Fachbereich 13 Biologie
Schlossplatz 4
D-48149 Münster
Tel.: +49 251 83-23012
Fax: +49 251 83-21706
dekanat.bio
@uni-muenster.de

Metanavigation: 


Mitarbeiter im Fachbereich Biologie



Paul, Rüdiger Jörg, Prof. Dr. rer. nat.

Westfälische Wilhelms-Universität Münster
Institut für Zoophysiologie
Hindenburgplatz 55
D-48143 Münster

Tel: + 49 – 251 – 83 23851
FAX: + 49 – 251 – 83 23876
E-mail: paulr
Net: http://www.uni-muenster.de/Biologie.
Zoophysiologie/tierphys/index.htm

Wissenschaftlicher Werdegang
- Studium der Biologie, Hauptfach Zoologie: Ludwig-Maximilians-Universität München
- Promotion zum Dr. rer. nat.: Ludwig-Maximilians-Universität München
- Habilitation in Tierphysiologie: Ludwig-Maximilians-Universität München
- Heisenberg-Stipendiat: Heinrich Heine-Universität Düsseldorf
- C4-Professor für Zoophysiologie am Institut für Zoophysiologie der WWU Münster
Lehrschwerpunkte
- Vegetative Tierphysiologie und Stoffwechsel
- Molekulare und genomische Tierphysiologie
- Ökophysiologie
Forschungsschwerpunkte
- Optische Analyse physiologischer Funktionen bei transparenten Tieren (Optophysiologie): Schwerpunkt Sauerstofftransport und Metabolismus von Daphnia
- Molekulare Physiologie der Daphnienhämoglobine: Struktur und Funktion
- Physiologische Genomik des Darmepithels von Caenorhabditis elegans: ABC-Transporter, zelluläre Stressantwort
- Thermotoleranz der Tiere: Physiologische und ökologische Aspekte
- Meereszoologie: Umwelteinflüsse auf Invertebraten und niedere Vertebraten
Ausgewählte Projekte
Mechanisms, phenotypic plasticity and genotypic determination of thermal tolerance in Daphnia and Chaoborus larvae: consequences for fitness and biotic interactions
(DFG-Schwerpunktprogramm „Aquashift“: http://www.ifm-geomar.de/index.php?id=1995)
Global warming may have far-reaching effects on aquatic ecosystems through direct or indirect effects on the physiological systems of its members. The genus Daphnia plays a central role in the ecology of almost all standing freshwater, and Chaoborus larvae are prominent invertebrate predators of Daphnia. For a mechanistic understanding of thermal effects in Daphnia and in Chaoborus larvae, field data analysis, physiological and ecological experiments, biochemical and genetical investigations and retrospective studies will be brought together: investigation of the seasonal changes of phenotypic acclimatization and/or of population structure (clonal structure) and clone-specific thermal tolerance will allow to evaluate future ecological consequences of global warming. Both, mechanisms and degrees of thermal tolerance as well as traits related to physiological fitness will be analysed and linked to environmental conditions. Answers to the following questions will be sought: What are the physiological and biochemical mechanisms causing differences in thermal tolerance? Which part of these mechanisms is genetically fixed (adaptation) and which is phenotypically plastic (acclimatization)? Which part is species- or clone-specific and which are characteristics common to all? What are the costs of an improved or the benefits of a reduced thermal performance and vice versa? Are there any seasonal changes concerning thermal tolerance and fitness due to phenotypic plasticity or due to the clonal structure of Daphnia populations? How near to the edges of their thermal tolerance ranges do species and clones live during the seasons? An understanding of the role of temperature for the performance and fitness of Daphnia and Chaoborus will allow to predict firstly, if specifically this prey-predator pair may grow apart from each other at global warming due to a mismatch of their thermal performances and capacities and secondly, how the general properties or strategies of Daphnia at different temperatures will match the temporal abundance of food resources. The necessary data base for a general view on Daphnia will come from a comparison of differently thermally adapted, yet closely related clones and species.

Physiological match and mismatch in climate dependent distribution of boreal marine invertebrates
(DFG-Schwerpunktprogramm “Aquashift”: http://www.ifm-geomar.de/index.php?id=1993)
The physiological mechanisms, by which temperature and its oscillations shape biogeography, species survival, and energy expenditure for growth are addressed as crucial elements of climate effects on ecosystems. Such climate dependent physiological patterns are most adequately identified in marine aquatic species which cover wide latitudinal clines in temperate zones (Northern hemisphere). Each population of these species (frequently genetically different from neighbouring populations) is adapted to a specific climate regime on a gradient between warm and cold climates and the associated seasonal and inter-annual variability of its physical environment. Comparison of populations of the lugworm Arenicola marina is intended for a comprehensive identification and quantification of physiological processes sensitive to climate change. The adjustment of oxygen supply versus demand appears most crucial in thermal adaptation; therefore components of the oxygen transfer system, like haemoglobin functional properties, blood and tissue oxygenation, as well as parameters setting oxygen demand and organismic performance will be investigated in populations from the Atlantic, the North and White Seas. For each of those populations, climate oscillations beyond previous optima may lead them to the limits of their adaptational capacity, to be identified as a mismatch in demand vs supply capacities. Based on such physiological studies a cause and effect understanding is expected, how climate factors, molecular and cellular design as well as physiological and ecological performance are interrelated. Identification of the unifying trade-offs and constraints involved in thermal adaptation likely contributes to an understanding of how climate gradients and their oscillations shape ecosystem functioning during climate change scenarios.
Ausgewählte Publikationen

Lamkemeyer T, Zeis B, Decker H, Jaenicke E, Waschbüsch D, Gebauer W, Markl J, Meissner U, Rousselot M, Zal F, Paul RJ (2006) Molecular mass of macromolecules and subunit and quaternary structure of haemoglobin from the microcrustacean Daphnia magna. FEBS J 273: 3393-3410

Nunes F, Wolf M, Hartmann J, Paul RJ (2005) The ABC transporter PGP-2 from Caenorhabditis elegans is expressed in the sensory neuron pair AWA and contributes to lysosome forming and lipid storage within the intestine. Biochem Biophys Res Com 338: 862-871

Lamkemeyer T, Paul RJ, Stöcker W, Yiallouros I, Zeis B (2005) Macromolecular isoforms of Daphnia magna haemoglobin. Biol Chem 386: 1087-1096

Wolf M, Nunes F, Paul RJ (2005) Coordinates, DNA content and heterogeneity of cell nuclei and segments of the Caenorhabditis elegans intestine. Histichem Cell Biol 124: 359-367

Seidl MD, Paul RJ, Pirow R (2005) Effects of hypoxia acclimation on morpho-physiological traits over three generations of Daphnia magna. J Exp Biol 208: 2165-2175

Seidl MD, Paul RJ, Pirow R (2005) Acclimation of the microcrustacean Daphnia magna to warm temperatures is dependent on haemoglobin expression. J Therm Biol 30 (7): 532-544

Paul RJ, Zeis B, Lamkemeyer T, Seidl M, Pirow R (2004) Control of oxygen transport in the microcrustacean Daphnia: regulation of haemoglobin expression as central mechanism of adaptation to different oxygen and temperature conditions. Acta Physiol Scand. 182: 259-75. Review

Pirow R, Bäumer C, Paul RJ (2004) Crater landscape: two-dimensional oxygen gradients in the circulatory system of the microcrustacean Daphnia magna. J Exp Biol. 207: 4393-405

Zeis B, Becher B, Goldmann T, Clark R, Vollmer E, Bolke B, Bredebusch I, Lamkemeyer T, Pinkhaus O, Pirow R, Paul RJ (2003) Differential haemoglobin gene expression in the crustacean Daphnia magna exposed to different oxygen partial pressures. Biol Chem. 384(8): 1133-45

Pirow R, Bäumer C, Paul RJ (2001) Benefits of haemoglobin in the cladoceran crustacean Daphnia magna. J Exp Biol. 204: 3425-41

Paul RJ (2001) Physiologie der Tiere. Systeme und Stoffwechsel. Georg Thieme Verlag, Stuttgart.

Paul RJ, Gohla J, Föll R, Schneckenburger H (2000) Metabolic adaptations to environmental changes in Caenorhabditis elegans. Comp Biochem Physiol B Biochem Mol Biol. 127: 469-79  

Ausgewählte Kooperationen
- Prof. Dr. J. Benndorf, Institut für Hydrobiologie der TU Dresden: DFG-SPP „Aquashift“ (Cluster Saidenbach)

- Dr. T. Berendonk, Institut für Biologie (AG Spezielle Zoologie), Universität Leipzig: DFG-SPP „Aquashift“ (Cluster Saidenbach) sowie Transkriptomik der zellulären Stressantwort bei C. elegans

- Prof. Dr. H. Decker, Institut für Molekulare Biophysik, Johannes Gutenberg Universität Mainz: Strukturuntersuchungen bei Daphnien-Hämoglobinen

- Prof. Dr. J. Markl, Institut für Zoologie, Johannes Gutenberg Universität Mainz: Strukturuntersuchungen bei Daphnien-Hämoglobinen

- Prof. Dr. Hans-Otto Pörtner, Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven: DFG-SPP „Aquashift“

- Prof. Dr. H. Schneckenburger, FH Aalen (Lasergestützte Mess- und Diagnosetechnik): Biophysikalische Untersuchungen bei C. elegans

- Dr. H. Graf von der Schulenburg, Zoologisches Institut (Evolutionsökologie der Tiere), Eberhard Karls Universität Tübingen: Transkriptomik der zellulären Stressantwort bei C. elegans

- Prof. Dr. Dr. E. Vollmer, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften (Klinische Medizin, Klinische und experimentelle Pathologie): Molekularbiologische Untersuchungen bei Daphnien-Hämoglobinen

- Dr. F. Zal, Station Biologique Roscoff (Equipe Ecophysiologie), CNRS, France: Strukturuntersuchungen bei Daphnien-Hämoglobinen

Impressum | © 2008 Fachbereich 13 Biologie
Fachbereich 13 Biologie
Schlossplatz 4 · D-48149 Münster
Tel.: +49 251 83-23012 · Fax: +49 251 83-21706
E-Mail: dekanat.bio@uni-muenster.de