

PYNOR

Generic Algorithms and Interfaces for Model Order Reduction

Linus Balicki¹, René Fritze², Hendrik Kleikamp², Petar Mlinarić¹, <u>Stephan Rave²</u>, Felix Schindler² ¹Virginia Tech, Blacksburg, USA, ²Uni Münster, Germany

Workshop on Open Source Software and Granular Matter

Enschede, June 1, 2023

living.knowledge

What is Model Order Reduction?

Compute computationally efficient surrogate models for

- optimization,
- control,
- real-time predictions,

• ...

Certification: rigorously control approximation error a priori or a posteriori.

What is Model Order Reduction?

Compute computationally efficient surrogate models for

- control,
 - real-time predictions,

…

Certification: rigorously control approximation error a priori or a posteriori.

System-Theoretic Model Order Reduction

Linear time invariant system (full order model)

Input $u(t) \in \mathbb{R}^m$ to state $x(t) \in \mathbb{R}^n$ to output $y(t) \in \mathbb{R}^p$ mapping is given by

 $\dot{x}(t) = Ax(t) + Bu(t)$ y(t) = Cx(t).

System-Theoretic Model Order Reduction

Linear time invariant system (full order model)

Input $u(t) \in \mathbb{R}^m$ to state $x(t) \in \mathbb{R}^n$ to output $y(t) \in \mathbb{R}^p$ mapping is given by

 $\dot{x}(t) = Ax(t) + Bu(t)$ y(t) = Cx(t).

Model Reduction Magic

Compute 'good' W, $V \in \mathbb{R}^{n \times r}$, $r \ll n$, s.t. $W^T V = I$

Linear time invariant system (reduced order model)

Input $u(t) \in \mathbb{R}^m$ to state $x(t) \in \mathbb{R}^r$ to output $y(t) \in \mathbb{R}^p$ mapping is given by

$$\dot{x}(t) = (W^T A V) x(t) + (W^T B) u(t)$$
$$v(t) = (CV) x(t).$$

System-Theoretic MOR – Computing V and W

Balanced Truncation

 \blacktriangleright Compute reachability Gramian $\mathcal P$ and observability Gramian $\mathcal Q$ subject to

$$A\mathcal{P} + \mathcal{P}A^T + BB^T = 0$$
$$A^T\mathcal{Q} + \mathcal{Q}A + C^TC = 0.$$

- Simultaneously diagonalize \mathcal{P} and \mathcal{Q} .
- Select *V*, *W* by truncating states which are both hard to reach and hard to observe.

System-Theoretic MOR – Computing *V* and *W*

Balanced Truncation

• Compute reachability Gramian \mathcal{P} and observability Gramian \mathcal{Q} subject to

$$\begin{split} A\mathcal{P} + \mathcal{P}A^T + BB^T &= 0 \\ A^T\mathcal{Q} + \mathcal{Q}A + C^TC &= 0. \end{split}$$

- Simultaneously diagonalize \mathcal{P} and \mathcal{Q} .
- Select *V*, *W* by truncating states which are both hard to reach and hard to observe.

Rational interpolation

Construct V, W, s.t. the transfer function (Laplace transform of impulse response)

$$H(s) = C(sI - A)^{-1}B$$

is interpolated (including higher moments) at points s_1, \ldots, s_k by a rational function.

- Methods: Moment matching, Padé approximation, IRKA, ...
- Computed using rational Krylov methods.

Reduced Basis Methods (easiest case)

Parametric linear parabolic problem (full order model)

For given parameter $\mu \in \mathcal{P}$, find $u_{\mu}(t) \in V_h$ s.t.

$$\begin{split} u_{\mu}(x,0) &= u_{0}(x),\\ \eth_{t}u_{\mu}(x,t) - \nabla \cdot (\sigma_{\mu}(x)\nabla u_{\mu}(x,t)) = f(x),\\ y_{\mu}(t) &= g(u_{\mu}(\cdot,t)) \end{split}$$

Reduced Basis Methods (easiest case)

Parametric linear parabolic problem (full order model)

For given parameter $\mu \in \mathcal{P}$, find $u_{\mu}(t) \in V_h$ s.t.

$$\begin{split} u_{\mu}(0) &= u_{0}, \\ \langle v, \partial_{t} u_{\mu}(t) \rangle + b_{\mu}(v, u_{\mu}(t)) &= \ell(v) \qquad \forall v \in V_{h}, \\ y_{\mu}(t) &= g(u_{\mu}(t)). \end{split}$$

Reduced Basis Methods (easiest case)

Parametric linear parabolic problem (full order model)

For given parameter $\mu \in \mathcal{P}$, find $u_{\mu}(t) \in V_h$ s.t.

$$\begin{split} u_{\mu}(0) &= u_{0}, \\ \langle \mathbf{v}, \partial_{t} u_{\mu}(t) \rangle + b_{\mu}(\mathbf{v}, u_{\mu}(t)) = \ell(\mathbf{v}) & \forall \mathbf{v} \in V_{h}, \\ y_{\mu}(t) &= g(u_{\mu}(t)). \end{split}$$

Parametric linear parabolic problem (reduced order model)

For given $V_N \subset V_h$, let $u_{\mu,N}(t) \in V_N$ be given by Galerkin proj. onto V_N , i.e.

$$\begin{split} & u_{\mu,N}(0) = \textbf{P}_{V_N}(u_0), \\ \langle \mathbf{v}, \mathfrak{d}_t u_{\mu(t),N} \rangle + b_{\mu}(\mathbf{v}, u_{\mu(t),N}) = \ell(\mathbf{v}) & \forall \mathbf{v} \in \textbf{V}_N, \\ & y_{\mu,N}(t) = g(u_{\mu,N}(t)), \end{split}$$

where P_{V_N} : $V_h \rightarrow V_N$ is orthogonal proj. onto V_N .

RB Methods – Computing V_N

Weak greedy basis generation

- 1: **function** WEAK-GREEDY($S_{train} \subset P, \varepsilon$) 2: $V_N \leftarrow \{0\}$
- 3: while $\max_{\mu \in S_{train}} \text{Err-Est}(\text{ROM-Solve}(\mu), \mu) > \varepsilon$ do
- 4: $\mu^* \leftarrow \arg\operatorname{-max}_{\mu \in \mathcal{S}_{train}} \operatorname{ErrEst}(\operatorname{ROM-Solve}(\mu), \mu)$
- 5: $V_{N} \leftarrow \text{Basis-Ext}(V_{N}, \text{FOM-Solve}(\mu^{*}))$
- 6: end while
- 7: return V_N
- 8: end function

BASIS-EXT

- 1. Compute $u_{\mu^*}^{\perp}(t) = (I P_{V_N})u_{\mu^*}(t)$.
- 2. Add POD $(u_{\mu^*}^{\perp}(t))$ to V_N (leading left-singular vectors of snapshot matrix).

Err-Est

Fancy RB example: MULTIBAT

MULTIBAT: Gain understanding of degradation processes in rechargeable Li-Ion Batteries through mathematical modeling and simulation.

- Focus: Li-Plating.
- Li-plating initiated at interface between active particles and electrolyte.
- Need microscale models which resolve active particle geometry.
- Very large nonlinear discrete models.

MULTIBAT: Some Results

Model:

- Half-cell with plated Li
- μ = discharge current
- 2.920.000 DOFs

Reduction:

- Snapshots: 3
- ▶ **N** = 178 + 67
- ▶ *M* = 924 + 997
- ▶ Rel. err.: < 4.5 · 10⁻³

Timings:

- Full model: ≈ 15.5h
- ▶ Projection: ≈ 14h
- ▶ Red. model: ≈ 8m
- Speedup: 120

Figure: Validation of reduced order model output for random discharge currents; solid lines: full order model, markers: reduced order model.

Software in MULTIBAT

pyMOR - Model Order Reduction with Python

Goal 1

One library for algorithm development and large-scale applications.

pyMOR - Model Order Reduction with Python

Goal 1

One library for algorithm development and large-scale applications.

Goal 2

Unified view on MOR.

pyMOR - Model Order Reduction with Python

Goal 1

One library for algorithm development and large-scale applications.

Goal 2

Unified view on MOR.

- Started late 2012, 23k lines of Python code, 8k single commits.
- BSD-licensed, fork us on GitHub!
- Quick prototyping with Python 3.
- Comes with small NumPy/SciPy-based discretization toolkit for getting started quickly.
- Seamless integration with high-performance PDE solvers.

Generic Interfaces for MOR

- VectorArray, Operator, Model classes represent objects in solver's memory.
- No communication of high-dimensional data.
- ► Tight, low-level integration with external solver.
- ▶ No MOR-specific code in solver.

Generic Algorithms

Models

StationaryModel InstationaryModel LTIModel PHLTIModel SecondOrderModel LinearDelayModel BilinearModel TransferFunction QuadraticHamiltonianModel LinearStochasticModel

Algorithms

POD	certified RB
PSD new!	HAPOD
DEIM	TF-IRKA
DMD new!	rational Arnoldi
IRKA	PSD cotangent lift new
SAMDP	PSD complex SVD new!
LGMRES	modal truncation
LSMR	time steppers
LSQR	SLYCOT support

parametric PG projection adaptive greedy basis generation non-intrusive MOR with ANNs low-rank ADI Lyapunov solver low-rank ADI Riccati solver bitangential Hermite interpolation Gram-Schmidt with reiteration symplectic Gram-Schmidt new! PSD SVD-like decomposition new! balanced truncation empirical interpolation Arnoldi eigensolver randomized GSVD new! randomized eigensolver new! biorthogonal Gram-Schmidt tangential rational Krylov Newton algorithm second-order BT/IRKA

pyMOR Community

Learn:

- Yearly pyMOR school (school.pymor.org).
- Ask questions via GitHub Discussions.
- Regular community meetings (BigBlueButton).

Contribute:

- ▶ Fix 'good first issue'.
- ▶ Get attribution via AUTHORS.md.
- Become contributor with push access to feature branches.
- Become main developer with full control over project.

Example: System-Theoretic MOR with FEniCS

- MPI distributed heatsink model with FEniCS.
- Heat conduction with Robin boundary.
- Input: heat flow at base
- Output: temperature at base
- MOR: Balanced truncation and Padé approximation

Example: System-Theoretic MOR with FEniCS

Model assembly with FEniCS

```
def discretize():
       domain = ...
       mesh = ms.generate_mesh(domain, RESOLUTION)
       subdomain data = ...
4
       V = df.FunctionSpace(mesh, 'P', 1)
       u = df.TrialFunction(V)
       v = df.TestFunction(V)
8
       ds = df.Measure('ds', domain=mesh, subdomain_data=boundary_markers)
9
       A = df.assemble(- df.Constant(100.) * df.inner(df.grad(u), df.grad(v)) * df.dx
       - df.Constant(0,1) * u * v * ds(1))
       B = df.assemble(df.Constant(1000.) * v * ds(2))
13
       E = df.assemble(u * v * df.dx)
14
```


Example: System-Theoretic MOR with FEniCS

pyMOR wrapping

```
1 # def discretize (cont.)
2
3 space = FenicsVectorSpace(V)
4 A = FenicsMatrixOperator(A, V, V)
5 B = VectorOperator(space.make_array([B]))
6 C = B.H
7 E = FenicsMatrixOperator(E, V, V)
8 fom = LTIModel(A, B, C, None, E)
9 return fom
```


Example: System-Theoretic MOR with FEniCS

pyMOR wrapping

```
1 # def discretize (cont.)
2
3 space = FenicsVectorSpace(V)
4 A = FenicsMatrixOperator(A, V, V)
5 B = VectorOperator(space.make_array([B]))
6 C = B.H
7 E = FenicsMatrixOperator(E, V, V)
8 fom = LTIModel(A, B, C, None, E)
9 return fom
```

MPI wrapping

```
1 from pymor.tools import mpi
2 if mpi.parallel:
3 from pymor.models.mpi import mpi_wrap_model
4 fom = mpi_wrap_model(discretize, use_with=True)
5 else:
6 fom = discretize()
```


Example: System-Theoretic MOR with FEniCS

Balanced Truncation

```
1 reductor = BTReductor(fom)
2 bt_rom = reductor.reduce(10)
3 
4 bt_rom.mag_plot(np.logspace(-2, 4, 100), Hz=True)
```

Padé approximation

```
1 k = 10
2 V = rational_arnoldi(fom.A, fom.E, fom.B, [0] * r)
3 W = rational_arnoldi(fom.A, fom.E, fom.C, [0] * r, trans=True)
4 pade_rom = LTIPGReductor(fom, W, V, False).reduce()
5 
6 pade_rom.mag_plot(np.logspace(-2, 4, 100), Hz=True)
```


Thank you for your attention!

pyMOR - Generic Algorithms and Interfaces for Model Order Reduction SIAM J. Sci. Comput., 38(5), 2016. http://www.pymor.org/

System-theoretic model order reduction with pyMOR PAMM 19, 2019.

Parametric model order reduction using pyMOR Proceedings of MODRED 2019, Springer, 2020.

MULTIBAT: Unified Workflow for fast electrochemical 3D simulations of lithium-ion cells combining virtual stochastic microstructures, electrochemical degradation models and model order reduction J. Comp. Sci., 2018.