Fachbereich 13 Biologie
Schlossplatz 4
D-48149 Münster
Tel.: +49 251 83-23012
Fax: +49 251 83-21706
dekanat.bio
@uni-muenster.de

Metanavigation: 


Mitarbeiter im Fachbereich Biologie

Philipp, Bodo, Prof. Dr. rer. nat.

Philipp 2
Westfälische Wilhelms-Universität Münster
Institut für Molekulare Mikrobiologie und Biotechnologie
Corrensstraße 3
D-48149 Münster

Tel: + 49 - 251 - 83 39827
Fax: + 49 – 251 -83 38388
E-mail:  bodo.philippUnims Kopie
net:
http://mibi1.uni-muenster.de/Biologie.IMMB.Philipp/en/Index.html

Wissenschaftlicher Werdegang

1990-1995 Studium Biologie (Diplom) an der Universität Osnabrück und am Forschungszentrum Jülich (Institut für Biotechnologie)
1995-1999 Doktorarbeit an der Universität Konstanz (Mikrobielle Physiologie und Ökologie)
1999-2000 Postdoktorand an der Universität Konstanz (Umweltwissenschaften)
2000-2001 DFG-Forschungsstipendiat an der University of Nottingham (Molekulare Mikrobiologie)
2001-2011 Wissenschaftlicher Assistent und Akademischer Rat mit eigener Arbeitsgruppe an der Universität Konstanz;
2008 Habilitation (Mikrobiologie und Mikrobielle Ökologie)
Seit Oktober 2011 Professor für Mikrobielle Biotechnologie an der WWU Münster

Lehrschwerpunkte

- Mikrobielle Physiologie
- Mikrobielle Biotechnologie
- Mikrobielle Ökologie

Forschungsschwerpunkte

- Bakterieller Stoffwechsel und bakterielle Biotransformationen
- Zell-Zell-Interaktionen von Mikroorganismen: Chemische Kommunikation (Quorum Sensing), Antibiose, Zellaggregation und Biofilmbildung

ausgewählte Projekte

In our research projects we investigate selected aspects of bacterial physiology and ecology with the goal of establishing novel biotechnological applications. Our research is focussed on two aspects of bacterial ecophysiology: bacterial metabolism and bacterial cell-cell interactions. Regarding metabolism, we investigate novel metabolic pathways for the transformation of natural and synthetic compounds. Regarding cell-cell interactions, we investigate bacterial cell-aggregation and biofilm formation as well as chemical interactions of bacteria (chemical communication, antibiosis). We want to transfer ecophysiological knowledge to biotechnology for improving bacterial biocatalysis and biodegradation processes as well as for finding novel compounds that influence bacterial growth and metabolism.

Bacterial metabolism of steroid compounds
Steroids are ubiquitous organic compounds with diverse functions in eukaryotic organisms. In bacteria, steroids occur only as rare exceptions. However, many bacteria are able to transform and degrade steroid compounds. Bacterial transformation of steroids is an essential part of the biotechnological production of steroid hormones. In comparison to the degradation of other natural compounds the bacterial degradation of steroids has only scarcely been explored. We study bacterial steroid metabolism with different model organisms and the steroid compound cholate (a bile salt) as a model substrate. The goal of our research is to use knowledge about bacterial steroid metabolism for engineering novel bacterial biocatalysts for biotechnological steroid production. Furthermore, we are interested in the degradation of synthetic steroids, which can act as endocrine disruptors.

Bacterial cell-aggregation and biofilm formation
In the environment bacteria predominantly live in cell aggregates and biofilms. Cells within these multicellular structures have physiological properties that distinguish them from freely suspended cells. An important property of aggregated cells is a higher tolerance against stresses, such as toxic chemicals. We study bacterial cell-aggregation during the degradation of toxic detergents. The goal of our research is to identify molecular modules that are responsible for inducing cell-aggregation and biofilm formation in response to environmental stresses. These molecular modules could be used for improving biotransformation processes of toxic chemicals. In addition, we are interested in establishing strategies to prevent bacterial growth on surfaces (biofouling).

Interspecific interactions of bacteria
In their natural habitats bacteria are engaged in numerous interactions with bacteria of other species. Despite their high ecological relevance the knowledge about such interspecific interactions is still scarce. It can be assumed that a high number of the genes within bacterial genomes, which encode proteins of unknown function, might have roles in interspecific interactions of bacteria. We study interspecific interactions of bacteria during degradation of polymers with defined co-cultures as model systems. In these co-cultures the bacteria are forced to compete for polymeric substrates in various ways, and we could show that the quorum sensing-regulated formation of secondary metabolites as well as biofilm formation is important for successful competition. The goal of our research is to use such co-cultures for unravelling principles of interspecific bacterial interactions and for identifying novel bioactive compounds (e.g. antibiotics).

More details about our research can be found at http://mibi1.uni-muenster.de/Biologie.IMMB.Philipp/en/Index.html

ausgewählte Publikationen

B. Philipp (2011). Bacterial degradation of bile salts. Applied Microbiology and Biotechnology 89: 903-915

N. Jagmann, H.-P. Brachvogel and B. Philipp (2010). Parasitic growth of Pseudomonas aeruginosa in co-culture with the chitinolytic bacterium Aeromonas hydrophila. Environmental Microbiology 12: 1787-1802

J. Klebensberger, A. Birkenmaier, R. Geffers, S. Kjelleberg and B. Philipp (2009). SiaA and SiaD are essential for inducing autoaggregation as a specific response to detergent stress in Pseudomonas aeruginosa. Environmental Microbiology 11: 3073-3086

A. Birkenmaier, J. Holert, H. Erdbrink, H. Möller, A. Friemel, R. Schoenenberger, M. J.-F. Suter, J. Klebensberger and B. Philipp (2007). Biochemical and genetic investigation on initial reactions in aerobic degradation of the bile acid cholate in Pseudomonas sp. strain Chol1. Journal of Bacteriology 189: 7165-7173

J. Klebensberger, K. Lautenschlager, D. Bressler, J. Wingender and B. Philipp (2007). Detergent-induced cell aggregation in subpopulations of Pseudomonas aeruginosa as a pre-adaptive survival strategy. Environmental Microbiology 9: 2247-2259

P. Darley, J. Hellstern, J. I. Medina-Bellver, S. Marques, B. Schink and B. Philipp (2007). Heterologous expression and identification of the genes involved in anaerobic degradation of 1,3-dihydroxybenzene (resorcinol) in Azoarcus anaerobius. Journal of Bacteriology 189: 3824-3833

B. Philipp, M. Hoff, F. Germa, B. Schink, D. Beimborn and V. Mersch-Sundermann (2007). Biochemical interpretation of quantitative structure activity relationships (QSAR) for biodegradation of N-heterocycles: A complementary approach to predict biodegradability. Environmental Science & Technology 41: 1390-1398

S.R. Chhabra, B. Philipp, L. Eberl, M. Givskov, P. Williams and M. Cámara (2005). Extracellular communication in bacteria. The Chemistry of Pheromones and Other Semiochemicals II. Topics in Current Chemistry 240: 279-315

E.A. Yates, B. Philipp, C. Buckley, S. Atkinson, S. R. Chhabra, R.E. Sockett, M. Goldner, Y. Dessaux, M. Cámara, H. Smith and P.  Williams (2002). N-Acylhomoserine lactones undergo lactonolysis in a pH, temperature and acyl chain length dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infection and Immunity 70: 5635-46

ausgewähle Kooperationen

- Steve Diggle, Paul Williams und Miguel Cámara (Nottingham): Quorum Sensing
- Peter Kroth (Konstanz): Bakterien-Algen-Interaktionen
- Heiko Möller (Konstanz): Strukturaufklärung von Steroid-Abbauprodukten
- Jost Wingender (Duisburg-Essen): Zellaggregation und Biofilmbildung


Impressum | © 2008 Fachbereich 13 Biologie
Fachbereich 13 Biologie
Schlossplatz 4 · D-48149 Münster
Tel.: +49 251 83-23012 · Fax: +49 251 83-21706
E-Mail: dekanat.bio@uni-muenster.de