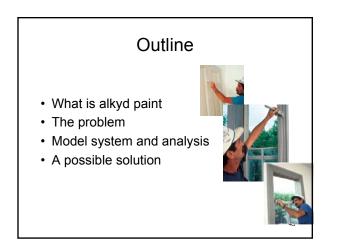

- Cu(II) complexes of ligands with N-donor atoms are best catalysts.
- · Basicity of the ligand increases activity .
- · Bulkiness of the ligand increases activity.
- Dualistic character of water: some needed; too much water poisons the catalyst.
- Standard ligand N-methylimidazole (Nmiz).
- Preferred solvent: acetonitrile.

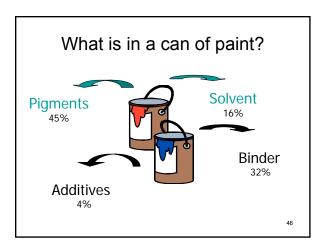

Major recent mechanistic findings (Aubel, Boldron, Gamez)

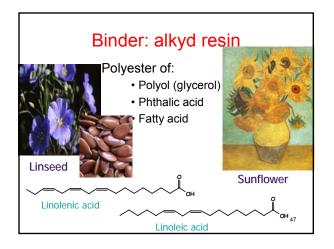
1. Dinuclear catalytic species most likely: second order kinetics in Cu; first order in Cu for preformed dinuclear species

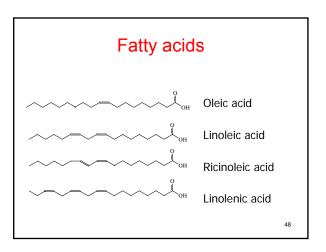
2. Two-electron transfer reactions and phenoxonium species most likely.

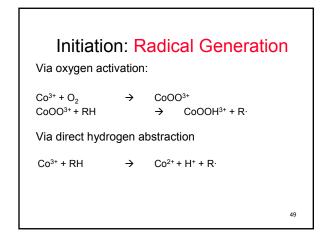

3. Reoxidation with dioxygen is rate limiting

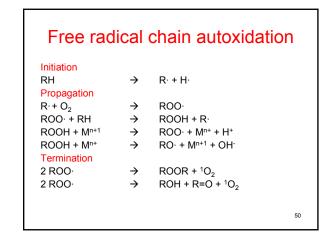


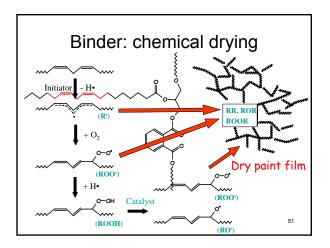


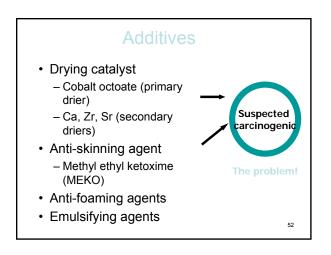

Outlook Phenol Coupling

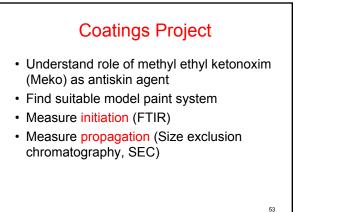

- · Ligands: More dinucleating ligands
- Solvents: Mixtures; biphasic; water role
- Reoxidation mechanism from Cu(I)
- · Chain growth and rearrangements
- Other metal ions: Fe, Mn
- Other alcoholic substrates

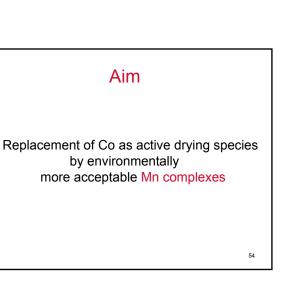


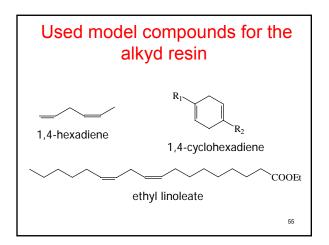


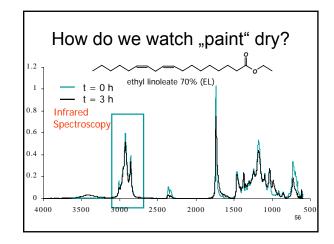


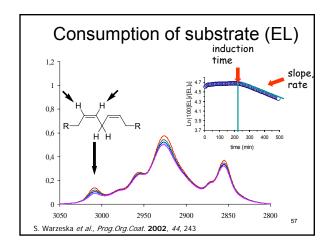


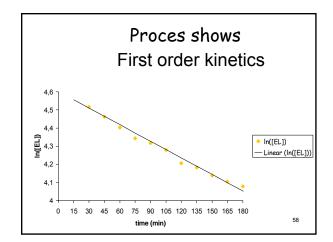


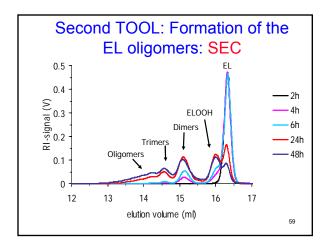


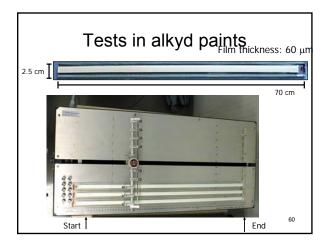


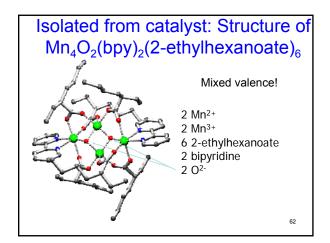


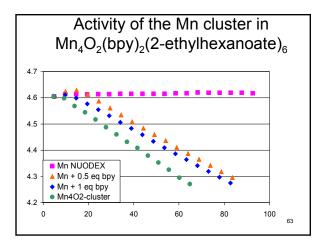


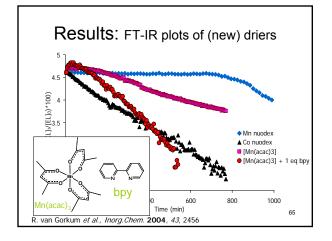


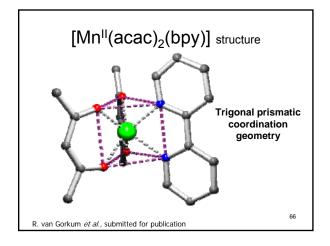


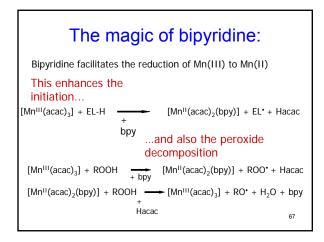


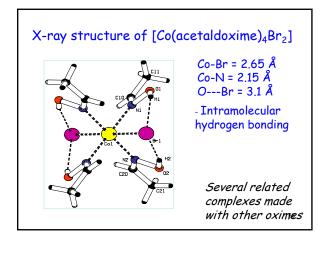


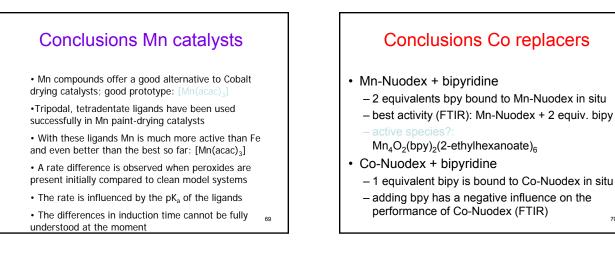





Example Uralac AD 152 WS-40 from DSM					
	drying by hand on glass 60 µm		drying time Braive recorder, 76 μm at 23 °C and 50% relative humidity		
drier	s.d	t.d	stage a	stage b	stage c
Co-Ca-Sr	1.45	2.15	1.15	2.15	6.45
Mn-Ca-Zr	> 6.00	-	1.30	12.30	16.00
Mn-bipy	3.00	> 6.00	1.30	6.30	10.00
Mn(acac) ₃	2.00	2.30	1.15	2.15	4.00
R. van Gorkum <i>et al.</i> EP1382648 A1, 2004					61







Fundamental Chemist: It is a pity that this reaction does not run; fortunately, I do know why!

Applied Chemist:

It is a pity that we do not know why this catalyst works; however, it runs with a good yield.

71

Concluding Remarks and Outlook

- Ligands are THE tool for all coordination chemist whether making materials or catalysts or drugs.
- Fine tuning applications of coordination compounds, requires always also DESIGN & FINETUNING of the ligands

72

70