Academics at the Department of Biology

Wissenschaftlicher Werdegang
1997 – 2002 Studium der Biologie, Hauptfächer Genetik, Mikrobiologie, Virologie, Biochemie, Philipps Universität Marburg
2002 – 2005 Promotion zum Dr. rer. nat., Max-Planck-Institut für Züchtungsforschung, Köln
2005 – 2006 Postdoctoral Fellow, Max-Planck-Institut für Züchtungsforschung, Köln
2006 – 2011 Postdoctoral Fellow, University of California, San Diego, USA
2011 Leiter einer selbständigen Nachwuchsgruppe, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster

Lehrschwerpunkte
* Gentechnik bei Pflanzen
* Pflanzenphysiologie
* Molekulargenetik und Molekularbiologie

Forschungsschwerpunkte
* Signaltransduktion: Mechanismen zur Regulation von Kinasen in der Trockenstressantwort
* Molekulare Pflanzenphysiologie: Anpassungsreaktionen an abiotischen Stress
* Genregulation: Transkriptionelle Regulation der Samenkeimung
* Proteomics und Metabolomics: Phosphoregulation und Metbolomänderungen von Pflanzen unter Mikrogravitationsbedingungen

Ausgewählte Projekte
Plant signaling in response to drought stress
Plants are sessile organisms that are unable to escape stress situation. They have developed strategies to adapt to a variety of abiotic and biotic stresses. These adaptation mechanisms are regulated by intricate regulatory kinase and phosphatase networks. The focus of this topic is on drought stress adaptation. The plant hormone Abscisic acid (ABA) is the major drought regulator in plants and controls a variety of adaptation mechanisms, including stomatal regulation and seed germination. We aim to identify the phosphorylation and transcriptional events that regulate these adaptation mechanisms.
As a model system we use the mustard weed Arabidopsis thaliana and the close relative of tobacco, Nicotiana benthamiana. Techniques commonly used in the lab include reverse genetics, transcriptomics and proteomics. High throughput proteomic and phosphoproteomic technologies have opened exciting new avenues for exploring plant stress responses, providing us with a global view of cellular protein abundance changes and posttranslational regulation in response to drought and other abiotic stresses.

MAMP signaling in guard cells
Stomata constitute a natural entry site for potentially harmful microbes, including bacteria, oomycetes, and fungi. To prevent microbial invasion, stomata close upon perception of microbe-associated molecular patterns (MAMPs) and this represents an important layer of active immunity at the pre-invasive level. The signaling pathways leading to stomatal closure triggered by biotic and abiotic stresses employ several common components like reactive oxygen species (ROS), calcium, kinases and hormones, suggesting considerable intersection between MAMP- and ABA-induced stomatal closures. We have identified new components in the pathways employed by bacterial pathogens to prevent MAMP-induced stomatal closure.

Transcriptional regulation of seed germination
Overexpression of transcription factors provides a useful tool for the analysis of their role in ABA response pathways. Our objective was to identify negative transcriptional regulators of ABA inhibition of seed germination. We screened a population of transgenic A. thaliana plants expressing transcription factor cDNAs under control of the constitutive CamV35S promoter for impairment in ABA-inhibition of seed germination. We identified 22 lines that are insensitive to ABA. Some of the TF lines we identified show a relocalization from nuclear speckles to the nucleoplasm upon ABA treatment.

Ausgewählte Kooperationen
Prof. Dr. Julian Schroeder, UC San Diego, USA
Prof. Dr. Wolfram Weckwerth, Uni Wien, Österreich
Prof. Dr. Karin Schumacher, Uni Heidelberg
PD Dr. Ruth Hemmersbach, DLR Köln
Dr. Imre Somssich, MPIZ Köln
Dr. Jürgen Schmidt, MPIZ Köln

Publications

  • Pandey Girdhar Kumar, Pandey Amita, Prasad Manoj, Böhmer Maik. . ‘Abiotic Stress Signaling in Plants: Functional Genomic Intervention.’ Frontiers in Plant Science 7. doi: 10.3389/fpls.2016.00681.
  • Böhmer Maik. . ‘Investigation of plant abiotic stress tolerance by proteomics and phosphoproteomics.’ In Elucidation of Abiotic Stress Signaling in Plants: A Functional Genomic Perspective, edited by Girdhar K. Pandey, 75-92. 1st Ed. Springer.
  • Geilen Katja, Böhmer Maik. . ‘Dynamic subnuclear relocalization of WRKY40 in response to Abscisic acid in Arabidopsis thaliana.’ Scientific Reports 5: 13369.
  • Hu Honghong, Rappel Wouter-Jan, Occhipinti Rossana, Ries Amber, Böhmer Maik, You Lei, Xiao Chuanlei, Engineer Cawas B., Boron Walter F., Schroeder Julian I. . ‘Distinct Cellular Locations of Carbonic Anhydrases Mediate CO2 Control of Stomatal Movements.’ Plant Physiology 169, No. 2: 1168-1178. doi: 10.1104/pp.15.00646.
  • Schüler O, Krause L, Görög M, Hauslage J, Kesseler L, Böhmer M, Hemmersbach R. . ‘ARADISH - Development of a Standardized Plant Growth Chamber for Experiments in Gravitational Biology Using Ground Based Facilities.’ Microgravity - Science and Technology in press. [In Press]
  • Geilen Katja Böhmer Maik. . ‘Dynamic subnuclear relocalization of WRKY40, a potential new mechanism of ABA-dependent transcription factor regulation.’ Plant Signaling & Behavior 10, No. 11.
  • Schüler Oliver, Hemmersbach Ruth, Böhmer Maik. . ‘A bird’s-eye view of molecular changes in plant gravitropism using omics techniques.’ Frontiers in Plant Science 6, No. 1176. doi: 10.3389/fpls.2015.01176.
  • Sawinski K, Mersmann S, Robatzek S, Böhmer M. . ‘Guarding the green: Pathways to stomatal immunity.’ Molecular Plant Microbe Interactions 26, No. 6: 626-632. doi: 10.1094/MPMI-12-12-0288-CR.
  • Berendzen, K.W., Böhmer, M., Wallmeroth, N., Peter, S., Vesic, M., Zhou, Y., Tiesler, F.K., Schleifenbaum, F., and Harter, K. . ‘Screening for in planta protein-protein interactions combining bimolecular fluorescence complementation with flow cytometry.’ Plant Methods 2012, No. 8: 25. doi: 10.1186/1746-4811-8-25.
  • Böhmer M, Bölker M, Romeis T. . ‘Chemical genetic analysis of protein kinase function in plants.Methods in molecular biology (Clifton, N.J.) 779: 259-71. doi: 10.1007/978-1-61779-264-9_15.
  • Böhmer M, Schroeder JI. . ‘Quantitative transcriptomic analysis of abscisic acid-induced and reactive oxygen species-dependent expression changes and proteomic profiling in Arabidopsis suspension cells.The Plant Journal 67, No. 1: 105-18. doi: 10.1111/j.1365-313X.2011.04579.x.
  • Kim TH, Hauser F, Ha T, Xue S, Böhmer M, Nishimura N, Munemasa S, Hubbard K, Peine N, Lee BH, Lee S, Robert N, Parker JE, Schroeder JI. . ‘Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway.Current biology : CB 21, No. 11: 990-7. doi: 10.1016/j.cub.2011.04.045.
  • Kim TH, Böhmer M, Hu H, Nishimura N, Schroeder JI. . ‘Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling.Annual review of plant biology 61: 561-91. doi: 10.1146/annurev-arplant-042809-112226.
  • Hu H, Boisson-Dernier A, Israelsson-Nordström M, Böhmer M, Xue S, Ries A, Godoski J, Kuhn JM, Schroeder JI. . ‘Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells.Nature cell biology 12, No. 1: 87-93; sup pp 1-18. doi: 10.1038/ncb2009.
  • Böhmer C, Böhmer M, Bölker M, Sandrock B. . ‘Cdc42 and the Ste20-like kinase Don3 act independently in triggering cytokinesis in Ustilago maydis.Journal of cell science 121, No. Pt 2: 143-8. doi: 10.1242/jcs.014449.
  • Böhmer M, Romeis T. . ‘A chemical-genetic approach to elucidate protein kinase function in planta.Plant molecular biology 65, No. 6: 817-27. doi: 10.1007/s11103-007-9245-9.
  • Böhmer M, Colby T, Böhmer C, Bräutigam A, Schmidt J, Bölker M. . ‘Proteomic analysis of dimorphic transition in the phytopathogenic fungus Ustilago maydis.’ Proteomics 7, No. 5: 675-85. doi: 10.1002/pmic.200600900.
  • Böhmer M, Kurth J, Witte CP, Romeis T. . ‘Function of plant Calcium-dependent protein kinases in the activation of abiotic and pathogen-related stress responses and its potential application in the generation of stress-resistant plants.’ In Floriculture, Ornamental and Plant Biotechnology, edited by Teixeira da Silva, Jaime A., 367-372. 3rd Ed. Global Science Books.