

Hierarchical Approximate SVD

Christian Himpe¹, Tobias Leibner¹, Stephan Rave¹ ¹University of Münster, Germany

Oberseminar Numerik

Münster, November 22, 2023

living.knowledge

RB for Nonlinear Evolution Equations

Full order model

For given parameter $\mu \in \mathcal{P}$, find $u_{\mu}(t) \in V_h$ s.t.

 $\label{eq:delta_prod} \eth_t u_\mu(t) + \mathcal{L}_\mu(u_\mu(t)) = \mathbf{0}, \quad u_\mu(\mathbf{0}) = u_\mathbf{0},$

where $\mathcal{L}_{\mu}: \mathcal{P} \times V_h \to V_h$ is a nonlinear finite volume operator.

RB for Nonlinear Evolution Equations

Full order model

For given parameter $\mu \in \mathcal{P}$, find $u_{\mu}(t) \in V_h$ s.t.

$$\partial_t u_\mu(t) + \mathcal{L}_\mu(u_\mu(t)) = 0, \quad u_\mu(0) = u_0,$$

where $\mathcal{L}_{\mu}: \mathcal{P} \times V_h \to V_h$ is a nonlinear finite volume operator.

Reduced order model

For given $V_N \subset V_h$, let $u_{\mu,N}(t) \in V_N$ be given by Galerkin proj. onto V_N , i.e.

$$\partial_t u_{\mu,N}(t) + \mathbf{P}_{\mathbf{V}_{\mathbf{N}}}(\mathcal{L}_{\mu}(u_{\mu,N}(t))) = \mathbf{0}, \quad u_{\mu,N}(\mathbf{0}) = \mathbf{P}_{\mathbf{V}_{\mathbf{N}}}(u_0),$$

where $P_{V_N}: V_h \rightarrow V_N$ is orthogonal proj. onto V_N .

RB for Nonlinear Evolution Equations

Full order model

For given parameter $\mu \in \mathcal{P}$, find $u_{\mu}(t) \in V_h$ s.t.

$$\partial_t u_\mu(t) + \mathcal{L}_\mu(u_\mu(t)) = 0, \quad u_\mu(0) = u_0,$$

where $\mathcal{L}_{\mu}: \mathcal{P} \times V_h \to V_h$ is a nonlinear finite volume operator.

Reduced order model

For given $V_N \subset V_h$, let $u_{\mu,N}(t) \in V_N$ be given by Galerkin proj. onto V_N , i.e.

$$\partial_t u_{\mu,N}(t) + P_{V_N}(\mathcal{L}_{\mu}(u_{\mu,N}(t))) = 0, \quad u_{\mu,N}(0) = P_{V_N}(u_0),$$

where P_{V_N} : $V_h \rightarrow V_N$ is orthogonal proj. onto V_N .

Still expensive to evaluate projected operator $P_{V_N} \circ \mathcal{L}_{\mu}: V_N \longrightarrow V_h \longrightarrow V_N$ \implies use hyper-reduction (e.g. empirical interpolation).

Basis Generation

Offline phase

Basis for V_N is computed from **solution snapshots** $u_{\mu_s}(t)$ of full order problem via:

- Proper Orthogonal Decomposition (POD)
- ▶ POD-Greedy (= greedy search in μ + POD in *t*)

Basis Generation

Offline phase

Basis for V_N is computed from **solution snapshots** $u_{\mu_e}(t)$ of full order problem via:

- Proper Orthogonal Decomposition (POD)
- ▶ POD-Greedy (= greedy search in μ + POD in *t*)

POD (a.k.a. PCA, Karhunen–Loève decomposition)

Given Hilbert space $V, S: = \{v_1, ..., v_S\} \subset V$, the k-th POD mode of S is the k-th left-singular vector of the mapping

$$\Phi: \mathbb{R}^{S} \to V, \quad e_{s} \to \Phi(e_{s}):=v_{s}$$

HASVD

Optimality of POD

Let V_N be the linear span of first N POD modes, then:

$$\sum_{s \in \mathcal{S}} \| s - \boldsymbol{P}_{\boldsymbol{V}_{\boldsymbol{N}}}(s) \|^2 = \sum_{m=N+1}^{|\mathcal{S}|} \sigma_m^2 = \min_{\substack{X \subset V \\ \dim X \le N}} \sum_{s \in \mathcal{S}} \| s - P_X(s) \|^2$$

Stephan Rave (stephan.rave@wwu.de)

Example: RB Approximation of Li-Ion Battery Models

MULTIBAT: Gain understanding of degradation processes in rechargeable Li-Ion Batteries through mathematical modeling and simulation at the pore scale.

FOM:

- 2.920.000 DOFs
- ► Simulation time: ≈ 15.5h

ROM:

- Snapshots: 3
- ▶ dim V_N = 245
- ▶ Rel. err.: < 4.5 · 10⁻³
- ▶ Reduction time: ≈ 14h
- Simulation time: ≈ 8m
- Speedup: 120

HAPOD – Hierarchical Approximate POD

Computing V_N with POD

Offline phase

Basis for V_N is computed from **solution snapshots** $u_{\mu_s}(t)$ of full order problem via:

- Proper Orthogonal Decomposition (POD)
- ▶ POD-Greedy (= greedy search in μ + POD in *t*)

Computing V_N with POD

Offline phase

Basis for V_N is computed from **solution snapshots** $u_{\mu_s}(t)$ of full order problem via:

- Proper Orthogonal Decomposition (POD)
- ▶ POD-Greedy (= greedy search in μ + POD in t)

POD (a.k.a. PCA, Karhunen–Loève decomposition)

Given Hilbert space V, S: = { v_1 , ..., v_S } $\subset V$, the k-th POD mode of S is the k-th left-singular vector of the mapping

$$\Phi: \mathbb{R}^S \to V$$
, $e_s \to \Phi(e_s):=v_s$

Optimality of POD

Let V_N be the linear span of first N POD modes, then:

$$\sum_{s \in \mathcal{S}} \|s - P_{V_N}(s)\|^2 = \sum_{m=N+1}^{|\mathcal{S}|} \sigma_m^2 = \min_{\substack{X \subset V \\ \dim X \le N}} \sum_{s \in \mathcal{S}} \|s - P_X(s)\|^2$$

Are your tall and skinny matrices not so skinny anymore?

POD of large snapshot sets:

- large computational effort
- parallelization?
- ▶ data > RAM ⇒ disaster

Are your tall and skinny matrices not so skinny anymore?

POD of large snapshot sets:

- large computational effort
- parallelization?
- ▶ data > RAM ⇒ disaster

Solution: PODs of PODs!

Disclaimer

> You might have done this before.

Disclaimer

- > You might have done this before.
- Others have done it before often well-hidden in a paper on entirely different topic. We are aware of:
 [Qu, Ostrouchov, Samatova, Geist, 2002], [Paul-Dubois-Taine, Amsallem, 2015], [Brands, Mergheim, Steinmann, 2016], [lwen, Ong, 2017].

Disclaimer

- > You might have done this before.
- Others have done it before often well-hidden in a paper on entirely different topic. We are aware of:
 [Qu, Ostrouchov, Samatova, Geist, 2002], [Paul-Dubois-Taine, Amsallem, 2015], [Brands, Mergheim, Steinmann, 2016], [lwen, Ong, 2017].
- Our contributions:
 - 1. Formalization for arbitrary trees of worker nodes.
 - 2. Extensive theoretical error and performance analysis.
 - 3. A recipe for selecting local truncation thresholds.
 - 4. Extensive numerical experiments for different application scenarios.
- Can be trivially extended to low-rank approximation of snapshot matrix by keeping track of right-singular vectors.

HAPOD – Hierarchical Approximate POD

- lnput: Assign snapshot vectors to leaf nodes β_i as input.
- At each node α:
 - **1.** Perform POD of input vectors with given local ℓ^2 -error tolerance $\varepsilon(\alpha)$.
 - 2. Scale POD modes by singular values.
 - 3. Send scaled modes to parent node as input.
- Output: POD modes at root node ρ.

HAPOD – Special Cases

Distributed HAPOD

 Distributed, communication avoiding POD computation.

Incremental HAPOD

 On-the-fly compression of large trajectories.

HAPOD – Some Notation

Trees	
\mathcal{T}	the tree
$ ho_{\mathcal{T}}$	root node
$\mathcal{N}_{\mathcal{T}}(\alpha)$	nodes of ${\mathcal T}$ below or equal node $lpha$
$\mathcal{L}_{\mathcal{T}}$	leafs of ${\mathcal T}$
$L_{\mathcal{T}}$	depth of ${\mathcal T}$

HAPOD

S	snapshot set
$D: S \to \mathcal{L}_T$	snapshot to leaf assignment
$\varepsilon(\alpha)$	error tolerance at α
$ HAPOD[\mathcal{S}, \mathcal{T}, D, \varepsilon](\alpha) $	number of HAPOD modes at $lpha$
$ POD(\mathcal{S}, \varepsilon) $	number of POD modes for error tolerance a
Pα	orth. proj. onto HAPOD modes at $lpha$
Ŝα	snapshots at leafs below α

HAPOD – Theoretical Analysis

Theorem (Error bound¹)

$$\sum_{s\in\widetilde{\mathcal{S}}_{\alpha}}\|s-P_{\alpha}(s)\|^{2}\leq \sum_{\gamma\in\mathcal{N}_{\mathcal{T}}(\alpha)}\varepsilon(\gamma)^{2}.$$

¹For special cases in appendix of [Paul-Dubois-Taine, Amsallem, 2015].

HAPOD – Theoretical Analysis

Theorem (Error bound¹)

$$\sum_{s\in\widetilde{\mathcal{S}}_{\alpha}}\|s-P_{\alpha}(s)\|^{2}\leq \sum_{\gamma\in\mathcal{N}_{\mathcal{T}}(\alpha)}\varepsilon(\gamma)^{2}.$$

Theorem (Mode bound)

$$\mathsf{HAPOD}[\mathcal{S}, \mathcal{T}, D, \varepsilon](\alpha) | \leq |\mathsf{POD}(\tilde{\mathcal{S}}_{\alpha}, \varepsilon(\alpha))|.$$

¹For special cases in appendix of [Paul-Dubois-Taine, Amsallem, 2015].

HAPOD – Theoretical Analysis

Theorem (Error bound¹)

$$\sum_{s\in \widetilde{\mathcal{S}}_{\alpha}} \|s-P_{\alpha}(s)\|^2 \leq \sum_{\gamma\in \mathcal{N}_{\mathcal{T}}(\alpha)} \varepsilon(\gamma)^2.$$

Theorem (Mode bound)

 $|\mathsf{HAPOD}[\mathcal{S}, \mathcal{T}, D, \varepsilon](\alpha)| \leq |\mathsf{POD}(\tilde{\mathcal{S}}_{\alpha}, \varepsilon(\alpha))|.$

But how to choose ε in practice?

- Prescribe error tolerance ε^* for final HAPOD modes.
- ▶ Balance quality of HAPOD space (number of additional modes) and computational efficiency ($\omega \in [0, 1]$).
- ▶ Number of input snapshots should be irrelevant for error measure (might be even unknown a priori). Hence, control ℓ^2 -mean error $\frac{1}{|s|} \sum_{s \in S} ||s P_{\rho_T}(s)||^2$.

¹For special cases in appendix of [Paul-Dubois-Taine, Amsallem, 2015].

HAPOD – Theoretical Analysis

Theorem (ℓ^2 -mean error and mode bounds)

Choose local POD error tolerances $\varepsilon(\alpha)$ for ℓ^2 -approximation error as:

$$\varepsilon(\rho_{\mathcal{T}}) := \sqrt{|S|} \cdot \boldsymbol{\omega} \cdot \boldsymbol{\varepsilon}^*, \qquad \varepsilon(\alpha) := \sqrt{\tilde{\mathcal{S}}_{\alpha}} \cdot (L_{\mathcal{T}} - 1)^{-1/2} \cdot \sqrt{1 - \boldsymbol{\omega}^2} \cdot \boldsymbol{\varepsilon}^*.$$

Then:

$$\frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} \|s - P_{\rho_{\mathcal{T}}}(s)\|^2 \leq \boldsymbol{\varepsilon}^{*2} \quad and \quad |\operatorname{HAPOD}[\mathcal{S}, \mathcal{T}, D, \boldsymbol{\varepsilon}]| \leq |\overline{\operatorname{POD}}(\mathcal{S}, \boldsymbol{\omega} \cdot \boldsymbol{\varepsilon}^*)|,$$

where $\overline{\text{POD}}(\mathcal{S}, \varepsilon)$:= $\text{POD}(\mathcal{S}, |\mathcal{S}| \cdot \varepsilon)$.

Moreover:

$$|\operatorname{\mathsf{HAPOD}}[\mathcal{S},\mathcal{T},\boldsymbol{D},\boldsymbol{\varepsilon}](\alpha)| \leq |\overline{\operatorname{\mathsf{POD}}}(\tilde{\mathcal{S}}_{\alpha},(L_{\mathcal{T}}-1)^{-1/2}\cdot\sqrt{1-\boldsymbol{\omega}^2}\cdot\boldsymbol{\varepsilon}^*)|$$

HAPOD – Theoretical Analysis

Theorem (ℓ^2 -mean error and mode bounds)

Choose local POD error tolerances $\varepsilon(\alpha)$ for ℓ^2 -approximation error as:

$$\varepsilon(\rho_{\mathcal{T}}) := \sqrt{|S|} \cdot \boldsymbol{\omega} \cdot \boldsymbol{\varepsilon}^*, \qquad \varepsilon(\alpha) := \sqrt{\tilde{\mathcal{S}}_{\alpha}} \cdot (L_{\mathcal{T}} - 1)^{-1/2} \cdot \sqrt{1 - \boldsymbol{\omega}^2} \cdot \boldsymbol{\varepsilon}^*.$$

Then:

$$\frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} \|s - P_{\rho_{\mathcal{T}}}(s)\|^2 \leq \boldsymbol{\varepsilon}^{*2} \quad and \quad |\operatorname{HAPOD}[\mathcal{S}, \mathcal{T}, D, \boldsymbol{\varepsilon}]| \leq |\overline{\operatorname{POD}}(\mathcal{S}, \boldsymbol{\omega} \cdot \boldsymbol{\varepsilon}^*)|,$$

where $\overline{\text{POD}}(\mathcal{S}, \varepsilon)$:= $\text{POD}(\mathcal{S}, |\mathcal{S}| \cdot \varepsilon)$.

Moreover:

$$\begin{split} |\operatorname{HAPOD}[\mathcal{S},\mathcal{T},D,\varepsilon](\alpha)| &\leq |\overline{\operatorname{POD}}(\widetilde{\mathcal{S}}_{\alpha},(L_{\mathcal{T}}-1)^{-1/2}\cdot\sqrt{1-\omega^2}\cdot\varepsilon^*)| \\ &\leq \min_{N\in\mathbb{N}}(d_N(\mathcal{S})\leq (L_{\mathcal{T}}-1)^{-1/2}\cdot\sqrt{1-\omega^2}\cdot\varepsilon^*). \end{split}$$

Incremental HAPOD Example

Compress state trajectory of forced inviscid Burgers equation:

$$\begin{aligned} \partial_t z(x,t) + z(x,t) &\cdot \partial_x z(x,t) = u(t) \exp(-\frac{1}{20}(x-\frac{1}{2})^2), & (x,t) \in (0,1) \times (0,1), \\ z(x,0) &= 0, & x \in [0,1], \\ z(0,t) &= 0, & t \in [0,1], \end{aligned}$$

where $u(t) \in [0, 1/5]$ iid. for 0.1% random timesteps, otherwise 0.

- Upwind finite difference scheme on uniform mesh with N = 500 nodes.
- ▶ 10⁴ explicit Euler steps.
- ▶ 100 sub-PODs, $\omega = 0.75$.
- All computations on Raspberry Pi 1B single board computer (512MB RAM).

Incremental HAPOD Example

Stephan Rave (stephan.rave@wwu.de)

Distributed HAPOD Example

Distributed computation and POD of empirical cross Gramian:

$$\widehat{W}_{X,ij} := \sum_{m=1}^{M} \int_{0}^{\infty} \langle x_{i}^{m}(t), y_{m}^{j}(t) \rangle \, \mathrm{d}t \in \mathbb{R}^{N \times N}$$

• 'Synthetic' benchmark model² from MORWiki with parameter $\theta = \frac{1}{10}$.

• Partition \widehat{W}_{χ} into 100 slices of size 10.000 × 100.

²See: http://modelreduction.org/index.php/Synthetic_parametric_model

HASVD

HAPOD – HPC Example

Neutron transport equation

$$\partial_t \psi(t, \mathbf{x}, \mathbf{v}) + \mathbf{v} \cdot \nabla_{\mathbf{x}} \psi(t, \mathbf{x}, \mathbf{v}) + \sigma_t(\mathbf{x}) \psi(t, \mathbf{x}, \mathbf{v}) = \frac{1}{|V|} \sigma_s(\mathbf{x}) \int_V \psi(t, \mathbf{x}, \mathbf{w}) \, \mathrm{d}\mathbf{w} + Q(\mathbf{x})$$

- Moment closure/FV approximation.
- Varying absorbtion and scattering coefficients.
- Distributed snapshot and HAPOD computation on PALMA cluster (125 cores).

HASVD

HAPOD – HPC Example

HAPOD on compute node *n*. Time steps are split into s slices. Each processor core computes one slice at a time, performs POD and sends resulting modes to main MPI rank on the node.

 Incremental HAPOD is performed on MPI rank 0 with modes collected on each node.

HAPOD – HPC Example

▶ ≈ 39.000 · k^3 doubles of snapshot data (≈ 2.5 terabyte for k = 200).

HASVD

What About Nonlinear Problems?

For nonlinear problems, we also need to generate a basis for EI.

- ▶ In case of DEIM, EI basis is computed as POD of operator evaluations.
- ▶ ~→ Use HAPOD to simultaneously compute RB and DEIM bases.
- ▶ Interpolation DOFs are chosen afterwards only using DEIM basis as data (EI-GREEDY).

Where are my right-singular vectors?!

Where are my right-singular vectors?!

At the blackboard!

HASVD vs. Stoachstic SVD

- ▶ HASVD is a method to efficiently obtain the POD from PODs of subsets of the data.
- ▶ HASVD can be utilized on top of stochastic SVD methods.

Thank you for your attention!

C. Himpe, T. Leibner, S. Rave, Hierarchical Approximate Proper Orthogonal Decomposition SIAM J. Sci. Comput., 40(5), pp. A3267-A3292

pyMOR - Generic Algorithms and Interfaces for Model Order Reduction SIAM J. Sci. Comput., 38(5), pp. S194-S216 pip install pymor

Matlab HAPOD implementation: git clone https://github.com/gramian/hapod

My homepage: https://stephanrave.de/