
Hierarchical Approximate SVD

Christian Himpe1, Tobias Leibner1, Stephan Rave1

1University of Münster, Germany

Oberseminar Numerik

Münster, November 22, 2023

HASVD

RB for Nonlinear Evolution Equations

Full order model

For given parameter μ ∈ 𝒫, find uμ(t) ∈ Vh s.t.

∂tuμ(t) +ℒμ(uμ(t)) = 0, uμ(0) = u0,

where ℒμ:𝒫 × Vh → Vh is a nonlinear finite volume operator.

Reduced order model

For given VN ⊂ Vh, let uμ,N(t) ∈ VN be given by Galerkin proj. onto VN, i.e.

∂tuμ,N(t) + PVN(ℒμ(uμ,N(t))) = 0, uμ,N(0) = PVN(u0),

where PVN:Vh → VN is orthogonal proj. onto VN.

▶ Still expensive to evaluate projected operator PVN ∘ ℒμ:VN ⟶ Vh ⟶ VN
⟹ use hyper-reduction (e.g. empirical interpolation).

Stephan Rave (stephan.rave@wwu.de) 2

HASVD

RB for Nonlinear Evolution Equations

Full order model

For given parameter μ ∈ 𝒫, find uμ(t) ∈ Vh s.t.

∂tuμ(t) +ℒμ(uμ(t)) = 0, uμ(0) = u0,

where ℒμ:𝒫 × Vh → Vh is a nonlinear finite volume operator.

Reduced order model

For given VN ⊂ Vh, let uμ,N(t) ∈ VN be given by Galerkin proj. onto VN, i.e.

∂tuμ,N(t) + PVN(ℒμ(uμ,N(t))) = 0, uμ,N(0) = PVN(u0),

where PVN:Vh → VN is orthogonal proj. onto VN.

▶ Still expensive to evaluate projected operator PVN ∘ ℒμ:VN ⟶ Vh ⟶ VN
⟹ use hyper-reduction (e.g. empirical interpolation).

Stephan Rave (stephan.rave@wwu.de) 2

HASVD

RB for Nonlinear Evolution Equations

Full order model

For given parameter μ ∈ 𝒫, find uμ(t) ∈ Vh s.t.

∂tuμ(t) +ℒμ(uμ(t)) = 0, uμ(0) = u0,

where ℒμ:𝒫 × Vh → Vh is a nonlinear finite volume operator.

Reduced order model

For given VN ⊂ Vh, let uμ,N(t) ∈ VN be given by Galerkin proj. onto VN, i.e.

∂tuμ,N(t) + PVN(ℒμ(uμ,N(t))) = 0, uμ,N(0) = PVN(u0),

where PVN:Vh → VN is orthogonal proj. onto VN.

▶ Still expensive to evaluate projected operator PVN ∘ ℒμ:VN ⟶ Vh ⟶ VN
⟹ use hyper-reduction (e.g. empirical interpolation).

Stephan Rave (stephan.rave@wwu.de) 2

HASVD

Basis Generation

Offline phase

Basis for VN is computed from solution snapshots uμs(t) of full order problem via:

▶ Proper Orthogonal Decomposition (POD)
▶ POD-Greedy (= greedy search in μ + POD in t)

POD (a.k.a. PCA, Karhunen–Loève decomposition)

Given Hilbert space V , 𝒮: = {v1,… , vS} ⊂ V , the k-th POD mode of 𝒮 is the k-th
left-singular vector of the mapping

Φ:ℝS → V , es → Φ(es): = vs

Φ ≅ V

ℝS

Optimality of POD

Let VN be the linear span of first N POD modes, then:

∑
s∈𝒮

‖s − PVN(s)‖
2 =

|𝒮|

∑
m=N+1

σ2m = min
X⊂V

dim X≤N

∑
s∈𝒮

‖s − PX(s)‖2

Stephan Rave (stephan.rave@wwu.de) 3

HASVD

Basis Generation

Offline phase

Basis for VN is computed from solution snapshots uμs(t) of full order problem via:

▶ Proper Orthogonal Decomposition (POD)
▶ POD-Greedy (= greedy search in μ + POD in t)

POD (a.k.a. PCA, Karhunen–Loève decomposition)

Given Hilbert space V , 𝒮: = {v1,… , vS} ⊂ V , the k-th POD mode of 𝒮 is the k-th
left-singular vector of the mapping

Φ:ℝS → V , es → Φ(es): = vs

Φ ≅ V

ℝS

Optimality of POD

Let VN be the linear span of first N POD modes, then:

∑
s∈𝒮

‖s − PVN(s)‖
2 =

|𝒮|

∑
m=N+1

σ2m = min
X⊂V

dim X≤N

∑
s∈𝒮

‖s − PX(s)‖2

Stephan Rave (stephan.rave@wwu.de) 3

HASVD

Example: RB Approximation of Li-Ion Battery Models

Experimental Data

Mathematical
Modeling

Multiscale
Numerics

Model
Reduction

Integration
Validation

MULTIBAT: Gain understanding of
degradation processes in

rechargeable Li-Ion Batteries

through mathematical modeling

and simulation at the pore scale.

FOM:

▶ 2.920.000 DOFs

▶ Simulation time: ≈ 15.5h

ROM:

▶ Snapshots: 3

▶ dimVN = 245

▶ Rel. err.: < 4.5 ⋅ 10−3

▶ Reduction time: ≈ 14h

▶ Simulation time: ≈ 8m

▶ Speedup: 120

Stephan Rave (stephan.rave@wwu.de) 4

HASVD

HAPOD – Hierarchical Approximate POD

Stephan Rave (stephan.rave@wwu.de) 5

HASVD

Computing VN with POD

Offline phase

Basis for VN is computed from solution snapshots uμs(t) of full order problem via:

▶ Proper Orthogonal Decomposition (POD)
▶ POD-Greedy (= greedy search in μ + POD in t)

POD (a.k.a. PCA, Karhunen–Loève decomposition)

Given Hilbert space V , 𝒮: = {v1,… , vS} ⊂ V , the k-th POD mode of 𝒮 is the k-th
left-singular vector of the mapping

Φ:ℝS → V , es → Φ(es): = vs

Φ ≅ V

ℝS

Optimality of POD

Let VN be the linear span of first N POD modes, then:

∑
s∈𝒮

‖s − PVN(s)‖
2 =

|𝒮|

∑
m=N+1

σ2m = min
X⊂V

dim X≤N

∑
s∈𝒮

‖s − PX(s)‖2

Stephan Rave (stephan.rave@wwu.de) 6

HASVD

Computing VN with POD

Offline phase

Basis for VN is computed from solution snapshots uμs(t) of full order problem via:

▶ Proper Orthogonal Decomposition (POD)
▶ POD-Greedy (= greedy search in μ + POD in t)

POD (a.k.a. PCA, Karhunen–Loève decomposition)

Given Hilbert space V , 𝒮: = {v1,… , vS} ⊂ V , the k-th POD mode of 𝒮 is the k-th
left-singular vector of the mapping

Φ:ℝS → V , es → Φ(es): = vs

Φ ≅ V

ℝS

Optimality of POD

Let VN be the linear span of first N POD modes, then:

∑
s∈𝒮

‖s − PVN(s)‖
2 =

|𝒮|

∑
m=N+1

σ2m = min
X⊂V

dim X≤N

∑
s∈𝒮

‖s − PX(s)‖2

Stephan Rave (stephan.rave@wwu.de) 6

HASVD

Are your tall and skinny matrices not so
skinny anymore?

ta
ll

skinny

not so skinny

POD of large snapshot sets:

▶ large computational effort

▶ parallelization?

▶ data > RAM ⟹ disaster

Solution: PODs of PODs!

Stephan Rave (stephan.rave@wwu.de) 7

HASVD

Are your tall and skinny matrices not so
skinny anymore?

ta
ll

skinny

not so skinny

POD of large snapshot sets:

▶ large computational effort

▶ parallelization?

▶ data > RAM ⟹ disaster

Solution: PODs of PODs!

Stephan Rave (stephan.rave@wwu.de) 7

HASVD

Disclaimer

▶ You might have done this before.

▶ Others have done it before – often well-hidden in a paper on entirely different topic.

We are aware of:

[Qu, Ostrouchov, Samatova, Geist, 2002], [Paul-Dubois-Taine, Amsallem, 2015], [Brands,

Mergheim, Steinmann, 2016], [Iwen, Ong, 2017].

▶ Our contributions:

1. Formalization for arbitrary trees of worker nodes.

2. Extensive theoretical error and performance analysis.

3. A recipe for selecting local truncation thresholds.

4. Extensive numerical experiments for different application scenarios.

▶ Can be trivially extended to low-rank approximation of snapshot matrix by keeping track of

right-singular vectors.

Stephan Rave (stephan.rave@wwu.de) 8

HASVD

Disclaimer

▶ You might have done this before.

▶ Others have done it before – often well-hidden in a paper on entirely different topic.

We are aware of:

[Qu, Ostrouchov, Samatova, Geist, 2002], [Paul-Dubois-Taine, Amsallem, 2015], [Brands,

Mergheim, Steinmann, 2016], [Iwen, Ong, 2017].

▶ Our contributions:

1. Formalization for arbitrary trees of worker nodes.

2. Extensive theoretical error and performance analysis.

3. A recipe for selecting local truncation thresholds.

4. Extensive numerical experiments for different application scenarios.

▶ Can be trivially extended to low-rank approximation of snapshot matrix by keeping track of

right-singular vectors.

Stephan Rave (stephan.rave@wwu.de) 8

HASVD

Disclaimer

▶ You might have done this before.

▶ Others have done it before – often well-hidden in a paper on entirely different topic.

We are aware of:

[Qu, Ostrouchov, Samatova, Geist, 2002], [Paul-Dubois-Taine, Amsallem, 2015], [Brands,

Mergheim, Steinmann, 2016], [Iwen, Ong, 2017].

▶ Our contributions:

1. Formalization for arbitrary trees of worker nodes.

2. Extensive theoretical error and performance analysis.

3. A recipe for selecting local truncation thresholds.

4. Extensive numerical experiments for different application scenarios.

▶ Can be trivially extended to low-rank approximation of snapshot matrix by keeping track of

right-singular vectors.

Stephan Rave (stephan.rave@wwu.de) 8

HASVD

HAPOD – Hierarchical Approximate POD

ρ

𝛼1

β1 β2 β3

𝛼2

β5 β6

▶ Input: Assign snapshot vectors to leaf nodes βi as input.

▶ At each node 𝛼:
1. Perform POD of input vectors with given local ℓ2-error tolerance ε(𝛼).

2. Scale POD modes by singular values.

3. Send scaled modes to parent node as input.

▶ Output: POD modes at root node ρ.

Stephan Rave (stephan.rave@wwu.de) 9

HASVD

HAPOD – Special Cases

Distributed HAPOD

ρ

β1 β2 β3 β4

▶ Distributed, communication avoiding

POD computation.

Incremental HAPOD

ρ

𝛼3

𝛼2

𝛼1 β1

β2

β3

▶ On-the-fly compression of large

trajectories.

Stephan Rave (stephan.rave@wwu.de) 10

HASVD

HAPOD – Some Notation

Trees
𝒯 the tree

ρ𝒯 root node

𝒩𝒯(𝛼) nodes of 𝒯 below or equal node 𝛼
ℒ𝒯 leafs of 𝒯
L𝒯 depth of 𝒯

HAPOD
𝒮 snapshot set

D:𝒮 → ℒ𝒯 snapshot to leaf assignment

ε(𝛼) error tolerance at 𝛼
|HAPOD[𝒮,𝒯,D, ε](𝛼)| number of HAPOD modes at 𝛼
| POD(𝒮, ε)| number of POD modes for error tolerance ε

P𝛼 orth. proj. onto HAPOD modes at 𝛼
̃𝒮𝛼 snapshots at leafs below 𝛼

Stephan Rave (stephan.rave@wwu.de) 11

HASVD

HAPOD – Theoretical Analysis

Theorem (Error bound1)

∑
s∈𝒮𝛼

‖s − P𝛼(s)‖2 ≤ ∑
γ∈𝒩𝒯(𝛼)

ε(γ)2.

Theorem (Mode bound)

∣HAPOD[𝒮,𝒯,D, ε](𝛼)∣ ≤ ∣POD(̃𝒮𝛼, ε(𝛼))∣.

But how to choose ε in practice?

▶ Prescribe error tolerance ε∗ for final HAPOD modes.

▶ Balance quality of HAPOD space (number of additional modes) and computational efficiency

(ω ∈ [0, 1]).
▶ Number of input snapshots should be irrelevant for error measure (might be even unknown a

priori). Hence, control ℓ2-mean error
1

|𝒮|
∑

s∈𝒮 ‖s − Pρ𝒯
(s)‖2.

1For special cases in appendix of [Paul-Dubois-Taine, Amsallem, 2015].

Stephan Rave (stephan.rave@wwu.de) 12

HASVD

HAPOD – Theoretical Analysis

Theorem (Error bound1)

∑
s∈𝒮𝛼

‖s − P𝛼(s)‖2 ≤ ∑
γ∈𝒩𝒯(𝛼)

ε(γ)2.

Theorem (Mode bound)

∣HAPOD[𝒮,𝒯,D, ε](𝛼)∣ ≤ ∣POD(̃𝒮𝛼, ε(𝛼))∣.

But how to choose ε in practice?

▶ Prescribe error tolerance ε∗ for final HAPOD modes.

▶ Balance quality of HAPOD space (number of additional modes) and computational efficiency

(ω ∈ [0, 1]).
▶ Number of input snapshots should be irrelevant for error measure (might be even unknown a

priori). Hence, control ℓ2-mean error
1

|𝒮|
∑

s∈𝒮 ‖s − Pρ𝒯
(s)‖2.

1For special cases in appendix of [Paul-Dubois-Taine, Amsallem, 2015].

Stephan Rave (stephan.rave@wwu.de) 12

HASVD

HAPOD – Theoretical Analysis

Theorem (Error bound1)

∑
s∈𝒮𝛼

‖s − P𝛼(s)‖2 ≤ ∑
γ∈𝒩𝒯(𝛼)

ε(γ)2.

Theorem (Mode bound)

∣HAPOD[𝒮,𝒯,D, ε](𝛼)∣ ≤ ∣POD(̃𝒮𝛼, ε(𝛼))∣.

But how to choose ε in practice?

▶ Prescribe error tolerance ε∗ for final HAPOD modes.

▶ Balance quality of HAPOD space (number of additional modes) and computational efficiency

(ω ∈ [0, 1]).
▶ Number of input snapshots should be irrelevant for error measure (might be even unknown a

priori). Hence, control ℓ2-mean error
1

|𝒮|
∑

s∈𝒮 ‖s − Pρ𝒯
(s)‖2.

1For special cases in appendix of [Paul-Dubois-Taine, Amsallem, 2015].

Stephan Rave (stephan.rave@wwu.de) 12

HASVD

HAPOD – Theoretical Analysis

Theorem (ℓ2-mean error and mode bounds)
Choose local POD error tolerances ε(𝛼) for ℓ2-approximation error as:

ε(ρ𝒯): = √|S| ⋅ ω ⋅ ε∗, ε(𝛼): = √ ̃𝒮𝛼 ⋅ (L𝒯 − 1)−1/2 ⋅
√
1 − ω2 ⋅ ε∗.

Then:
1

|𝒮|
∑
s∈𝒮

‖s − Pρ𝒯
(s)‖2 ≤ ε∗2 and |HAPOD[𝒮,𝒯,D, ε]| ≤ |POD(𝒮,ω ⋅ ε∗)|,

where POD(𝒮, ε): = POD(𝒮, |𝒮| ⋅ ε).

Moreover:

|HAPOD[𝒮,𝒯,D, ε](𝛼)| ≤ |POD(̃𝒮𝛼, (L𝒯 − 1)−1/2 ⋅
√
1 − ω2 ⋅ ε∗)|

≤ min
N∈ℕ

(dN(𝒮) ≤ (L𝒯 − 1)−1/2 ⋅
√
1 − ω2 ⋅ ε∗).

Stephan Rave (stephan.rave@wwu.de) 13

HASVD

HAPOD – Theoretical Analysis

Theorem (ℓ2-mean error and mode bounds)
Choose local POD error tolerances ε(𝛼) for ℓ2-approximation error as:

ε(ρ𝒯): = √|S| ⋅ ω ⋅ ε∗, ε(𝛼): = √ ̃𝒮𝛼 ⋅ (L𝒯 − 1)−1/2 ⋅
√
1 − ω2 ⋅ ε∗.

Then:
1

|𝒮|
∑
s∈𝒮

‖s − Pρ𝒯
(s)‖2 ≤ ε∗2 and |HAPOD[𝒮,𝒯,D, ε]| ≤ |POD(𝒮,ω ⋅ ε∗)|,

where POD(𝒮, ε): = POD(𝒮, |𝒮| ⋅ ε).

Moreover:

|HAPOD[𝒮,𝒯,D, ε](𝛼)| ≤ |POD(̃𝒮𝛼, (L𝒯 − 1)−1/2 ⋅
√
1 − ω2 ⋅ ε∗)|

≤ min
N∈ℕ

(dN(𝒮) ≤ (L𝒯 − 1)−1/2 ⋅
√
1 − ω2 ⋅ ε∗).

Stephan Rave (stephan.rave@wwu.de) 13

HASVD

Incremental HAPOD Example

Compress state trajectory of forced inviscid Burgers equation:

∂tz(x, t) + z(x, t) ⋅ ∂xz(x, t) = u(t) exp(− 1

20
(x − 1

2
)2), (x, t) ∈ (0, 1) × (0, 1),

z(x, 0) = 0, x ∈ [0, 1],
z(0, t) = 0, t ∈ [0, 1],

where u(t) ∈ [0, 1/5] iid. for 0.1% random timesteps, otherwise 0.

▶ Upwind finite difference scheme on uniform mesh with

N = 500 nodes.

▶ 104 explicit Euler steps.

▶ 100 sub-PODs, ω = 0.75.

▶ All computations on Raspberry Pi 1B single board

computer (512MB RAM).
1 0.8 0.6

Space
0.4 0.2 0

0

0.2

0.4

0.6

0.8

1

Time

1
0.8

0.6
0.4

0.2

Stephan Rave (stephan.rave@wwu.de) 14

HASVD

Incremental HAPOD Example

100 10−1 10−2 10−3

100

10−1

10−2

10−3

Prescribed Mean Proj. Error (N = 500)

M
e
a
n
P
ro
je
c
ti
o
n
E
rr
o
r

100 10−1 10−2 10−3

10

20

30

40

50

60

70

80

90

Prescribed Mean Proj. Error (N = 500)

N
u
m
b
e
r
o
f
M
o
d
e
s

100 10−1 10−2 10−3

200

400

600

Prescribed Mean Proj. Error (N = 500)

C
o
m
p
u
ta
ti
o
n
a
l
Ti
m
e
[s
]

500 1,000 1,500 2,000

102

103

State Dimension N (ε∗ = 10−3/2)

C
o
m
p
u
ta
ti
o
n
a
l
Ti
m
e
[s
]

POD

HAPOD

Bound

Intermed.

Stephan Rave (stephan.rave@wwu.de) 15

HASVD

Distributed HAPOD Example

Distributed computation and POD of empirical cross Gramian:

ŴX ,ij: =

M

∑
m=1

∫
∞

0

⟨xmi (t), y jm(t)⟩dt ∈ ℝN×N

▶ ‘Synthetic’ benchmark model2 from MORWiki with parameter θ =
1

10
.

▶ Partition ŴX into 100 slices of size 10.000 × 100.

10−2 10−4 10−6 10−8 10−10

10−5

10−3

10−1

Prescribed Mean Proj. Error (ω = 0.5)

M
o
d
e
l
R
e
d
u
c
ti
o
n
E
rr
o
r

POD

HAPOD

101 102 103
101

102

103

104

105

Block Size (ε∗ = 10−6, ω = 0.5)

S
p
e
e
d
u
p

L𝒯 = 2

L𝒯 = 3

L𝒯 = 4

L𝒯 = 5

2See: http://modelreduction.org/index.php/Synthetic_parametric_model

Stephan Rave (stephan.rave@wwu.de) 16

http://modelreduction.org/index.php/Synthetic_parametric_model

HASVD

HAPOD – HPC Example
Neutron transport equation

∂tψ(t, x, v) + v ⋅∇xψ(t, x, v) + σt(x)ψ(t, x, v) = 1

|V |σs(x) ∫
V

ψ(t, x,w)dw + Q(x)

▶ Moment closure/FV approximation.

▶ Varying absorbtion and scattering coefficients.

▶ Distributed snapshot and HAPOD computation on

PALMA cluster (125 cores).

Stephan Rave (stephan.rave@wwu.de) 17

HASVD

HAPOD – HPC Example

𝛼n

𝛼2n

𝛼1n

τ1n,1 ⋯ τ1n,12

τ2n,1 ⋯ τ2n,12

τsn,1 ⋯ τsn,12

▶ HAPOD on compute node n. Time steps are split into s

slices. Each processor core computes one slice at a time,

performs POD and sends resulting modes to main MPI

rank on the node.

ρ

𝛼1 𝛼2

𝛼3

𝛼11

▶ Incremental HAPOD is performed on

MPI rank 0 with modes collected on

each node.

Stephan Rave (stephan.rave@wwu.de) 18

HASVD

HAPOD – HPC Example

10−510−410−310−2

10−4

10−3

Prescribed Mean Proj. Error (k = 20)

M
e
a
n
M
O
R
E
rr
o
r

10−510−410−310−2

0

10

20

2 10 35 94

Prescribed Mean Proj. Error (k = 20)

A
d
d
it
io
n
a
l
M
o
d
e
s

POD modes

0 100 200
10−1

101

103

Grid size k (ε∗ = 10−4, ω = 0.95)

C
o
m
p
u
ta
ti
o
n
a
l
Ti
m
e
[s
]

POD

HAPOD

Data gen.

10−510−410−310−2

0

100

200

300

Prescribed Mean Proj. Error (k = 20)

C
o
m
p
u
ta
ti
o
n
a
l
Ti
m
e
[s
]

ω = 0.1

ω = 0.25

ω = 0.5

ω = 0.75

ω = 0.9

ω = 0.95

ω = 0.99

ω = 0.999

POD

▶ ≈ 39.000 ⋅ k3 doubles of snapshot data (≈ 2.5 terabyte for k = 200).

Stephan Rave (stephan.rave@wwu.de) 19

HASVD

What About Nonlinear Problems?

For nonlinear problems, we also need to generate a basis for EI.

▶ In case of DEIM, EI basis is computed as POD of operator evaluations.

▶ Use HAPOD to simultaneously compute RB and DEIM bases.

▶ Interpolation DOFs are chosen afterwards only using DEIM basis as data (EI-Greedy).

Stephan Rave (stephan.rave@wwu.de) 20

HASVD

Where are my right-singular vectors?!

At the blackboard!

Stephan Rave (stephan.rave@wwu.de) 21

HASVD

Where are my right-singular vectors?!

At the blackboard!

Stephan Rave (stephan.rave@wwu.de) 21

HASVD

HASVD vs. Stoachstic SVD

HASVD stoch. SVD

efficient

rigorous analysis

easy to parallelize

low-rank approximation

matrix free

single-pass

single-pass with error control

easy to implement

▶ HASVD is a method to efficiently obtain the POD from PODs of subsets of the data.

▶ HASVD can be utilized on top of stochastic SVD methods.

Stephan Rave (stephan.rave@wwu.de) 22

HASVD

HASVD

Rigor-
ous!

Error bounds Mode bounds

Fast!

Single pass

live data

compression

Overcome

RAM

limitations

Reduced com-

putational

complexity

Simple!

Cloud-friendly
Bring-your-

own-SVD

Easy

parallelization

Stephan Rave (stephan.rave@wwu.de) 23

HASVD

Thank you for your attention!

C. Himpe, T. Leibner, S. Rave, Hierarchical Approximate Proper Orthogonal Decomposition
SIAM J. Sci. Comput., 40(5), pp. A3267-A3292

pyMOR – Generic Algorithms and Interfaces for Model Order Reduction

SIAM J. Sci. Comput., 38(5), pp. S194–S216

pip install pymor

Matlab HAPOD implementation:

git clone https://github.com/gramian/hapod

My homepage:

https://stephanrave.de/

Stephan Rave (stephan.rave@wwu.de) 24

https://epubs.siam.org/doi/abs/10.1137/16M1085413
https://epubs.siam.org/doi/abs/10.1137/15M1026614
http://www.pymor.org/
https://stephanrave.de/

