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HASVD

RB for Nonlinear Evolution Equations

Full order model

For given parameter μ ∈ 𝒫, find uμ(t) ∈ Vh s.t.

∂tuμ(t) +ℒμ(uμ(t)) = 0, uμ(0) = u0,

where ℒμ:𝒫 × Vh → Vh is a nonlinear finite volume operator.

Reduced order model

For given VN ⊂ Vh, let uμ,N(t) ∈ VN be given by Galerkin proj. onto VN, i.e.

∂tuμ,N(t) + PVN(ℒμ(uμ,N(t))) = 0, uμ,N(0) = PVN(u0),

where PVN:Vh → VN is orthogonal proj. onto VN.

▶ Still expensive to evaluate projected operator PVN ∘ ℒμ:VN ⟶ Vh ⟶ VN
⟹ use hyper-reduction (e.g. empirical interpolation).
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HASVD

Basis Generation

Offline phase

Basis for VN is computed from solution snapshots uμs(t) of full order problem via:

▶ Proper Orthogonal Decomposition (POD)
▶ POD-Greedy (= greedy search in μ + POD in t)

POD (a.k.a. PCA, Karhunen–Loève decomposition)

Given Hilbert space V , 𝒮: = {v1,… , vS} ⊂ V , the k-th POD mode of 𝒮 is the k-th
left-singular vector of the mapping

Φ:ℝS → V , es → Φ(es): = vs

Φ ≅ V

ℝS

Optimality of POD

Let VN be the linear span of first N POD modes, then:

∑
s∈𝒮

‖s − PVN(s)‖
2 =

|𝒮|

∑
m=N+1

σ2m = min
X⊂V

dim X≤N

∑
s∈𝒮

‖s − PX(s)‖2
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Example: RB Approximation of Li-Ion Battery Models

Experimental Data

Mathematical
Modeling

Multiscale
Numerics

Model
Reduction

Integration
Validation

MULTIBAT: Gain understanding of
degradation processes in

rechargeable Li-Ion Batteries

through mathematical modeling

and simulation at the pore scale.

FOM:

▶ 2.920.000 DOFs

▶ Simulation time: ≈ 15.5h

ROM:

▶ Snapshots: 3

▶ dimVN = 245

▶ Rel. err.: < 4.5 ⋅ 10−3

▶ Reduction time: ≈ 14h

▶ Simulation time: ≈ 8m

▶ Speedup: 120
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HAPOD – Hierarchical Approximate POD
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Computing VN with POD
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HASVD

Are your tall and skinny matrices not so
skinny anymore?

ta
ll

skinny

not so skinny

POD of large snapshot sets:

▶ large computational effort

▶ parallelization?

▶ data > RAM ⟹ disaster

Solution: PODs of PODs!
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HASVD

Disclaimer

▶ You might have done this before.

▶ Others have done it before – often well-hidden in a paper on entirely different topic.

We are aware of:

[Qu, Ostrouchov, Samatova, Geist, 2002], [Paul-Dubois-Taine, Amsallem, 2015], [Brands,

Mergheim, Steinmann, 2016], [Iwen, Ong, 2017].

▶ Our contributions:

1. Formalization for arbitrary trees of worker nodes.

2. Extensive theoretical error and performance analysis.

3. A recipe for selecting local truncation thresholds.

4. Extensive numerical experiments for different application scenarios.

▶ Can be trivially extended to low-rank approximation of snapshot matrix by keeping track of

right-singular vectors.
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HAPOD – Hierarchical Approximate POD

ρ

𝛼1

β1 β2 β3

𝛼2

β5 β6

▶ Input: Assign snapshot vectors to leaf nodes βi as input.

▶ At each node 𝛼:
1. Perform POD of input vectors with given local ℓ2-error tolerance ε(𝛼).

2. Scale POD modes by singular values.

3. Send scaled modes to parent node as input.

▶ Output: POD modes at root node ρ.
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HAPOD – Special Cases

Distributed HAPOD

ρ

β1 β2 β3 β4

▶ Distributed, communication avoiding

POD computation.

Incremental HAPOD

ρ

𝛼3

𝛼2

𝛼1 β1

β2

β3

▶ On-the-fly compression of large

trajectories.
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HAPOD – Some Notation

Trees
𝒯 the tree

ρ𝒯 root node

𝒩𝒯(𝛼) nodes of 𝒯 below or equal node 𝛼
ℒ𝒯 leafs of 𝒯
L𝒯 depth of 𝒯

HAPOD
𝒮 snapshot set

D:𝒮 → ℒ𝒯 snapshot to leaf assignment

ε(𝛼) error tolerance at 𝛼
|HAPOD[𝒮,𝒯,D, ε](𝛼)| number of HAPOD modes at 𝛼
| POD(𝒮, ε)| number of POD modes for error tolerance ε

P𝛼 orth. proj. onto HAPOD modes at 𝛼
̃𝒮𝛼 snapshots at leafs below 𝛼
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HAPOD – Theoretical Analysis

Theorem (Error bound1)

∑
s∈𝒮𝛼

‖s − P𝛼(s)‖2 ≤ ∑
γ∈𝒩𝒯(𝛼)

ε(γ)2.

Theorem (Mode bound)

∣HAPOD[𝒮,𝒯,D, ε](𝛼)∣ ≤ ∣POD( ̃𝒮𝛼, ε(𝛼))∣.

But how to choose ε in practice?

▶ Prescribe error tolerance ε∗ for final HAPOD modes.

▶ Balance quality of HAPOD space (number of additional modes) and computational efficiency

(ω ∈ [0, 1]).
▶ Number of input snapshots should be irrelevant for error measure (might be even unknown a

priori). Hence, control ℓ2-mean error
1

|𝒮|
∑

s∈𝒮 ‖s − Pρ𝒯
(s)‖2.

1For special cases in appendix of [Paul-Dubois-Taine, Amsallem, 2015].
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HAPOD – Theoretical Analysis

Theorem (ℓ2-mean error and mode bounds)
Choose local POD error tolerances ε(𝛼) for ℓ2-approximation error as:

ε(ρ𝒯): = √|S| ⋅ ω ⋅ ε∗, ε(𝛼): = √ ̃𝒮𝛼 ⋅ (L𝒯 − 1)−1/2 ⋅
√
1 − ω2 ⋅ ε∗.

Then:
1

|𝒮|
∑
s∈𝒮

‖s − Pρ𝒯
(s)‖2 ≤ ε∗2 and |HAPOD[𝒮,𝒯,D, ε]| ≤ |POD(𝒮,ω ⋅ ε∗)|,

where POD(𝒮, ε): = POD(𝒮, |𝒮| ⋅ ε).

Moreover:

|HAPOD[𝒮,𝒯,D, ε](𝛼)| ≤ |POD( ̃𝒮𝛼, (L𝒯 − 1)−1/2 ⋅
√
1 − ω2 ⋅ ε∗)|

≤ min
N∈ℕ

(dN(𝒮) ≤ (L𝒯 − 1)−1/2 ⋅
√
1 − ω2 ⋅ ε∗).
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Incremental HAPOD Example

Compress state trajectory of forced inviscid Burgers equation:

∂tz(x, t) + z(x, t) ⋅ ∂xz(x, t) = u(t) exp(− 1

20
(x − 1

2
)2), (x, t) ∈ (0, 1) × (0, 1),

z(x, 0) = 0, x ∈ [0, 1],
z(0, t) = 0, t ∈ [0, 1],

where u(t) ∈ [0, 1/5] iid. for 0.1% random timesteps, otherwise 0.

▶ Upwind finite difference scheme on uniform mesh with

N = 500 nodes.

▶ 104 explicit Euler steps.

▶ 100 sub-PODs, ω = 0.75.

▶ All computations on Raspberry Pi 1B single board

computer (512MB RAM).
1 0.8 0.6

Space
0.4 0.2 0

0

0.2

0.4

0.6

0.8

1

Time

1
0.8

0.6
0.4

0.2
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Incremental HAPOD Example

100 10−1 10−2 10−3
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500 1,000 1,500 2,000
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State Dimension N (ε∗ = 10−3/2)
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e
[s
]

POD

HAPOD

Bound

Intermed.
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Distributed HAPOD Example

Distributed computation and POD of empirical cross Gramian:

ŴX ,ij: =

M

∑
m=1

∫
∞

0

⟨xmi (t), y jm(t)⟩dt ∈ ℝN×N

▶ ‘Synthetic’ benchmark model2 from MORWiki with parameter θ =
1

10
.

▶ Partition ŴX into 100 slices of size 10.000 × 100.

10−2 10−4 10−6 10−8 10−10

10−5

10−3

10−1

Prescribed Mean Proj. Error (ω = 0.5)

M
o
d
e
l
R
e
d
u
c
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o
n
E
rr
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r

POD

HAPOD

101 102 103
101

102

103

104

105

Block Size (ε∗ = 10−6, ω = 0.5)

S
p
e
e
d
u
p

L𝒯 = 2

L𝒯 = 3

L𝒯 = 4

L𝒯 = 5

2See: http://modelreduction.org/index.php/Synthetic_parametric_model
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HAPOD – HPC Example
Neutron transport equation

∂tψ(t, x, v) + v ⋅∇xψ(t, x, v) + σt(x)ψ(t, x, v) = 1

|V |σs(x) ∫
V

ψ(t, x,w)dw + Q(x)

▶ Moment closure/FV approximation.

▶ Varying absorbtion and scattering coefficients.

▶ Distributed snapshot and HAPOD computation on

PALMA cluster (125 cores).
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HAPOD – HPC Example

𝛼n

𝛼2n

𝛼1n

τ1n,1 ⋯ τ1n,12

τ2n,1 ⋯ τ2n,12

τsn,1 ⋯ τsn,12

▶ HAPOD on compute node n. Time steps are split into s

slices. Each processor core computes one slice at a time,

performs POD and sends resulting modes to main MPI

rank on the node.

ρ

𝛼1 𝛼2

𝛼3

𝛼11

▶ Incremental HAPOD is performed on

MPI rank 0 with modes collected on

each node.
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HAPOD – HPC Example
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Data gen.
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ω = 0.1

ω = 0.25

ω = 0.5

ω = 0.75

ω = 0.9

ω = 0.95

ω = 0.99

ω = 0.999

POD

▶ ≈ 39.000 ⋅ k3 doubles of snapshot data (≈ 2.5 terabyte for k = 200).
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What About Nonlinear Problems?

For nonlinear problems, we also need to generate a basis for EI.

▶ In case of DEIM, EI basis is computed as POD of operator evaluations.

▶  Use HAPOD to simultaneously compute RB and DEIM bases.

▶ Interpolation DOFs are chosen afterwards only using DEIM basis as data (EI-Greedy).
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Where are my right-singular vectors?!

At the blackboard!
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HASVD vs. Stoachstic SVD

HASVD stoch. SVD

efficient

rigorous analysis

easy to parallelize

low-rank approximation

matrix free

single-pass

single-pass with error control

easy to implement

▶ HASVD is a method to efficiently obtain the POD from PODs of subsets of the data.

▶ HASVD can be utilized on top of stochastic SVD methods.

Stephan Rave (stephan.rave@wwu.de) 22



HASVD

HASVD

Rigor-
ous!

Error bounds Mode bounds

Fast!

Single pass

live data

compression

Overcome

RAM

limitations

Reduced com-

putational

complexity

Simple!

Cloud-friendly
Bring-your-

own-SVD

Easy

parallelization
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Thank you for your attention!

C. Himpe, T. Leibner, S. Rave, Hierarchical Approximate Proper Orthogonal Decomposition
SIAM J. Sci. Comput., 40(5), pp. A3267-A3292

pyMOR – Generic Algorithms and Interfaces for Model Order Reduction

SIAM J. Sci. Comput., 38(5), pp. S194–S216

pip install pymor

Matlab HAPOD implementation:

git clone https://github.com/gramian/hapod

My homepage:

https://stephanrave.de/
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