Academics at the Department of Biology

Wissenschaftlicher Werdegang
- Studium der Biologie, Hauptfach Zoologie: Ludwig-Maximilians-Universität München
- Promotion zum Dr. rer. nat.: Ludwig-Maximilians-Universität München
- Habilitation in Tierphysiologie: Ludwig-Maximilians-Universität München
- Heisenberg-Stipendiat: Heinrich Heine-Universität Düsseldorf
- C4-Professor für Zoophysiologie am Institut für Zoophysiologie der WWU Münster

Lehrschwerpunkte
- Vegetative Tierphysiologie und Stoffwechsel
- Molekulare und genomische Tierphysiologie
- Ökophysiologie

Forschungsschwerpunkte
- Optische Analyse physiologischer Funktionen bei transparenten Tieren (Optophysiologie): Schwerpunkt Sauerstofftransport und Metabolismus von Daphnia
- Molekulare Physiologie der Daphnienhämoglobine: Struktur und Funktion
- Physiologische Genomik des Darmepithels von Caenorhabditis elegans: ABC-Transporter, zelluläre Stressantwort
- Thermotoleranz der Tiere: Physiologische und ökologische Aspekte
- Meereszoologie: Umwelteinflüsse auf Invertebraten und niedere Vertebraten

Ausgewählte Projekte
Mechanisms, phenotypic plasticity and genotypic determination of thermal tolerance in Daphnia and Chaoborus larvae: consequences for fitness and biotic interactions
(DFG-Schwerpunktprogramm „Aquashift“: http://www.ifm-geomar.de/index.php?id=1995)
Global warming may have far-reaching effects on aquatic ecosystems through direct or indirect effects on the physiological systems of its members. The genus Daphnia plays a central role in the ecology of almost all standing freshwater, and Chaoborus larvae are prominent invertebrate predators of Daphnia. For a mechanistic understanding of thermal effects in Daphnia and in Chaoborus larvae, field data analysis, physiological and ecological experiments, biochemical and genetical investigations and retrospective studies will be brought together: investigation of the seasonal changes of phenotypic acclimatization and/or of population structure (clonal structure) and clone-specific thermal tolerance will allow to evaluate future ecological consequences of global warming. Both, mechanisms and degrees of thermal tolerance as well as traits related to physiological fitness will be analysed and linked to environmental conditions. Answers to the following questions will be sought: What are the physiological and biochemical mechanisms causing differences in thermal tolerance? Which part of these mechanisms is genetically fixed (adaptation) and which is phenotypically plastic (acclimatization)? Which part is species- or clone-specific and which are characteristics common to all? What are the costs of an improved or the benefits of a reduced thermal performance and vice versa? Are there any seasonal changes concerning thermal tolerance and fitness due to phenotypic plasticity or due to the clonal structure of Daphnia populations? How near to the edges of their thermal tolerance ranges do species and clones live during the seasons? An understanding of the role of temperature for the performance and fitness of Daphnia and Chaoborus will allow to predict firstly, if specifically this prey-predator pair may grow apart from each other at global warming due to a mismatch of their thermal performances and capacities and secondly, how the general properties or strategies of Daphnia at different temperatures will match the temporal abundance of food resources. The necessary data base for a general view on Daphnia will come from a comparison of differently thermally adapted, yet closely related clones and species.

Physiological match and mismatch in climate dependent distribution of boreal marine invertebrates
(DFG-Schwerpunktprogramm “Aquashift”: http://www.ifm-geomar.de/index.php?id=1993)
The physiological mechanisms, by which temperature and its oscillations shape biogeography, species survival, and energy expenditure for growth are addressed as crucial elements of climate effects on ecosystems. Such climate dependent physiological patterns are most adequately identified in marine aquatic species which cover wide latitudinal clines in temperate zones (Northern hemisphere). Each population of these species (frequently genetically different from neighbouring populations) is adapted to a specific climate regime on a gradient between warm and cold climates and the associated seasonal and inter-annual variability of its physical environment. Comparison of populations of the lugworm Arenicola marina is intended for a comprehensive identification and quantification of physiological processes sensitive to climate change. The adjustment of oxygen supply versus demand appears most crucial in thermal adaptation; therefore components of the oxygen transfer system, like haemoglobin functional properties, blood and tissue oxygenation, as well as parameters setting oxygen demand and organismic performance will be investigated in populations from the Atlantic, the North and White Seas. For each of those populations, climate oscillations beyond previous optima may lead them to the limits of their adaptational capacity, to be identified as a mismatch in demand vs supply capacities. Based on such physiological studies a cause and effect understanding is expected, how climate factors, molecular and cellular design as well as physiological and ecological performance are interrelated. Identification of the unifying trade-offs and constraints involved in thermal adaptation likely contributes to an understanding of how climate gradients and their oscillations shape ecosystem functioning during climate change scenarios.

Ausgewählte Kooperationen
- Prof. Dr. J. Benndorf, Institut für Hydrobiologie der TU Dresden: DFG-SPP „Aquashift“ (Cluster Saidenbach)

- Dr. T. Berendonk, Institut für Biologie (AG Spezielle Zoologie), Universität Leipzig: DFG-SPP „Aquashift“ (Cluster Saidenbach) sowie Transkriptomik der zellulären Stressantwort bei C. elegans

- Prof. Dr. H. Decker, Institut für Molekulare Biophysik, Johannes Gutenberg Universität Mainz: Strukturuntersuchungen bei Daphnien-Hämoglobinen

- Prof. Dr. J. Markl, Institut für Zoologie, Johannes Gutenberg Universität Mainz: Strukturuntersuchungen bei Daphnien-Hämoglobinen

- Prof. Dr. Hans-Otto Pörtner, Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven: DFG-SPP „Aquashift“

- Prof. Dr. H. Schneckenburger, FH Aalen (Lasergestützte Mess- und Diagnosetechnik): Biophysikalische Untersuchungen bei C. elegans

- Dr. H. Graf von der Schulenburg, Zoologisches Institut (Evolutionsökologie der Tiere), Eberhard Karls Universität Tübingen: Transkriptomik der zellulären Stressantwort bei C. elegans

- Prof. Dr. Dr. E. Vollmer, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften (Klinische Medizin, Klinische und experimentelle Pathologie): Molekularbiologische Untersuchungen bei Daphnien-Hämoglobinen

- Dr. F. Zal, Station Biologique Roscoff (Equipe Ecophysiologie), CNRS, France: Strukturuntersuchungen bei Daphnien-Hämoglobinen

Publications

  • Klumpen E., Hoffschröer N., Zeis B., Gigengack U., Dohmen E., Paul R. . ‘Reactive oxygen species (ROS) and the heat stress response of Daphnia pulex: ROS-mediated activation of hypoxia-inducible factor 1 (HIF-1) and heat shock factor 1 (HSF-1) and the clustered expression of stress genes.’ Biology of the Cell 109, No. 1: 39-64. doi: 10.1111/boc.201600017.
  • Gerke,Peter P.,Keshet,Alex A.,Mertenskötter,Ansgar A.,Paul,Rüdiger Jörg R.J.,. . ‘The JNK-Like MAPK KGB-1 of Caenorhabditis Elegans Promotes Reproduction, Lifespan, and Gene Expressions for Protein Biosynthesis and Germline Homeostasis but Interferes with Hyperosmotic Stress Tolerance.’ Cellular Physiology and Biochemistry 34, No. 6: 1951-1973. doi: 10.1159/000366392.
  • Zeis B, Becker D, Gerke P, Koch M, Paul RJ. . ‘Hypoxia-inducible haemoglobins of Daphnia pulex and their role in the response to acute and chronic temperature increase.Biochimica et biophysica acta 1834, No. 9: 1704-10. doi: 10.1016/j.bbapap.2013.01.036.
  • Hülsmann S, Wagner A, Pitsch M, Horn W, Paul R, Rother A, Zeis B. . ‘Effects of winter conditions on Daphnia dynamics and genetic diversity in a dimictic temperate reservoir.’ Freshwater Biology 57, No. 7: 1458-1470. doi: 10.1111/j.1365-2427.2012.02810.x.
  • Mertenskötter A, Keshet A, Gerke P, Paul RJ. . ‘The p38 MAPK PMK-1 shows heat-induced nuclear translocation, supports chaperone expression, and affects the heat tolerance of Caenorhabditis elegans.’ Cell Stress and Chaperones : 1-14.
  • Paul RJ, Mertenskötter A, Pinkhaus O, Pirow R, Gigengack U, Buchen I, Koch M, Horn W, Zeis B. . ‘Seasonal and interannual changes in water temperature affect the genetic structure of a Daphnia assemblage (D. longispina complex) through genotype-specific thermal tolerances.’ Limnology and Oceanography 57, No. 2: 619-633. doi: 10.4319/lo.2012.57.2.0619.
  • Wagner A, Hülsmann S, Paul L, Paul RJ, Petzoldt T, Sachse R, Schiller T, Zeis B, Benndorf J, Berendonk TU. . ‘A phenomenological approach shows a high coherence of warming patterns in dimictic aquatic systems across latitude.’ Marine Biology 159, No. 11: 2543-2559. doi: 10.1007/s00227-012-1934-5.
  • Neidig N, Paul RJ, Scheu S, Jousset A. . ‘Secondary Metabolites of Pseudomonas fluorescens CHA0 Drive Complex Non-Trophic Interactions with Bacterivorous Nematodes.’ MICROBIAL ECOLOGY 61, No. 4: 853-859. doi: 10.1007/s00248-011-9821-z.
  • Gerke P, Bording C, Zeis B, Paul RJ. . ‘Adaptive haemoglobin gene control in Daphnia pulex at different oxygen and temperature conditions.’ COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOG 159, No. 1: 56-65. doi: 10.1016/j.cbpa.2011.01.017.
  • Becker D, Brinkmann BF, Zeis B, Paul RJ. . ‘Acute changes in temperature or oxygen availability induce ROS fluctuations in Daphnia magna linked with fluctuations of reduced and oxidized glutathione, catalase activity, and gene (hemoglobin) expression.Biology of the cell / under the auspices of the European Cell Biology Organization . doi: 10.1042/BC20100145.
  • Zeis B, Horn W, Gigengack U, Koch M, Paul RJ. . ‘A major shift in Daphnia genetic structure after the first ice-free winter in a German reservoir.’ FRESHWATER BIOLOGY 55, No. 11: 2296-2304.
  • Neidig N, Jousset A, Nunes F, Bonkowski M, Paul RJ, Scheu S. . ‘Interference between bacterial feeding nematodes and amoebae relies on innate and inducible mutual toxicity.’ FUNCTIONAL ECOLOGY 24, No. 5: 1133-1138.
  • Schwerin S, Zeis B, Horn W, Horn H, Paul RJ. . ‘Hemoglobin concentration in Daphnia (D. galeata-hyalina) from the epilimnion is related to the state of nutrition and the degree of protein homeostasis.’ LIMNOLOGY AND OCEANOGRAPHY 55, No. 2: 639-652.
  • Schwerin S, Zeis B, Lamkemeyer T, Paul RJ, Koch M, Madlung J, Fladerer C, Pirow R. . ‘Acclimatory responses of the Daphnia pulex proteome to environmental changes. II. Chronic exposure to different temperatures (10 and 20 degrees C) mainly affects protein metabolism.BMC physiology 9: 8. doi: 10.1186/1472-6793-9-8.
  • Zeis B, Buers I, Morawe T, Paul RJ. . The role of the lactate dehydrogenase of Daphnia magna and Daphnia pulex for the tolerance of elevated temperatures.
  • Mertenskotter A, Gerke P, Janowitz T, Paul RJ. . The influence of different stress-related signalling cascades on fitness parameters of Caenorhabditis elegans.
  • Gerke P, Bording C, Zeis B, Paul RJ. . Differential haemoglobin expression in Daphnia pulex as a response to oxygen and temperature-related stress.
  • Janowitz T, Wolf M, Nunes F, Henkel A, Heinick A, Paul RJ. . The role of insulin-like signalling in the response to stress of the nematode Caenorhabditis elegans.
  • Becker D, Brinkmann B, Budeus B, Schnell U, Zumbragel S, Zeis B, Paul RJ. . Reactive oxygen species (ROS) and redox buffers as an interface between stress sensing, signalling and physiological responses in Daphnia magna.
  • Schroer M, Wittmann AC, Gruner N, Steeger HU, Bock C, Paul R, Portner HO. . ‘Oxygen limited thermal tolerance and performance in the lugworm Arenicola marina: A latitudinal comparison.’ JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY 372, No. 1-2: 22-30. doi: 10.1016/j.jembe.2009.02.001.
  • Zeis B, Lamkemeyer T, Paul RJ, Nunes F, Schwerin S, Koch M, Schütz W, Madlung J, Fladerer C, Pirow R. . ‘Acclimatory responses of the Daphnia pulex proteome to environmental changes. I. Chronic exposure to hypoxia affects the oxygen transport system and carbohydrate metabolism.BMC Physiol 9: 7.
  • Wittmann AC, Schroer M, Bock C, Steeger HU, Paul RJ, Portner HO. . ‘Indicators of oxygen- and capacity-limited thermal tolerance in the lugworm Arenicola marina.’ CLIMATE RESEARCH 37, No. 2-3: 227-240. doi: 10.3354/cr00763.
  • Zeis B, Schwerin S, Pirow R, Lamkemeyer T, Paul RJ. . Acclimatory responses the Daphnia pulex proteome to changes in oxygen and temperature conditions.
  • Wolf M, Nunes F, Henkel A, Heinick A, Paul RJ. . ‘The MAP kinase JNK-1 of Caenorhabditis elegans: Location, activation, and influences over temperature-dependent insulin-like signaling, stress responses, and fitness.’ JOURNAL OF CELLULAR PHYSIOLOGY 214, No. 3: 721-729.
  • Vermeulen T, Görg B, Vogl T, Wolf M, Varga G, Toutain A, Paul R, Schliess F, Häussinger D, Häberle J. . ‘Glutamine synthetase is essential for proliferation of fetal skin fibroblasts.Archives of Biochemistry and Biophysics 478, No. 1: 96-102. doi: 10.1016/j.abb.2008.07.009.
  • Bavis RW, Powell FL, Bradford A, Hsia CCW, Peltonen JE, Soliz J, Zeis B, Fergusson EK, Fu Z, Gassmann M, Kim CB, Maurer J, McGuire M, Miller BM, O'Halloran KD, Paul RJ, Reid SG, Rusko HK, Tikkanen HO, Wilkinson KA. . ‘Respiratory plasticity in response to changes in oxygen supply and demand.’ INTEGRATIVE AND COMPARATIVE BIOLOGY 47, No. 4: 532-551.
  • Pinkhaus O., Schwerin S., Pirow R., Zeis B., Buchen I., Gigengack U., Koch M., Horn W., Paul R.J. . ‘Temporal environmental change, clonal physiology and the genetic structure of a Daphnia assemblage (D. galeata-hyalina hybrid species complex).’ Freshwater Biology 52, No. 8: 1537-1554. doi: 10.1111/j.1365-2427.2007.01786.x.
  • Lamkemeyer T, Zeis B, Decker H, Jaenicke E, Waschbusch D, Gebauer W, Markl J, Meissner U, Rousselot M, Zal F, Nicholson GJ, Paul RJ. . ‘Molecular mass of macromolecules and subunits and the quaternary structure of hemoglobin from the microcrustacean Daphnia magna.’ FEBS JOURNAL 273, No. 14: 3393-3410. doi: 10.1111/j.1742-4658.2006.05346.x.
  • Nunes F, Wolf M, Hartmann J, Paul RJ. . ‘The ABC transporter PGP-2 from Caenorhabditis elegans is expressed in the sensory neuron pair AWA and contributes to lysosome formation and lipid storage within the intestine.’ BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 338, No. 2: 862-871.
  • Wolf M, Nunes F, Paul RJ. . ‘Coordinates, DNA content and heterogeneity of cell nuclei and segments of the Caenorhabditis elegans intestine.’ HISTOCHEMISTRY AND CELL BIOLOGY 124, No. 5: 359-367.
  • Lamkemeyer T, Paul RJ, Stocker W, Yiallouros I, Zeis B. . ‘Macromolecular isoforms of Daphnia magna haemoglobin.’ BIOLOGICAL CHEMISTRY 386, No. 11: 1087-1096.
  • Seidl MD, Pirow R, Paul RJ. . ‘Acclimation of the microcrustacean Daphnia magna to warm temperatures is dependent on haemoglobin expression.’ JOURNAL OF THERMAL BIOLOGY 30, No. 7: 532-544.
  • Paul RJ, Buers I, Lamkemeyer T, Pinkhaus O, Pirow R, Seidl M, Zeis B. . Integrative mechanisms of thermal acclimation in Daphnia.
  • Seidl MD, Paul RJ, Pirow R. . ‘Effects of hypoxia acclimation on morpho-physiological traits over three generations of Daphnia magna.’ JOURNAL OF EXPERIMENTAL BIOLOGY 208, No. 11: 2165-2175.
  • Nunes F, Spiering S, Wolf M, Wendler A, Pirow R, Paul RJ. . ‘Sequencing of hemoglobin gene 4 (dmhb4) and southern blot analysis provide evidence of more than four members of the Daphnia magna globin family.’ BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY 69, No. 6: 1193-1197.
  • Zeis B, Lamkemeyer T, Paul RJ. . ‘Molecular adaptation of Daphnia magna hemoglobin.’ MICRON 35, No. 1-2: 47-49.
  • Paul RJ, Lamkemeyer T, Maurer J, Pinkhaus O, Pirow R, Seidl M, Zeis B. . ‘Thermal acclimation in the microcrustacean Daphnia: a survey of behavioural, physiological and biochemical mechanisms.’ JOURNAL OF THERMAL BIOLOGY 29, No. 7-8: 655-662.
  • Pirow R, Baumer C, Paul RJ. . ‘Crater landscape: two-dimensional oxygen gradients in the circulatory system of the microcrustacean Daphnia magna.’ JOURNAL OF EXPERIMENTAL BIOLOGY 207, No. 25: 4393-4405.
  • Paul RJ, Zeis B, Lamkemeyer T, Seidl M, Pirow R. . ‘Control of oxygen transport in the microcrustacean Daphnia: regulation of haemoglobin expression as central mechanism of adaptation to different oxygen and temperature conditions.’ ACTA PHYSIOLOGICA SCANDINAVICA 182, No. 3: 259-275.
  • Zeis B, Maurer J, Pinkhaus O, Bongartz E, Paul RJ. . ‘A swimming activity assay shows that the thermal tolerance of Daphnia magna is influenced by temperature acclimation.’ CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE 82, No. 10: 1605-1613.
  • Zeis B, Becher B, Goldmann T, Clark R, Vollmer E, Bolke B, Bredebusch I, Lamkemeyer T, Pinkhaus O, Pirow R, Paul RJ. . ‘Differential haemoglobin gene expression in the crustacean Daphnia magna exposed to different oxygen partial pressures.’ BIOLOGICAL CHEMISTRY 384, No. 8: 1133-1145.
  • Zeis B, Becher B, Lamkemeyer T, Rolf S, Pirow R, Paul RJ. . ‘The process of hypoxic induction of Daphnia magna hemoglobin: subunit composition and functional properties.’ COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY 134, No. 2: 243-252. doi: 10.1016/S1096-4959(02)00253-1.
  • Lamkemeyer T, Zeis B, Paul RJ. . ‘Temperature acclimation influences temperature-related behaviour as well as oxygen-transport physiology and biochemistry in the water flea Daphnia magna.’ CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE 81, No. 2: 237-249.
  • Seidl MD, Pirow R, Paul RJ. . ‘Water fleas (Daphnia magna) provide a separate ventilatory mechanism for their brood.’ ZOOLOGY 105, No. 1: 15-23.
  • Baumer C, Pirow R, Paul RJ. . ‘Circulatory oxygen transport in the water flea Daphnia magna.’ JOURNAL OF COMPARATIVE PHYSIOLOGY B-BIOCHEMICAL SYSTEMIC AND ENVIRONMENTAL 172, No. 4: 275-285.
  • Steeger HU, Freitag JF, Michl S, Wiemer M, Paul RJ. . ‘Effects of UV-B radiation on embryonic, larval and juvenile stages of North Sea plaice (Pleuronectes platessa) under simulated ozone-hole conditions.’ HELGOLAND MARINE RESEARCH 55, No. 1: 56-66. doi: 10.1007/s101520000065.
  • Pirow R, Baumer C, Paul RJ. . ‘Benefits of haemoglobin in the cladoceran crustacean Daphnia magna.’ JOURNAL OF EXPERIMENTAL BIOLOGY 204, No. 20: 3425-3441.
  • Paul Rüdiger J. . Physiologie der Tiere Systeme und Stoffwechsel. Stuttgart: Georg Thieme Verlag.
  • Paul RJ, Gohla J, Foll R, Schneckenburger H. . ‘Metabolic adaptations to environmental changes in Caenorhabditis elegans.’ COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY 127, No. 4: 469-479.
  • Baumer C, Pirow R, Paul RJ. . ‘Respiratory adaptations to running-water microhabitats in mayfly larvae Epeorus sylvicola and Ecdyonurus torrentis, Ephemeroptera.’ PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY 73, No. 1: 77-85.
  • Goldmann T, Becher B, Wiedorn KH, Pirow R, Deutschbein ME, Vollmer E, Paul RJ. . ‘Epipodite and fat cells as sites of hemoglobin synthesis in the branchiopod crustacean Daphnia magna.Histochemistry and cell biology 112, No. 5: 335-9.
  • Föll RL, Pleyers A, Lewandovski GJ, Wermter C, Hegemann V, Paul RJ. . ‘Anaerobiosis in the nematode Caenorhabditis elegans.Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology 124, No. 3: 269-80. doi: 10.1016/S0305-0491(99)00130-3.
  • Pirow R, Wollinger F, Paul RJ. . ‘The sites of respiratory gas exchange in the planktonic crustacean Daphnia magna: An in vivo study employing blood haemoglobin as an internal oxygen probe.’ JOURNAL OF EXPERIMENTAL BIOLOGY 202, No. 22: 3089-3099.
  • Pirow R, Wollinger F, Paul RJ. . ‘The importance of the feeding current for oxygen uptake in the water flea daphnia magna.’ The Journal of experimental biology 202 (Pt 5): 553-62.
  • Steeger HU, Wiemer M, Freitag JF, Paul RJ. . ‘Vitality of plaice embryos (Pleuronectes platessa) at moderate UV-B exposure.’ JOURNAL OF SEA RESEARCH 42, No. 1: 27-34.
  • Storz UC, Paul RJ. . ‘Phototaxis in water fleas (Daphnia magna) is differently influenced by visible and UV light.’ JOURNAL OF COMPARATIVE PHYSIOLOGY A-NEUROETHOLOGY SENSORY NEURAL AND 183, No. 6: 709-717.
  • Paul RJ. . „Rotes, grünes, blaues und rosafarbenes Blut: Funktion von Atmungsproteinen bei wirbellosen Tieren.“ Biologie in unserer Zeit (BIUZ) 5: 304-313.
  • Paul RJ, Colmorgen M, Pirow R, Chen YH, Tsai MC. . ‘Systemic and metabolic responses in Daphnia magna to anoxia.’ COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY 120, No. 3: 519-530.
  • Pirow R, Wollinger F, Paul RJ. . ‘Gas exchange and gas transport in a water breather of millimetre size.Advances in experimental medicine and biology 428: 139-45.
  • Paul RJ, Pirow R. . ‘The physiological significance of respiratory proteins in invertebrates.’ ZOOLOGY-ANALYSIS OF COMPLEX SYSTEMS 100, No. 4: 298-306.
  • Paul RJ, Colmorgen M, Huller S, Tyroller F, Zinkler D. . ‘Circulation and respiratory control in millimetre-sized animals (Daphnia magna, Folsomia candida) studied by optical methods.’ JOURNAL OF COMPARATIVE PHYSIOLOGY B-BIOCHEMICAL SYSTEMIC AND 167, No. 6: 399-408.
  • Paul RJ, Schneckenburger H. . ‘Oxygen concentration and the oxidation-reduction state of yeast: determination of free/bound NADH and flavins by time-resolved spectroscopy.Die Naturwissenschaften 83, No. 1: 32-5. doi: 10.1007/BF01139308.
  • Schneckenburger H, Gschwend M, Paul RJ, Sailer R, Strauß W. . ‘Time-resolved fluorescence spectroscopy in photobiology and medical diagnosis.’Contributed to the Proceedings of the international conference on Laser's 94.
  • Schneckenburger H, Gschwend M, Paul RJ, Stepp H, Rick K, Betz V, Strauß W. . ‘Time-gated spectroscopy of intrinsic fluorophores in cells and tissues.’ In Proc SPIE, edited by Cubeddu R, Marchesini R, Mordon SR, Svanberg K, Rinneberg HH, Wagnieres G (Eds.): , 187-195.
  • COLMORGEN M, PAUL RJ. . ‘IMAGING OF PHYSIOLOGICAL FUNCTIONS IN TRANSPARENT ANIMALS (AGONUS-CATAPHRACTUS, DAPHNIA-MAGNA, PHOLCUS-PHALANGIOIDES) BY VIDEO MICROSCOPY AND DIGITAL IMAGE-PROCESSING.’ COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-PHYSIOLOGY 111, No. 4: 583-595.
  • PAUL RJ, PFEFFERSEIDL A, EFINGER R, PORTNER HO, STORZ H. . ‘GAS-TRANSPORT IN THE HEMOLYMPH OF ARACHNIDS .2. CARBON-DIOXIDE TRANSPORT AND ACID-BASE-BALANCE.’ JOURNAL OF EXPERIMENTAL BIOLOGY 188: 47-63.
  • PAUL RJ, BERGNER B, PFEFFERSEIDL A, DECKER H, EFINGER R, STORZ H. . ‘GAS-TRANSPORT IN THE HEMOLYMPH OF ARACHNIDS .1. OXYGEN-TRANSPORT AND THE PHYSIOLOGICAL-ROLE OF HEMOCYANIN.’ JOURNAL OF EXPERIMENTAL BIOLOGY 188: 25-46.
  • PAUL RJ, BIHLMAYER S, COLMORGEN M, ZAHLER S. . ‘THE OPEN CIRCULATORY-SYSTEM OF SPIDERS (EURYPELMA-CALIFORNICUM, PHOLCUS-PHALANGIOIDES) - A SURVEY OF FUNCTIONAL-MORPHOLOGY AND PHYSIOLOGY.’ PHYSIOLOGICAL ZOOLOGY 67, No. 6: 1360-1382.
  • PAUL RJ, BIHLMAYER S. . ‘CIRCULATORY PHYSIOLOGY OF A TARANTULA (EURYPELMA-CALIFORNICUM).’ ZOOLOGY-ANALYSIS OF COMPLEX SYSTEMS 98, No. 2: 69-81.
  • STERNER R, BARDEHLE K, PAUL R, DECKER H. . ‘TRIS - AN ALLOSTERIC EFFECTOR OF TARANTULA HEMOCYANIN.’ FEBS LETTERS 339, No. 1-2: 37-39.
  • Paul RJ, Decker H, Schartau W. . „Das blaue Blut der Vogelspinnen.“ Naturwissenschaftliche Rundschau 45: 216-223.
  • Paul RJ. . ‘Gas exchange, circulation and energy metabolism in arachnids.’ In Physiological adaptations in vertebrates: Respiration, circulation, and metabolism, edited by Wood SC, Weber RE, Hargens AR, Millard RW (Eds.): , 169-197. New York Basel Hong Kong: Marcel Dekker, Inc.
  • Paul RJ. . ‘Oxygen transport from book lungs to tissues - environmental physiology and metabolism of arachnids.’, edited by (Ed.): , 9-14. Stuttgart Jena New York: Gustav Fischer Verlag.
  • PAUL RJ, ZAHLER S, WERNER R, MARKL J. . ‘ADAPTATION OF AN OPEN CIRCULATORY-SYSTEM TO THE OXIDATIVE CAPACITY OF DIFFERENT MUSCLE-CELL TYPES.’ NATURWISSENSCHAFTEN 78, No. 3: 134-135.
  • Gemperlein R, Paul RJ, Steiner A. . ‘Fourier Interferometric Stimulation (FIS): the method and applications.’ In Vision: coding and efficiency, edited by Blakemore C (Ed.): , 142-149. Cambridge New York Port Chester Melbourne Sydney: Cambridge University Press.
  • Paul RJ. . ‘Gas exchange and gas transport in arachnids.’ In Invertebrate Dioxygen Carriers, edited by Preaux G, Lontie R (Eds.): , 467-470. Leuven: Leuven University Press.
  • Paul RJ, Efinger R. . ‘Varying haemocyanin concentrations in the tarantula Eurypelma californicum: relations to physiological functions.’ In Invertebrate Dioxygen Carriers, edited by Preaux G, Lontie R (Eds.): , 471-475. Leuven: Leuven University Press.
  • PAUL R. . ‘HOW THE ARACHNIDS BREATHE.’ RECHERCHE 21, No. 226: 1338-1347.
  • PAUL R, FINCKE T. . ‘BOOK LUNG-FUNCTION IN ARACHNIDS .2. CARBON-DIOXIDE RELEASE AND ITS RELATIONS TO RESPIRATORY SURFACE, WATER-LOSS AND HEART FREQUENCY.’ JOURNAL OF COMPARATIVE PHYSIOLOGY B-BIOCHEMICAL SYSTEMIC AND 159, No. 4: 433-441.
  • PAUL R, TILING K, FOCKE P, LINZEN B. . ‘HEART AND CIRCULATORY FUNCTIONS IN A SPIDER (EURYPELMA-CALIFORNICUM) - THE EFFECTS OF HYDRAULIC FORCE GENERATION.’ JOURNAL OF COMPARATIVE PHYSIOLOGY B-BIOCHEMICAL SYSTEMIC AND 158, No. 6: 673-687.
  • FINCKE T, PAUL R. . ‘BOOK LUNG-FUNCTION IN ARACHNIDS .3. THE FUNCTION AND CONTROL OF THE SPIRACLES.’ JOURNAL OF COMPARATIVE PHYSIOLOGY B-BIOCHEMICAL SYSTEMIC AND 159, No. 4: 433-441.
  • Schartau W, Decker H, Paul RJ, Voit R, Voll W. . „Sauerstofftransport bei Wirbellosen.“, herausgegeben von (Hrsg.): , 69-78. Stuttgart Jena New York: Gustav Fischer Verlag.
  • PAUL R, FINCKE T, LINZEN B. . ‘BOOK LUNG-FUNCTION IN ARACHNIDS .1. OXYGEN-UPTAKE AND RESPIRATORY QUOTIENT DURING REST, ACTIVITY AND RECOVERY - RELATIONS TO GAS-TRANSPORT IN THE HEMOLYMPH.’ JOURNAL OF COMPARATIVE PHYSIOLOGY B-BIOCHEMICAL SYSTEMIC AND 159, No. 4: 409-418.
  • GEMPERLEIN R, PAUL R, STEINER A. . ‘SPECTRAL SENSITIVITY OF INSECTS STUDIED WITH FOURIER-INTERFEROMETRIC STIMULATION (FIS).’ JOURNAL OF PHYSIOLOGY-LONDON 396.
  • GEMPERLEIN R, PAUL R, STEINER A. . ‘SPECTRAL SENSITIVITY OF MAN STUDIED WITH FOURIER-INTERFEROMETRIC STIMULATION (FIS).’ JOURNAL OF PHYSIOLOGY-LONDON 396.
  • PAUL R, FINCKE T, LINZEN B. . ‘RESPIRATION IN THE TARANTULA EURYPELMA-CALIFORNICUM - EVIDENCE FOR DIFFUSION LUNGS.’ JOURNAL OF COMPARATIVE PHYSIOLOGY B-BIOCHEMICAL SYSTEMIC AND 157, No. 2: 209-217.
  • STEINER A, PAUL R, GEMPERLEIN R. . ‘RETINAL RECEPTOR TYPES IN AGLAIS-URTICAE AND PIERIS-BRASSICAE (LEPIDOPTERA), REVEALED BY ANALYSIS OF THE ELECTRORETINOGRAM OBTAINED WITH FOURIER INTERFEROMETRIC STIMULATION (FIS).’ JOURNAL OF COMPARATIVE PHYSIOLOGY A-SENSORY NEURAL AND BEHAVIORAL 160, No. 2: 247-258.
  • Fincke T, Tiling K, Paul R, Linzen B. . ‘Relations between respiration and circulation in the tarantula Eurypelma californicum.’ In Invertebrate Oxygen Carriers, edited by Linzen B (Ed.): , 327-331. Berlin Heidelberg New York: Springer Verlag.
  • PAUL R, STEINER A, GEMPERLEIN R. . ‘SPECTRAL SENSITIVITY OF CALLIPHORA-ERYTHROCEPHALA AND OTHER INSECT SPECIES STUDIED WITH FOURIER INTERFEROMETRIC STIMULATION (FIS).’ JOURNAL OF COMPARATIVE PHYSIOLOGY A-SENSORY NEURAL AND BEHAVIORAL 158, No. 5: 669-680.
  • Paul R. . ‘Gas exchange and gas transport in the tarantula Eurypelma californicum – An overview.’ In Inver¬tebrate Oxygen Carriers, edited by Linzen B (Ed.): , 321-326. Berlin Heidelberg New York: Springer Verlag.
  • Adamczyk R, Gemperlein R, Paul R, Steiner A. . ‘[Objective electrophysiological determination of the scotopic and photopic spectral sensitivity of the human eye through Fourier interferometric stimulation].’ Fortschritte der Ophthalmologie : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft 80, No. 6: 488-91.
  • Gemperlein R, Adamczyk R, Paul R, Steiner A. . ‘[The advantages of Fourier interferometric stimulation in the determination of the spectral sensitivity of the human eye].’ Fortschritte der Ophthalmologie : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft 80, No. 6: 492-5.
  • GEMPERLEIN R, PAUL R, LINDAUER E, STEINER A. . ‘UV FINE-STRUCTURE OF THE SPECTRAL SENSITIVITY OF FLIES VISUAL CELLS - REVEALED BY FIS (FOURIER INTERFEROMETRIC STIMULATION).’ NATURWISSENSCHAFTEN 67, No. 11: 565-566.
  • Gemperlein R, Parsche H, Paul R. . ‘Dynamic spectral analysis of visual cells by Fourier spectroscopy.Die Naturwissenschaften 64, No. 5: 275-6. doi: 10.1007/BF00438311.
  • Zeis B, Pinkhaus O, Bredebusch I, Paul RJ. . ‘Oxygen preference of Daphnia magna is influenced by Po2 acclimation and biotic interactions.Physiological and biochemical zoology : PBZ 78, No. 3: 384-93. doi: 10.1086/430039.