Mitarbeiter am Fachbereich Biologie

Wissenschaftlicher Werdegang
Education

  • 1999 - 2003 Habilitation in Zoology
  • 1993 - 1997 Dr. rer. nat. (PhD) Biology
  • 1988 - 1993 Diplom in Biology

Positions

  • since 2016 Professor for molecular Evolution
  • since 2016 Research Professor
  • 2012 - 2016 Professor (full)
  • 2008 - 2015 Associate Director for Graduate Studies
  • 2007 - 2012 Associate Professor (tenure) - Arizona State University
  • 2005 - 2007 Assistant Professor (tenure track)
  • 2003 - 2005 Assistant Professor (non-tenure)
  • 1999 - 2003 Assistant Professor (non-tenure)


Honors

  • 05.​1997Feordor Lynen - Alexander von Humboldt Stiftung


Lehrschwerpunkte

  • Evolution & Biodiversität der Tiere
  • Evolutionary Genomics and Sociobiology
  • The Growth of the Evolutionary Thought (involved)
  • Evolutionary Genomics and Sociobiology


Ausgewählte Projekte

1. Sociogenomics

Sociogemomics has two basic meanings, first it can refer to the study of genomes of social organisms or second it can be the study of the genomic basis of social behavior. We are interested in both and use genomic, transcriptomic, proteomic and epigenetic methods to study the basis and structure of social genomes and social behavior.
Evolution of social traits in the ant genus Pogonomyrmex and Myrmecocystus. Pogonomyrmex and Myrmecocystus are New World genera that inhabit mesic and dry habitats in North and South America and North America, respectively. Currently about 100 species have been described for Pogonomyrmex and about 30 species for Myrmecocystus.
In collaboration with RE Robertson (ASU) and Corrie Moreaux (Field Museum Chicago) we are generating a molecular phylogeny for Pogonomyrmex and working on improving the Myrmecocystus phylogeny we generated about 10 years ago. We have determined the social structure of several species in terms of mating frequency and queen number to understand the evolution and genetic and environmental basis of the observed variation in social structure in these ant genera. This also involves the study of two social parasitic species that have lost their worker caste and two species that evolved a derived genetic caste determination system. To elucidate the evolution of these two interesting variations of social behavior we use phylogeographic approaches.
One specific question we are currently trying to answer is the evolution and maintenance of primary polygyny that has evolved independently in Myrmecocystus mendax and Pogonomyrmex californicus. Most populations of these two species found their colonies as single queens and each mature colony has only one queen. However, both species have isolated populations that show primary polygyny, i.e. unrelated queens found a colony together and remain multiqueen societies. One of our studies is currently tackling the evolution and developmental regulation of aggression and cooperation/tolerance in Pogonomyrmex californicus.

2. Evolution and genetic architecture of chemical communication

We use a combination of detailed phenotypic analysis (GC-MS, quantitative genetics (QTL analysis,qPCR), genetic manipulations (CRISPR/CAS, dsRNAi) to determine and confirm which genes/gene families are involved in chemical communication involved in colony, caste and species recognition. For example, we study the evolution of gene families involved in chemical communication (desaturase, olfactory and chemical receptor proteins, etc.) in insects in general and Pogonomyrmex and members of a parasitoid wasp genus Nasonia spp. in particular.
Nasonia is the “other” Hymenopteran model organism besides the honeybee. Nasonia spp. has a generation time of app. 14 days and we can produce hybrids in the laboratory once the lines are cured from its endoparasite Wolbachia, which otherwise causes cytoplasmic incompatibility. In Nasonia we can map, identify and confirm almost any interspecific variable trait within 6-12 month. So far we mapped male wing and body size differences, male courtship behavior, components of the cuticular hydrocarbon profile, developmental traits (craniofacial anomalies), nuclear-cytoplasmic incompatibilities, etc..
Nasonia males differ significantly in their cuticular hydrocarbon profile (also used as species and sex signal) and we are using hybrid crosses to map QTL and eventually identify the genes underlying those differences.

3. Speciation – Mechanisms and Processes

Pre- and Postzygotic isolation - Under the biological species concept, speciation is the evolution of hybridization barriers. We have a long-term interest in discovering genes underlying pre- and postzygotic isolation in Nasonia spp.

Publikationen

  • Catania F., Krohs U., Chittò M., Ferro D., Ferro K., Lepennetier G., Görtz H., Schreiber R., Kurtz J., Gadau J. . ‘The hologenome concept: we need to incorporate function.’ Theory in Biosciences null, Nr. null: 1-10. doi: 10.1007/s12064-016-0240-z. [Im Druck]
  • Campbell J., Nath R., Gadau J., Fox T., DeGrandi-Hoffman G., Harrison J. . ‘The fungicide Pristine® inhibits mitochondrial function in vitro but not flight metabolic rates in honey bees.’ Journal of Insect Physiology 86, Nr. null: 11-16. doi: 10.1016/j.jinsphys.2015.12.003.
  • Smith C., Helms Cahan S., Kemena C., Brady S., Yang W., Bornberg-Bauer E., Eriksson T., Gadau J., Helmkampf M., Gotzek D., Okamoto Miyakawa M., Suarez A., Mikheyev A. . ‘How do genomes create novel phenotypes Insights from the loss of the worker caste in ant social parasites.’ Molecular Biology and Evolution 32, Nr. 11: 2919-2931. doi: 10.1093/molbev/msv165.
  • Sadd BM, Barribeau SM, Bloch G, de Graaf DC, Dearden P, Elsik CG, Gadau J, Grimmelikhuijzen CJ, Hasselmann M, Lozier JD, Robertson HM, Smagghe G, Stolle E, Van Vaerenbergh M, Waterhouse RM, Bornberg-Bauer E, Klasberg S, Bennett AK, Câmara F, Guigó R, Hoff K, Mariotti M, Munoz-Torres M, Murphy T, Santesmasses D, Amdam GV, Beckers M, Beye M, Biewer M, Bitondi MM, Blaxter ML, Bourke AF, Brown MJ, Buechel SD, Cameron R, Cappelle K, Carolan JC, Christiaens O, Ciborowski KL, Clarke DF, Colgan TJ, Collins DH, Cridge AG, Dalmay T, Dreier S, du Plessis L, Duncan E, Erler S, Evans J, Falcon T, Flores K, Freitas FC, Fuchikawa T, Gempe T, Hartfelder K, Hauser F, Helbing S, Humann FC, Irvine F, Jermiin LS, Johnson CE, Johnson RM, Jones AK, Kadowaki T, Kidner JH, Koch V, Köhler A, Kraus FB, Lattorff HM, Leask M, Lockett GA, Mallon EB, Antonio DS, Marxer M, Meeus I, Moritz RF, Nair A, Näpflin K, Nissen I, Niu J, Nunes FM, Oakeshott JG, Osborne A, Otte M, Pinheiro DG, Rossié N, Rueppell O, Santos CG, Schmid-Hempel R, Schmitt BD, Schulte C, Simões ZL, Soares MP, Swevers L, Winnebeck EC, Wolschin F, Yu N, Zdobnov EM, Aqrawi PK, Blankenburg KP, Coyle M, Francisco L, Hernandez AG, Holder M, Hudson ME, Jackson L, Jayaseelan J, Joshi V, Kovar C, Lee SL, Mata R, Mathew T, Newsham IF, Ngo R, Okwuonu G, Pham C, Pu LL, Saada N, Santibanez J, Simmons D, Thornton R, Venkat A, Walden KK, Wu YQ, Debyser G, Devreese B, Asher C, Blommaert J, Chipman AD, Chittka L, Fouks B, Liu J, O'Neill MP, Sumner S, Puiu D, Qu J, Salzberg SL, Scherer SE, Muzny DM, Richards S, Robinson GE, Gibbs RA, Schmid-Hempel P, Worley KC. . ‘The genomes of two key bumblebee species with primitive eusocial organization.’ Genome Biol. 16. doi: 10.1186/s13059-015-0623-3.
  • Schrader L., Kim J., Ence D., Zimin A., Klein A., Wyschetzki K., Weichselgartner T., Kemena C., Stökl J., Schultner E., Wurm Y., Smith C., Yandell M., Heinze J., Gadau J., Oettler J. . ‘Transposable element islands facilitate adaptation to novel environments in an invasive species.’ Nature Communications 5, Nr. null. doi: 10.1038/ncomms6495.
  • Simola, D.F.,Wissler, L.,Donahue, G.,Waterhouse, R.M.,Helmkampf, M.,Roux, J.,Nygaard, S.,Glastad, K.M.,Hagen, D.E.,Viljakainen, L.,Reese, J.T.,Hunt, B.G.,Graur, D.,Elhaik, E.,Kriventseva, E.V.,Wen, J.,Parker, B.J.,Cash, E.,Privman, E.,Childers, C.P.,Munoz-Torres, M.C.,Boomsma, J.J.,Bornberg-Bauer, E.,Currie, C.R.,Elsik, C.G.,Suen, G.,Goodisman, M.A.D.,Keller, L.,Liebig, J.,Rawls, A.,Reinberg, D.,Smith, C.D.,Smith, C.R.,Tsutsui, N.,Wurm, Y.,Zdobnov, E.M.,Berger, S.L.,Gadau, J.,. . ‘Social insect genomes exhibit dramatic evolution in gene composition and regulation while preserving regulatory features linked to sociality.’ Genome Research 23, Nr. 8: 1235-1247. doi: 10.1101/gr.155408.113.
  • Gadau J., Helmkampf M., Nygaard S., Roux J., Simola D., Smith C., Suen G., Wurm Y., Smith C. . ‘The genomic impact of 100 million years of social evolution in seven ant species.’ Trends in Genetics 28, Nr. 1: 14-21. doi: 10.1016/j.tig.2011.08.005.
  • Gadau J., Helmkampf M., Nygaard S., Roux J., Simola D., Smith C., Suen G., Wurm Y., Smith C. . ‘The genomic impact of 100 million years of social evolution in seven ant species.’ Trends in Genetics 28, Nr. 1: 14-21. doi: 10.1016/j.tig.2011.08.005.
  • Gadau J., Pietsch C., Beukeboom L. . ‘Quantitative trait locus analysis in haplodiploid hymenoptera.’: 313-328. doi: 10.1007/978-1-61779-785-9_16.
  • Suen G, Teiling C, Li L, Holt C, Abouheif E, Bornberg-Bauer E, Bouffard P, Caldera EJ, Cash E, Cavanaugh A, Denas O, Elhaik E, Favé MJ, Gadau J, Gibson JD, Graur D, Grubbs KJ, Hagen DE, Harkins TT, Helmkampf M, Hu H, Johnson BR, Kim J, Marsh SE, Moeller JA, Muñoz-Torres MC, Murphy MC, Naughton MC, Nigam S, Overson R, Rajakumar R, Reese JT, Scott JJ, Smith CR, Tao S, Tsutsui ND, Viljakainen L, Wissler L, Yandell MD, Zimmer F, Taylor J, Slater SC, Clifton SW, Warren WC, Elsik CG, Smith CD, Weinstock GM, Gerardo NM, Currie CR. . ‘The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle.PLoS genetics 7, Nr. 2: e1002007. doi: 10.1371/journal.pgen.1002007.
  • Hölldobler B., Grillenberger B., Gadau J. . ‘Queen number and raiding behavior in the ant genus Myrmecocystus (Hymenoptera: Formicidae).’ Myrmecological News 15, Nr. null: 53-61.
  • Hölldobler B., Grillenberger B., Gadau J. . ‘Queen number and raiding behavior in the ant genus Myrmecocystus (Hymenoptera: Formicidae).’ Myrmecological News 15, Nr. null: 53-61.
  • Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, Beukeboom LW, Desplan C, Elsik CG, Grimmelikhuijzen CJP, Kitts P, Lynch JA, Murphy T, Oliveira DCSG, Smith CD, Van Zande LD, Worley KC, Zdobnov EM, Aerts M, Albert S, Anaya VH, Anzola JM, Barchuk AR, Behura SK, Bera AN, Berenbaum MR, Bertossa RC, Bitondi MMG, Bordenstein SR, Bork P, Bornberg-Bauer E, Brunain M, Cazzamali G, Chaboub L, Chacko J, Chavez D, Childers CP, Choi J-H, Clark ME, Claudianos C, Clinton RA, Cree AG, Cristino AS, Dang PM, Darby AC, De Graaf DC, Devreese B, Dinh HH, Edwards R, Elango N, Elhaik E, Ermolaeva O, Evans JD, Foret S, Fowler GR, Gerlach D, Gibson JD, Gilbert DG, Graur D, Gründer S, Hagen DE, Han Y, Hauser F, Hultmark D, Hunter Iv HC, Hurst GDD, Jhangian SN, Jiang H, Johnson RM, Jones AK, Junier T, Kadowaki T, Kamping A, Kapustin Y, Kechavarzi B, Kim J, Kim J, Kiryutin B, Koevoets T, Kovar CL, Kriventseva EV, Kucharski R, Lee H, Lee SL, Lees K, Lewis LR, Loehlin DW, Logsdon Jr. JM, Lopez JA, Lozado RJ, Maglott D, Maleszka R, Mayampurath A, Mazur DJ, McClure MA, Moore AD, Morgan MB, Muller J, Munoz-Torres MC, Muzny DM, Nazareth LV, Neupert S, Nguyen NB, Nunes FMF, Oakeshott JG, Okwuonu GO, Pannebakker BA, Pejaver VR, Peng Z, Pratt SC, Predel R, Pu L-L, Ranson H, Raychoudhury R, Rechtsteiner A, Reese JT, Reid JG, Riddle M, Hugh M Robertson II, Romero-Severson J, Rosenberg M, Sackton TB, Sattelle DB, Schlüns H, Schmitt T, Schneider M, Schüler A, Schurko AM, Shuker DM, Simões ZLP, Sinha S, Smith Z, Solovyev V, Souvorov A, Springauf A, Stafflinger E, Stage DE, Stanke M, Tanaka Y, Telschow A, Vattathil CTS, Eveline C Verhulst II, Viljakainen L, Wanner KW, Waterhouse RM, Whitfield JB, Wilkes TE, Williamson M, Willis JH, Wolschin F, Wyder S, Yamada T, Yi SV, Zecher CN, Zhang L, Gibbs RA. . ‘Functional and evolutionary insights from the genomes of three parasitoid nasonia species.’ Science 327, Nr. 5963: 343-348. doi: 10.1126/science.1178028.
  • Pannebakker B., Niehuis O., Hedley A., Gadau J., Shuker D. . ‘The distribution of microsatellites in the Nasonia parasitoid wasp genome.’ Insect Molecular Biology 19, Nr. null: 91-98. doi: 10.1111/j.1365-2583.2009.00915.x.
  • Feldhaar H., Gadau J., Fiala B. . ‘Speciation in obligately plant-associated Crematogaster ants: Host distribution rather than adaption towards specific hosts drives the process.’ In Evolution in Action: Case studies in Adaptive Radiation, Speciation and the Origin of Biodiversity, edited by Glaubrecht M (Ed.): , 193-213.: Springer-Verlag Berlin Heidelberg. doi: 10.1007/978-3-642-12425-9_10.
  • Robertson H., Gadau J., Wanner K. . ‘The insect chemoreceptor superfamily of the parasitoid jewel wasp Nasonia vitripennis.’ Insect Molecular Biology 19, Nr. null: 121-136. doi: 10.1111/j.1365-2583.2009.00979.x.
  • Feldhaar H., Gadau J., Fiala B. . ‘Speciation in obligately plant-associated Crematogaster ants: Host distribution rather than adaption towards specific hosts drives the process.’ In Evolution in Action: Case studies in Adaptive Radiation, Speciation and the Origin of Biodiversity, edited by Glaubrecht M (Ed.): , 193-213.: Springer-Verlag Berlin Heidelberg. doi: 10.1007/978-3-642-12425-9_10.
  • Grillenberger B., Van De Zande L., Bijlsma R., Gadau J., Beukeboom L. . ‘Reproductive strategies under multiparasitism in natural populations of the parasitoid wasp Nasonia (Hymenoptera).’ Journal of Evolutionary Biology 22, Nr. 3: 460-470. doi: 10.1111/j.1420-9101.2008.01677.x.
  • Niehuis O., Judson A., Werren J., Hunter W., Dang P., Dowd S., Grillenberger B., Beukeboom L., Gadau J. . ‘Species-diagnostic single-nucleotide polymorphism and sequence-tagged site markers for the parasitic wasp genus Nasonia (Hymenoptera: Pteromalidae).’ Journal of Economic Entomology 100, Nr. 4: 1033-1036. doi: 10.1603/0022-0493(2007)100[1033:SSPASS]2.0.CO;2.
  • Wilfert L., Gadau J., Schmid-Hempel P. . ‘The genetic architecture of immune defense and reproduction in male Bombus terrestris bumblebees.’ Evolution 61, Nr. 4: 804-815. doi: 10.1111/j.1558-5646.2007.00079.x.
  • Smith C., Schoenick C., Anderson K., Gadau J., Suarez A. . ‘Potential and realized reproduction by different worker castes in queen-less and queen-right colonies of Pogonomyrmex badius.’ Insectes Sociaux 54, Nr. 3: 260-267. doi: 10.1007/s00040-007-0940-y.
  • Smith C., Schoenick C., Anderson K., Gadau J., Suarez A. . ‘Potential and realized reproduction by different worker castes in queen-less and queen-right colonies of Pogonomyrmex badius.’ Insectes Sociaux 54, Nr. 3: 260-267. doi: 10.1007/s00040-007-0940-y.
  • Wilfert L., Gadau J., Schmid-Hempel P. . ‘Variation in genomic recombination rates among animal taxa and the case of social insects.’ Heredity 98, Nr. 4: 189-197. doi: 10.1038/sj.hdy.6800950.
  • Anderson K., Hölldobler B., Fewell J., Mott B., Gadau J. . ‘Population-wide lineage frequencies predict genetic load in the seed-harvester ant Pogonomyrmex.’ Proceedings of the National Academy of Sciences of the United States of America 103, Nr. 36: 13433-13438. doi: 10.1073/pnas.0606055103.
  • Gil R., Silva F., Zientz E., Delmotte F., González-Candelas F., Latorre A., Rausell C., Kamerbeek J., Gadau J., Hölldobler B., Van Ham R., Gross R., Moya A. . ‘The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes.’ Proceedings of the National Academy of Sciences of the United States of America 100, Nr. 16: 9388-9393. doi: 10.1073/pnas.1533499100.
  • Berghoff S., Gadau J., Winter T., Linsenmair K., Maschwitz U. . ‘Sociobiology of hypogaeic army ants: Characterization of two sympatric Dorylus species on Borneo and their colony conflicts.’ Insectes Sociaux 50, Nr. 2: 139-147. doi: 10.1007/s00040-003-0642-z.
  • Page R., Gadau J., Beye M. . ‘The emergence of hymenopteran genetics.’ Genetics 160, Nr. 2: 375-379.
  • Gadau J., Page R., Werren J. . ‘The genetic basis of the interspecific differences in wing size in Nasonia (Hymenoptera; Pteromalidae): Major quantitative trait loci and epistasis.’ Genetics 161, Nr. 2: 673-684.
  • Gadau J., Page R., Werren J. . ‘The genetic basis of the interspecific differences in wing size in Nasonia (Hymenoptera; Pteromalidae): Major quantitative trait loci and epistasis.’ Genetics 161, Nr. 2: 673-684.
  • Gadau J., Brady S., Ward P. . ‘Systematics, distribution, and ecology of an endemic California Camponotus quercicola (Hymenoptera: Formicidae).’ Annals of the Entomological Society of America 92, Nr. 4: 514-522.
  • Gadau J., Disney R. . ‘The ant host (Hymenoptera: Formicidae) and hitherto unknown female of Menozziola obscuripes (Diptera: Phoridae).’ Sociobiology 28, Nr. 2: 177-181.